JPS5854241A - Leaf spring of fiber reinforced plastics - Google Patents
Leaf spring of fiber reinforced plasticsInfo
- Publication number
- JPS5854241A JPS5854241A JP15412681A JP15412681A JPS5854241A JP S5854241 A JPS5854241 A JP S5854241A JP 15412681 A JP15412681 A JP 15412681A JP 15412681 A JP15412681 A JP 15412681A JP S5854241 A JPS5854241 A JP S5854241A
- Authority
- JP
- Japan
- Prior art keywords
- leaf spring
- maximum
- compressive stress
- tensile stress
- bending load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/366—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
- F16F1/368—Leaf springs
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Springs (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、繊維強化樹脂製板ばねに係シ、特に繊維強化
樹脂製板ばねが引張に強く逆に圧縮に弱い特性を活かし
て圧縮強度の向上を図った繊維強化樹脂製板ばねに関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber-reinforced resin leaf spring, and in particular, a fiber-reinforced leaf spring that improves compressive strength by taking advantage of the characteristics of a fiber-reinforced resin leaf spring that is strong in tension and weak in compression. Regarding resin leaf springs.
従来、繊維強化樹脂製板ばねについては、種々の提案が
なされているが、繊維強化樹脂製板ばねは、鋼板製板ば
ねに比べて非常に軽量であり、引張強度が大きい利点が
ある反面圧縮強度が小さいという欠点があった。Conventionally, various proposals have been made regarding leaf springs made of fiber-reinforced resin, but leaf springs made of fiber-reinforced resin have the advantage of being extremely lightweight and having high tensile strength compared to steel plate springs. It had the disadvantage of low strength.
本発明線、上記した従来技術の欠点を除くためになされ
たものであって、その目的とするところは、繊維強化樹
脂製板ばねの曲げの中立軸を最大圧縮応力が生ずる表面
側へ移動させることによって、曲げ荷重時に生ずる最大
圧縮応力を最大引張応力よりも小さくして圧縮強度を増
大させることであシ、またこれによって実用に供し得る
繊維強化樹脂製板はねを提供することである。The present invention has been made to eliminate the drawbacks of the prior art described above, and its purpose is to move the neutral axis of bending of a fiber-reinforced resin leaf spring toward the surface where the maximum compressive stress occurs. By doing so, the maximum compressive stress generated during bending load is made smaller than the maximum tensile stress to increase the compressive strength, and thereby, it is an object of the present invention to provide a fiber-reinforced resin plate spring that can be put to practical use.
要するに本発明線、板ばねの長手方向に垂直な面内にお
ける断面が、曲げ荷重時に引張応力を受ける側の肉厚の
一部が少なく形成され、曲げの中立軸を曲げ荷重時に圧
縮応力を受ける側の肉厚の一部が少なく形成され、曲け
の中立軸を曲げ荷重時に圧縮応力を受ける側に移動させ
、曲げ荷重時の最大圧縮応力が最大引張応力よりも小さ
くなるように構成したことを特徴とするものである。In short, the cross section of the line of the present invention in a plane perpendicular to the longitudinal direction of the leaf spring is formed so that a part of the wall thickness on the side that receives tensile stress during bending load is less, and the neutral axis of bending receives compressive stress during bending load. A part of the wall thickness on the side is formed to be smaller, and the neutral axis of bending is moved to the side that receives compressive stress during bending load, so that the maximum compressive stress during bending load is smaller than the maximum tensile stress. It is characterized by:
以下本発明を図面に示す実施例に基いて説明する。第1
図において、繊維強化樹脂(以下FRPという)製板ば
ね1紘、その長手方向に垂直な面内における断面が、曲
げ荷重時に引張応力を受ける側、即ち図中上側の肉厚の
一部が少なく形成され、曲けの中立軸Xは第4図に示す
ように曲げ荷重時に圧縮応力を受ける側、即ち図中下側
に移動しておシ、曲げ荷重時の最大圧縮応力は最大引張
応力よシも小さくなるように構成されている。The present invention will be explained below based on embodiments shown in the drawings. 1st
In the figure, the cross section of a leaf spring made of fiber-reinforced resin (hereinafter referred to as FRP) in a plane perpendicular to its longitudinal direction shows that part of the wall thickness on the side that receives tensile stress during bending load, that is, on the upper side in the figure, is smaller. As shown in Figure 4, the neutral axis of bending moves to the side that receives compressive stress during bending load, that is, to the lower side in the figure, and the maximum compressive stress during bending load is equal to the maximum tensile stress. It is also configured to have a small size.
曲げ荷重時に引張応力を受ける側の肉厚の一部の断面を
少なくする形状としては種々考えられるが、第1図から
第4図に示す第1実施例では、引張応力を受ける側の表
面1aを円弧状に凹陥させ、圧縮応力を受ける側の表面
1bを円弧状に膨出させ、要するに板はね1の長手方向
に垂直な面内の断面は、図中上に凹の円弧状断面となっ
ている。Various shapes can be considered to reduce the cross section of a part of the wall thickness on the side that receives tensile stress during bending load, but in the first embodiment shown in FIGS. 1 to 4, the surface 1a on the side that receives tensile stress is concave in a circular arc shape, and the surface 1b on the side receiving compressive stress is bulged in a circular arc shape.In short, the cross section in the plane perpendicular to the longitudinal direction of the plate spring 1 is an arc-shaped cross section concave upward in the figure. It has become.
また第1図に示す円弧状断面のFRP製板ばね1を重ね
板はね2として用いると、第2図及び第3図に示すよう
になシ、各FRP製板ばね1の間には隙間Cが形成され
る。即ち凹陥した円弧の曲率半径を膨出した円弧の曲率
半径よシも小さくしておけば必然的に隙間Cが形成され
、好ましい結果が得られる。パッド3は下側が円弧状に
膨出し凹陥した円弧の曲率半径と等しい曲率半径とされ
ておシ、Uボルト4によシアクスル5に締め付は固定さ
れる。なおパッド6は最下部の板はね1の曲率半径に一
致するように上側が円弧状に凹陥している。Furthermore, when the FRP leaf spring 1 with the arc-shaped cross section shown in FIG. 1 is used as the stacked leaf spring 2, there is a gap between each FRP leaf spring 1 as shown in FIGS. C is formed. That is, if the radius of curvature of the concave arc is made smaller than the radius of curvature of the bulged arc, a gap C will inevitably be formed and a favorable result will be obtained. The pad 3 has a radius of curvature equal to the radius of curvature of the circular arc in which the lower side bulges out into a concave shape, and is fastened to the axle 5 by a U bolt 4. The upper side of the pad 6 is recessed in an arc shape so as to match the radius of curvature of the lowermost plate 1.
F几Pとしては、炭素繊維強化樹脂(以下CFRPとい
う)及びガラス繊維強化樹脂(以下GFRPという)が
主として用いられる。Carbon fiber reinforced resin (hereinafter referred to as CFRP) and glass fiber reinforced resin (hereinafter referred to as GFRP) are mainly used as the F-P.
本発明は、上記のように構成されており、以下その作用
について説明する。第1図から第4図において、板はね
l又は重ね板はね2に図中下側から上側へ向けて曲は荷
lが中央部に作用すると、最大引張応力は、板はね1の
角部1cに生じ、最大圧縮応力は表面1bの頂点に生ず
るが、曲げの中立軸Xはかなり表面lb側へ移動してい
るため、最大圧縮応力は最大引張応力よりも相当小さく
なシ、FRP製嶺ばね1、特にCFRPの引張に強く圧
縮に弱い性責が活かされ、全体としてバランスのとれた
強さを発揮することになる。The present invention is configured as described above, and its operation will be explained below. In Figures 1 to 4, when a bending load l is applied to the center part of the plate l or stacked plate 2 from the bottom to the top in the figure, the maximum tensile stress of the plate 1 is The maximum compressive stress occurs at the corner 1c, and the maximum compressive stress occurs at the apex of the surface 1b, but since the neutral axis X of bending has moved considerably toward the surface 1b, the maximum compressive stress is considerably smaller than the maximum tensile stress. The ridge spring 1, especially the strength of CFRP that is strong in tension and weak in compression, is utilized, and the overall strength is well-balanced.
なお第5図に示すFRPjQ板ばね21は、本発明の第
2実施例であシ、引張応力を受ける側をコの字形に凹陥
させて曲げの中立軸Xを圧縮側に移動させたものであり
、幅を弯える仁とによシ重ね板はねとすることもできる
。The FRPjQ leaf spring 21 shown in FIG. 5 is a second embodiment of the present invention, in which the side receiving tensile stress is recessed in a U-shape and the neutral axis of bending X is moved to the compression side. Yes, it is also possible to overlap the board with a ridge that increases the width.
また第6図に示すFRP製板ばね31は、本発明の第3
実施例であり、引張応力側に凹となるように、くの字形
断面とし、曲げの中立軸Xを圧縮側に移動させたもので
ある。Moreover, the FRP leaf spring 31 shown in FIG.
This is an example in which the cross section is formed into a dogleg shape so that it is concave on the tensile stress side, and the neutral axis X of bending is moved to the compression side.
そして第7図に示すFRP製板ばね41社、本発明の第
4実施例であり、引張応力側の幅方向の両角部をFII
J p取り、曲げの中立軸Xを圧縮側に移動させたもの
である。The FRP leaf spring 41 shown in FIG. 7 is the fourth embodiment of the present invention, and both corners in the width direction on the tensile stress side are FII.
Jp is taken, and the neutral axis of bending X is moved to the compression side.
これら第2〜第4実施例のFRP製板はね21゜31及
び41も第1実施例のFRP製板はね1と同様に作用す
るので、その説明は省略する。These FRP plate springs 21, 31, and 41 of the second to fourth embodiments also function in the same manner as the FRP plate spring 1 of the first embodiment, so a description thereof will be omitted.
本発明は、上記のように構成され、作用するものである
から、FRP製板ばねの曲けの中立軸を最大圧縮応力が
生ずる表面側へ移動させるようにしたので、曲げ荷重時
に生ずる最大圧縮応力を最大引張応力よりも小さくする
ことができ、FRP製板ばねの圧縮強度を相対的に増大
させることができ、この結果実用に供し得るF)LP製
板ばねを提供することができるもので、その効果の極め
て大きい発明である。Since the present invention is constructed and operates as described above, the neutral axis of bending of the FRP leaf spring is moved toward the surface where the maximum compressive stress occurs, so that the maximum compressive stress that occurs during bending load is reduced. The stress can be made smaller than the maximum tensile stress, the compressive strength of the FRP leaf spring can be relatively increased, and as a result, it is possible to provide a practically usable F) LP leaf spring. This is an extremely effective invention.
図面は本発明の実施例に9f、9、第1図はFRP製板
はねの斜視図、第2図は重ね板はねとしたFRP製板ば
ねの部分破断斜視図、第3図は第2図の1−1矢視縦断
間図、第4図は第1図の■−■矢視拡大縦断面図、第5
図は本発明の第2実施例に係るFl(、P製板ばねの縦
断面図、第6図は同じく第3実施例に係るF RP製板
ばねの縦断面図、第7図は同じく第4実施例に係るl”
i(P製板ばねの縦断面図である。
1.21,31.41はFRP製板ばね、1aは曲げ荷
重時に引張応力を受ける側の表面、1bは同じく圧縮応
力を受ける側の表面、Xは曲げの中立軸である。
特許出願人 日野自動車工業株式会社、 代理人
弁理士 内 1)和 男第1図
第3図
第4図
b
第5図
1
第6図
f
第7図
1The drawings are 9F and 9 showing an embodiment of the present invention, FIG. 1 is a perspective view of an FRP leaf spring, FIG. 2 is a partially cutaway perspective view of an FRP leaf spring with stacked leaf springs, and FIG. Figure 2 is an enlarged vertical cross-sectional view taken along arrows 1-1 in Figure 1;
The figure is a longitudinal cross-sectional view of a FRP leaf spring according to the second embodiment of the present invention, FIG. 6 is a longitudinal cross-sectional view of a FRP leaf spring according to the third embodiment, and FIG. l” according to 4 embodiments
i (This is a vertical cross-sectional view of a leaf spring made of P. 1.21 and 31.41 are leaf springs made of FRP, 1a is the surface on the side that receives tensile stress during bending load, 1b is the surface on the side that also receives compressive stress, X is the neutral axis of bending. Patent applicant: Hino Motors Co., Ltd., Agent
Patent Attorney 1) Japanese Male Figure 1 Figure 3 Figure 4 b Figure 5 1 Figure 6 f Figure 7 1
Claims (1)
重時に引張応力を受ける側の肉厚の一部が少なく形成さ
れ、曲げの中立軸を曲げ荷重時に圧縮応力を受ける側に
移動させ、曲げ荷重時の最大圧縮応力が最大引張応力よ
りも小さくなるように構成したことを特徴とする繊維強
化樹脂製板ばね。A cross section in a plane perpendicular to the longitudinal direction of the leaf spring is formed so that a portion of the wall thickness on the side receiving tensile stress during bending load is less, and the neutral axis of bending is moved to the side receiving compressive stress during bending load, A fiber-reinforced resin leaf spring characterized in that the maximum compressive stress under bending load is smaller than the maximum tensile stress.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15412681A JPS5854241A (en) | 1981-09-29 | 1981-09-29 | Leaf spring of fiber reinforced plastics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15412681A JPS5854241A (en) | 1981-09-29 | 1981-09-29 | Leaf spring of fiber reinforced plastics |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5854241A true JPS5854241A (en) | 1983-03-31 |
Family
ID=15577474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15412681A Pending JPS5854241A (en) | 1981-09-29 | 1981-09-29 | Leaf spring of fiber reinforced plastics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5854241A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0695971A1 (en) | 1994-08-03 | 1996-02-07 | Fuji Photo Film Co., Ltd. | Photosensitive lithographic printing plate |
US5596907A (en) * | 1993-07-09 | 1997-01-28 | The Torrington Company | Antifriction element for use between relatively sliding components of an adjustable steering column |
WO2007054068A1 (en) * | 2005-11-11 | 2007-05-18 | Ifc Composite Gmbh | Leaf spring comprising an upper and lower face with a convex cross-section |
WO2012127994A1 (en) * | 2011-03-24 | 2012-09-27 | 日本発條株式会社 | Fiber-reinforced plastic spring |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116610A (en) * | 1981-01-13 | 1982-07-20 | Horikiri Bane Seisakusho:Kk | Method for forming hollow leaf spring of reinforced plastic |
-
1981
- 1981-09-29 JP JP15412681A patent/JPS5854241A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116610A (en) * | 1981-01-13 | 1982-07-20 | Horikiri Bane Seisakusho:Kk | Method for forming hollow leaf spring of reinforced plastic |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5596907A (en) * | 1993-07-09 | 1997-01-28 | The Torrington Company | Antifriction element for use between relatively sliding components of an adjustable steering column |
EP0695971A1 (en) | 1994-08-03 | 1996-02-07 | Fuji Photo Film Co., Ltd. | Photosensitive lithographic printing plate |
WO2007054068A1 (en) * | 2005-11-11 | 2007-05-18 | Ifc Composite Gmbh | Leaf spring comprising an upper and lower face with a convex cross-section |
DE112006002662B4 (en) * | 2005-11-11 | 2013-03-28 | Ifc Composite Gmbh | Leaf spring with convex top and bottom |
WO2012127994A1 (en) * | 2011-03-24 | 2012-09-27 | 日本発條株式会社 | Fiber-reinforced plastic spring |
JP2012202454A (en) * | 2011-03-24 | 2012-10-22 | Nhk Spring Co Ltd | Fiber-reinforced plastic spring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4472473A (en) | Curved cap corrugated sheet | |
JPS6330618A (en) | Leaf spring | |
JPS5854241A (en) | Leaf spring of fiber reinforced plastics | |
CN105836164B (en) | Adapter structure between a kind of spacecraft level | |
JPS6150174B2 (en) | ||
JPH04252754A (en) | Hybrid bumper beam | |
US4530871A (en) | Ski construction | |
JPS6137484B2 (en) | ||
JP2001227573A (en) | Energy absorbing member | |
KR102608135B1 (en) | Large coil pallet using steel frame | |
US12116044B2 (en) | Frame which is made of fiber reinforced composite | |
CN217835754U (en) | Subframe and vehicle | |
CN221292851U (en) | Leaf spring structure, suspension system of vehicle and vehicle | |
CN112855927B (en) | Steel band reinforcing bellows | |
WO2024204323A1 (en) | Structural component | |
JPS6224039A (en) | Leaf spring made of fiber-reinforced resin | |
WO2022149504A1 (en) | Structural member | |
JPH11141050A (en) | Structure of reinforcement truss and reinforced concrete structure | |
SU1656095A1 (en) | Reinforcing member | |
JPS6042180A (en) | Frame structure for saddling type car | |
CN207089419U (en) | Carbon fiber front auxiliary frame and vehicle with same | |
JPS6028575Y2 (en) | Synthetic resin pallet | |
CN117473667A (en) | Vibration isolation unit and design method thereof | |
JPS6346745Y2 (en) | ||
JPS6139530B2 (en) |