JPS6224039A - Leaf spring made of fiber-reinforced resin - Google Patents

Leaf spring made of fiber-reinforced resin

Info

Publication number
JPS6224039A
JPS6224039A JP16212985A JP16212985A JPS6224039A JP S6224039 A JPS6224039 A JP S6224039A JP 16212985 A JP16212985 A JP 16212985A JP 16212985 A JP16212985 A JP 16212985A JP S6224039 A JPS6224039 A JP S6224039A
Authority
JP
Japan
Prior art keywords
stress
groove
width
leaf spring
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16212985A
Other languages
Japanese (ja)
Inventor
Takayuki Tanabe
田部 隆幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP16212985A priority Critical patent/JPS6224039A/en
Publication of JPS6224039A publication Critical patent/JPS6224039A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Abstract

PURPOSE:To reduce the weight of an FRP leaf spring by forming a groove in the longitudinal direction of a beam, in the direction of plate width on the tension side, and forming said groove to have the sectional form for which a numerical equation is satisfied. CONSTITUTION:The surface onto which the compression stress of a beam is applied is formed flat, and a groove which has the width alpha.b in the direction of the plate width and the depth beta.t in the direction of length of the beam is formed on the side onto which a tensile stress is applied, and alpha and beta on the sectional form satisfy the following equation: 3beta<2>.alpha-4beta.alpha+1=0. Therefore, the design stress having the superior efficiency is generated on the side onto which the tensile stress is applied and on the side onto which a compression stress is applied, and the weight can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維強化樹脂製板ばねの改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to improvements in leaf springs made of fiber-reinforced resin.

従来の技術 ばね板を口形状にして剛性を高めたものは実公昭36−
19809号によって知られている。
Conventional technology A spring plate with a mouth shape to increase rigidity was developed in 1973.
No. 19809.

また、繊維強化樹脂(以下FRPという)製板ばねは、
鋼製板はねに比べて軽食であり、耐食性に優れ、引張シ
強度が大きい等の利点を有しているが、その反面、圧縮
強度が小さいという欠点がちった。この欠点を除去する
ために、FRP板ばねの曲げの中立軸を圧縮応力が発生
する側に移動させ1曲げ荷重時の最大圧縮応力が最大引
張応力よりも小さくしたものが特開昭58−54241
号によって提案されているが、引張シ応力と圧縮応力を
どのような比にすれば最適であるかという点については
全く知られていなかった。
In addition, leaf springs made of fiber reinforced resin (hereinafter referred to as FRP) are
Compared to steel plates, it has the advantages of being lighter, has excellent corrosion resistance, and high tensile strength, but on the other hand, it has the disadvantage of low compressive strength. In order to eliminate this drawback, the neutral axis of bending of the FRP leaf spring is moved to the side where compressive stress is generated, so that the maximum compressive stress during one bending load is smaller than the maximum tensile stress.
However, the optimal ratio of tensile stress to compressive stress was not known at all.

発明が解決しようとする問題点 上記した従来のFRPばねにおいては、その長手方向に
直角な断面の形状をどのように構成したときに、テンシ
ョン側の引張応力とコンプレッション側の圧縮応力とが
バランスされ、しかもFRP板はねの軽量化が図れるか
等については特に考慮されていない。
Problems to be Solved by the Invention In the above-mentioned conventional FRP springs, how can the tensile stress on the tension side and the compressive stress on the compression side be balanced when the shape of the cross section perpendicular to the longitudinal direction is configured? Moreover, no particular consideration is given to whether or not the weight of the FRP board can be reduced.

本発明は、テンション側の引張応力とコンプレッション
側の圧縮応力がバランスされ、かつ軽量化を図るだめの
FRP板はねの長手方向に直角な断面形状を得ることを
目的とするものである。
The object of the present invention is to obtain a cross-sectional shape perpendicular to the longitudinal direction of an FRP plate in which the tensile stress on the tension side and the compressive stress on the compression side are balanced and the weight is reduced.

問題点全解決するだめの手段・作用 本発明は、上記の目的全達成するために、一方向に強化
された繊維で曲げ荷重が負荷される板幅b、板厚tなる
梁において、該梁の長手方向に直角な断面の圧縮応力金
堂ける側の表面を平坦とするとともに、引張応力を受け
る側には、板幅方向に幅α・b、深さβ・tなる梁の長
さ方向の溝又は切欠部を設けて、前記のα、βが 3β
2・α−4β・α+1=0全満足する断面形状としたも
のである。
Means/Function for Solving All Problems In order to achieve all of the above objects, the present invention provides a beam having a width b and a thickness t to which a bending load is applied with fibers reinforced in one direction. The surface of the cross section perpendicular to the longitudinal direction of the beam is made flat, and the side that receives the tensile stress has a width α・b and a depth β・t in the length direction of the beam. A groove or notch is provided so that the above α and β are 3β
The cross-sectional shape satisfies 2・α−4β・α+1=0.

一方向強化繊維に曲げ応力が負荷された場合、曲げ強さ
び、=120〜130に9f/mj圧縮強さσ。=55
〜65 kg f / a従って、大略σt/σ。キ2
.0  となるので、このσt/σ。キ2.0となるよ
うに強度部材の長手方向に直角な断面形状を得るだめの
基礎計算を行った。
When bending stress is applied to the unidirectional reinforcing fibers, the bending strength is 9f/mj and the compressive strength σ is 120 to 130. =55
~65 kg f/a Therefore, approximately σt/σ. Ki 2
.. 0, so this σt/σ. Basic calculations were performed to obtain a cross-sectional shape perpendicular to the longitudinal direction of the strength member so that the strength was 2.0.

第4図において、一方向に強化された繊維で曲げ荷重が
負荷される梁の長手方向に直角な断面の板幅b、板厚t
とし、曲げ荷重が加わったとき圧縮応力を受けるll1
l CS ’f<平面とし、引張応力を受ける側TSの
板幅方向の中心線全中心とした溝幅α・b、溝の深さβ
・Lとし、引張応カ?受ける側の表面より曲げの中立軸
までの距離k i+ +前記の中立軸より圧縮応力上受
ける側の表面までの距離k12とすると、梁の断面2次
モーメントI、引張応力σア、及び圧縮応力σc8は次
の計算式によって求められる。
In Figure 4, the plate width b and the plate thickness t in a cross section perpendicular to the longitudinal direction of the beam to which a bending load is applied with fibers reinforced in one direction.
ll1 receives compressive stress when a bending load is applied.
l CS 'f < plane, groove width α・b, groove depth β, all centered on the center line in the plate width direction of the side TS receiving tensile stress
・L and tensile stress? Assuming that the distance from the receiving surface to the neutral axis of bending is k i+ + the distance k12 from the neutral axis to the surface receiving compressive stress, the beam's second moment of area I, tensile stress σa, and compressive stress σc8 is calculated using the following formula.

従って、3β2・α+1=00方程式を満足するように
中立軸を圧縮応力上受ける側C8に移動させれば、引張
応力を受ける側TS並びに圧縮応力を受ける側C8がと
もに効率の良い設計応力となるので軽量化が図れるもの
でちる。
Therefore, if the neutral axis is moved to the side C8 receiving compressive stress so as to satisfy the equation 3β2・α+1=00, both the side TS receiving tensile stress and the side C8 receiving compressive stress will have efficient design stress. Therefore, it is possible to reduce the weight.

実施例 第1図乃至第3図は本発明のFRP板ばねの実施例を示
すもので、1はFRP板ばね、2.2はセンタスペーサ
でアリ、センタスペーサ2.lj:センタボルト3によ
って固定される。4はプレート、5は目玉部である。6
は前述した式によって求められた溝又は切欠部であり、
溝又は切欠部の形状は、第3図に示されるように、ばね
板1の長手方向に直角な断面において、その板幅方向の
中心線A−Aを中心とした溝6とした断面形状(第3図
(イ))、板幅方向の中心線A−Ak中心とした板厚と
同厚の小幅の板厚部7を有するとともに、その両側に対
称的に溝6.6’e設けた断面形状(第3図(ロ))、
板幅方向の中心線A−Ak中心として板厚と同厚の板厚
部7′を設け、該板厚部γ′の両側に対称的に切欠部8
,8′とした断面形状(第3図(ハ))、板幅方向の中
心線A−A−i中心として板厚と同厚の板厚部7“全設
け、該板厚部7“の両側端よシ下方に向うテーバ部9,
9”e形成することによシ切欠部8,8′とした断面形
状(第3図に))となしたものである。
Embodiment FIGS. 1 to 3 show embodiments of the FRP leaf spring of the present invention, in which 1 is an FRP leaf spring, 2.2 is a center spacer, and 2.2 is a center spacer. lj: Fixed by center bolt 3. 4 is a plate, and 5 is an eyepiece. 6
is the groove or notch determined by the above formula,
As shown in FIG. 3, the shape of the groove or notch is such that in a cross section perpendicular to the longitudinal direction of the spring plate 1, the groove 6 is centered on the center line A-A in the plate width direction ( Fig. 3 (a)) has a narrow plate thickness part 7 with the same thickness as the plate thickness centered on the center line A-Ak in the plate width direction, and has grooves 6.6'e symmetrically provided on both sides thereof. Cross-sectional shape (Figure 3 (b)),
A plate thickness part 7' having the same thickness as the plate thickness is provided at the center of the center line A-Ak in the plate width direction, and notches 8 are symmetrically formed on both sides of the plate thickness part γ'.
. Tapered portions 9 facing downward from both ends,
9''e is formed to form cutout portions 8, 8' in cross section (as shown in FIG. 3).

今、従来の長方形断面梁と、本発明の断面形状ヲ有する
梁とで、ストレートスパンl、板幅b、ばね定数kが各
々等しいと仮定しく次表参照)、両者の重量、応力並び
に板厚の比較を行うと、それぞれ次の式で表わされる。
Now, assuming that the straight span l, plate width b, and spring constant k are the same for the conventional rectangular cross-sectional beam and the beam having the cross-sectional shape of the present invention, the weight, stress, and plate thickness of both are assumed to be the same (see the following table). When compared, each is expressed by the following formula.

0.75のとき応力アップ率が一番小さく、軽量化は3
2.9%となる。また、α及びβの値の定め方としては
、重量W見、板厚t、応力〜の中の何を最重要なものと
するかによって決定されるものである。
At 0.75, the stress increase rate is the smallest, and the weight reduction is 3
It becomes 2.9%. The values of α and β are determined depending on which of the weight W, plate thickness t, and stress is considered to be the most important.

具体例 従来の長方形断面の梁と本発明による断面形状金有する
梁とで、ストレートスパン、板厚、ばね定数金回−とし
、応力、重量、板厚の比較を行うと、比較に用いた長方
形断面の梁は板幅70瓢、版厚24咽であり、本発明に
よる断面を有する梁は、板幅70m+n、板厚33wn
、溝幅56聴、溝の深さ16.5+n+nであった。結
果を次表に示す。
Specific example: When comparing stress, weight, and plate thickness between a conventional beam with a rectangular cross section and a beam with a metal cross-sectional shape according to the present invention, with straight span, plate thickness, and spring constant, The cross-sectional beam has a board width of 70m+n and a board thickness of 24mm, and the beam with the cross-section according to the present invention has a board width of 70m+n and a board thickness of 33wn.
The groove width was 56mm, and the groove depth was 16.5+n+n. The results are shown in the table below.

(以下余白) 発明の効果 本発明は、一方向に強化された繊維で曲げ荷重が負荷さ
れる板幅b、板厚tを有する梁において、コンプレッシ
ョン側を平坦とすると共に、テンション側には板幅方向
に幅α・β、深さβ・tなる梁の長さ方向の溝又は切欠
部全形成して、前記のα、βの値が3β2・α−4β・
α+l=Qを満足する断面形状となしたFRP板ばねで
あるので。
(Left below) Effects of the Invention The present invention provides a beam having a width b and a thickness t on which a bending load is applied using fibers reinforced in one direction, the compression side being flat, and the tension side being flat. By forming all grooves or notches in the length direction of the beam with width α・β and depth β・t in the width direction, the values of α and β are 3β2・α−4β・
This is because it is an FRP leaf spring with a cross-sectional shape that satisfies α+l=Q.

応力2重量等の面から最適の効率で形状が決定され、特
にFRP板ばねの軽量化が図られたものである。
The shape is determined with optimal efficiency in terms of stress, weight, etc., and the weight of the FRP leaf spring is particularly reduced.

また、板ばねは何枚かのばね板を重ね合わせた重ね板ば
ねであってもよいし、ばね板の角部は若干のC面取り、
8面取り等の面取りが施されていてもよい。
In addition, the leaf spring may be a stacked leaf spring made by overlapping several spring boards, and the corners of the spring boards may be slightly chamfered.
Chamfering such as eight chamfers may be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は1本発明の実施例金示すもので、第1図はFRP
板ばねの側面図、第2図は同平面図、第3図(イ)(ロ
)(/→に)は、それぞれ各別の実施例の断面図である
。第4図は本発明の基となる計算式の各部の説明図であ
り、第5図は、従来の長方形断面の梁と本発明の断面形
状を有する梁とのストレートスパン、板幅、ばね定数を
等しいとして、両者の重量、応力及び板厚の比較を行っ
た比較図でちる。 1:FRP板ばね    6:溝 8.8’:切欠部 第1I
The drawings show one embodiment of the present invention, and Figure 1 shows an example of FRP.
FIG. 2 is a side view of the leaf spring, FIG. 2 is a plan view thereof, and FIGS. Fig. 4 is an explanatory diagram of each part of the calculation formula that is the basis of the present invention, and Fig. 5 shows the straight span, plate width, and spring constant of a beam with a conventional rectangular cross section and a beam with the cross-sectional shape of the present invention. This is a comparison diagram that compares the weight, stress, and plate thickness of the two, assuming that they are equal. 1: FRP leaf spring 6: Groove 8.8': Notch 1st I

Claims (1)

【特許請求の範囲】[Claims] 一方向に強化された繊維で曲げ荷重が負荷される板幅b
、板厚tなる梁において、該梁の長手方向に直角な断面
の圧縮応力を受ける側の表面を平坦とするとともに、引
張応力を受ける側には、板幅方向に幅α・b、深さβ・
tなる梁の長手方向の溝又は切欠部を設けて、前記のα
、βがほぼ3β^2・α−4β・α+1=0を満足する
断面形状となしたことを特徴とする繊維強化樹脂製板ば
ね。
Plate width b where bending load is applied with fibers reinforced in one direction
, in a beam with plate thickness t, the surface on the side receiving compressive stress in the cross section perpendicular to the longitudinal direction of the beam is flat, and the side receiving tensile stress has a width α・b and a depth in the plate width direction. β・
By providing a groove or notch in the longitudinal direction of the beam t, the above α
, β approximately satisfies 3β^2・α−4β・α+1=0. A fiber-reinforced resin plate spring.
JP16212985A 1985-07-24 1985-07-24 Leaf spring made of fiber-reinforced resin Pending JPS6224039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16212985A JPS6224039A (en) 1985-07-24 1985-07-24 Leaf spring made of fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16212985A JPS6224039A (en) 1985-07-24 1985-07-24 Leaf spring made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPS6224039A true JPS6224039A (en) 1987-02-02

Family

ID=15748589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16212985A Pending JPS6224039A (en) 1985-07-24 1985-07-24 Leaf spring made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPS6224039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
WO2012127994A1 (en) * 2011-03-24 2012-09-27 日本発條株式会社 Fiber-reinforced plastic spring
CN106573420A (en) * 2014-03-28 2017-04-19 博泽(科堡)汽车零部件有限公司 Composite fiber component and method for producing a composite fiber component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230031A (en) * 2009-03-26 2010-10-14 Tokai Rubber Ind Ltd Leaf spring suspension type damping device
WO2012127994A1 (en) * 2011-03-24 2012-09-27 日本発條株式会社 Fiber-reinforced plastic spring
CN106573420A (en) * 2014-03-28 2017-04-19 博泽(科堡)汽车零部件有限公司 Composite fiber component and method for producing a composite fiber component

Similar Documents

Publication Publication Date Title
Levinson A new rectangular beam theory
US2975874A (en) Girder made up of structural members
US4069638A (en) Structure of lightweight bars and connector means therefore
US3342007A (en) Structural member
KR900013525A (en) Nuclear Fuel Rod Support Grid
US4187034A (en) Rigid joint assembly
US3214802A (en) Fastener
JPS6224039A (en) Leaf spring made of fiber-reinforced resin
KR102123538B1 (en) Reinforcing bar coupler for aseismatic and quick connection
US2685354A (en) Nailable structural member
US2718289A (en) Nailable structural member
JP5114676B2 (en) Steel hollow columnar member
Ray et al. Parametric instability of multi-layered sandwich beams
JPH08193383A (en) Buckling stiffening structure of i girder
JPS5854241A (en) Leaf spring of fiber reinforced plastics
WO2010116660A1 (en) Anisotropic reinforcing metal plate
US1498526A (en) Structural angle bar
CN208281308U (en) A kind of folding joint
JP2018071172A (en) Shaped steel and method of using the same
GB1151585A (en) Improvements in or relating to Taper Leaf Springs
US3456968A (en) Splice connector assembly
KURANISHI et al. Ultimate strength design criteria for two-hinged steel arch structures
Hyde et al. Stress concentrations due to axial tension and bending of loaded axisymmetric projections
Saadé et al. Application of Prokić Warping Function to Lateral-Torsional Buckling of Thin Walled Structures
Timoshenko On the stability of stiffened plates