JP2012202454A - Fiber-reinforced plastic spring - Google Patents

Fiber-reinforced plastic spring Download PDF

Info

Publication number
JP2012202454A
JP2012202454A JP2011066145A JP2011066145A JP2012202454A JP 2012202454 A JP2012202454 A JP 2012202454A JP 2011066145 A JP2011066145 A JP 2011066145A JP 2011066145 A JP2011066145 A JP 2011066145A JP 2012202454 A JP2012202454 A JP 2012202454A
Authority
JP
Japan
Prior art keywords
tensile
fiber
fiber layer
strain energy
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011066145A
Other languages
Japanese (ja)
Inventor
Ryohei Shigematsu
良平 重松
Miho Nakazono
美保 中園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2011066145A priority Critical patent/JP2012202454A/en
Priority to PCT/JP2012/054749 priority patent/WO2012127994A1/en
Publication of JP2012202454A publication Critical patent/JP2012202454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic spring which prevents breakage due to compressive stress.SOLUTION: An FRP spring 1 is a leaf spring having a laminated structure 20, for instance. The laminated structure 20 is a three layered structure formed of a first fiber layer 21, a second fiber layer 22 on a compression side, and a second fiber layer 23 on a tension side, for instance. The first fiber layer 21 has tensile elastic modulus E. The second fiber layer 22 on a compression side and the second fiber layer 23 on a tension side have tensile elastic modulus Esmaller than the tensile elastic modulus E. The first fiber layer 21 consists of a compressive stress region 21A which is an upper region with respect to the neutral axis Sa and a tensile stress region 21B which is a lower region with respect to the neutral axis Sa. The neutral axis Sa is positioned on a compressive stress generation region side from the center of a plate thickness direction. Since the thickness from the neutral axis Sa to a surface on the compressive stress generation region side becomes smaller, compression deformation when being subjected to a pulsating bending load can be made smaller.

Description

本発明は、片振りの曲げ荷重が加えられる繊維強化プラスチック製ばねに係り、特に、圧縮応力による破壊の防止技術に関する。   The present invention relates to a fiber-reinforced plastic spring to which a single swing bending load is applied, and more particularly to a technique for preventing breakage due to compressive stress.

たとえば自動車分野では、曲げ荷重がかかる片振のばね(渦巻ばねや、ぜんまい、板ばね等)が用いられ、それらばねには軽量化および省スペース化が要求されている。たとえば軽量化のために、金属製ばねに代わり、繊維強化プラスチック製ばね(以下、FRPばね)を用いることが提案されている。   For example, in the automotive field, unidirectional springs (spiral springs, mainsprings, leaf springs, etc.) that are subjected to bending loads are used, and these springs are required to be lightweight and space-saving. For example, in order to reduce the weight, it has been proposed to use a fiber reinforced plastic spring (hereinafter referred to as an FRP spring) instead of a metal spring.

たとえば特許文献1の技術は、FRPばねとしてFRPテーパーリーフスプリングを開示し、その技術では、長さの異なる複数のシートにガラス繊維あるいは炭素繊維を含浸させ、それらシートを重ね合わせることにより、テーパーリーフスプリングを製造している。また、特許文献2の技術は、FRPばねとしてFRPリーフスプリングを開示し、その技術では、リーフ中央部を炭素繊維から構成し、リーフ表面部をガラス繊維から構成することにより、柔軟性を有するFRPリーフスプリングを製造することを提案している。   For example, the technique of Patent Document 1 discloses an FRP tapered leaf spring as an FRP spring. In this technique, a plurality of sheets having different lengths are impregnated with glass fiber or carbon fiber, and the sheets are overlapped to form a tapered leaf. Manufactures springs. Further, the technology of Patent Document 2 discloses an FRP leaf spring as an FRP spring, and in that technology, the leaf center portion is made of carbon fiber, and the leaf surface portion is made of glass fiber, thereby having flexibility. Propose to manufacture leaf springs.

特公平3−81022号公報Japanese Examined Patent Publication No. 3-81022 特開平7−77231号公報JP-A-7-77231

ところで、図4に示すように、支持部52で支持される板ばね51に片振りの曲げ荷重Pを加えた場合、荷重負荷側の上面には圧縮応力が発生し、荷重負荷側とは反対側の下面には引張応力が発生する。なお、符号Sは、板ばね51の板厚方向の中心に位置する中立軸である。   By the way, as shown in FIG. 4, when a one-way bending load P is applied to the leaf spring 51 supported by the support portion 52, compressive stress is generated on the upper surface on the load load side, which is opposite to the load load side. Tensile stress is generated on the lower surface. Reference sign S is a neutral shaft located at the center of the plate spring 51 in the plate thickness direction.

たとえばFRP板ばねとして単層構造の炭素繊維強化プラスチック製ばね(CFRPばね)に片振りの曲げ荷重(図の矢印方向の荷重)を加えた場合、CFRPばねの圧縮強さは引張強さの1/2〜1/3程度で低いため、圧縮による座屈が生じ、圧縮応力発生領域で破壊が生じやすい。このように低い荷重で破壊するため、引張強さに優れたCFRPの特徴を十分に活用することができず、利用できるばねのエネルギー密度が実質的に小さくなってしまう。   For example, when a one-way bending load (load in the direction of the arrow in the figure) is applied to a carbon fiber reinforced plastic spring (CFRP spring) having a single layer structure as an FRP leaf spring, the compressive strength of the CFRP spring is 1 of the tensile strength. Since it is low at about / 2 to 1/3, buckling occurs due to compression, and breakage tends to occur in the compressive stress generation region. Since the fracture is caused by such a low load, the feature of CFRP excellent in tensile strength cannot be fully utilized, and the energy density of the available spring is substantially reduced.

このようなFRPばねでは、圧縮応力側表面からの破壊防止について有効な技術が開発されていなかった。たとえば特許文献1の技術では、重ね合わされた複数のシートは同じ繊維を使用しており、圧縮応力側表面からの破壊防止技術は開示されていない。また、特許文献2の技術では、柔軟性のある板ばねが開示されているが、繊維の圧縮特性には着目していない。また、リーフ表面部をガラス繊維から構成しており、炭素繊維より引張り強度が低いガラス繊維を応力が高いリーフ表面部に配するのは効率的でない。   In such an FRP spring, an effective technique has not been developed for preventing breakage from the compressive stress side surface. For example, in the technique of Patent Document 1, a plurality of stacked sheets use the same fiber, and a technique for preventing fracture from the surface on the compression stress side is not disclosed. Moreover, in the technique of patent document 2, although the flexible leaf | plate spring is disclosed, it does not pay attention to the compression characteristic of a fiber. Further, the leaf surface portion is made of glass fiber, and it is not efficient to dispose glass fiber having lower tensile strength than carbon fiber on the leaf surface portion having high stress.

したがって、本発明は、圧縮応力による破壊を防止することができる繊維強化プラスチック製ばねを提供することを目的としている。   Therefore, an object of the present invention is to provide a fiber-reinforced plastic spring that can prevent breakage due to compressive stress.

本発明の繊維強化プラスチック製ばね(以下、FRPばね)は、片振りの曲げ荷重が加えられる繊維強化プラスチック製ばねであって、中立軸が板厚方向の中心よりも圧縮応力発生領域側に位置していることを特徴とする。   The fiber-reinforced plastic spring of the present invention (hereinafter referred to as FRP spring) is a fiber-reinforced plastic spring to which a swinging bending load is applied, and the neutral shaft is located closer to the compression stress generation region than the center in the plate thickness direction. It is characterized by that.

本発明での中立軸は、引張応力および圧縮応力が発生せず、伸びも縮みもしない軸である。本発明での引張弾性率は、引張試験で得られる引張応力−ひずみ曲線での最初の直線部分(原点を通過する直線部分、あるいは、曲線の原点での接線)を利用して次の関係式により得られる値である(参考文献:FRP設計便覧、(社)強化プラスチック協会、1979年)。
E=Δσ/Δε
なお、Eは引張弾性率(単位:N/mm2)、Δσは直線状の2点間の平均原断面積による応力差(単位:N/mm2)、Δεは上記2点間のひずみの差である。
The neutral axis in the present invention is an axis that does not generate tensile stress and compressive stress and does not stretch or contract. The tensile modulus of elasticity in the present invention is expressed by the following relational expression using the first straight part (the straight part passing through the origin or the tangent at the origin of the curve) in the tensile stress-strain curve obtained in the tensile test. (Reference: FRP Design Handbook, Japan Reinforced Plastics Association, 1979).
E = Δσ / Δε
E is the tensile modulus (unit: N / mm 2 ), Δσ is the stress difference (unit: N / mm 2 ) due to the average original cross-sectional area between two linear points, and Δε is the strain between the two points. It is a difference.

本発明のFRPばねでは、中立軸が板厚方向の中心よりも圧縮応力発生領域側に位置しているから、中立軸から圧縮応力発生領域側の表面までの厚さが薄くなる。これにより、圧縮応力発生領域が小さくなるから、片振りの曲げ荷重の負荷時の圧縮変形を小さくすることができる。したがって、圧縮応力による破壊を防止することができる。また、引張応力発生領域が大きくなるから、片振りの曲げ荷重の負荷時の引張変形が大きくなるが、FRPばねは引張変形に強いから、引張応力による破壊を防止することができる。このように引張強さに優れているというFRPばねの特性を有効利用することにより、発生応力による破壊を防止することができる。よって、ばね全体の破壊応力を高くすることができるから、利用できるエネルギー密度を大きくすることができる。   In the FRP spring of the present invention, the neutral axis is located closer to the compressive stress generation region than the center in the plate thickness direction, and therefore the thickness from the neutral axis to the surface on the compressive stress generation region side is reduced. As a result, the compressive stress generation region is reduced, so that the compressive deformation at the time of a one-way bending load can be reduced. Therefore, destruction due to compressive stress can be prevented. In addition, since the tensile stress generation region becomes large, the tensile deformation at the time of applying a swinging bending load increases. However, since the FRP spring is strong against the tensile deformation, it is possible to prevent breakage due to the tensile stress. By effectively utilizing the characteristics of the FRP spring that is excellent in tensile strength in this way, it is possible to prevent breakage due to the generated stress. Therefore, since the breaking stress of the whole spring can be increased, the available energy density can be increased.

本発明のFRPばねは、種々の構成を用いることができる。たとえば引張弾性率の異なる繊維が積層された積層構造を用いることができる。具体的には、第1繊維層と、第1繊維層の圧縮応力発生領域側の面および引張応力発生領域側の面のそれぞれに形成された第2繊維層、、、第N繊維層(Nは2以上の自然数)とを備え、第1繊維層の引張弾性率E、第2繊維層の引張弾性率E、、、第N繊維層の引張弾性率Eはその順で小さくなるように設定されている態様を用いることができる。この態様では、最小の引張弾性率Eを有する第N繊維層をばねの表層部に配置しており、その第N繊維層は曲がりやすいから、座屈による折損等の破壊を効果的に防止することができる。 Various configurations can be used for the FRP spring of the present invention. For example, a laminated structure in which fibers having different tensile elastic moduli are laminated can be used. Specifically, the first fiber layer, the second fiber layer formed on each of the surface on the compressive stress generation region side and the surface on the tensile stress generation region side of the first fiber layer, the Nth fiber layer (N comprises a natural number of 2 or more) and a tensile modulus of the first fibrous layer E 1, the tensile modulus E N of the tensile modulus E 2 ,,, N th fiber layer of the second fiber layer is reduced in this order A mode set as described above can be used. In this aspect there the first N fibrous layer disposed in a surface portion of the spring having a minimum tensile modulus E N, since the first N fibrous layer easy bending, effectively preventing the destruction of such breakage by buckling can do.

たとえば引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図、引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図、、、引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図が引張圧縮試験により取得され、応力ひずみ線図のぞれぞれから引張ひずみエネルギーU’jtと圧縮ひずみエネルギーU’jcとのひずみエネルギー比V’j(=U’jt/U’jc、jは1≦j≦Nを満たす自然数)が算出され、所定の片振りの曲げ荷重負荷時の第1繊維層の引張応力発生領域の引張ひずみエネルギーU1tと第1繊維層の前記圧縮応力発生領域の圧縮ひずみエネルギーU1cとのひずみエネルギー比V1(=U1t/U1c)がひずみエネルギー比V’1と等しくて、かつ所定の片振りの曲げ荷重負荷時の引張応力発生領域側の第j繊維層の引張ひずみエネルギーUjtと圧縮応力発生領域側の第j繊維層の圧縮ひずみエネルギーUjcとのひずみエネルギー比Vj(=Ujt/Ujc、jが2以上の場合)がひずみエネルギー比V’jと等しくなるように中立軸の位置が設定されている態様を用いることができる。 Such as tensile modulus stress strain diagram of a fiber reinforced plastic having a E 1, the tensile stress strain diagram of a fiber reinforced plastic having a stress-strain diagram ,,, tensile modulus E N of the fiber-reinforced plastic having a modulus of elasticity E 2 Is obtained by a tensile compression test, and a strain energy ratio V′j (= U′jt / U′jc, j) between the tensile strain energy U′jt and the compressive strain energy U′jc is obtained from each of the stress strain diagrams. Is a natural number satisfying 1 ≦ j ≦ N), and the tensile strain energy U1t of the tensile stress generation region of the first fiber layer and the compression stress generation region of the first fiber layer when a predetermined one-way bending load is applied. The strain energy ratio V1 (= U1t / U1c) with the compressive strain energy U1c is equal to the strain energy ratio V′1 and the tension is applied when a predetermined one-way bending load is applied. The strain energy ratio Vj between the tensile strain energy Ujt of the jth fiber layer on the generation region side and the compression strain energy Ujc of the jth fiber layer on the compression stress generation region side is strain (when Ujt / Ujc, j is 2 or more). A mode in which the position of the neutral axis is set to be equal to the energy ratio V′j can be used.

上記態様では、片振りの曲げ荷重の負荷時のFRPばねでの応力分布に対応して、異なる引張弾性率を有する各繊維層の厚さを設定することにより中立軸の位置を設定することができるので、引張強さに優れたFRPばねの特性を十分に有効利用することができる。したがって、ばね全体の破壊応力をさらに高くすることができ、その結果、利用できるエネルギー密度をさらに大きくすることができる。   In the above aspect, the position of the neutral axis can be set by setting the thickness of each fiber layer having different tensile elastic modulus corresponding to the stress distribution in the FRP spring at the time of the one-way bending load. Therefore, the characteristics of the FRP spring excellent in tensile strength can be used sufficiently effectively. Therefore, the breaking stress of the entire spring can be further increased, and as a result, the available energy density can be further increased.

たとえば圧縮ひずみエネルギーUjcおよび引張ひずみエネルギーUjtが数1〜数3の数式に基づいて算出され、ひずみエネルギー比V’jとひずみエネルギー比Vjとが等しくなるように、第1繊維層の圧縮応力発生領域および引張応力発生領域の厚さh1c,h1t、ならびに、圧縮応力発生領域側および引張応力発生領域側の第j繊維層の厚さhjc,hjt(jが2以上の場合)が設定されている態様を用いることができる。なお、数1の数式について、せん断によるひずみエネルギーは、曲げによるひずみエネルギーに比べて小さいから、せん断によるひずみエネルギーを無視することができる。 For example, the compressive strain energy Ujc and the tensile strain energy Ujt are calculated based on the mathematical formulas 1 to 3, and the compressive stress is generated in the first fiber layer so that the strain energy ratio V′j is equal to the strain energy ratio Vj. The thicknesses h 1c and h 1t of the region and the tensile stress generation region, and the thicknesses h jc and h jt (when j is 2 or more) of the jth fiber layer on the compression stress generation region side and the tensile stress generation region side The set aspect can be used. In addition, since the strain energy due to the shear is smaller than the strain energy due to the bending in the mathematical formula 1, the strain energy due to the shear can be ignored.

Figure 2012202454
なお、Mは曲げモーメント、Eは引張弾性率、Iは断面二次モーメント、κは形状係数、Qはせん断力、Gはせん断弾性係数、Aはばねの断面積、lはばねの長さ、xは長さ方向の座標軸、bはばねの幅である。
Figure 2012202454
M is a bending moment, E is a tensile modulus, I is a secondary moment of section, κ is a shape factor, Q is a shearing force, G is a shear elastic modulus, A is a sectional area of the spring, l is a length of the spring, x is the coordinate axis in the length direction, and b is the width of the spring.

Figure 2012202454
なお、σjcは圧縮応力、ρは中立軸の曲率半径、ηは中立軸を原点としたときの厚さ方向の座標軸、h0cは0である。
Figure 2012202454
Σjc is the compressive stress, ρ is the radius of curvature of the neutral axis, η is the coordinate axis in the thickness direction when the neutral axis is the origin, and h 0c is 0.

Figure 2012202454
なお、σjtは引張応力、ρは中立軸の曲率半径、ηは中立軸を原点としたときの厚さ方向の座標軸、−h0tは0である。
Figure 2012202454
Σjt is the tensile stress, ρ is the radius of curvature of the neutral axis, η is the coordinate axis in the thickness direction when the neutral axis is the origin, and −h 0t is 0.

本発明のFRPばねによれば、発生応力による破壊を防止することができるから、ばね全体の破壊応力を高くすることができ、これにより利用できるエネルギー密度を大きくすることができる。   According to the FRP spring of the present invention, it is possible to prevent the breakage due to the generated stress, so that the breakage stress of the whole spring can be increased, and thereby the available energy density can be increased.

本発明の一実施形態に係る繊維強化プラスチック製ばねの構成を表し、(A)は斜視図、(B)は側面図である。The structure of the fiber-reinforced plastic spring which concerns on one Embodiment of this invention is represented, (A) is a perspective view, (B) is a side view. 本発明の一実施形態に係る繊維強化プラスチック製ばねの各繊維層の厚さを決定する手法について説明するための図であり、(A)は数値計算を説明するための図であって、単純曲げの状態を表す図、(B)は第1繊維層と同じ引張弾性率を有する繊維強化プラスチックの応力ひずみ線図、(C)は第2繊維層と同じ引張弾性率を有する繊維強化プラスチックの応力ひずみ線図である。It is a figure for demonstrating the method of determining the thickness of each fiber layer of the fiber reinforced plastic spring which concerns on one Embodiment of this invention, (A) is a figure for demonstrating numerical calculation, Comprising: The figure showing the state of bending, (B) is a stress strain diagram of the fiber reinforced plastic having the same tensile elastic modulus as the first fiber layer, (C) is the fiber reinforced plastic having the same tensile elastic modulus as the second fiber layer. It is a stress strain diagram. 本発明の一実施形態に係る繊維強化プラスチック製ばねの一例の部分構成を表す側断面図である。It is a sectional side view showing the partial composition of an example of the fiber reinforced plastic spring concerning one embodiment of the present invention. 片振りの曲げ荷重負荷時の従来の繊維強化プラスチック製ばねでの応力分布を説明するための図である。It is a figure for demonstrating the stress distribution in the conventional fiber reinforced plastic spring at the time of the bending load of one swing.

以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係る繊維強化プラスチック製ばね(以下、FRPばね)の構成を表し、(A)は斜視図、(B)は側面図である。図2は、本発明の一実施形態に係る繊維強化プラスチック製ばねの各繊維層の厚さを決定する手法について説明するための図である。   Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B show a configuration of a fiber-reinforced plastic spring (hereinafter referred to as an FRP spring) according to an embodiment of the present invention, in which FIG. 1A is a perspective view and FIG. 1B is a side view. FIG. 2 is a view for explaining a method for determining the thickness of each fiber layer of the fiber-reinforced plastic spring according to the embodiment of the present invention.

FRPばね1は、たとえばリーフ部11と目玉部12を有する板ばねである。FRPばね1は、たとえば中立軸Saが板厚方向の中心よりも圧縮応力発生領域側に位置している積層構造20を備えている。中立軸Saは、片振りの曲げ荷重の負荷時に引張応力および圧縮応力が発生せず繊維が伸びも縮みもしない軸である。図1,2では、FRPばね1の上面が片振りの曲げ荷重(図4の符号P)が加えられる表面であり、積層構造20の中立軸Saに対する上側領域が、圧縮応力が発生する圧縮応力領域であり、積層構造20の中立軸Saに対する下側領域が、引張応力が発生する引張応力領域である。図2(A)の符号Hは、FRPばね1の積層構造20の板厚を示し、ηは中立軸Saを原点としたときの厚さ方向の座標軸を示している。   The FRP spring 1 is a leaf spring having, for example, a leaf portion 11 and an eyeball portion 12. The FRP spring 1 includes a laminated structure 20 in which, for example, the neutral axis Sa is located closer to the compressive stress generation region than the center in the plate thickness direction. The neutral axis Sa is an axis in which tensile stress and compressive stress are not generated when a single swing bending load is applied, and the fiber does not stretch or contract. In FIGS. 1 and 2, the upper surface of the FRP spring 1 is a surface to which a one-way bending load (symbol P in FIG. 4) is applied, and the upper region with respect to the neutral axis Sa of the laminated structure 20 is a compressive stress that generates a compressive stress. The lower region with respect to the neutral axis Sa of the laminated structure 20 is a tensile stress region where tensile stress is generated. 2A indicates the plate thickness of the laminated structure 20 of the FRP spring 1, and η indicates the coordinate axis in the thickness direction when the neutral axis Sa is the origin.

積層構造20は、たとえば第1繊維層21、圧縮側第2繊維層22、および、引張側第2繊維層23を有する3層構造である。第1繊維層21、圧縮側第2繊維層22、および、引張側第2繊維層23は、たとえば繊維がばねの長手方向に配向しているUD(一方向)繊維層である。   The laminated structure 20 is a three-layer structure having, for example, a first fiber layer 21, a compression-side second fiber layer 22, and a tension-side second fiber layer 23. The first fiber layer 21, the compression side second fiber layer 22, and the tension side second fiber layer 23 are, for example, UD (one direction) fiber layers in which fibers are oriented in the longitudinal direction of the spring.

第1繊維層21は、引張弾性率Eを有している。圧縮側第2繊維層22および引張側第2繊維層23は、引張弾性率Eよりも小さな引張弾性率Eを有している。中立軸Saは、たとえば第1繊維層21内に位置している。第1繊維層21は、中立軸Saに対する上側領域である圧縮応力領域21Aと、中立軸Saに対する下側領域である引張応力領域21Bを有している。 The first fibrous layer 21 has a tensile modulus E 1. The compression side second fiber layer 22 and the tension side second fiber layer 23 have a tensile elastic modulus E 2 smaller than the tensile elastic modulus E 1 . The neutral axis Sa is located in the first fiber layer 21, for example. The first fiber layer 21 has a compressive stress region 21A that is an upper region with respect to the neutral axis Sa and a tensile stress region 21B that is a lower region with respect to the neutral axis Sa.

積層構造20の各繊維層21〜23としては、たとえばプリプレグを用いることができる。樹脂は、熱硬化性および熱可塑性のいずれでもよい。積層構造20の各繊維層21〜23は、フィラメントワインディング法により形成してもよい。積層構造20の各繊維層21〜23を構成する繊維としては、たとえば炭素繊維や、ガラス繊維、アラミド繊維(ケブラー繊維)、ボロン繊維等の強化繊維を用いることができる。炭素繊維としては、たとえばPAN系とピッチ系のいずれも用いることができる。第1繊維層21の引張弾性率Eと、第2繊維層22,23の引張弾性率Eとが異なるように設定するためには、たとえば繊維の種類を変更してもよいし、ばねの長手方向に対する繊維の配向方向を変更してもよい。また、UD繊維層の代わりに、繊維が所定角度で交差して配置されているクロス繊維層を用いてもよい。 As each fiber layer 21-23 of the laminated structure 20, a prepreg can be used, for example. The resin may be either thermosetting or thermoplastic. The fiber layers 21 to 23 of the laminated structure 20 may be formed by a filament winding method. As the fibers constituting the fiber layers 21 to 23 of the laminated structure 20, for example, carbon fibers, glass fibers, aramid fibers (Kevlar fibers), boron fibers, or the like can be used. As the carbon fiber, for example, both PAN-based and pitch-based can be used. A tensile modulus E 1 of the first fibrous layer 21, to the tensile modulus E 2 of the second fibrous layer 22 and 23 is set differently, for example it may be changing the type of fibers, the spring You may change the orientation direction of the fiber with respect to the longitudinal direction. Further, instead of the UD fiber layer, a cloth fiber layer in which fibers are arranged so as to intersect at a predetermined angle may be used.

本実施形態のFRPばね1では、第1繊維層21の圧縮応力発生領域側の面に圧縮側第2繊維層22が配置され、第1繊維層21の引張応力発生領域側の面に引張側第2繊維層23が配置されており、FRPばね1は、本発明のFRPばねにおいてNが2の場合である。FRPばね1では、板厚方向の中心よりも圧縮応力発生領域側に位置している中立軸Saの位置は、たとえば次のように設定されている。   In the FRP spring 1 of the present embodiment, the compression-side second fiber layer 22 is disposed on the surface of the first fiber layer 21 on the compression stress generation region side, and the tensile fiber generation surface side of the first fiber layer 21 is on the tensile side. The 2nd fiber layer 23 is arrange | positioned and the FRP spring 1 is a case where N is 2 in the FRP spring of this invention. In the FRP spring 1, the position of the neutral axis Sa that is located closer to the compressive stress generation region than the center in the plate thickness direction is set as follows, for example.

たとえば図2(A)に示すFRPばね1の単純曲げの状態では、各繊維層21〜23に曲げモーメントが発生する。第1繊維層21の圧縮応力発生領域21Aの圧縮応力σ1cによる曲げモーメントM1cは、数2の数式においてj=1の場合であって、数4の数式で表される。第1繊維層21の引張応力発生領域21Bの引張応力σ1tによる曲げモーメントM1tは、数3の数式においてj=1の場合であって、数5の数式で表される。   For example, in the simple bending state of the FRP spring 1 shown in FIG. 2A, a bending moment is generated in each of the fiber layers 21-23. The bending moment M1c due to the compressive stress σ1c in the compressive stress generation region 21A of the first fiber layer 21 is the case where j = 1 in the mathematical formula 2, and is represented by the mathematical formula 4. The bending moment M1t due to the tensile stress σ1t of the tensile stress generation region 21B of the first fiber layer 21 is the case where j = 1 in the mathematical formula 3, and is expressed by the mathematical formula 5.

Figure 2012202454
Figure 2012202454

Figure 2012202454
Figure 2012202454

圧縮側第2繊維層22の圧縮応力σ2cによる曲げモーメントM2cは、数2の数式においてj=2の場合であって、数6の数式で表される。引張側第2繊維層23の引張応力σ2tによる曲げモーメントM2tは、数3の数式においてj=2の場合であって、数7の数式で表される。   The bending moment M2c due to the compressive stress σ2c of the compression-side second fiber layer 22 is a case where j = 2 in the mathematical formula 2, and is represented by the mathematical formula 6. The bending moment M2t due to the tensile stress σ2t of the tension-side second fiber layer 23 is a case where j = 2 in the mathematical formula 3, and is represented by the mathematical formula 7.

Figure 2012202454
Figure 2012202454

Figure 2012202454
Figure 2012202454

第1繊維層21の圧縮応力発生領域21Aでの曲げモーメントM1cを数1に代入することにより、圧縮ひずみエネルギーU1cが算出され、第1繊維層21の引張応力発生領域21Bでの曲げモーメントM1tを数1に代入することにより、引張ひずみエネルギーU1tが算出される。これにより、第1繊維層21の引張応力発生領域21Bの引張ひずみエネルギーU1tと第1繊維層21の圧縮応力発生領域21Aの圧縮ひずみエネルギーU1cとのひずみエネルギー比V1(=U1t/U1c)が得られる。   By substituting the bending moment M1c in the compressive stress generation region 21A of the first fiber layer 21 into Equation 1, the compressive strain energy U1c is calculated, and the bending moment M1t in the tensile stress generation region 21B of the first fiber layer 21 is calculated. By substituting into Equation 1, the tensile strain energy U1t is calculated. Thereby, a strain energy ratio V1 (= U1t / U1c) between the tensile strain energy U1t of the tensile stress generation region 21B of the first fiber layer 21 and the compressive strain energy U1c of the compression stress generation region 21A of the first fiber layer 21 is obtained. It is done.

また、圧縮側第2繊維層22での曲げモーメントM2cを数1に代入することにより、圧縮ひずみエネルギーU2cが算出され、引張側第2繊維層23での曲げモーメントM2tを数1に代入することにより、引張ひずみエネルギーU2tが算出される。これにより、引張側第2繊維層23の引張ひずみエネルギーU2tと圧縮側第2繊維層22の圧縮ひずみエネルギーU2cとのひずみエネルギー比V2(=U2t/U2c)が得られる。   Further, by substituting the bending moment M2c at the compression-side second fiber layer 22 into Equation 1, the compression strain energy U2c is calculated, and the bending moment M2t at the tension-side second fiber layer 23 is substituted into Equation 1. Thus, the tensile strain energy U2t is calculated. Thereby, the strain energy ratio V2 (= U2t / U2c) between the tensile strain energy U2t of the tension side second fiber layer 23 and the compression strain energy U2c of the compression side second fiber layer 22 is obtained.

応力ひずみ線図は、引張弾性率Eを有する繊維強化プラスチックおよび引張弾性率Eを有する繊維強化プラスチックのそれぞれに引張圧縮試験を行うことにより得られる。図2(B)は、引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図、図2(C)は、引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図である。図2(B)において、−ε1cは繊維強化プラスチックの破壊時の圧縮ひずみ、ε1tは繊維強化プラスチックの破壊時の引張ひずみである。図2(C)において、−ε2cは繊維強化プラスチックの破壊時の圧縮ひずみ、ε2tは、繊維強化プラスチックの破壊時の引張ひずみである。 Stress-strain diagram is obtained by performing a tensile compression test to the respective tensile fiber reinforced plastic having a modulus of elasticity E 1 and tensile fiber reinforced plastic having a modulus of elasticity E 2. FIG. 2 (B), the stress strain diagram of a fiber reinforced plastic having a tensile modulus E 1, FIG. 2 (C) is a stress-strain diagram of a fiber reinforced plastic having a tensile modulus E 2. In FIG. 2B, −ε 1c is a compressive strain at the time of breaking the fiber reinforced plastic, and ε 1t is a tensile strain at the time of breaking the fiber reinforced plastic. In FIG. 2C, −ε 2c is a compressive strain at the time of breaking the fiber reinforced plastic, and ε 2t is a tensile strain at the time of breaking the fiber reinforced plastic.

圧縮ひずみエネルギーは、応力ひずみ線図を原点から圧縮ひずみまで積分することにより算出される。具体的には、引張弾性率Eを有する繊維強化プラスチックの圧縮ひずみエネルギーU’1cは、図2(B)の圧縮側の網目部分の面積であり、引張弾性率Eを有する繊維強化プラスチックの圧縮ひずみエネルギーU’2cは、図2(C)の圧縮側の網目部分の面積である。引張ひずみエネルギーは、応力ひずみ線図を原点から引張ひずみまで積分することにより算出される。具体的には、引張弾性率Eを有する繊維強化プラスチックの引張ひずみエネルギーU’1tは、図2(B)の引張側の網目部分の面積であり、引張弾性率Eを有する繊維強化プラスチックの引張ひずみエネルギーU’2tは、図2(C)の引張側の網目部分の面積である。 The compressive strain energy is calculated by integrating the stress strain diagram from the origin to the compressive strain. Specifically, the compression strain energy U′1c of the fiber reinforced plastic having the tensile elastic modulus E 1 is the area of the mesh portion on the compression side in FIG. 2B, and the fiber reinforced plastic having the tensile elastic modulus E 2. The compressive strain energy U′2c is the area of the mesh portion on the compression side in FIG. The tensile strain energy is calculated by integrating the stress strain diagram from the origin to the tensile strain. Specifically, the tensile strain energy U′1t of the fiber reinforced plastic having the tensile elastic modulus E 1 is the area of the mesh portion on the tensile side in FIG. 2B, and the fiber reinforced plastic having the tensile elastic modulus E 2. The tensile strain energy U′2t is the area of the mesh portion on the tension side in FIG.

引張弾性率Eを有する繊維強化プラスチックの引張ひずみエネルギーU’1tと圧縮ひずみエネルギーU’1cとのひずみエネルギー比V’1(=U’1t/U’1c)が算出され、引張弾性率Eを有する繊維強化プラスチックの引張ひずみエネルギーU’2tと圧縮ひずみエネルギーU’2cとのひずみエネルギー比V’2(=U’2t/U’2c)が算出される。 The strain energy ratio V′1 (= U′1t / U′1c) between the tensile strain energy U′1t and the compressive strain energy U′1c of the fiber reinforced plastic having the tensile modulus E 1 is calculated, and the tensile modulus E The strain energy ratio V′2 (= U′2t / U′2c) between the tensile strain energy U′2t and the compressive strain energy U′2c of the fiber reinforced plastic having 2 is calculated.

FRPばね1の設計では、数値計算により得られたひずみエネルギー比V1と、引張圧縮試験による応力ひずみ線図で得られたひずみエネルギー比V’1とが等しくなり、かつ数値計算により得られたひずみエネルギー比V2と、引張圧縮試験による応力ひずみ線図で得られたひずみエネルギー比V’2とが等しくなるように、第1繊維層21の圧縮応力発生領域21Aの厚さh1cおよび引張応力発生領域21Bの厚さh1tを設定するとともに、圧縮側第2繊維層22の厚さh2cおよび引張側第2繊維層23の厚さh2tを設定する。この場合、全ての層21〜23の厚さの和(=h1c+h1t+h2c+h2t)が、予め定めていた積層構造20の板厚Hとなるように設定することにより、各繊維層の層厚の具体値が得られる。 In the design of the FRP spring 1, the strain energy ratio V1 obtained by numerical calculation is equal to the strain energy ratio V′1 obtained by the stress-strain diagram obtained by the tensile compression test, and the strain obtained by numerical calculation is obtained. The thickness h 1c of the compressive stress generation region 21A of the first fiber layer 21 and the generation of tensile stress so that the energy ratio V2 is equal to the strain energy ratio V′2 obtained from the stress-strain diagram obtained by the tensile compression test. The thickness h 1t of the region 21B is set, and the thickness h 2c of the compression side second fiber layer 22 and the thickness h 2t of the tension side second fiber layer 23 are set. In this case, each fiber layer is set by setting the sum of the thicknesses of all the layers 21 to 23 (= h 1c + h 1t + h 2c + h 2t ) to be a predetermined plate thickness H of the laminated structure 20. The specific value of the layer thickness is obtained.

図3は、FRPばね1の一例の部分構成を表す側断面図である。たとえば繊維として炭素繊維を用い、第1繊維層21の繊維の引張弾性率を210GPa、圧縮側第2繊維層22および引張側第2繊維層23の繊維の引張弾性率を150GPa、繊維体積含有率Vfを67%、ばねの板厚Hを15mmに定めた場合、中立軸を圧縮発生領域側の表面から5.6mmの位置に設定するためには、第1繊維層21の板厚4mm、圧縮側第2繊維層22の板厚2mm、引張側第2繊維層23の板厚9mmに設定すればよい。   FIG. 3 is a side sectional view showing a partial configuration of an example of the FRP spring 1. For example, carbon fiber is used as the fiber, the tensile elastic modulus of the fiber of the first fiber layer 21 is 210 GPa, the tensile elastic modulus of the fibers of the compression side second fiber layer 22 and the tensile side second fiber layer 23 is 150 GPa, and the fiber volume content When Vf is set to 67% and the plate thickness H of the spring is set to 15 mm, the plate thickness of the first fiber layer 21 is set to 4 mm, and the neutral shaft is set to a position 5.6 mm from the surface on the compression generation region side. The plate thickness of the side second fiber layer 22 may be set to 2 mm, and the plate thickness of the tension side second fiber layer 23 may be set to 9 mm.

本実施形態では、中立軸Saが板厚方向の中心よりも圧縮応力発生領域側に位置しているから、中立軸Saから圧縮応力発生領域側の表面までの厚さが薄くなる。これにより、圧縮応力発生領域が小さくなるから、片振りの曲げ荷重の負荷時の圧縮変形を小さくすることができる。したがって、圧縮応力による破壊を防止することができる。また、引張応力発生領域が大きくなるから、片振りの曲げ荷重の負荷時の引張変形が大きくなるが、FRPばね1は引張変形に強いから、引張応力による破壊を防止することができる。このように引張強さに優れたFRPばね1の特性を有効利用することにより、発生応力による破壊を防止することができる。よって、ばね全体の破壊応力を高くすることができるから、利用できるエネルギー密度を大きくすることができる。   In the present embodiment, since the neutral axis Sa is located closer to the compression stress generation region than the center in the plate thickness direction, the thickness from the neutral axis Sa to the surface on the compression stress generation region side is reduced. As a result, the compressive stress generation region is reduced, so that the compressive deformation at the time of a one-way bending load can be reduced. Therefore, destruction due to compressive stress can be prevented. Further, since the tensile stress generation region becomes large, the tensile deformation at the time of applying a swinging bending load becomes large. However, since the FRP spring 1 is strong against the tensile deformation, it is possible to prevent the breakage due to the tensile stress. As described above, by effectively utilizing the characteristics of the FRP spring 1 having excellent tensile strength, it is possible to prevent breakage due to generated stress. Therefore, since the breaking stress of the whole spring can be increased, the available energy density can be increased.

特に、最小の引張弾性率Eを有する圧縮側第2繊維層22および引張側第2繊維層23をばねの表層部に配置しており、第2繊維層22,23は曲がりやすいから、座屈による折損等の破壊を効果的に防止することができる。また、片振りの曲げ荷重の負荷時のFRPばね1での応力分布に対応して、異なる引張弾性率を有する各繊維層21〜23の厚さを設定することにより中立軸Saの位置を設定することができるので、引張強さに優れたFRPばね1の特性を十分に有効利用することができる。したがって、ばね全体の破壊応力をさらに高くすることができ、その結果、利用できるエネルギー密度をさらに大きくすることができる。 In particular, the compression-side second fibrous layer 22 and the tensile side second fibrous layer 23 is disposed in a surface portion of the spring, the second fibrous layer 22 and 23 because easy to bend with minimum tensile modulus E 2, the seat Breakage such as breakage due to bending can be effectively prevented. Further, the position of the neutral axis Sa is set by setting the thickness of each fiber layer 21 to 23 having different tensile elastic modulus corresponding to the stress distribution in the FRP spring 1 at the time of a one-way bending load. Therefore, the characteristics of the FRP spring 1 having excellent tensile strength can be sufficiently effectively used. Therefore, the breaking stress of the entire spring can be further increased, and as a result, the available energy density can be further increased.

1…FRPばね(繊維強化プラスチック製ばね)、20…積層構造、21…第1繊維層、21A…圧縮応力領域、21B…引張応力領域、22…圧縮側第2繊維層、23…引張側第2繊維層、Sa…中立軸   DESCRIPTION OF SYMBOLS 1 ... FRP spring (fiber reinforced plastic spring), 20 ... Laminated structure, 21 ... First fiber layer, 21A ... Compression stress region, 21B ... Tensile stress region, 22 ... Compression side second fiber layer, 23 ... Tensile side first 2 fiber layers, Sa ... neutral axis

Claims (4)

片振りの曲げ荷重が加えられる繊維強化プラスチック製ばねにおいて、
中立軸が板厚方向の中心よりも圧縮応力発生領域側に位置していることを特徴とする繊維強化プラスチック製ばね。
In a fiber reinforced plastic spring to which a single swing bending load is applied,
A fiber-reinforced plastic spring characterized in that the neutral axis is located closer to the compressive stress generation region than the center in the plate thickness direction.
第1繊維層と、前記第1繊維層の圧縮応力発生領域側の面および引張応力発生領域側の面のそれぞれに形成された第2繊維層、、、第N繊維層(Nは2以上の自然数)とを備え、
前記第1繊維層の引張弾性率E、前記第2繊維層の引張弾性率E、、、前記第N繊維層の引張弾性率Eはその順で小さくなるように設定されていることを特徴とする請求項1に記載の繊維強化プラスチック製ばね。
A first fiber layer; a second fiber layer formed on each of the surface on the compression stress generation region side and the surface on the tensile stress generation region side of the first fiber layer; and an Nth fiber layer (N is 2 or more) Natural number)
Tensile modulus E 1 of the first fibrous layer, the tensile elastic modulus E N of the second fibrous layer of the tensile modulus E 2 ,,, the first N fiber layer that is set to be smaller in that order The fiber-reinforced plastic spring according to claim 1.
前記引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図、前記引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図、、、前記引張弾性率Eを有する繊維強化プラスチックの応力ひずみ線図が引張圧縮試験により取得され、前記応力ひずみ線図のぞれぞれから引張ひずみエネルギーU’jtと圧縮ひずみエネルギーU’jcとのひずみエネルギー比V’j(=U’jt/U’jc、jは1≦j≦Nを満たす自然数)が算出され、
所定の片振りの曲げ荷重負荷時の前記第1繊維層の前記引張応力発生領域の引張ひずみエネルギーU1tと第1繊維層の前記圧縮応力発生領域の圧縮ひずみエネルギーU1cとのひずみエネルギー比V1(=U1t/U1c)が前記ひずみエネルギー比V’1と等しくて、かつ前記所定の片振りの曲げ荷重負荷時の前記引張応力発生領域側の第j繊維層の引張ひずみエネルギーUjtと前記圧縮応力発生領域側の第j繊維層の圧縮ひずみエネルギーUjcとのひずみエネルギー比Vj(=Ujt/Ujc、jが2以上の場合)が前記ひずみエネルギー比V’jと等しくなるように前記中立軸の位置が設定されていることを特徴とする請求項2に記載の繊維強化プラスチック製ばね。
Stress strain diagram of fiber reinforced plastic having tensile modulus E 1 , Stress strain diagram of fiber reinforced plastic having tensile modulus E 2 , Stress strain of fiber reinforced plastic having tensile modulus E N A diagram is obtained by a tensile and compression test, and a strain energy ratio V′j (= U′jt / U ′) between the tensile strain energy U′jt and the compressive strain energy U′jc is obtained from each of the stress strain diagrams. jc, j is a natural number satisfying 1 ≦ j ≦ N),
Strain energy ratio V1 between the tensile strain energy U1t of the tensile stress generation region of the first fiber layer and the compressive strain energy U1c of the compression stress generation region of the first fiber layer when a predetermined one-way swing load is applied. U1t / U1c) is equal to the strain energy ratio V′1 and the tensile strain energy Ujt of the j-th fiber layer on the tensile stress generation region side when the predetermined swinging bending load is applied and the compression stress generation region The position of the neutral axis is set so that the strain energy ratio Vj (= Ujt / Ujc, where j is 2 or more) with the compression strain energy Ujc of the j-th fiber layer on the side becomes equal to the strain energy ratio V′j. The fiber-reinforced plastic spring according to claim 2, wherein the spring is made of fiber-reinforced plastic.
前記圧縮ひずみエネルギーUjcおよび前記引張ひずみエネルギーUjtが数1〜数3の数式に基づいて算出され、
前記ひずみエネルギー比V’jと前記ひずみエネルギー比Vjとが等しくなるように、前記第1繊維層の前記圧縮応力発生領域および前記引張応力発生領域の厚さh1c,h1t、ならびに、前記圧縮応力発生領域側および前記引張応力発生領域側の第j繊維層の厚さhjc,hjt(jが2以上の場合)が設定されていることを特徴とする請求項3に記載の繊維強化プラスチック製ばね。
Figure 2012202454
なお、Mは曲げモーメント、Eは引張弾性率、Iは断面二次モーメント、κは形状係数、Qはせん断力、Gはせん断弾性係数、Aはばねの断面積、lはばねの長さ、xは長さ方向の座標軸、bはばねの幅である。
Figure 2012202454
なお、σjcは圧縮応力、ρは中立軸の曲率半径、ηは中立軸を原点としたときの厚さ方向の座標軸、h0cは0である。
Figure 2012202454
なお、σjtは引張応力、ρは中立軸の曲率半径、ηは中立軸を原点としたときの厚さ方向の座標軸、−h0tは0である。
The compressive strain energy Ujc and the tensile strain energy Ujt are calculated based on mathematical formulas 1 to 3,
Thicknesses h 1c and h 1t of the compression stress generation region and the tensile stress generation region of the first fiber layer, and the compression so that the strain energy ratio V′j and the strain energy ratio Vj are equal. The fiber reinforcement according to claim 3, wherein thicknesses jc and hjt (when j is 2 or more) of the jth fiber layer on the stress generation region side and the tensile stress generation region side are set. Plastic spring.
Figure 2012202454
M is a bending moment, E is a tensile modulus, I is a secondary moment of section, κ is a shape factor, Q is a shearing force, G is a shear elastic modulus, A is a sectional area of the spring, l is a length of the spring, x is the coordinate axis in the length direction, and b is the width of the spring.
Figure 2012202454
Σjc is the compressive stress, ρ is the radius of curvature of the neutral axis, η is the coordinate axis in the thickness direction when the neutral axis is the origin, and h 0c is 0.
Figure 2012202454
Σjt is the tensile stress, ρ is the radius of curvature of the neutral axis, η is the coordinate axis in the thickness direction when the neutral axis is the origin, and −h 0t is 0.
JP2011066145A 2011-03-24 2011-03-24 Fiber-reinforced plastic spring Pending JP2012202454A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011066145A JP2012202454A (en) 2011-03-24 2011-03-24 Fiber-reinforced plastic spring
PCT/JP2012/054749 WO2012127994A1 (en) 2011-03-24 2012-02-27 Fiber-reinforced plastic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011066145A JP2012202454A (en) 2011-03-24 2011-03-24 Fiber-reinforced plastic spring

Publications (1)

Publication Number Publication Date
JP2012202454A true JP2012202454A (en) 2012-10-22

Family

ID=46879153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011066145A Pending JP2012202454A (en) 2011-03-24 2011-03-24 Fiber-reinforced plastic spring

Country Status (2)

Country Link
JP (1) JP2012202454A (en)
WO (1) WO2012127994A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597938B2 (en) 2013-03-15 2017-03-21 Polyone Corporation High strength, light weight composite leaf spring and method of making
US9657799B2 (en) 2013-03-15 2017-05-23 Polyone Corporation Suspension sub-assembly
JP2018108593A (en) * 2017-01-05 2018-07-12 Jfeスチール株式会社 Spring-back amount prediction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705330B (en) * 2013-08-29 2019-06-04 康宁股份有限公司 Thin glass layer laminated structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854241A (en) * 1981-09-29 1983-03-31 Hino Motors Ltd Leaf spring of fiber reinforced plastics
JP2005521002A (en) * 2002-03-19 2005-07-14 パシフィック コースト コンポジッツ Hybrid leaf spring with reinforced joint line

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814934B2 (en) * 1978-10-19 1983-03-23 東邦ベスロン株式会社 Leaf spring and its manufacturing method
JPS57110838A (en) * 1980-12-27 1982-07-09 Hino Motors Ltd Leaf spring for car
JPS5934036A (en) * 1983-01-12 1984-02-24 Nhk Spring Co Ltd Frp leaf spring
JPS6224039A (en) * 1985-07-24 1987-02-02 Nhk Spring Co Ltd Leaf spring made of fiber-reinforced resin
IT1231865B (en) * 1989-02-22 1992-01-14 Iveco Fiat LEAF SPRING OF COMPOSITE MATERIAL FOR SUSPENSION OF VEHICLES AND PROCEDURE FOR ITS MANUFACTURE
JPH0777231A (en) * 1991-04-08 1995-03-20 Toyota Motor Corp Fiber reinforced plastic leaf spring
JPH0727160A (en) * 1993-07-02 1995-01-27 Eaton Corp Suspension device component for vehicle and its production
JPH0754892A (en) * 1993-08-13 1995-02-28 Eaton Corp Car suspension member and manufacture thereof
US6012709A (en) * 1997-08-06 2000-01-11 Pacific Coast Composites Hybrid leaf spring and suspension system for supporting an axle on a vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854241A (en) * 1981-09-29 1983-03-31 Hino Motors Ltd Leaf spring of fiber reinforced plastics
JP2005521002A (en) * 2002-03-19 2005-07-14 パシフィック コースト コンポジッツ Hybrid leaf spring with reinforced joint line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9597938B2 (en) 2013-03-15 2017-03-21 Polyone Corporation High strength, light weight composite leaf spring and method of making
US9657799B2 (en) 2013-03-15 2017-05-23 Polyone Corporation Suspension sub-assembly
KR101750298B1 (en) * 2013-03-15 2017-06-23 폴리원 코포레이션 High strength, light weight composite leaf spring and method of making
JP2018108593A (en) * 2017-01-05 2018-07-12 Jfeスチール株式会社 Spring-back amount prediction method

Also Published As

Publication number Publication date
WO2012127994A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
Abd El-Baky et al. Flax/basalt/E-glass fibers reinforced epoxy composites with enhanced mechanical properties
Kim et al. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle
JP5548516B2 (en) Fiber reinforced plastic spring
Pingulkar et al. Free vibration analysis of laminated composite plates using finite element method
DK3135473T3 (en) COMPOSITES
Attia et al. Mechanical performance of intraply and inter-intraply hybrid composites based on e-glass and polypropylene unidirectional fibers
JP5735826B2 (en) Fiber reinforced plastic spring
Mehndiratta et al. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates
Kumar et al. Stability and failure of composite laminates with various shaped cutouts under combined in-plane loads
WO2012127994A1 (en) Fiber-reinforced plastic spring
CN105354390B (en) A method of prediction plane oblique woven composite biaxial tension modulus and intensity
EP2872685A1 (en) Reinforcing textile complex for composite parts, and composite parts integrating said complex
Khatkar et al. Experimental investigation of composite leaf spring reinforced with various fiber architecture
Singh et al. Hybrid effect of functionally graded hybrid composites of glass–carbon fibers
Muddappa et al. Effects of different interlaminar hybridization and localized edge loads on the vibration and buckling behavior of fiber metal composite laminates
Aklilu et al. Failure analysis of rotating hybrid laminated composite beams
Stephen et al. Finite element study on the influence of fiber orientation on the high velocity impact behavior of fiber reinforced polymer composites
Dalfi et al. Effect of twist level on the mechanical performance of S-glass yarns and non-crimp cross-ply composites
US20170058983A1 (en) Bar-shaped component loaded in torsion
Zu et al. Numerical simulation of pin-loaded joints of fiber metal laminate
Ma et al. Dependence between displacement distortion and heterogeneity of vegetable fiber composites
JP6558185B2 (en) Girder structure
MX2015006603A (en) Multi-axial fabrics, polymer-fiber laminates, and bodies incorporating same for connecting applications.
Golestanian et al. Evaluation of effective mechanical properties of nanocomposites reinforced with sinusoidal carbon nanotubes
CN105888090A (en) Low yield point steel and high dissipation viscoelasticity buckling restraining brace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202