JP2009046931A - Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material - Google Patents

Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material Download PDF

Info

Publication number
JP2009046931A
JP2009046931A JP2007215971A JP2007215971A JP2009046931A JP 2009046931 A JP2009046931 A JP 2009046931A JP 2007215971 A JP2007215971 A JP 2007215971A JP 2007215971 A JP2007215971 A JP 2007215971A JP 2009046931 A JP2009046931 A JP 2009046931A
Authority
JP
Japan
Prior art keywords
carbon fiber
steel material
crack
fiber reinforced
stop hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007215971A
Other languages
Japanese (ja)
Inventor
Kazufumi Nakamura
一史 中村
Hiroyuki Suzuki
博之 鈴木
Kenichi Maeda
研一 前田
Takao Iribe
孝夫 入部
Yoshihiro Ihara
啓裕 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TTK CORP
Eneos Corp
Tokyo Metropolitan Public University Corp
Original Assignee
TTK CORP
Nippon Oil Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TTK CORP, Nippon Oil Corp, Tokyo Metropolitan Public University Corp filed Critical TTK CORP
Priority to JP2007215971A priority Critical patent/JP2009046931A/en
Publication of JP2009046931A publication Critical patent/JP2009046931A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent repair method for the fatigue crack of a steel structure by using a carbon fiber reinforced plastic board (CFRP board). <P>SOLUTION: A stop hole 5 is formed at the tip end of the fatigue crack 4 introduced into a steel material 1, the carbon fiber reinforced plastic board (CFRP board) 6 is stuck to cover the stop hole 5, and a CFRP board 7 is stuck to cover the crack 4. So that a higher effect is obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋼橋等の鋼製材料の補修に関し、疲労き裂の進展を簡便且つ効果的に補修する方法に関する。   The present invention relates to repair of steel materials such as steel bridges, and relates to a method for repairing fatigue cracks easily and effectively.

近年、車両の大型化、交通量の増加に伴う振動、衝撃等による疲労、及び腐食などにより、鋼橋の各部材へ損傷が数多く報告されている。また、荷重増加に対処するため、補強を必要とする鋼橋も多くなっている。鋼部材に一旦疲労き裂が発生すると、徐々にき裂が進行し、主要部材が破断に至るおそれもある。特にき裂の発生箇所の多くは鋼板の溶接接合部に集中していることが知られている。   In recent years, many damages have been reported to each member of a steel bridge due to fatigue, corrosion, and the like due to vibrations, shocks, and the like accompanying an increase in the size of a vehicle and an increase in traffic. Moreover, in order to cope with an increase in load, many steel bridges require reinforcement. Once a fatigue crack occurs in a steel member, the crack gradually progresses and the main member may break. In particular, it is known that many cracks are concentrated at the welded joint of the steel plate.

このようなき裂の進展を抑えるため、き裂先端にストップホールを形成する応急補修工法が一般に実施されている。このようなストップホールを形成することで、き裂先端の応力集中が緩和されるためき裂の進展を一時的に止めることはできる。しかしながら、このストップホールはあくまでも応急的な処置であるため、その後、さらにき裂進展を抑制するための補修・補強が必要である。   In order to suppress such crack growth, an emergency repair method in which a stop hole is formed at the crack tip is generally implemented. By forming such a stop hole, the stress concentration at the crack tip is relaxed, so that the progress of the crack can be temporarily stopped. However, since this stop hole is only an emergency measure, it is necessary to repair and reinforce it further to suppress crack growth.

従来、このストップホールを利用して鋼板を高力ボルトにて締結したり、鋼板を更に溶接したりして添接する工法が主に行われていた。例えば、特許文献1には、面外ガセット部の端部に発生したき裂を補修するにあたり、き裂先端にストップホールを開け、特殊形状の座金(板材)を介在させて高力ボルトで締め付ける工法が開示されている。又、特許文献2には、板材を母材よりも硬度が高く、母材に作用する引張荷重に対して、圧縮応力を付与し得る方向に歯が形成された板材を介在させ、ストップホールを中心とした圧縮力を作用させて、疲労き裂の進展を確実に止める方法が開示されている。   Conventionally, a method of attaching by attaching a steel plate using a high-strength bolt or welding a steel plate using this stop hole has been mainly performed. For example, in Patent Document 1, when repairing a crack generated at the end of an out-of-plane gusset portion, a stop hole is opened at the tip of the crack and tightened with a high-strength bolt with a specially shaped washer (plate material) interposed. The construction method is disclosed. Further, in Patent Document 2, the plate material is harder than the base material, and a plate material in which teeth are formed in a direction in which compressive stress can be applied to the tensile load acting on the base material is interposed, and a stop hole is formed. A method is disclosed in which a compressive force at the center is applied to reliably stop the growth of fatigue cracks.

しかし、このような補修・補強を必要とする箇所は、部材の取り合いが複雑な狭隘な部分であることが多く、高力ボルト接合、溶接接合のいずれの場合においても作業性が極めて悪いという問題があった。又、特許文献2のように母材よりも硬い材料は重量的にも重く、締め付けボルトと合わせればさらに重量が増加するため、作業性や携行性等の点で改良の余地がある。そこで、簡便且つ効率的な施工方法が望まれている。   However, such repair / reinforcement is often a narrow part where the joints of the members are complex and the workability is extremely poor in both high-strength bolted joints and welded joints. was there. In addition, a material harder than the base material as in Patent Document 2 is heavier in weight and further increases in weight when combined with a fastening bolt, so there is room for improvement in terms of workability and portability. Therefore, a simple and efficient construction method is desired.

このような要求に対し、特許文献3では、鋼製構造物の繰り返し応力の作用する部分に生じたき裂に、簡便に携行することができる繊維強化型合成樹脂シートを貼付して、発見されたき裂の進展を遅延させる方法が開示されている。ここでは、未硬化のプリプレグシートを用いて、鋼製構造物に貼付した後、熱や紫外線を照射して硬化させる方法が提案されている。実施例ではガラス繊維強化合成樹脂プリプレグを貼付し、き裂進展の遅延速度を測定している。補強シートを貼付しない場合に比較して、き裂進展速度が1/3程度に減速することが開示されている。   In response to such a request, Patent Document 3 was discovered by attaching a fiber-reinforced synthetic resin sheet that can be easily carried to a crack generated in a portion where a repeated stress acts on a steel structure. A method for delaying crack growth is disclosed. Here, a method has been proposed in which an uncured prepreg sheet is applied to a steel structure and then cured by irradiation with heat or ultraviolet rays. In the Examples, a glass fiber reinforced synthetic resin prepreg is pasted and the delay rate of crack propagation is measured. It is disclosed that the crack growth rate is reduced to about 1/3 as compared with the case where a reinforcing sheet is not attached.

しかしながら、該方法は、単にき裂の進展速度を抑えるというもので、恒久的な補修までのつなぎとして実施するものであり、恒久的な補修自体は上記従来工法に頼らざるを得ない。また、プリプレグを硬化させるために、熱や紫外線の照射が必要となり、特に狭隘な部分では十分な効果を得られないおそれがある。又、シートは柔軟性に富むため現場での加工性に優れるが、シートでは1枚あたりの繊維量が少ないことから十分な剛性を確保するためにはかなり積層する必要がある。   However, this method merely suppresses the crack growth rate, and is implemented as a bridge until permanent repair. The permanent repair itself must be relied on the conventional method. In addition, in order to cure the prepreg, it is necessary to irradiate heat and ultraviolet rays, and there is a possibility that a sufficient effect cannot be obtained particularly in a narrow portion. In addition, the sheet is excellent in workability on site because of its high flexibility. However, since the sheet has a small amount of fibers per sheet, it needs to be laminated considerably in order to ensure sufficient rigidity.

本発明者らは、鋼製母材の面外にガセットプレートが回し溶接された、いわゆる面外ガセット部の止端部から発生したき裂の進展を抑制する簡便な方法として、略コの字状の炭素繊維強化樹脂板(以下、CFRP板という)による補修方法を提案している(特許文献4)。該方法によれば、特にコの字状に成形したCFRP板を面外ガセットのビード形状に沿って貼付することでき裂進展速度を効果的に遅延することができる。   As a simple method for suppressing the progress of a crack generated from the toe portion of a so-called out-of-plane gusset portion in which the gusset plate is turned and welded out of the plane of the steel base material, the present inventors A repair method using a carbon fiber reinforced resin plate (hereinafter referred to as a CFRP plate) is proposed (Patent Document 4). According to this method, a CFRP plate molded in a U-shape can be stuck along the bead shape of the out-of-plane gusset, and the crack growth rate can be effectively delayed.

しかしながら、このような方法をもってしても、き裂の進展を完全に止めることはできず、さらに恒久的な対策としても期待できる、より効果的な補修方法が嘱望されている。
特開平10−168817号公報 特開2004−176254号公報 特開2004−211338号公報 特開2006−57352号公報
However, even with such a method, the progress of cracks cannot be stopped completely, and a more effective repair method that can be expected as a permanent countermeasure is desired.
Japanese Patent Laid-Open No. 10-168817 JP 2004-176254 A Japanese Patent Application Laid-Open No. 2004-211338 JP 2006-57352 A

そこで本発明の目的は、鋼製材料に導入された疲労き裂のより簡便且つ効果的な補修方法を提供することにある。   Therefore, an object of the present invention is to provide a simpler and more effective repair method for fatigue cracks introduced into steel materials.

上記課題を解決するための本発明は、鋼製材料に導入された疲労き裂の先端部にストップホールを開孔し、該ストップホールを覆って鋼製材料上に少なくとも炭素繊維強化樹脂板(CFRP板)を貼付することを特徴とする鋼製材料の補修方法に関する。   In order to solve the above problems, the present invention provides a stop hole at the tip of a fatigue crack introduced into a steel material, and covers the stop hole so that at least a carbon fiber reinforced resin plate ( The present invention relates to a method for repairing a steel material characterized in that a CFRP plate is attached.

また、き裂上にも該き裂を覆ってCFRP板を貼付することで、より高い効果が得られ、ストップホール上とき裂上とで、それぞれ独立したCFRP板を貼付することが好ましい。   Further, by applying a CFRP plate on the crack so as to cover the crack, a higher effect can be obtained, and it is preferable to attach an independent CFRP plate on the stop hole and on the crack.

本発明によれば、ストップホールによるき裂進展阻止とCFRP板による補強工法とを組み合わせたところ、単にこれらを組み合わせた場合に予測される以上の相乗効果が認められ、その結果、き裂進展の抑制に効果的な補強が極めて簡便な方法により可能となる。   According to the present invention, when the crack growth prevention by the stop hole and the reinforcement method by the CFRP plate are combined, a synergistic effect more than expected by simply combining these is recognized. Reinforcement effective for suppression can be achieved by a very simple method.

本発明で使用するCFRP板は、比重が鋼材の約1/5程度であるにもかかわらず、引張強度が鋼材の約6倍と高強度であり、容易に携行可能であり、又、接着剤を塗布して貼付するという簡便な方法であるため、狭隘な部分の補修も容易である。   Although the CFRP plate used in the present invention has a specific gravity of about 1/5 that of steel, the tensile strength is about 6 times that of steel, and can be easily carried. Since it is a simple method of applying and sticking, it is easy to repair narrow portions.

本発明で補修対象となる鋼製材料は、き裂が発生したものであればいずれの鋼製材料にも適用可能であるが、以下の説明では、母材となる鋼材の側面に垂直にガセットプレートを溶接した、いわゆる面外ガセットにおいて、繰り返し作用する応力により溶接部に疲労き裂を生じたものについて説明する。このような面外ガセットにおいては、疲労き裂はガセットのすみ肉溶接部の止端部から発生しやすく、そのまま放置すればき裂が進展して母材の破壊を生ずるものである。   The steel material to be repaired in the present invention can be applied to any steel material as long as a crack has occurred. However, in the following description, the gusset is perpendicular to the side surface of the steel material as the base material. A description will be given of a so-called out-of-plane gusset welded with a plate, in which a fatigue crack is generated in the weld due to repeated stress. In such an out-of-plane gusset, a fatigue crack is likely to occur from the toe portion of the fillet welded portion of the gusset, and if left as it is, the crack progresses and the base material is broken.

まず、き裂の発見された鋼製材料に対して、従来工法と同様にストップホールを形成する。ストップホールの形状寸法は特に制限されるものではなく、補修する鋼材やき裂の状況に合わせて適宜調整すればよい。通常は、25mm程度の直径の孔をドリルであけ、グラインダー等でバリ取りやストップホール内の鏡面仕上げを行う。又、このような研磨後には、さびの発生を抑えるためにさび止め処理を行うことが好ましい。   First, a stop hole is formed in the steel material in which a crack is found, as in the conventional method. The shape dimension of the stop hole is not particularly limited, and may be appropriately adjusted according to the steel material to be repaired and the crack condition. Usually, a hole with a diameter of about 25 mm is drilled, and deburring or mirror finishing in a stop hole is performed with a grinder or the like. Further, after such polishing, it is preferable to perform rust prevention treatment in order to suppress the generation of rust.

本発明では、このようにストップホールを形成した後、ストップホールを覆ってCFRP板を貼付する。通常は、ストップホールで進展を阻止したき裂の延長線に対して直交する方向にCFRP板の長手方向がくるように貼付することが好ましい。CFRP板の長手方向の側面の一部はき裂上にあっても良い。   In the present invention, after the stop hole is formed in this way, a CFRP plate is attached so as to cover the stop hole. Usually, it is preferable that the CFRP plate is attached so that the longitudinal direction of the CFRP plate is in a direction perpendicular to the extension line of the crack whose progress is prevented by the stop hole. A part of the side surface in the longitudinal direction of the CFRP plate may be on the crack.

又、本発明では、き裂が拡張するのを抑制するように、き裂を覆ってCFRP板で補強することで、さらに高い効果が得られる。   Further, in the present invention, a higher effect can be obtained by covering the crack and reinforcing it with a CFRP plate so as to prevent the crack from expanding.

加えて、き裂全体を覆うCFRP板のはく離防止のためにストップホール上のCFRP板を積層することや、ストップホール先端からのき裂の再発生および進展に対処するためにストップホールの外側のき裂未進展部にもCFRP板を貼付することができる。   In addition, the CFRP plate on the stop hole is laminated to prevent the peeling of the CFRP plate covering the entire crack, and the outer side of the stop hole is used to cope with the reoccurrence and propagation of the crack from the stop hole tip. A CFRP plate can also be affixed to the crack undeveloped part.

面外ガセット部を有する鋼製材料の場合、き裂を覆うCFRP板の貼付位置は、特許文献4の図1に示すように、ガセットプレートの両側面及び止端部(長手方向の先端部)を覆うように積層して貼付することが好ましい。   In the case of a steel material having an out-of-plane gusset portion, as shown in FIG. 1 of Patent Document 4, the affixing position of the CFRP plate covering the crack is the both side surfaces and the toe end portion (longitudinal tip portion) of the gusset plate. It is preferable to laminate and paste so as to cover.

コの字スリット幅及びスリット長さの異なるCFRP板を積層して用い、各層のCFRP板がそれぞれ溶接ビードに密着するように上に積層するものほど、そのスリット幅及びスリット長さが小さくなるものを使用することが好ましい。また、予めコの字スリット幅及びスリット長さの異なるプリプレグシートを積層して積層体を得、加圧・加熱して樹脂を硬化させることにより一体成型した積層CFRP板とすることもできる。あるいは、単純に複数のプリプレグシートを積層して積層体を得、加圧・加熱して樹脂を硬化させることにより一体成型した積層CFRP板を得た後、切削等により溶接ビード形状に沿う形状に開口部を形成しても良い。   CFRP plates with different U-shaped slit widths and slit lengths are used in layers, and the CFRP plates in each layer are stacked on top so that they are in close contact with the weld bead. Is preferably used. Alternatively, a prepreg sheet having different U-shaped slit widths and slit lengths may be laminated in advance to obtain a laminated body, and a laminated CFRP plate integrally molded by pressurizing and heating to cure the resin can be obtained. Alternatively, a laminate is obtained by simply laminating a plurality of prepreg sheets, and after obtaining a laminated CFRP plate integrally formed by pressurizing and heating to cure the resin, it is cut into a shape along the weld bead shape. An opening may be formed.

本発明で使用するCFRP板は、例えば、JIS K 7073に準拠した炭素繊維強化樹脂の引張試験方法において、標準品(Sタイプ)では、1.52×105N/mm2以上、中弾性品(Mタイプ)では1.96×105N/mm2以上、高弾性品(Hタイプ)では2.94×105N/mm2以上の引張弾性率を有する材料を使用する。 The CFRP plate used in the present invention is, for example, a standard product (S type) 1.52 × 10 5 N / mm 2 or more, a medium elastic product in a tensile test method of carbon fiber reinforced resin according to JIS K7073. A material having a tensile modulus of 1.96 × 10 5 N / mm 2 or more is used for (M type), and 2.94 × 10 5 N / mm 2 or more is used for a highly elastic product (H type).

特に、CFRP板としては、連続的に炭素繊維をクリールスタンドから所定量繰り出し、引き揃え、レジンバスを通して加熱された成形型で硬化させる、いわゆる引抜成形により成型されるものが望ましい。また、一方向に引き揃えられた繊維に樹脂を含浸させたプリプレグシートを、所望の強度が得られるように所要枚数同一方向に積層して、この積層体を加圧・加熱して樹脂を硬化させることにより得ることもできる。   In particular, the CFRP plate is preferably formed by so-called pultrusion, in which a predetermined amount of carbon fiber is continuously fed from a creel stand, drawn, and cured with a mold heated through a resin bath. Also, prepreg sheets in which fibers aligned in one direction are impregnated with resin are laminated in the same direction as required to obtain the desired strength, and this laminate is pressed and heated to cure the resin. Can also be obtained.

このようなCFRP板の貼付には、常温硬化型の接着剤を用いる。一般的にCFRP板のマトリックス樹脂がエポキシ系樹脂であることから、エポキシ系接着剤を用いると好ましい結果が得られやすい。このような接着剤の接着強度としては、特に制限されるものではないが、貼付したCFRP板が容易に剥離しない強度であればよい。又、CFRP板貼付後にはみ出した接着剤は硬化前にふき取ることで容易に除去できる。   A room-temperature curable adhesive is used for attaching such a CFRP plate. In general, since the matrix resin of the CFRP plate is an epoxy resin, a preferable result is easily obtained when an epoxy adhesive is used. The adhesive strength of such an adhesive is not particularly limited, as long as the attached CFRP plate does not easily peel off. Moreover, the adhesive which protrudes after CFRP board sticking can be easily removed by wiping off before hardening.

又、CFRP板の貼付に先だって、貼付する鋼製材料の表面の塗装を剥がしたり、あるいは露出した鋼製材料表面に接着性改良剤、例えば、シランカップリング剤、チタネートカップリング剤等でカップリング処理することも有効である。   Prior to the application of the CFRP plate, the surface of the steel material to be applied is peeled off or the exposed surface of the steel material is coupled with an adhesion improver such as a silane coupling agent or a titanate coupling agent. Processing is also effective.

面外ガセット構造の場合、溶接ビード部についても、その形状をグラインダー等で研磨して調整したり、あるいは、逆にCFRP板の溶接ビード当接部の形状を溶接ビードの形状に合うように研磨することにより、溶接ビード部とCFRP板との密着性をより良好なものとすることもできる。   In the case of an out-of-plane gusset structure, the shape of the weld bead is also adjusted by grinding with a grinder or the like, or conversely, the shape of the CFRP plate weld bead contact portion is polished to match the shape of the weld bead. By doing, the adhesiveness of a weld bead part and a CFRP board can also be made more favorable.

以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.

<試験片の作製>
図1に示すように、鋼板母材1(JIS SM400A,250×9×1030mm(中央部幅:300mm))の中央部の両面にガセットプレート2(JIS SM400A,100×9×140mm)を回し溶接してビード部3を形成し試験片を作製した。
<Preparation of test piece>
As shown in FIG. 1, a gusset plate 2 (JIS SM400A, 100 × 9 × 140 mm) is turned and welded to both sides of a central portion of a steel plate base material 1 (JIS SM400A, 250 × 9 × 1030 mm (central portion width: 300 mm)). Then, a bead portion 3 was formed to prepare a test piece.

表1には、鋼板、CFRP板およびエポキシ樹脂接着剤の機械的性質を示す。試験方法については、まず、疲労実験により試験片の止端部よりき裂4を約33mmまで進展させた後、図2〜図4に示すような3つのケースの補修を行って、静的載荷試験、疲労試験を実施してその補修効果を比較した。具体的には、次のように補修を行った。   Table 1 shows the mechanical properties of the steel plate, CFRP plate and epoxy resin adhesive. Regarding the test method, first, after the crack 4 was propagated from the toe of the test piece to about 33 mm by a fatigue test, the three cases as shown in FIGS. Tests and fatigue tests were conducted and their repair effects were compared. Specifically, repairs were performed as follows.

(a) SH:ストップホール5(φ25)のみで補修したもの(図2)
(b) SHS:ストップホール5(φ25)の施工後、ストップホール5の直上に単層CFRP板6で補修したもの(図3)
(c) SHMS:ストップホール5(φ25)の施工後、ストップホール5の直上に単層CFRP板6で、ビード形状に密着するように積層CFRP板7(5層)で補修したもの(図4)
(A) SH: Repaired only with stop hole 5 (φ25) (Fig. 2)
(B) SHS: After repairing the stop hole 5 (φ25), repaired with a single-layer CFRP plate 6 immediately above the stop hole 5 (FIG. 3)
(C) SHMS: After the stop hole 5 (φ25) is constructed, a single layer CFRP plate 6 is repaired with a laminated CFRP plate 7 (five layers) so as to be in close contact with the bead shape immediately above the stop hole 5 (FIG. 4). )

全ての実験シリーズを表2に示す。疲労試験には、容量750kNの電気油圧式サーボアクチュエーターを用い、載荷速度を2Hz、試験片の応力範囲Δσを100MPaとした。なお、き裂の進展上の鋼板およびCFRP板の表面にひずみゲージを貼付して応力を計測した。さらに、き裂の開口変位を計測するためにクリップ型変位計を設置した。 All experimental series are shown in Table 2. In the fatigue test, an electrohydraulic servo actuator with a capacity of 750 kN was used, the loading speed was 2 Hz, and the stress range Δσ n of the test piece was 100 MPa. In addition, the strain gauge was stuck on the surface of the steel plate and CFRP board on the progress of a crack, and the stress was measured. In addition, a clip-type displacement meter was installed to measure the crack opening displacement.

Figure 2009046931
Figure 2009046931

Figure 2009046931
Figure 2009046931

<静的載荷試験結果>
まず、Δσ=100MPa(ΔP=250kN)の載荷時におけるき裂進展上の鋼板のひずみ分布を図5に示す。同図より、ストップホールのみで補修したSHでは、一様な引張応力Δσに対して最大応力は約5倍となる。さらに、ストップホールとCFRP板を併用することで、鋼板の最大応力を低減することができることが解る。SHMSの応力の低減効果は高く、ストップホールのみで補修したSHと比較して、最大応力は約50%低減されることも解る。
<Static loading test results>
First, FIG. 5 shows the strain distribution of the steel plate on the crack growth at the time of loading of Δσ n = 100 MPa (ΔP = 250 kN). As shown in the figure, in the case of SH repaired only with stop holes, the maximum stress is about five times the uniform tensile stress Δσ n . Furthermore, it turns out that the maximum stress of a steel plate can be reduced by using a stop hole and a CFRP board together. It can also be seen that the effect of reducing the stress of SHMS is high, and the maximum stress is reduced by about 50% as compared with SH repaired only with stop holes.

次に、図6にはCFRP板上の応力分布を示す。同図より、SHSではCFRP板に発生する応力は大きいが、SHMSでは積層部で効果的に作用応力を分担することから、単層部における応力の負担が低下することが解る。このように、SHMSでは、積層部と単層部のCFRP板により効果的に鋼板の応力が低減されることが解る。したがって、疲労強度も高くなることが予想される。   Next, FIG. 6 shows the stress distribution on the CFRP plate. From the figure, it can be seen that the stress generated in the CFRP plate in SHS is large, but in SHMS, the acting stress is effectively shared in the laminated portion, so that the stress burden in the single layer portion is reduced. Thus, in SHMS, it can be seen that the stress of the steel sheet is effectively reduced by the laminated part and the CFRP plate of the single layer part. Therefore, it is expected that the fatigue strength is also increased.

図7に、各シリーズの開口変位を示す。同図より、ストップホールの施工前(き裂長さ33mm時)と施工後(き裂長さ50mmに相当)を比較すると、施工後の開口変位量は大きくなる。SHSでは、中心位置の開口変位の低減効果は小さいことが解る。これに対し、SHMSでは、CFRP板で覆われているため、開口変位を計測できないが、鋼板の応力の低減効果から判断すれば、開口変位はSHSと比較してさらに低減されていることは容易に推察できる。   FIG. 7 shows the opening displacement of each series. From the figure, when comparing the stop hole before construction (when the crack length is 33 mm) and after construction (corresponding to the crack length of 50 mm), the opening displacement after construction becomes large. It can be seen that the effect of reducing the opening displacement at the center position is small in SHS. On the other hand, in SHMS, since it is covered with a CFRP plate, it is not possible to measure the opening displacement. However, judging from the effect of reducing the stress of the steel plate, it is easy for the opening displacement to be further reduced compared to SHS. Can be guessed.

<疲労試験結果>
図8に、S−Np線図を示す。ここで、Npは、補修後(き裂長さ50mmに相当)から全破断までの繰り返し回数(余寿命)である。まず、無補修のNに対して、SHでは余寿命は1.6倍である。SHMSでは80倍以上に余寿命が延び、十分な補修効果のあることが解る。
<Fatigue test results>
FIG. 8 shows an S-Np diagram. Here, Np is the number of repetitions (remaining life) from after repair (corresponding to a crack length of 50 mm) to full fracture. First, the remaining life of SH is 1.6 times that of N without repair. It can be seen that SHMS has a remaining life of 80 times or more and a sufficient repair effect.

SHMSでは、Npが約47万回に達した時点で片側の積層CFRP板が、また、約430万回でもう一方の積層CFRP板が剥離した。しかしながら、Npが約565万回に達した時点でも、単層部のCFRP板のはく離やストップホール縁端からのき裂の再発生は確認されていない。すなわち、SHSの状態にあるといえ、その状態での補修効果が高いことが解る。   In SHMS, the laminated CFRP plate on one side peeled off when Np reached about 470,000 times, and the other laminated CFRP plate peeled off at about 4.3 million times. However, even when Np reaches about 5.565 million times, no separation of the CFRP plate in the single layer part and reoccurrence of cracks from the edge of the stop hole have been confirmed. That is, it can be understood that the repair effect in the state is high even though the state is in the SHS state.

特許文献4では、ストップホールを形成せずに、ガセット中心部に密着して接着した積層CFRP板で補修を行った場合について検討を行っている。試験片幅は異なるが、き裂長さを除いた残存幅で評価した場合、ほぼ同じであるため、参考までに比較例として示している。比較例では、応力範囲100MPaで約260万回の繰返し回数を達成している。これに対して、SHMSでは、特許文献4の場合(比較例)とSHとの効果の単純に組み合わせて予測できる回数を大きく上回って与寿命が大幅に延びており驚くべき効果であることが解る。   In Patent Document 4, a case is examined in which repair is performed using a laminated CFRP plate that is in close contact with and adhered to the center of the gusset without forming a stop hole. Although the test piece width is different, the evaluation is based on the remaining width excluding the crack length, which is almost the same, and is shown as a comparative example for reference. In the comparative example, the number of repetitions is about 2.6 million times in the stress range of 100 MPa. On the other hand, in the case of SHMS, it can be understood that the life expectancy is greatly extended by greatly exceeding the number of times that can be predicted by simply combining the effects of the case of Patent Document 4 (comparative example) and SH. .

又、SHMSでは、ガセット中心部に接着した積層CFRP板とストップホールを併用する場合、ストップホール縁端の応力集中を低減する効果は高いものの、ストップホールの施工によって開口変位が大きくなるため、CFRP板がはく離しやすくなったものと考えられる。き裂全体を覆うCFRP板のはく離の防止と、ストップホールの先端からき裂が再発生および進展に対処するために、図9に一例を示すように、ストップホール上のCFRP板を積層することや、ストップホールの外側にCFRP板を貼付すれば、さらに効果的な補修が実現でき、恒久的な補修工法としても期待できる。   In addition, in SHMS, when a laminated CFRP plate bonded to the center of a gusset and a stop hole are used in combination, although the effect of reducing the stress concentration at the edge of the stop hole is high, the displacement of the opening increases due to the construction of the stop hole. It is thought that the board became easy to peel off. In order to prevent the peeling of the CFRP plate covering the entire crack and to deal with the reoccurrence and propagation of the crack from the tip of the stop hole, as shown in FIG. If a CFRP plate is affixed to the outside of the stop hole, more effective repair can be realized and it can be expected as a permanent repair method.

また、図10に示すように、ストップホール5を覆うことなく、き裂4上のみを積層CFRP板7で覆う補修工法が考えられる。この工法でも、ストップホールのみの補修より効果がある。この場合、SHMSで見られたようなCFRP板のはく離がより顕著になることが懸念されるが、接着剤や接着方法等の改良により、高い補修効果が期待できる。   Further, as shown in FIG. 10, a repairing method is conceivable in which only the crack 4 is covered with the laminated CFRP plate 7 without covering the stop hole 5. This method is also more effective than repairing only stop holes. In this case, there is a concern that the peeling of the CFRP plate as seen in SHMS becomes more prominent, but a high repair effect can be expected by improving the adhesive and the bonding method.

試験に使用した試験体の概要を説明する図であり、(a)は平面図、(b)側面図を示す。It is a figure explaining the outline | summary of the test body used for the test, (a) shows a top view, (b) shows a side view. 従来のストップホール(φ25)のみで補修した試験体(SH)の部分平面図である。It is a partial top view of the test body (SH) repaired only with the conventional stop hole (phi25). ストップホール(φ25)の施工後、ストップホールの直上に単層CFRP板で補修した試験体(SHS)の部分平面図である。It is a partial top view of the test body (SHS) repaired with the single layer CFRP board directly on the stop hole after construction of the stop hole (φ25). ストップホール(φ25)の施工後、ストップホールの直上に単層CFRP板で、き裂上を積層CFRP板で補修した試験体(SHMS)の部分平面図である。It is a partial top view of the test body (SHMS) which repaired the crack top with the lamination | stacking CFRP board with the single layer CFRP board directly on the stop hole after construction of a stop hole (phi25). Δσ=100MPa(ΔP=250kN)の載荷時におけるき裂進展上の鋼板のひずみ分布を示す図である。It is a figure which shows the strain distribution of the steel plate on the crack growth at the time of loading of (DELTA) (sigma) n = 100MPa ((DELTA) P = 250kN). CFRP板上の応力分布を示す図である。It is a figure which shows the stress distribution on a CFRP board. 実施例で実施した各シリーズの開口変位を示す図である。It is a figure which shows the opening displacement of each series implemented in the Example. 応力範囲と補修後から破断までの繰返し回数Npとの関係のS−Np線図を示す。The S-Np diagram of the relationship between the stress range and the number of repetitions Np from after repair to fracture is shown. ストップホール(φ25)の施工後、ストップホールの直上及びき裂上を積層CFRP板で補修し、ストップホールの外側を単層CFRP板で補修する形態を説明する部分平面図である。It is a partial top view explaining the form which repairs the upper part of a stop hole and the crack upper part with a laminated CFRP board after construction of a stop hole (phi 25), and repairs the outer side of a stop hole with a single layer CFRP board. ストップホール(φ25)の施工後、き裂上のみを積層CFRP板で補修する形態を説明する部分平面図である。It is a partial top view explaining the form which repairs only a crack top with a laminated CFRP board after construction of a stop hole (phi 25).

符号の説明Explanation of symbols

1 母材
2 ガセットプレート
3 溶接ビード
4 き裂
5 ストップホール
6 単層CFRP板
7 積層CFRP板
8 積層CFRP板
1 Base material 2 Gusset plate 3 Weld bead 4 Crack 5 Stop hole 6 Single layer CFRP plate 7 Multilayer CFRP plate 8 Multilayer CFRP plate

Claims (8)

鋼製材料に発生した疲労き裂の先端部にストップホールを開孔し、該ストップホールを覆って鋼製材料上に少なくとも炭素繊維強化樹脂板を貼付することを特徴とする鋼製材料の補修方法。   A repair of a steel material characterized by opening a stop hole at the tip of a fatigue crack generated in the steel material and covering the stop hole with at least a carbon fiber reinforced resin plate affixed on the steel material Method. 前記鋼製材料に発生した疲労き裂の拡張を抑制するよう、前記き裂を覆って炭素繊維強化樹脂板を貼付することを特徴とする請求項1に記載の鋼製材料の補修方法。   The method for repairing a steel material according to claim 1, wherein a carbon fiber reinforced resin plate is attached so as to cover the crack so as to suppress expansion of a fatigue crack generated in the steel material. ストップホールを覆って貼付する炭素繊維強化樹脂板とき裂を覆って貼付する炭素繊維強化樹脂板とは、それぞれ独立した炭素繊維強化樹脂板を貼付したものである請求項2に記載の鋼製材料の補修方法。   The steel material according to claim 2, wherein the carbon fiber reinforced resin plate and the carbon fiber reinforced resin plate to be applied to cover the crack and the carbon fiber reinforced resin plate to be applied to cover the stop hole are obtained by attaching independent carbon fiber reinforced resin plates. Repair method. 前記鋼製材料は、鋼製母材の面外にガセットプレートが回し溶接された面外ガセット構造を有し、ガセットプレート端部に発生した疲労き裂を覆い、溶接ビード部に密着して貼付された略コの字状の炭素繊維強化樹脂板と、き裂先端部に設けたストップホールを覆って貼付された別の炭素繊維強化樹脂板とを設けることを特徴とする請求項3に記載の鋼製材料の補修方法。   The steel material has an out-of-plane gusset structure in which a gusset plate is turned and welded to the outside of the steel base material, covers a fatigue crack generated at the end of the gusset plate, and adheres closely to the weld bead. 4. A substantially U-shaped carbon fiber reinforced resin plate and another carbon fiber reinforced resin plate affixed so as to cover a stop hole provided at the crack tip. Repair method for steel materials. 炭素繊維強化樹脂板を、前記ストップホール外側のき裂未進展部にも貼付することを特徴とする請求項1乃至4のいずれか1項に記載の鋼製材料の補修方法。   The method for repairing a steel material according to any one of claims 1 to 4, wherein a carbon fiber reinforced resin plate is also attached to a crack undeveloped portion outside the stop hole. ストップホールを覆って貼付される炭素繊維強化樹脂板と、き裂未進展部に貼付される炭素繊維強化樹脂板とは、それぞれ独立した炭素繊維樹脂板を貼付したものである請求項5に記載の鋼製材料の補修方法。   6. The carbon fiber reinforced resin plate attached to cover the stop hole and the carbon fiber reinforced resin plate attached to the crack undeveloped portion are obtained by attaching independent carbon fiber resin plates to each other. Repair method for steel materials. 鋼製材料に発生した疲労き裂の先端部にストップホールを開孔し、前記き裂上のみを覆って炭素繊維強化樹脂板を貼付することを特徴とする鋼製材料の補修方法。   A method for repairing a steel material, comprising: forming a stop hole at a tip portion of a fatigue crack generated in a steel material, and attaching a carbon fiber reinforced resin plate to cover only the crack. 請求項1乃至7のいずれか1項に記載の補修方法で補修された鋼製材料。   A steel material repaired by the repair method according to claim 1.
JP2007215971A 2007-08-22 2007-08-22 Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material Pending JP2009046931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215971A JP2009046931A (en) 2007-08-22 2007-08-22 Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215971A JP2009046931A (en) 2007-08-22 2007-08-22 Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material

Publications (1)

Publication Number Publication Date
JP2009046931A true JP2009046931A (en) 2009-03-05

Family

ID=40499396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215971A Pending JP2009046931A (en) 2007-08-22 2007-08-22 Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material

Country Status (1)

Country Link
JP (1) JP2009046931A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143365A1 (en) * 2009-06-10 2010-12-16 川崎重工業株式会社 Method for reinforcing structure for railway rolling stock and structure for railway rolling stock
CN102199951A (en) * 2011-01-31 2011-09-28 云南巨和建设集团有限公司 Construction method for reinforcing concrete structure by using carbon fibers
JP5302973B2 (en) * 2009-03-30 2013-10-02 川崎重工業株式会社 Railway vehicle structure and manufacturing method thereof
JP2014134287A (en) * 2012-12-13 2014-07-24 Toyohashi Univ Of Technology Repair structure and repair method for steel material
CN110644382A (en) * 2019-10-18 2020-01-03 杭州悦为科技有限公司 Variable cross-section beam prestressed carbon fiber plate multi-point anchoring segmented reinforcing construction method
CN114888521A (en) * 2022-05-07 2022-08-12 国营芜湖机械厂 Composite metal fatigue crack inhibiting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271452A (en) * 2000-03-24 2001-10-05 Nippon Shokubai Co Ltd Sheet reinforcing material and construction method
JP2004211338A (en) * 2002-12-27 2004-07-29 Hiroyuki Suzuki Method for reinforcing steel structure by frp
JP2006057352A (en) * 2004-08-20 2006-03-02 Nippon Oil Corp Method of repairing steel structure by using carbon fiber reinforced plastic board, carbon fiber reinforced plastic board for use in the method, and repaired steel structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271452A (en) * 2000-03-24 2001-10-05 Nippon Shokubai Co Ltd Sheet reinforcing material and construction method
JP2004211338A (en) * 2002-12-27 2004-07-29 Hiroyuki Suzuki Method for reinforcing steel structure by frp
JP2006057352A (en) * 2004-08-20 2006-03-02 Nippon Oil Corp Method of repairing steel structure by using carbon fiber reinforced plastic board, carbon fiber reinforced plastic board for use in the method, and repaired steel structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302973B2 (en) * 2009-03-30 2013-10-02 川崎重工業株式会社 Railway vehicle structure and manufacturing method thereof
WO2010143365A1 (en) * 2009-06-10 2010-12-16 川崎重工業株式会社 Method for reinforcing structure for railway rolling stock and structure for railway rolling stock
US8464643B2 (en) 2009-06-10 2013-06-18 Kawasaki Jukogyo Kabushiki Kaisha Railcar bodyshell reinforcing method and railcar bodyshell
JP5271358B2 (en) * 2009-06-10 2013-08-21 川崎重工業株式会社 Method for reinforcing railway vehicle structure and railway vehicle structure
CN102199951A (en) * 2011-01-31 2011-09-28 云南巨和建设集团有限公司 Construction method for reinforcing concrete structure by using carbon fibers
JP2014134287A (en) * 2012-12-13 2014-07-24 Toyohashi Univ Of Technology Repair structure and repair method for steel material
CN110644382A (en) * 2019-10-18 2020-01-03 杭州悦为科技有限公司 Variable cross-section beam prestressed carbon fiber plate multi-point anchoring segmented reinforcing construction method
CN114888521A (en) * 2022-05-07 2022-08-12 国营芜湖机械厂 Composite metal fatigue crack inhibiting method

Similar Documents

Publication Publication Date Title
Cao et al. Design and testing of joints for composite sandwich/steel hybrid ship hulls
Campilho et al. Strength improvement of adhesively-bonded joints using a reverse-bent geometry
JP2009046931A (en) Repair method for steel material by carbon fiber reinforced plastic board and repaired steel material
Nakamura et al. Experimental study on repair of fatigue cracks at welded web gusset joint using CFRP strips
US9010047B2 (en) Construction structure and method of making thereof
Kim et al. Evaluation of fatigue characteristics for adhesively-bonded composite stepped lap joint
Campilho et al. Computational modelling of the residual strength of repaired composite laminates using a cohesive damage model
De Cicco et al. Enhancement of magnesium-composite bond-interface by a simple combined abrasion and coating method
US8343294B2 (en) Method for enhancing the fatigue life of a structure
JP5478651B2 (en) Reinforcing method and reinforcing structure for concrete structure, and elastic layer forming material for reinforcing concrete structure
Yuan et al. Enhancing mechanical properties of adhesive laminates joints using ultrasonic vibration-assisted preprocessing
Srinivasan et al. Comparative study of composite scarf and strap joints for equivalent repair signature under uniaxial tension
US8578670B2 (en) Construction structure and method of making thereof
JP2007308881A (en) Steel plate floor reinforcing construction method by cf plate
JP5265152B2 (en) Monitoring method of fatigue crack growth in CFRP plate
JP4680550B2 (en) Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced
KR101073610B1 (en) Reinforced Concrete Beam Strengthened with Slit Type Steel Plate
JP2006102738A (en) Method for maintaining steel structure preventively
JP2005076230A (en) Steel structure repairing method
JP2008000760A (en) Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
Lin et al. Fatigue crack repair using drilled holes and externally bonded CFRP strips
Maroun et al. Steel truss/composite skin hybrid ship hull, Part II: Manufacturing and sagging testing
JP2005105685A (en) L-shaped fiber reinforced resin plate and structure reinforcing method using the same
JP2004211338A (en) Method for reinforcing steel structure by frp

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327