JPS6137484B2 - - Google Patents

Info

Publication number
JPS6137484B2
JPS6137484B2 JP16765380A JP16765380A JPS6137484B2 JP S6137484 B2 JPS6137484 B2 JP S6137484B2 JP 16765380 A JP16765380 A JP 16765380A JP 16765380 A JP16765380 A JP 16765380A JP S6137484 B2 JPS6137484 B2 JP S6137484B2
Authority
JP
Japan
Prior art keywords
leaf spring
surface layer
bending
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16765380A
Other languages
Japanese (ja)
Other versions
JPS5790433A (en
Inventor
Junichi Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP16765380A priority Critical patent/JPS5790433A/en
Publication of JPS5790433A publication Critical patent/JPS5790433A/en
Publication of JPS6137484B2 publication Critical patent/JPS6137484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/366Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers made of fibre-reinforced plastics, i.e. characterised by their special construction from such materials
    • F16F1/368Leaf springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】 本発明は、車輌用板ばねに係り、特に軽量化、低
価格化及びねじり強度の向上を図つた繊維強化樹
脂製の車輌用板ばねに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leaf spring for a vehicle, and more particularly to a leaf spring for a vehicle made of fiber-reinforced resin that is lighter in weight, lower in price, and has improved torsional strength.

従来、車輌用に板ばねには、鋼板が用いられて
いるが、鋼板の比重は大きいため車輌の重量が大
きくなり、特に大型車輌において板ばねの重量が
相当大きく、燃費の増大、加速性能の悪化及び組
立工程における作業者の疲労の増大等をもたらし
ており、その軽量化が望まれている。
Conventionally, steel plates have been used for leaf springs for vehicles, but the specific gravity of steel plates is high, which increases the weight of the vehicle.Especially in large vehicles, the weight of leaf springs is quite large, resulting in increased fuel consumption and poor acceleration performance. This causes deterioration and increases worker fatigue during the assembly process, and there is a desire to reduce the weight.

そこで従来上記鋼板製板ばねの欠点を除くた
め、複合材料、特に炭素繊維やガラス繊維で強化
した繊維強化樹脂製の車輌用板ばねが種々提案さ
れている。しかし該従来例では、応力のほとんど
かからない曲げの中立軸付近も中実としてあるた
め、十分に軽量化が図られていないと共に、非常
に高価な強化繊維素材が無駄に使用されるため十
分な低コスト化を図ることができない欠点があつ
た。
In order to eliminate the drawbacks of the conventional steel plate springs, various vehicle leaf springs made of composite materials, particularly fiber-reinforced resins reinforced with carbon fibers or glass fibers, have been proposed. However, in this conventional example, the area near the neutral axis of bending where almost no stress is applied is also solid, so it is not possible to achieve sufficient weight reduction, and very expensive reinforcing fiber material is wasted, so There was a drawback that it was not possible to reduce costs.

本発明は、上記した従来技術の欠点を除くため
になされたものであつて、その目的とするところ
は、繊維強化樹脂製板ばねにおいて、曲げの中立
軸となる板厚の中心部付近を空洞に形成すること
によつて十分に軽量化すると共に、非常に高価な
強化繊維素材を節約し、価格を低減化することで
ある。また他の目的は、引張応力、圧縮応力及び
ねじり応力の作用する各部分に適した構造の強化
繊維素材を用いることによつて、特にねじり強度
の増大を図ることにある。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and its purpose is to create a cavity near the center of the plate thickness, which is the neutral axis of bending, in a fiber-reinforced resin leaf spring. The objective is to sufficiently reduce the weight by forming the reinforcing fiber material, and also to save the very expensive reinforcing fiber material and reduce the price. Another object is to particularly increase torsional strength by using reinforcing fiber materials with a structure suitable for each part on which tensile stress, compressive stress and torsional stress act.

要するに本発明は、繊維強化樹脂製板ばねにお
いて、曲げの中立軸となる板厚の中心部付近を空
洞に形成し、上下の表層部を方向性のある長繊維
を用いて形成し、両側面の表層部をクロス織の繊
維素材を板ばねの幅方向に積層して形成したこと
を特徴とするものである。
In short, the present invention provides a fiber-reinforced resin leaf spring in which a cavity is formed near the center of the plate thickness, which is the neutral axis of bending, and the upper and lower surface layers are formed using directional long fibers. The surface layer of the leaf spring is formed by laminating cross-woven fiber materials in the width direction of the leaf spring.

以下本発明を図面に示す実施例に基いて説明す
る。第1図及び第2図において、繊維強化樹脂
(以下FRPという)製板ばね1は平板状でよい
が、図示のように湾曲させて形成してもよく、両
端1a,1bの形状は図示を省略してある。樹脂
としてはエポキシ樹脂、不飽和ポリエステル樹
脂、フエノール樹脂等の熱硬化性樹脂並びにポリ
エステル樹脂、ポリアミド樹脂、ポリイミド樹
脂、ポリアミド―イミド樹脂等の熱可塑性樹脂が
選ばれる。また強化繊維素材としては、比強度、
比剛性、耐侯性及び耐油性の優れた炭素繊維、耐
摩耗性の優れたガラス繊維、ボロン繊維、シリコ
ーンカーバイド繊維又は有機高弾性繊維が選ばれ
る。
The present invention will be explained below based on embodiments shown in the drawings. In FIGS. 1 and 2, the leaf spring 1 made of fiber-reinforced resin (hereinafter referred to as FRP) may be flat, but it may also be formed curved as shown, and the shapes of both ends 1a and 1b are as shown in the drawings. It has been omitted. As the resin, thermosetting resins such as epoxy resins, unsaturated polyester resins, and phenol resins, and thermoplastic resins such as polyester resins, polyamide resins, polyimide resins, and polyamide-imide resins are selected. In addition, as a reinforcing fiber material, specific strength,
Carbon fibers with excellent specific rigidity, weather resistance, and oil resistance, glass fibers with excellent abrasion resistance, boron fibers, silicone carbide fibers, or organic high modulus fibers are selected.

FRP製板ばね1が実際に使用されると、上側
の表層部1cには引張応力が、下側の表層部1d
には圧縮応力が主として働き、曲げ荷重の場合に
は、曲げ中立軸2に生ずる応力は0となり、板厚
の中心部付近の応力も極めて小さいものとなる。
When the FRP leaf spring 1 is actually used, tensile stress is applied to the upper surface layer 1c, and tensile stress is applied to the lower surface layer 1d.
Compressive stress mainly acts on the plate, and in the case of a bending load, the stress generated at the bending neutral axis 2 is 0, and the stress near the center of the plate thickness is also extremely small.

そこで本発明では、第3図、第5図、第6図も
参照して上下の表層部1c,1dを方向性のある
長繊維3を用いて形成し、両側面の表側面の表層
部1eをクロス織の繊維素材4を板ばね1の幅方
向に積層して形成し、かつ曲げの中立軸2となる
板厚の中心部付近を空洞5に形成するものであ
る。この長繊維3としては、炭素繊維やガラス繊
維又はこれらの混合が好適である。またガラス繊
維は耐摩耗性が大きいので最も外側多く配置する
のが望ましい。クロス織の繊維素材4の織り方に
は種々のものがあるが、たてよこ繊維の交錯度数
が最も多く組織の最も強靭な平織が望ましく、た
てよこ繊維の方向は、第5図に示すように板ばね
1の長手方向又は厚さ方向に対して45゜の向きと
なるように用いるのが最良である。
Therefore, in the present invention, referring also to FIGS. 3, 5, and 6, the upper and lower surface layer parts 1c and 1d are formed using directional long fibers 3, and the surface layer parts 1e on both side surfaces are formed using directional long fibers 3. is formed by laminating cross-woven fiber materials 4 in the width direction of the leaf spring 1, and a cavity 5 is formed near the center of the plate thickness, which is the neutral axis 2 of bending. The long fibers 3 are preferably carbon fibers, glass fibers, or a mixture thereof. Further, since glass fiber has high abrasion resistance, it is desirable to arrange a large amount of glass fiber on the outermost side. There are various weaving methods for the cross-woven fiber material 4, but plain weave is preferable because it has the highest number of intersecting warp and weft fibers and the strongest structure, and the direction of the warp and weft fibers is shown in Figure 5. It is best to use the leaf spring 1 at an angle of 45° to the longitudinal direction or thickness direction of the leaf spring 1.

第4図に示すものは、本発明の別実施例で、空
洞5の一部に厚さ方向の補強用リブ6を形成し、
曲げ及びねじり強度を大きくしたものである。
The one shown in FIG. 4 is another embodiment of the present invention, in which a reinforcing rib 6 in the thickness direction is formed in a part of the cavity 5,
It has increased bending and torsional strength.

本発明は、上記のように構成されており、以下
その作用について説明する。第1図から第3図及
び第5図から第6図において、FRP製板ばね1
にその中央下部から上向きに力が作用すると、下
側の表層部1dには圧縮応力が生じ、上側の表層
部1cには引張応力が生ずるが、これらの応力は
方向性のある長繊維3が吸収する。
The present invention is configured as described above, and its operation will be explained below. In Fig. 1 to Fig. 3 and Fig. 5 to Fig. 6, FRP leaf spring 1
When a force is applied upward from the lower center of the fiber, compressive stress is generated in the lower surface layer 1d, and tensile stress is generated in the upper surface layer 1c, but these stresses are caused by the directional long fibers 3. Absorb.

次にFRP製板ばね1にねじり力が作用する
と、該板ばねにはねじり応力が発生するが、これ
は主として両側面の表層部1eのクロス織の繊維
素材4が吸収する。
Next, when a torsional force is applied to the FRP leaf spring 1, torsional stress is generated in the leaf spring, but this stress is mainly absorbed by the cross-woven fiber material 4 of the surface layer 1e on both sides.

なお第4図に示す実施例では、補強用リブ6が
存在するため、上記の場合よりも強度が大きくな
るが、軽量化の程度は少ない。この点もし空洞5
が第3図に示す比率で実現したとすると、中実の
場合に比べて約47%の重量が軽減されることにな
る。
In the embodiment shown in FIG. 4, since the reinforcing ribs 6 are present, the strength is greater than in the above case, but the degree of weight reduction is small. If this point is hollow 5
If this were achieved at the ratio shown in Figure 3, the weight would be reduced by approximately 47% compared to the case of solid material.

本発明は、上記のように構成され、作用するも
のであるから、FRP製板ばねにおいて、曲げの
中立軸となる板厚の中心部付近を空洞に形成した
ので十分に軽量化することができると共に、非常
に、高価な強化繊維素材を節約することができ、
価格の低減化を図ることができる効果が得られ
る。また引張応力、圧縮応力及びねじり応力の作
用する部分に適した構造の繊維素材、特に側面の
表層部にクロス織のものを用いたので、ねじり強
度の増大を図ることができる効果が得られる。
Since the present invention is constructed and operates as described above, the weight of the FRP leaf spring can be sufficiently reduced by forming a cavity near the center of the plate thickness, which is the neutral axis of bending. At the same time, very expensive reinforcing fiber materials can be saved,
The effect of reducing the price can be obtained. In addition, since a fiber material with a structure suitable for areas where tensile stress, compressive stress, and torsional stress act, especially a cross-woven material for the surface layer of the side surface, is used, it is possible to increase the torsional strength.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係り、第1図はFRP
製板ばねの正面図、第2図は同じく平面図、第3
図は第1図の―矢視縦断面図、第4図は別実
施例に係る第3図と同様の縦断面図、第5図は強
化繊維素材の構造を示す部分拡大斜視断面図、第
6図は第2図の―矢視縦断面図である。 1はFRP製板ばね、1cは上側の表層部、1
dは下側の表層部、1eは両側面の表層部、2は
曲げの中立軸、3は方向性のある長繊維、4はク
ロス織の繊維素材、5は空洞である。
The drawings relate to embodiments of the present invention, and Figure 1 is an FRP
The front view of the plate spring, Figure 2 is also a plan view, Figure 3 is
The figures are a vertical cross-sectional view taken in the direction of the − arrow in FIG. 1, FIG. 4 is a vertical cross-sectional view similar to FIG. 3 according to another embodiment, FIG. 5 is a partially enlarged perspective cross-sectional view showing the structure of the reinforcing fiber material, FIG. 6 is a vertical sectional view taken along the - arrow direction in FIG. 2. 1 is an FRP leaf spring, 1c is the upper surface layer, 1
d is the lower surface layer, 1e is the surface layer on both sides, 2 is the neutral axis of bending, 3 is a directional long fiber, 4 is a cross-woven fiber material, and 5 is a cavity.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化樹脂製板ばねにおいて、曲げの中立
軸となる板厚の中心部付近を空洞に形成し、上下
の表層部を方向性のある長繊維を用いて形成し、
両側面の表層部をクロス織の繊維素材を板ばねの
幅方向に積層して形成したことを特徴とする車輌
用板ばね。
1. In a fiber-reinforced resin leaf spring, a cavity is formed near the center of the plate thickness, which is the neutral axis of bending, and the upper and lower surface layers are formed using directional long fibers,
A leaf spring for a vehicle, characterized in that the surface layer portions of both sides are formed by laminating cross-woven fiber materials in the width direction of the leaf spring.
JP16765380A 1980-11-28 1980-11-28 Leaf spring for vehicle Granted JPS5790433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16765380A JPS5790433A (en) 1980-11-28 1980-11-28 Leaf spring for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16765380A JPS5790433A (en) 1980-11-28 1980-11-28 Leaf spring for vehicle

Publications (2)

Publication Number Publication Date
JPS5790433A JPS5790433A (en) 1982-06-05
JPS6137484B2 true JPS6137484B2 (en) 1986-08-23

Family

ID=15853742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16765380A Granted JPS5790433A (en) 1980-11-28 1980-11-28 Leaf spring for vehicle

Country Status (1)

Country Link
JP (1) JPS5790433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029963A (en) * 1988-06-28 1990-01-12 Daikin Ind Ltd Name plate fitting structure for compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735826B2 (en) 2011-03-10 2015-06-17 日本発條株式会社 Fiber reinforced plastic spring
KR101602388B1 (en) * 2011-09-15 2016-03-10 가부시키가이샤 지에이치 크래프트 Flat spring for railroad vehicle bogie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029963A (en) * 1988-06-28 1990-01-12 Daikin Ind Ltd Name plate fitting structure for compressor

Also Published As

Publication number Publication date
JPS5790433A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
US4468014A (en) Composite leaf spring
US5002300A (en) Ski with distributed shock absorption
US9428199B2 (en) Railcar bogie plate spring
US5087503A (en) Composite constant stress beam with gradient fiber distribution
US4573707A (en) Composite lightweight non-metallic vehicle frame
US5557982A (en) Composite bicycle handlebar
US4706985A (en) Alpine ski with selective reinforcement
JP4420830B2 (en) Shock absorbing member
JPS58118402A (en) Spoke plate made of carbon fiber reinforced plastic
JPH0322298B2 (en)
US5194111A (en) Composite constant stress beam with gradient fiber distribution
JP2002137307A (en) Blade structure of windmill made of fiber-reinforced resin
EP3481654B1 (en) A structural member
US4556237A (en) Alpine ski with selective reinforcement
EP3533599A1 (en) Composite panel with reinforcing pins
EP1485247A2 (en) Hybrid leaf spring with reinforced bond lines
JPS6137484B2 (en)
JPS6143579B2 (en)
US4530871A (en) Ski construction
US5169170A (en) Sandwich type ski
US6805948B2 (en) Flexbeam
JPS6150174B2 (en)
JPS5936140B2 (en) leaf spring
JPS602540B2 (en) composite leaf spring
JP6918406B2 (en) Leaf springs for railroad car bogies and bogies for railroad cars