JPH08243778A - Weld zone fatigue strength improvement method - Google Patents

Weld zone fatigue strength improvement method

Info

Publication number
JPH08243778A
JPH08243778A JP7253795A JP7253795A JPH08243778A JP H08243778 A JPH08243778 A JP H08243778A JP 7253795 A JP7253795 A JP 7253795A JP 7253795 A JP7253795 A JP 7253795A JP H08243778 A JPH08243778 A JP H08243778A
Authority
JP
Japan
Prior art keywords
weld
metal
fatigue strength
joint
main plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7253795A
Other languages
Japanese (ja)
Inventor
Shinichi Omiya
慎一 大宮
Koji Seto
厚司 瀬戸
Hiroshi Ouchi
博史 大内
Isao Soya
勇夫 征矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7253795A priority Critical patent/JPH08243778A/en
Publication of JPH08243778A publication Critical patent/JPH08243778A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide the fatigue strength improvement method of weld zone by reducing stress concentration at welded end part so as to improve fatigue strength of weld joint. CONSTITUTION: On whole surface or partial surface near welded end part of a fillet weld zone 17 of metal and part of a principal plate 11 of metal to weld, further with use of a fiber reinforced plastic layer, in which a plastic constant of a fiber reinforced plastic 13 in the longitudinal direction and the direction along surface is 5-150% of that of the principal plate, the fiber reinforced plastic layer, in which (plastic constant)×(thickness) is 1-50% of that of the principal plate, is adhered. By this method, stress concentration of weld joint is alleviated to increase fatigue design load, it can achieve quality improvement and weight reduction of welded structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料溶接部の疲労
強度を向上させる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the fatigue strength of a metal material welded portion.

【0002】[0002]

【従来の技術】隅肉溶接は、鋼やアルミ合金等の金属材
料を用いた構造物の製造に広く用いられるものであが、
隅肉溶接部の疲労強度は、その止端部における応力集中
や、溶接により生じた残留応力等の原因により、母材に
比べて大きく低下する。
2. Description of the Related Art Fillet welding is widely used in the manufacture of structures using metal materials such as steel and aluminum alloys.
The fatigue strength of the fillet weld is much lower than that of the base metal due to stress concentration at the toe and residual stress caused by welding.

【0003】このため、構造物全体の疲労強度が溶接継
手部に支配され、母材の特性を生かしきることができな
い。そこで、溶接部の疲労強度を向上させる方法は広く
研究されており、その手法は、応力集中の緩和と残留応
力のコントロールの2つに大別される。
Therefore, the fatigue strength of the entire structure is governed by the welded joint, and the characteristics of the base metal cannot be fully utilized. Therefore, methods for improving the fatigue strength of welds have been widely researched, and the methods are roughly classified into two methods: relaxation of stress concentration and control of residual stress.

【0004】一方の残留応力のコントロールを目的とし
た止端部処理としては、予め過大荷重を与えることによ
り溶接止端部に降伏応力を越える引張応力を発生させ、
除荷後に圧縮の残留応力を与える予荷重処理、継手全体
を加熱した後急冷することにより圧縮残留応力を与える
加熱急冷処理、溶接止端部をワイヤー,ボール等を用い
て打撃することにより、機械的に圧縮残留応力を付与す
るピーニング処理等の方法が知られている。
On the other hand, as the toe treatment for the purpose of controlling the residual stress, an excessive load is applied in advance to generate a tensile stress exceeding the yield stress at the weld toe,
Preloading treatment to give compressive residual stress after unloading, heating and quenching treatment to give compressive residual stress by heating the entire joint and then quenching, and hitting the weld toe with wires, balls, etc. A method such as a peening treatment for giving a compressive residual stress is known.

【0005】他方応力集中の緩和を目的とした止端部処
理には、溶接止端部をグラインダー等で滑らかにする切
削や、研削処理,溶接止端部をTIGで再溶融すること
により滑らかにする処理,プラズマで再溶融することに
より滑らかにする処理(特公昭54−30386号公
報),化粧溶接棒を用いて滑らかな止端部を得る処理な
どがある。
On the other hand, the toe treatment for the purpose of alleviating stress concentration is made smooth by cutting the welding toe with a grinder or the like, grinding treatment, and remelting the welding toe with TIG. Processing, smoothing by remelting with plasma (Japanese Patent Publication No. 54-30386), and processing for obtaining a smooth toe portion using a decorative welding rod.

【0006】また鋼板と充填材からなる付加物により、
溶接部を補強することにより溶接止端部からの疲労き裂
の発生を防止し、継手の疲労強度を向上させる方法が特
開昭62−296964号公報に開示されている。
[0006] Further, by the addition of the steel plate and the filler,
Japanese Patent Application Laid-Open No. 62-296964 discloses a method of reinforcing the welded portion to prevent fatigue cracks from being generated from the weld toe portion and improve the fatigue strength of the joint.

【0007】また溶接継手に溶融亜鉛メッキを施した後
急冷すると、弾性率の低い亜鉛が表面に付着することで
止端部の応力集中が緩和されることと、表面の急冷によ
り圧縮の残留応力が止端部に付与される2つの複合効果
により、疲労強度が向上することが知られている。
Further, when the welded joint is subjected to hot dip galvanizing and then rapidly cooled, zinc having a low elastic modulus adheres to the surface, so that stress concentration at the toe portion is relieved, and the surface is rapidly cooled to cause residual stress of compression. It is known that the fatigue strength is improved by the two combined effects of being added to the toe.

【0008】[0008]

【発明が解決しようとする課題】溶接継手の疲労強度低
下の主要な2つの原因、ならびに応力集中と溶接残留応
力について、より大きな影響を与えているのは応力集中
とされており、瀬戸らの研究〔止端処理継手の疲労強度
向上に関する検討:溶接学会全国講演大会概要第49集
p.96(’91)〕によっても、残留応力を制御する
ことによる各種の疲労強度向上法については、応力集中
を緩和する方法に比較して効果が小さいことが明らかに
なっている。
It is said that stress concentration is the major cause of the decrease in fatigue strength of welded joints, and stress concentration and welding residual stress that have a greater effect. Study [Study on Improvement of Fatigue Strength of Toe Fitted Joint: Summary of Welding Society National Lecture Meeting 49th p. 96 ('91)], it has been clarified that various fatigue strength improving methods by controlling residual stress are less effective than methods of relaxing stress concentration.

【0009】また、上記の応力集中を緩和する方法であ
るところの研削・切削処理,TIGやプラズマによる再
溶融処理は、いずれも止端形状を整えることを目的とし
ており、応力の流れそのものは変えることができない。
そのため、その効果には限界がある。
Further, the grinding / cutting treatment and the remelting treatment by TIG or plasma, which are the methods for relaxing the above-mentioned stress concentration, are aimed at adjusting the toe shape, and the flow of stress itself is changed. I can't.
Therefore, the effect is limited.

【0010】溶接止端部周辺に付加物を固着して、応力
の流れそのものを変えることにより止端での応力集中を
緩和する方法は最も効果的であるが、特開昭62−29
6964号公報に開示の方法は、曲げモーメントを緩和
することを主目的としたものであり、主板が引張力を受
ける場合には有効でない。
The most effective method is to fix an additive around the weld toe portion and change the flow of stress itself to alleviate the stress concentration at the toe portion.
The method disclosed in Japanese Patent No. 6964 is mainly intended to reduce the bending moment and is not effective when the main plate receives a tensile force.

【0011】また、溶融亜鉛メッキ後の急冷法は、弾性
率の低い亜鉛を表面に付着させることにより止端部の応
力集中を緩和する効果と、表面の急冷により圧縮の残留
応力を止端部に付与することの複合効果による疲労強度
向上法であるが、メッキ層が非常に薄いため、応力集中
の緩和という観点からは効果が十分でない。
Further, the quenching method after hot dip galvanizing has the effect of relaxing the stress concentration at the toe portion by adhering zinc having a low elastic modulus to the surface and the residual stress of compression due to the surface quenching. However, since the plating layer is very thin, its effect is not sufficient from the viewpoint of relaxing stress concentration.

【0012】本発明は、繊維強化プラスチック(以下F
RPという)層を固着させることによって溶接止端部に
おける応力集中を低減させ、溶接継手の疲労強度を向上
させる溶接部の疲労強度向上方法を提供する。
The present invention relates to a fiber reinforced plastic (hereinafter referred to as F
Provided is a method for improving the fatigue strength of a welded portion, in which the stress concentration at the weld toe portion is reduced by fixing a layer called RP) and the fatigue strength of the welded joint is improved.

【0013】[0013]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、金属の隅肉溶接部の全表面または溶接止端に近い
一部表面および当該金属の主板の一部に、継手の長手方
向でかつ表面に沿った方向の繊維強化プラスチックの弾
性率が当該金属主板の5%〜150%で、(弾性率)×
(厚み)が当該金属主板の1%〜50%となる繊維強化
プラスチック層を固着することを特徴とする溶接部疲労
強度向上方法である。
SUMMARY OF THE INVENTION The gist of the present invention is that the entire surface of a fillet weld of a metal or a partial surface near the weld toe and a part of a main plate of the metal have a longitudinal direction of a joint. And the elastic modulus of the fiber-reinforced plastic in the direction along the surface is 5% to 150% of the metal main plate, (elastic modulus) ×
A method of improving fatigue strength of a welded part is characterized in that a fiber-reinforced plastic layer having a (thickness) of 1% to 50% of the metal main plate is fixed.

【0014】[0014]

【作用】本発明の作用の概要は、隅肉溶接部にFRPに
よる補強を施すことにより、溶接止端部における応力集
中を緩和し、継手の疲労強度を向上させることであり、
以下にその詳細を述べる。
The outline of the operation of the present invention is to reinforce the fillet welds with FRP to relieve the stress concentration at the weld toes and improve the fatigue strength of the joint.
The details will be described below.

【0015】溶接止端部における応力集中を緩和するた
めには、継手部表面に設けられたFRP層が継手にかか
る荷重を分担する必要がある。このとき、FRP層の荷
重方向の弾性率が母材の金属に比べて著しく低いと荷重
を分担しないため、溶接止端部の応力集中緩和の効果が
得られない。
In order to reduce the stress concentration at the weld toe, the FRP layer provided on the surface of the joint must share the load applied to the joint. At this time, if the elastic modulus of the FRP layer in the load direction is significantly lower than that of the base metal, the load is not shared, and the effect of stress concentration relaxation at the weld toe cannot be obtained.

【0016】このため、FRP層は金属母材の弾性率の
5%以上の弾性率を持つことが必要となる。また逆に、
FRP層の弾性率が母材のそれの150%より大きい場
合、FRP層の伝達する荷重が非常に大きくなる。この
ような場合、FRPの主板側端部での応力集中が大きく
なり、ここから疲労き裂が発生する原因となる。
Therefore, it is necessary that the FRP layer has an elastic modulus of 5% or more of the elastic modulus of the metal base material. On the contrary,
When the elastic modulus of the FRP layer is larger than 150% of that of the base material, the load transmitted by the FRP layer becomes very large. In such a case, stress concentration becomes large at the end portion of the FRP on the main plate side, which causes a fatigue crack to occur.

【0017】またFRP層の弾性率が、金属母材のそれ
の150%より大きいと、金属母材とFRP層の界面に
せん断応力が生じ、繰り返し応力が加わった際に界面剥
離を起こす原因となる。この2つの理由により、有効な
補強を得るためには、FRP層の弾性率は金属母材の弾
性率の150%を超えないことが必要になる。
Further, if the elastic modulus of the FRP layer is larger than 150% of that of the metal base material, shear stress is generated at the interface between the metal base material and the FRP layer, which may cause interfacial peeling when repeated stress is applied. Become. For these two reasons, the elastic modulus of the FRP layer must not exceed 150% of the elastic modulus of the metal base material in order to obtain effective reinforcement.

【0018】また溶接止端部での応力集中を緩和するた
めには、表面のFRP層で荷重を分担する必要があり、
このためにはFRP層の(弾性率)×(厚さ)が溶接さ
れた金属主板の1%以上あることが必要になる。
In order to alleviate the stress concentration at the weld toe, it is necessary to share the load with the FRP layer on the surface.
For this purpose, the (modulus of elasticity) × (thickness) of the FRP layer must be 1% or more of the welded metal main plate.

【0019】また(弾性率)×(厚さ)が溶接された金
属主板の50%を超えると、この部分の荷重分担が大き
くなり過ぎ、FRP層の端部での金属側の応力集中が大
きくなってこの部分で疲労き裂を生ずる。このため、
(弾性率)×(厚さ)を溶接された金属主板の50%以
下に押さえる必要がある。
When (modulus of elasticity) × (thickness) exceeds 50% of the welded metal main plate, the load sharing of this portion becomes too large, and the stress concentration on the metal side at the end of the FRP layer becomes large. As a result, fatigue cracks occur at this part. For this reason,
It is necessary to suppress (elastic modulus) × (thickness) to 50% or less of the welded metal main plate.

【0020】またFRP層を固着する範囲は、溶接止端
での応力集中を緩和するに十分な範囲である必要があ
る。FRP層が溶接止端に流れ込むべき応力を分担する
ためには、溶接止端を中心として、隅肉溶接部,主板側
それぞれに少なくとも溶接脚長の30%を覆って固着し
ていなければならない。
Further, the range in which the FRP layer is fixed must be a range sufficient to relieve the stress concentration at the weld toe. In order for the FRP layer to share the stress that should flow into the weld toe, the fillet welded portion and the main plate side must be fixed at least 30% of the weld leg length around the weld toe.

【0021】また被覆部分の増大により応力低減の効果
は増大するが、その効果は溶接止端から隅肉溶接部,主
板側それぞれに溶接脚長の150%程度で飽和するた
め、これ以上延長する応力緩和の観点からの意味は無
い。しかしながらFRP層の作製の際の作業性の確保等
の理由で、これを延長することを妨げる理由はない。
Further, the effect of reducing the stress is increased by increasing the coating portion, but the effect is saturated from the weld toe to the fillet welds and the main plate side at about 150% of the weld leg length, so that the stress that extends beyond this is increased. There is no point in terms of mitigation. However, there is no reason to prevent the extension of the FRP layer for reasons such as ensuring workability during production.

【0022】使用するFRPの種類は上記要件を満たす
ものであれば、使用する強化繊維は炭素繊維,アラミド
繊維,ガラス繊維等何でもよい。また、樹脂について
も、エポキシ,ポリエステルあるいはエンプラ系のもの
等、いかなるものを使用してもよい。ただし、次に述べ
る固着方法の点からはエポキシが最適である。
As the type of FRP to be used, any reinforcing fiber may be used, such as carbon fiber, aramid fiber, glass fiber, etc., as long as it satisfies the above requirements. Also, as the resin, any resin such as epoxy, polyester or engineering plastic may be used. However, epoxy is most suitable from the viewpoint of the fixing method described below.

【0023】FRP層の金属継手への固着方法として
は、まず成形したFRPを接着剤を用いて金属に接合す
る方法がある。この場合の接着剤としてはエポキシ系の
ものなど、金属とFRPに用いられた樹脂の接合に十分
な強度が得られるものなら何を使用してもよい。
As a method of fixing the FRP layer to the metal joint, there is a method of first bonding the molded FRP to a metal by using an adhesive. In this case, as the adhesive, any adhesive may be used as long as it has sufficient strength for joining the metal and the resin used for the FRP, such as an epoxy adhesive.

【0024】しかし最適な固着方法は、金属継手上にプ
リプレグと呼ばれる繊維に樹脂を含浸したシートを積層
して、これを加熱・加圧することにより成形することに
より直接固着させる方法である。特にエポキシ樹脂を含
浸したプリプレグを使用することにより、強固に密着し
たFRP層を、金属継手上に形成することが可能であ
る。
However, the most suitable fixing method is a method in which a sheet called prepreg in which fibers are impregnated with a resin is laminated on a metal joint, and the sheet is molded by heating and pressurizing the sheet to directly fix the sheet. In particular, by using a prepreg impregnated with an epoxy resin, it is possible to form a strongly adhered FRP layer on the metal joint.

【0025】[0025]

【実施例】図1は本発明の疲労強度向上方法を実施した
溶接部の断面例を示し、主板11とリブ板12は隅肉溶
接17により接合され、非荷重伝達型のリブ十字継手を
構成している。各隅肉溶接17の表面には主板11にか
かるようにFRP層13が固着されている。なお14は
FRP層の主板側端部,15は溶接止端,16は溶接脚
長である。
FIG. 1 shows an example of a cross section of a welded portion subjected to the fatigue strength improving method of the present invention, in which a main plate 11 and a rib plate 12 are joined by fillet welding 17 to form a non-load-transmitting rib cross joint. are doing. The FRP layer 13 is fixed to the surface of each fillet weld 17 so as to cover the main plate 11. In addition, 14 is an end of the FRP layer on the main plate side, 15 is a welding toe, and 16 is a welding leg length.

【0026】実施例1として、素材に360MPa級鋼
(Y.P.440MPa,T.S.520MPa)を用
いた非荷重伝達型のリブ十字継手(母材主板厚22m
m,リブ板厚10mm,幅40mm)と、これを1mm
厚のCFRP層で補強した継手を製作し、疲労試験を実
施した。
As Example 1, a non-load-transmitting rib cross joint (base material main plate thickness 22 m, using 360 MPa class steel (YP 440 MPa, TS 520 MPa) as a material.
m, rib plate thickness 10 mm, width 40 mm) and 1 mm
A joint reinforced with a thick CFRP layer was manufactured and a fatigue test was conducted.

【0027】CFRPは弾性率240GPaのPAN系
炭素繊維の織物(エポキシ樹脂・Vf=50%)のもの
で、FRPとしての弾性率は60GPaである。これは
鋼の弾性率214GPaの28%になる。
CFRP is a PAN-based carbon fiber woven fabric (epoxy resin Vf = 50%) having an elastic modulus of 240 GPa, and the elastic modulus as FRP is 60 GPa. This is 28% of the elastic modulus of steel, 214 GPa.

【0028】補強用のCFRP層の製作には低温硬化型
(80℃)のエポキシ樹脂を用いた上記炭素繊維織物の
プリプレグを使用した。このプリプレグを織物の一方の
繊維方向が主板の長手方向と一致させ、継手の溶接部全
表面と主板の溶接止端から溶接脚長の2倍の長さ分だけ
覆うように積層した。
For the production of the CFRP layer for reinforcement, the prepreg of the above carbon fiber woven fabric using a low temperature curing type (80 ° C.) epoxy resin was used. The prepreg was laminated so that one fiber direction of the woven fabric coincided with the longitudinal direction of the main plate and the entire surface of the welded portion of the joint and the weld toe of the main plate were covered by a length equal to twice the weld leg length.

【0029】この積層したプリプレグの周囲にバグを製
作し、真空ポンプでバグ内部を減圧するいわゆる真空バ
グ法によりこれを成形した。成形の際の加熱には照明用
のライトを使用し、80℃に加熱した状態で2時間放置
し、エポキシ樹脂を硬化させた。
A bag was produced around this laminated prepreg, and was formed by the so-called vacuum bug method in which the inside of the bag was decompressed by a vacuum pump. A light for illumination was used for heating during molding, and the epoxy resin was cured by leaving it for 2 hours while being heated to 80 ° C.

【0030】試験は公称応力範囲200MPa,応力比
0の引張り繰り返し荷重で行い、溶接まま継手では寿命
が41万回であったのに対し、CFRP補強継手では1
03万回と、CFRPによる補強により疲労寿命が約
2.5倍に延びた。
The test was carried out under a tensile repetitive load with a nominal stress range of 200 MPa and a stress ratio of 0. The life of the as-welded joint was 410,000 times, whereas that of the CFRP reinforced joint was 1.
With 030,000 cycles, the fatigue life was extended by a factor of 2.5 due to CFRP reinforcement.

【0031】実施例2として、素材に360MPa級鋼
(Y.P.440MPa,T.S.520MPa)を用
いた非荷重伝達型のT継手(母材主板厚22mm,リブ
板厚10mm)と、これを1mm厚のCFRP層で補強
した継手を製作し、疲労試験を実施した。
As Example 2, a non-load transmission type T joint (base metal main plate thickness 22 mm, rib plate thickness 10 mm) using 360 MPa class steel (YP 440 MPa, TS 520 MPa) as a material, A joint was produced by reinforcing this with a CFRP layer having a thickness of 1 mm, and a fatigue test was performed.

【0032】CFRPは、弾性率240GPaのPAN
系炭素繊維の一方向材(エポキシ樹脂,Vf=60%)
のもので、FRPとしての繊維が配向された方向の弾性
率は144GPaである。これは軟鋼の弾性率214G
Paの67%になる。
CFRP is a PAN having an elastic modulus of 240 GPa.
Unidirectional carbon fiber (epoxy resin, Vf = 60%)
The elastic modulus in the direction in which the fibers as FRP are oriented is 144 GPa. This is the elastic modulus of mild steel 214G
It becomes 67% of Pa.

【0033】補強用のCFRP層の製作には、中温硬化
型(120℃)のエポキシ樹脂を用いた上記炭素繊維一
方向材のプリプレグを使用した。このプリプレグを繊維
方向が主板の長手方向と一致させ、継手の溶接部全表面
と主板の溶接止端から溶接脚長の3倍の長さ分だけを覆
うよう積層した。
For the production of the CFRP layer for reinforcement, the prepreg of the above carbon fiber unidirectional material using a medium temperature curing type (120 ° C.) epoxy resin was used. The prepreg was laminated so that the fiber direction was aligned with the longitudinal direction of the main plate, and the entire surface of the welded portion of the joint and the weld toe of the main plate were covered by a length three times the weld leg length.

【0034】この積層したプリプレグの周囲にバグを製
作し、真空ポンプでバグ内部を減圧したうえ、オートク
レーブを使用して加熱・加温するいわゆるオートクレー
ブ法によりこれを成形した。オートクレーブ内で120
℃に加熱,2気圧に加圧した状態で2時間放置し、エポ
キシ樹脂を硬化させた。
A bag was produced around this laminated prepreg, the inside of the bag was decompressed by a vacuum pump, and the bag was molded by a so-called autoclave method in which heating and heating were performed using an autoclave. 120 in autoclave
The epoxy resin was cured by heating at 0 ° C. and leaving it under a pressure of 2 atm for 2 hours.

【0035】試験は公称応力範囲250MPa,応力比
0の3点曲げ(スパーン300mm)で行い、溶接まま
継手では寿命が25万回であったのに対し、CFRP補
強継手では53万回と、CFRPによる補強により疲労
寿命が約2.1倍に延長された。
The test was carried out in a three-point bending (span 300 mm) with a nominal stress range of 250 MPa and a stress ratio of 0, and the life of the as-welded joint was 250,000 times, whereas that of the CFRP reinforced joint was 530,000 times, and CFRP was 530,000 times. The fatigue life was extended about 2.1 times by the reinforcement.

【0036】実施例3として、素材にアルミ合金A50
83P−Oを用いた非荷重伝達型のリブ十字継手(母材
板厚10mm、リブ板厚5mm)と、これをArFRP
層で補強した継手を製作した。
As a third embodiment, the material is aluminum alloy A50.
Non-load transmission type rib cross joint using 83P-O (base material plate thickness 10 mm, rib plate thickness 5 mm) and ArFRP
A layer reinforced joint was made.

【0037】ArFRPは弾性率130GPaのアラミ
ド繊維の織物(エポキシ樹脂,Vf=50%)のもの
で、FRPとしての弾性率は32GPaである。これは
アルミ合金の弾性率71GPaの45%になる。
ArFRP is a aramid fiber woven fabric (epoxy resin, Vf = 50%) having an elastic modulus of 130 GPa, and the elastic modulus as FRP is 32 GPa. This is 45% of the elastic modulus of 71 GPa of the aluminum alloy.

【0038】補強用のArFRP層の製作には、低温硬
化型(80℃)のエポキシ樹脂を用いた上記アラミド繊
維織物のプリプレグを使用した。このプリプレグを用い
て、実施例1と同様の方法を用いてArFRP層を成形
した。
For the production of the reinforcing ArFRP layer, the prepreg of the aramid fiber woven fabric using a low temperature curing type (80 ° C.) epoxy resin was used. Using this prepreg, an ArFRP layer was molded in the same manner as in Example 1.

【0039】試験は公称応力範囲60MPa,応力比0
の引張り繰り返し荷重で行い、溶接まま継手では寿命が
12万回であったのに対し、CFRP補強継手では32
万回と、CFRPによる補強により疲労寿命が約2.7
倍に延びた。
The test was carried out at a nominal stress range of 60 MPa and a stress ratio of 0.
The tensile life was 120,000 times for the as-welded joint, whereas it was 32 for the CFRP reinforced joint.
10,000 times, the fatigue life is about 2.7 due to reinforcement by CFRP.
Doubled.

【0040】[0040]

【発明の効果】以上説明したように本発明は、隅肉溶接
部の表面に繊維強化プラスチックを固着することによ
り、応力集中を緩和するとともに溶接継手の疲労強度を
向上させ、かつ疲労設計の必要な構造物の設計荷重を上
げることが可能となり、溶接構造物の品質の向上,構造
物の軽量化を図ることができる。
As described above, according to the present invention, by fixing the fiber reinforced plastic to the surface of the fillet welded portion, stress concentration is relieved, the fatigue strength of the welded joint is improved, and the fatigue design is required. It is possible to increase the design load of various structures, improve the quality of welded structures, and reduce the weight of structures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示し、隅肉溶接部にFRP層
を付加して構成したリブ十字継手を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention and showing a rib cross joint formed by adding an FRP layer to a fillet weld.

【符号の説明】[Explanation of symbols]

11 主板 12 リブ板 13 FRP層 14 FRP層の主板側端部 15 溶接止端 16 溶接脚長 17 隅肉溶接 11 Main Plate 12 Rib Plate 13 FRP Layer 14 Main Plate Side End of FRP Layer 15 Weld Toe 16 Weld Leg Length 17 Fillet Weld

───────────────────────────────────────────────────── フロントページの続き (72)発明者 征矢 勇夫 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Seiya 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属の隅肉溶接部の全表面または溶接止
端に近い一部表面および当該金属の主板の一部に、継手
の長手方向でかつ表面に沿った方向の繊維強化プラスチ
ックの弾性率が当該金属主板の5%〜150%で、(弾
性率)×(厚み)が当該金属主板の1%〜50%となる
繊維強化プラスチック層を固着することを特徴とする溶
接部疲労強度向上方法。
1. Elasticity of the fiber-reinforced plastic in the longitudinal direction of the joint and in the direction along the surface of the entire surface of the fillet weld of the metal or a part of the surface near the weld toe and a part of the main plate of the metal. Improved weld fatigue strength, characterized in that a fiber-reinforced plastic layer having a modulus of 5% to 150% of the metal main plate and an (elastic modulus) × (thickness) of 1% to 50% of the metal main plate is fixed. Method.
JP7253795A 1995-03-07 1995-03-07 Weld zone fatigue strength improvement method Withdrawn JPH08243778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253795A JPH08243778A (en) 1995-03-07 1995-03-07 Weld zone fatigue strength improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253795A JPH08243778A (en) 1995-03-07 1995-03-07 Weld zone fatigue strength improvement method

Publications (1)

Publication Number Publication Date
JPH08243778A true JPH08243778A (en) 1996-09-24

Family

ID=13492209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253795A Withdrawn JPH08243778A (en) 1995-03-07 1995-03-07 Weld zone fatigue strength improvement method

Country Status (1)

Country Link
JP (1) JPH08243778A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039102A (en) * 2000-07-19 2002-02-06 Nhk Spring Co Ltd Accumulator
JP2006057352A (en) * 2004-08-20 2006-03-02 Nippon Oil Corp Method of repairing steel structure by using carbon fiber reinforced plastic board, carbon fiber reinforced plastic board for use in the method, and repaired steel structure
JP2007075826A (en) * 2005-09-12 2007-03-29 Kawasaki Heavy Ind Ltd Welded joint structure for reducing fatigue damage
JP2008000760A (en) * 2006-06-20 2008-01-10 Kawasaki Heavy Ind Ltd Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block
JP2009192142A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Feed water heater
JP2012245566A (en) * 2012-09-18 2012-12-13 Kawasaki Heavy Ind Ltd Welded joint structure for reducing fatigue damage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039102A (en) * 2000-07-19 2002-02-06 Nhk Spring Co Ltd Accumulator
JP2006057352A (en) * 2004-08-20 2006-03-02 Nippon Oil Corp Method of repairing steel structure by using carbon fiber reinforced plastic board, carbon fiber reinforced plastic board for use in the method, and repaired steel structure
JP4680550B2 (en) * 2004-08-20 2011-05-11 Jx日鉱日石エネルギー株式会社 Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced
JP2007075826A (en) * 2005-09-12 2007-03-29 Kawasaki Heavy Ind Ltd Welded joint structure for reducing fatigue damage
JP2008000760A (en) * 2006-06-20 2008-01-10 Kawasaki Heavy Ind Ltd Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block
JP2009192142A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Feed water heater
JP2012245566A (en) * 2012-09-18 2012-12-13 Kawasaki Heavy Ind Ltd Welded joint structure for reducing fatigue damage

Similar Documents

Publication Publication Date Title
JP6240200B2 (en) Composite structure with stabilizing element
Campilho et al. Strength improvement of adhesively-bonded joints using a reverse-bent geometry
JP6120846B2 (en) Molybdenum composite hybrid laminate and method
JPWO2005068284A1 (en) Bicycle crank and method for manufacturing the same
JP2909211B2 (en) Reinforced alloy laminate
JPH08243778A (en) Weld zone fatigue strength improvement method
US7192501B2 (en) Method for improving crack resistance in fiber-metal-laminate structures
Kim et al. Development of a strength model for the cocured stepped lap joints under tensile loading
CN107208676A (en) component assembly
US20060156662A1 (en) Structural element, method for manufacturing a structural element and use of a structural element for an aircraft hull
US6719865B2 (en) Method for producing stiffened hollow structure composed of fiber-reinforced composite
US20100151262A1 (en) Metallic coating of composite materials
Pawlik et al. Surface engineering of carbon fibre/epoxy composites with woven steel mesh for adhesion strength enhancement
US20240123721A1 (en) Method for producing composite of cfrtp plate material with metal plate material and composite thereof
JP2009046931A (en) Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material
JP2008137024A (en) Welded joint having excellent fatigue strength
JP6048622B1 (en) Steel plate joined body, steel plate joined body manufacturing method and spot welding method
JP2004130316A (en) Boxing joint of excellent fatigue strength, boxing joint manufacturing method, and welded structure
Domingues et al. Strength and failure modes of single-L adhesive joints between aluminium and composites
JP2021037662A (en) Metal resin composite and car component including metal resin composite
JP4680550B2 (en) Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced
JP6947074B2 (en) Manufacturing method of composite member
KR101157269B1 (en) Welding strength improving method
Loftus et al. The performance of aluminium to carbon fibre composite bonded joints in motorsport applications
Kaan et al. Fatigue enhancement of welded coverplates using carbon-fiber composites

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507