JP4971645B2 - Body structure and vehicle - Google Patents

Body structure and vehicle Download PDF

Info

Publication number
JP4971645B2
JP4971645B2 JP2006037718A JP2006037718A JP4971645B2 JP 4971645 B2 JP4971645 B2 JP 4971645B2 JP 2006037718 A JP2006037718 A JP 2006037718A JP 2006037718 A JP2006037718 A JP 2006037718A JP 4971645 B2 JP4971645 B2 JP 4971645B2
Authority
JP
Japan
Prior art keywords
degrees
vehicle body
vehicle
body structure
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006037718A
Other languages
Japanese (ja)
Other versions
JP2007216754A (en
Inventor
状元 山木
大生 阿部
雄太 漆山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006037718A priority Critical patent/JP4971645B2/en
Publication of JP2007216754A publication Critical patent/JP2007216754A/en
Application granted granted Critical
Publication of JP4971645B2 publication Critical patent/JP4971645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は、車体構造および車両に関する。   The present invention relates to a vehicle body structure and a vehicle.

従来、自動車の車体構造として、衝突等によって側方から入力した荷重を分散することでピラー部材の局部的な曲げ変形を抑えるようにしたものが知られている(例えば、特許文献1参照)。
この車体構造は、例えば、図16に示すように、一対のセンタピラー104を車幅方向外側に向けて湾曲するとともに、センタピラー104のそれぞれと、ルーフクロスメンバ111およびフロアクロスメンバ113とを連続させている。また、この車体構造は、センタピラー104の上部結合部分K1に上部変位拘束手段116を設け、そして下部結合部分K2に下部変位促進手段117を設けている。
このような車体構造では、センタピラー104に、上部変位拘束手段116、および下部変位促進手段117を設けることによって、センタピラー104の上部の剛性が下部よりも大きくなっている。そのため、この車体構造は、自動車の側方から荷重が入力した際に、センタピラー104が、ルーフクロスメンバ111の中央部の回転中心C周りで下方に変位するようになっている。その結果、この車体構造は、センタピラー104が局部的に屈曲(変形)してキャビン部内に進入することを防止している。
特開2005−88730号公報(段落0010〜段落0029、図2)
2. Description of the Related Art Conventionally, as a vehicle body structure of an automobile, a structure in which a local bending deformation of a pillar member is suppressed by dispersing a load input from the side due to a collision or the like is known (for example, see Patent Document 1).
In this vehicle body structure, for example, as shown in FIG. 16, the pair of center pillars 104 are curved outward in the vehicle width direction, and each of the center pillars 104 is continuously connected to the roof cross member 111 and the floor cross member 113. I am letting. Further, in this vehicle body structure, an upper displacement restraining means 116 is provided at the upper coupling portion K1 of the center pillar 104, and a lower displacement promoting means 117 is provided at the lower coupling portion K2.
In such a vehicle body structure, by providing the center pillar 104 with the upper displacement restraining means 116 and the lower displacement promoting means 117, the rigidity of the upper part of the center pillar 104 is larger than that of the lower part. Therefore, in this vehicle body structure, when a load is input from the side of the automobile, the center pillar 104 is displaced downward around the rotation center C at the center of the roof cross member 111. As a result, this vehicle body structure prevents the center pillar 104 from locally bending (deforming) and entering the cabin.
Japanese Patent Laying-Open No. 2005-88730 (paragraphs 0010 to 0029, FIG. 2)

しかしながら、この車体構造では、衝突等によってセンタピラー104が回転中心C周りで下方に変位する際に、センタピラー104の下部と、フロアクロスメンバ113とに荷重が集中することとなる。その結果、この車体構造は、センタピラー104の下部の変形量と、フロアクロスメンバ113の変形量とが増加してしまう。つまり、従来の車体構造は、自動車の外部から荷重が入力した際に、局部的な曲げ変形を充分に抑制することができないという問題があった。   However, in this vehicle body structure, when the center pillar 104 is displaced downward around the rotation center C due to a collision or the like, the load is concentrated on the lower portion of the center pillar 104 and the floor cross member 113. As a result, in this vehicle body structure, the deformation amount of the lower part of the center pillar 104 and the deformation amount of the floor cross member 113 are increased. That is, the conventional vehicle body structure has a problem that local bending deformation cannot be sufficiently suppressed when a load is input from the outside of the automobile.

そこで、本発明は、車両の外部から荷重が入力した際に、局部的な曲げ変形を充分に抑制し、衝突時の車体変形量を抑制することができる車体構造および車両を提供することを課題とする。   Therefore, the present invention has an object to provide a vehicle body structure and a vehicle that can sufficiently suppress local bending deformation and a vehicle body deformation amount at the time of collision when a load is input from the outside of the vehicle. And

本発明者らは、前記課題を解決するために検討した結果、入力した荷重を特定の箇所に集中させる従来の車体構造とは異なって、車両の外部から入力したエネルギの吸収量自体を増加させることで、結果的に局部的な曲げ変形が充分に抑制されることを見出して本発明に到達した。   As a result of investigations to solve the above problems, the present inventors increase the amount of energy absorbed from the outside of the vehicle itself, unlike the conventional vehicle body structure in which the input load is concentrated at a specific location. As a result, the inventors have found that local bending deformation is sufficiently suppressed, and reached the present invention.

前記課題を解決するための本発明は、高エネルギ吸収部材と高強度部材とで環状形状を形成した車体構造であって、前記高エネルギ吸収部材は、長尺に形成され、前記環状形状を構成する前記高エネルギ吸収部材の外側に、引張り応力に対するひずみ率が小さい機械的物性値を有する強部、および引張り応力に対するひずみ率が大きい機械的物性値を有する弱部が、長手方向に入れ替わりで連続するように形成されるとともに、3つの板状の積層部と1つの板状の連結部とが組み合わせられて断面視が車外側を向くE字状に形成された第1のE字状部材を備え、前記環状形状を構成する前記高エネルギ吸収部材の内側に、長手方向にわたって引張り応力に対するひずみ率が小さい機械的物性値を有する強部が形成されるとともに、3つの板状の補強部と1つの板状の連結部とが組み合わせられて断面視が車内側を向くE字状に形成された第2のE字状部材を備え、これら2つのE字状部材の互いの連結部が接続されて形成されていることを特徴とする。 The present invention for solving the above problem is a vehicle body structure in which a high energy absorbing member and a high strength member form an annular shape, and the high energy absorbing member is formed in a long shape and constitutes the annular shape. On the outside of the high energy absorbing member, a strong part having a mechanical property value with a small strain rate with respect to a tensile stress and a weak part with a mechanical property value with a large strain rate with respect to a tensile stress are continuously replaced in the longitudinal direction. It is formed so as to Rutotomoni, the three first E-shaped member having a plate-like laminated portion and one plate-shaped cross section in combination with connecting portion of is formed in E-shape facing the vehicle exterior wherein the inside of the high energy absorbing member constituting the annular shape, is strong unit with mechanical physical properties distortion factor is small with respect to tensile stress along the longitudinal direction formed Rutotomoni, three plate-shaped A reinforcing part and one plate-like connecting part are combined to provide a second E-shaped member formed in an E shape whose sectional view faces the vehicle interior, and the two E-shaped members are connected to each other. The parts are connected to each other.

また、このような車体構造においては、前記高強度部材が、前記高エネルギ吸収部材との締結部を通じて生じるモーメントによって弾性変形する間、前記高エネルギ吸収部材が曲げ変形を生じるように構成されることが望ましい。
この車体構造では、高強度部材が弾性変形して荷重を維持する間に、高エネルギ吸収部材が曲げ変形を起こしてフラットな荷重特性を発揮する。その結果、この車体構造は、衝突時のエネルギを効率よく吸収する。
Further, in such a vehicle body structure, the high energy absorbing member is configured to bend and deform while the high strength member is elastically deformed by a moment generated through a fastening portion with the high energy absorbing member. Is desirable.
In this vehicle body structure, while the high-strength member is elastically deformed and maintains the load, the high-energy absorbing member is bent and deformed to exhibit a flat load characteristic. As a result, the vehicle body structure efficiently absorbs energy at the time of collision.

そして、前記課題を解決するための本発明の車両は、前記車体構造を備えることを特徴とする。
また、本発明の車両は、前記車体構造を、車体の両側にそれぞれ設けられるセンタピラーの間に配置したことを特徴とする。
And the vehicle of this invention for solving the said subject is provided with the said vehicle body structure, It is characterized by the above-mentioned.
The vehicle according to the present invention is characterized in that the vehicle body structure is disposed between center pillars provided on both sides of the vehicle body.

本発明によれば、外部から荷重が入力した際に、局部的な曲げ変形を充分に抑制し、衝突時の車体変形量を抑制することができる車体構造および車両を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when a load is input from the outside, a local bending deformation can be sufficiently suppressed, and a vehicle body structure and a vehicle that can suppress a vehicle body deformation amount at the time of a collision can be provided.

以下、本発明の一実施形態について、適宜図面を参照して詳細に説明する。参照する図面において、図1は、実施形態に係る車体構造を備えた車両の斜視図である。図2は、実施形態に係る車体構造を構成するピラー部材の斜視図であり、図1のA部における部分拡大図(一部に破断部を含む)である。図3は、ピラー部材における積層部および連結部の強部の断面を模式的に示す図であり、図2のB−B断面図である。図4(a)および(b)は、積層部および連結部の強部における層構成を模式的に示す図である。図5は、ピラー部材における積層部および連結部の弱部の断面を模式的に示す図であり、図2のC−C断面図である。図6(a)から図6(g)は、積層部および連結部の弱部における層構成を模式的に示す図である。図7は、積層部の長手方向に引張り応力が生じた際の、「繊維の配向方向が0度、および90度の箇所(強部)」と、「繊維の配向方向が45度、および−45度の箇所(弱部)」とにおける、ひずみ率の相違について説明するためのグラフである。図8は、ピラー部材に曲げ変形を加える荷重を入力した際に、荷重の変動がフラットになる状態を示すグラフであり、縦軸が「曲げ変形を加える荷重」であり、横軸が「曲げ変形の変位量」である。
ここでは、本発明の車体構造の説明に先立ってこの車体構造が配置された車両について説明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In the drawings to be referred to, FIG. 1 is a perspective view of a vehicle including a vehicle body structure according to an embodiment. FIG. 2 is a perspective view of the pillar member constituting the vehicle body structure according to the embodiment, and is a partially enlarged view (partly including a fracture portion) of a portion A in FIG. 1. FIG. 3 is a view schematically showing a cross section of the strong portion of the stacked portion and the connecting portion in the pillar member, and is a cross-sectional view taken along the line BB of FIG. FIGS. 4A and 4B are diagrams schematically showing a layer configuration in the strong portion of the laminated portion and the connecting portion. FIG. 5 is a diagram schematically showing a cross section of the laminated portion and the weak portion of the connecting portion in the pillar member, and is a cross-sectional view taken along the line CC in FIG. 2. FIG. 6A to FIG. 6G are diagrams schematically illustrating a layer configuration in the weak portion of the stacked portion and the connecting portion. FIG. 7 shows that “tensile direction of fiber is 0 degree and 90 degree (strong part)” when “tensile stress is generated in the longitudinal direction of the laminated part”, “the direction of fiber orientation is 45 degrees, and − It is a graph for demonstrating the difference in a distortion rate in a "45 degree location (weak part)." FIG. 8 is a graph showing a state in which the fluctuation of the load becomes flat when a load that applies bending deformation to the pillar member is input, the vertical axis is “load that applies bending deformation”, and the horizontal axis is “bending”. It is the amount of deformation displacement.
Here, prior to the description of the vehicle body structure of the present invention, a vehicle in which the vehicle body structure is arranged will be described.

図1に示すように、車両Vは、その車体の骨格構造を形成するルーフクロスメンバ2と、フロアクロスメンバ3とを備えている。そして、ルーフクロスメンバ2は、車体の天井部を車幅方向に横切るように配置され、フロアクロスメンバ3は、車体の床部を車幅方向に横切るように配置されている。そして、車体の左右両側のそれぞれには、周知のとおり、センタピラー5,5が設けられている。   As shown in FIG. 1, the vehicle V includes a roof cross member 2 and a floor cross member 3 that form a skeleton structure of the vehicle body. The roof cross member 2 is disposed so as to cross the ceiling portion of the vehicle body in the vehicle width direction, and the floor cross member 3 is disposed so as to cross the floor portion of the vehicle body in the vehicle width direction. As is well known, center pillars 5 and 5 are provided on both the left and right sides of the vehicle body.

図1に示すように、本実施形態に係る車体構造1は、ルーフクロスメンバ2と、フロアクロスメンバ3と、4本のピラー部材4とを主に備えて構成されている。なお、ルーフクロスメンバ2およびフロアクロスメンバ3は、特許請求の範囲にいう「高強度部材」に相当し、ピラー部材4は、「高エネルギ吸収部材」に相当する。
そして、本実施形態では、ピラー部材4が、車体の左右両側にそれぞれ2本ずつ配置されるとともに、各ピラー部材4の両端部のそれぞれは、ルーフクロスメンバ2の車幅方向の縁部(角部)、およびフロアクロスメンバ3の車幅方向の縁部(角部)に、アルミブラケット6を介して締結されている。なお、このアルミブラケット6は、特許請求の範囲にいう「締結部」に相当する。このようにルーフクロスメンバ2、フロアクロスメンバ3、およびピラー部材4が締結されることで、車体構造1は、外側の輪郭が略矩形または略台形の環状形状を呈している。
As shown in FIG. 1, the vehicle body structure 1 according to this embodiment mainly includes a roof cross member 2, a floor cross member 3, and four pillar members 4. The roof cross member 2 and the floor cross member 3 correspond to “high strength members” in the claims, and the pillar member 4 corresponds to “high energy absorbing member”.
In the present embodiment, two pillar members 4 are arranged on each of the left and right sides of the vehicle body, and both end portions of each pillar member 4 are edge portions (corner corners) of the roof cross member 2 in the vehicle width direction. Part) and an edge part (corner part) in the vehicle width direction of the floor cross member 3 via an aluminum bracket 6. The aluminum bracket 6 corresponds to a “fastening portion” in the claims. By fastening the roof cross member 2, the floor cross member 3, and the pillar member 4 in this manner, the vehicle body structure 1 has an annular shape whose outer contour is substantially rectangular or substantially trapezoidal.

ルーフクロスメンバ2およびフロアクロスメンバ3は、車幅方向に長い板状部材であって、本実施形態ではCFRP(Carbon Fiber Reinforced Plastics)積層板で形成されており、HTA(PAN系炭素繊維)と熱硬化性樹脂(エポキシ樹脂)とを含むプリプレグを硬化させて形成したものである。ちなみに、使用したCFRP積層板は、12層を1組層として4組層が重ね合わせられた合計48層からなり、所定の角度で配向する繊維によって各層は特徴付けられている。具体的には、車幅方向と一致する繊維の配向方向を0度とし、車体の前後方向と一致する繊維の配向方向を90度とし、車体の右前方45度方向と一致する繊維の配向方向を45度とし、車体の左前方45度方向と一致する繊維の配向方向を−45度とすると、前記した1組層を構成する各層の繊維の配向方向が、下層側(車体の下側)から上層側(車体の上側)に向かって、0度、0度、45度、0度、0度、90度、90度、0度、0度、−45度、0度、および0度となるように各層は構成されている。ちなみに、このようなCFRP積層板は、上市品のプリプレグを硬化させて得られるものであってもよく、このようなプリプレグとしては、例えば、東邦テナックス(株)製のCF〔Besfight(登録商標)〕プリプレグ(原糸:HTA−12K、エポキシ樹脂37質量%含有)が挙げられる。
本実施形態での高強度部材であるルーフクロスメンバ2およびフロアクロスメンバ3は、以上のような材料で形成されることによって、高強度および高剛性を発揮することとなる。
The roof cross member 2 and the floor cross member 3 are plate-like members that are long in the vehicle width direction. In this embodiment, the roof cross member 2 and the floor cross member 3 are formed of CFRP (Carbon Fiber Reinforced Plastics) laminated plates. It is formed by curing a prepreg containing a thermosetting resin (epoxy resin). By the way, the CFRP laminate used was composed of a total of 48 layers in which 4 layers were stacked with 12 layers as one set, and each layer was characterized by fibers oriented at a predetermined angle. Specifically, the fiber orientation direction that coincides with the vehicle width direction is 0 degree, the fiber orientation direction that coincides with the longitudinal direction of the vehicle body is 90 degrees, and the fiber orientation direction that coincides with the 45 degree direction right front of the vehicle body Is 45 degrees, and the orientation direction of the fibers that coincides with the 45 degree direction on the left front of the vehicle body is -45 degrees, the orientation direction of the fibers of each layer constituting the one set layer is the lower layer side (the lower side of the vehicle body) From the upper side to the upper side (the upper side of the vehicle body), 0 degrees, 0 degrees, 45 degrees, 0 degrees, 0 degrees, 90 degrees, 90 degrees, 0 degrees, 0 degrees, -45 degrees, 0 degrees, and 0 degrees Each layer is configured to be. Incidentally, such a CFRP laminate may be obtained by curing a commercially available prepreg. Examples of such a prepreg include CF [Beastight (registered trademark)] manufactured by Toho Tenax Co., Ltd. Prepreg (raw yarn: HTA-12K, containing 37% by mass of epoxy resin).
The roof cross member 2 and the floor cross member 3 that are high-strength members in this embodiment exhibit high strength and high rigidity by being formed of the above materials.

本実施形態での高エネルギ吸収部材であるピラー部材4は、図2に示すように、長尺のE字状部材7と、長尺のE字状部材9とが一体となるように接続されたものである。そして、このピラー部材4は、E字状部材7(第1のE字状部材)が車外側を向き、E字状部材9(第2のE字状部材)が車内側を向くように配置されている。 As shown in FIG. 2, the pillar member 4, which is a high energy absorbing member in the present embodiment, is connected so that a long E-shaped member 7 and a long E-shaped member 9 are integrated. It is a thing. The pillar member 4 is arranged so that the E-shaped member 7 (first E-shaped member) faces the vehicle outer side and the E-shaped member 9 (second E-shaped member) faces the vehicle inner side. Has been.

E字状部材7は、3つの板状の積層部7a,7b,7cと、1つの板状の連結部7dとが組み合わさって断面視がE字状の形状を呈したものである。連結部7dは、その一面側が車外側に向くように配置されている。そして、3つの積層部7a,7b,7cのぞれぞれは、その板面側が車両の前後に向いており、車両の前側から後側に、積層部7a、積層部7b、および積層部7cの順番で配置されている。つまり、3つの積層部7a,7b,7cは、その横断面方向に連結部7dを介して連結されている。   The E-shaped member 7 is formed by combining three plate-shaped laminated portions 7a, 7b, and 7c and one plate-shaped connecting portion 7d so that the cross-sectional view has an E-shaped shape. The connecting portion 7d is arranged so that one surface side thereof faces the vehicle outer side. Each of the three laminated portions 7a, 7b, and 7c has a plate surface side facing the front and rear of the vehicle, and the laminated portion 7a, the laminated portion 7b, and the laminated portion 7c are arranged from the front side to the rear side of the vehicle. Are arranged in order. That is, the three stacked portions 7a, 7b, and 7c are connected via the connecting portion 7d in the cross-sectional direction.

E字状部材9は、3つの板状の補強部9a,9b,9cと、1つの板状の連結部9dとが組み合わせられて断面視がE字状の形状を呈したものである。連結部9dは、その一面側が車内側に向くとともに、その他面側がE字状部材7の連結部7bに接続されている。そして、3つの補強部9a,9b,9cのぞれぞれは、その板面側が車両の前後に向いており、車両の前側から後側に、補強部9a、補強部9b、および補強部9cの順番で連結部9dの一面側に接続されている。   The E-shaped member 9 is formed by combining three plate-shaped reinforcing portions 9a, 9b, and 9c and one plate-shaped connecting portion 9d so that the cross-sectional view has an E-shaped shape. One side of the connecting portion 9 d faces the vehicle inner side, and the other side is connected to the connecting portion 7 b of the E-shaped member 7. Each of the three reinforcing portions 9a, 9b, 9c has a plate surface side facing the front and rear of the vehicle, and from the front side to the rear side of the vehicle, the reinforcing portion 9a, the reinforcing portion 9b, and the reinforcing portion 9c. Are connected to one side of the connecting portion 9d in this order.

このようなE字状部材7,9のそれぞれは、CFRP積層板で形成されている。ちなみに、このようなCFRP積層板は、上市品のプリプレグを硬化させて得られるものであってもよく、ルーフクロスメンバ2およびフロアクロスメンバ3の形成に使用したプリプレグを使用することもできる。   Each of such E-shaped members 7 and 9 is formed of a CFRP laminated plate. Incidentally, such a CFRP laminate may be obtained by curing a commercially available prepreg, and the prepreg used for forming the roof cross member 2 and the floor cross member 3 can also be used.

まず、E字状部材7の構造について説明する。E字状部材7の積層部7a,7b,7cは、図2に示すように、強くて脆い機械的物性値を示す部分(以下、「強部11」という)と、弱くて伸びる機械的物性値を示す部分(以下、「弱部12」という)とがその長手方向に入れ替わりで連続するように形成されている。   First, the structure of the E-shaped member 7 will be described. As shown in FIG. 2, the laminated portions 7a, 7b, and 7c of the E-shaped member 7 have strong and brittle mechanical property values (hereinafter referred to as “strong portion 11”), and weak and extended mechanical properties. A portion indicating a value (hereinafter referred to as “weak portion 12”) is formed so as to be continuous in the longitudinal direction.

このE字状部材7は、図3に示すように、断面視が略C字状の2つの内側部材13a,13b同士が並んで一体となるように接続されるとともに、これらの内側部材13a,13bの外側に断面視で略C字状の外側部材14が一体となるように接続されて形成されている。ちなみに、図3では、説明の便宜上、内側部材13a,13b同士の間と、内側部材13a,13bと外側部材14との間に隙間が描かれているが、内側部材13a,13b同士、および内側部材13a,13bと外側部材14とは接続されている。   As shown in FIG. 3, the E-shaped member 7 is connected so that two inner members 13a and 13b having a substantially C-shaped cross-sectional view are aligned and integrated, and the inner members 13a, A substantially C-shaped outer member 14 is integrally connected to the outside of 13b so as to be integrated in a sectional view. Incidentally, in FIG. 3, for convenience of explanation, gaps are drawn between the inner members 13a and 13b and between the inner members 13a and 13b and the outer member 14, but the inner members 13a and 13b, and the inner members The members 13a and 13b and the outer member 14 are connected.

次に、E字状部材7の層構成について説明する。図3に示すように、E字状部材7の強部11(図2参照)における積層部7a、積層部7b、積層部7c、および連結部7dのそれぞれは、24層からなっており、所定の角度で配向する繊維によって各層は特徴付けられている。   Next, the layer configuration of the E-shaped member 7 will be described. As shown in FIG. 3, each of the laminated portion 7a, the laminated portion 7b, the laminated portion 7c, and the connecting portion 7d in the strong portion 11 (see FIG. 2) of the E-shaped member 7 is composed of 24 layers. Each layer is characterized by fibers oriented at an angle of.

まず、連結部7dにおける繊維の配向方向について説明する。ここでは、連結部7dの各層における繊維の配向方向を特定するために、図2に示すE字状部材7が延びる上方向と一致する配向方向は0度とし、E字状部材7が延びる上方向に対して車体の後側に45度をなす方向と一致する配向方向は45度とし、E字状部材7が延びる上方向に対して車体の後側に90度をなす方向(車体の前後方向)と一致する配向方向は90度とし、E字状部材7が延びる上方向に対して車体の後側に135度をなす方向と一致する配向方向は−45度と規定する。そして、このように繊維の配向方向を規定した場合に、連結部7dは、図3および図4(a)中のX1側からY1側に向かって、その繊維の配向方向が、45度、0度、90度、−45度、0度、90度、45度、0度、90度、−45度、0度、90度、90度、0度、45度、90度、0度、−45度、90度、0度、45度、90度、0度、および−45度となるように各層が構成されている。   First, the fiber orientation direction in the connecting portion 7d will be described. Here, in order to specify the fiber orientation direction in each layer of the connecting portion 7d, the orientation direction that coincides with the upward direction in which the E-shaped member 7 shown in FIG. The direction of orientation that coincides with the direction that forms 45 degrees on the rear side of the vehicle body with respect to the direction is 45 degrees, and the direction that forms 90 degrees on the rear side of the vehicle body with respect to the upward direction in which the E-shaped member 7 extends (front and rear The orientation direction coinciding with the direction) is 90 degrees, and the orientation direction coinciding with the direction forming 135 degrees on the rear side of the vehicle body with respect to the upward direction in which the E-shaped member 7 extends is defined as -45 degrees. And when the orientation direction of a fiber is prescribed | regulated in this way, as for the connection part 7d, the orientation direction of the fiber is 45 degree | times, 0 from X1 side in FIG. 3 and FIG. 4 (a) toward Y1 side. Degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees, 45 degrees, 0 degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees,- Each layer is configured to be 45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, and -45 degrees.

積層部7aおよび積層部7cは、図3に示すように、連結部7dを構成する各層が、車外側に屈曲するように形成されており、積層部7aおよび積層部7cのそれぞれを構成する各層の積層順は、図3および図4(a)中のX1側からY1側に向かって、連結部7dの積層順と同様になっている。また、積層部7bは、連結部7dにおける内側部材13a、および内側部材13bのそれぞれを構成する各層が、車外側に屈曲するとともに互いに合わせられて形成されており、積層部7bにおける内側部材13a、および内側部材13bのそれぞれを構成する各層の積層順は、連結部7dにおける内側部材13a、および内側部材13bの積層順と同様になっている(図3および図4(b)中のX2側からY2側まで参照)。   As shown in FIG. 3, the laminated portion 7 a and the laminated portion 7 c are formed so that each layer constituting the connecting portion 7 d is bent outwardly from the vehicle, and each layer constituting each of the laminated portion 7 a and the laminated portion 7 c. The order of stacking is the same as the order of stacking of the connecting portions 7d from the X1 side to the Y1 side in FIGS. 3 and 4A. Further, the laminated portion 7b is formed such that the respective layers constituting the inner member 13a and the inner member 13b in the connecting portion 7d are bent to the vehicle outer side and aligned with each other, and the inner member 13a in the laminated portion 7b, The stacking order of the layers constituting each of the inner member 13b and the inner member 13b is the same as the stacking order of the inner member 13a and the inner member 13b in the connecting portion 7d (from the X2 side in FIGS. 3 and 4B). Refer to the Y2 side).

ここでは、積層部7a、積層部7c、および積層部7bの各層における繊維の配向方向を特定するために、図2に示すE字状部材7が延びる上方向と一致する配向方向は0度とし、E字状部材7が延びる上方向に対して車外側に45度をなす方向と一致する配向方向は45度とし、E字状部材7が延びる上方向に対して車外側に90度をなす方向と一致する配向方向は90度とし、E字状部材7が延びる上方向に対して車外側に135度をなす方向と一致する配向方向は−45度と規定する。   Here, in order to specify the fiber orientation direction in each layer of the laminated portion 7a, the laminated portion 7c, and the laminated portion 7b, the orientation direction that coincides with the upward direction in which the E-shaped member 7 shown in FIG. The orientation direction that coincides with the direction of 45 degrees outward of the vehicle with respect to the upward direction in which the E-shaped member 7 extends is 45 degrees, and 90 degrees outward of the vehicle with respect to the upward direction in which the E-shaped member 7 extends. The orientation direction that coincides with the direction is 90 degrees, and the orientation direction that coincides with the direction that forms 135 degrees outward of the vehicle with respect to the upward direction in which the E-shaped member 7 extends is defined as -45 degrees.

このように繊維の配向方向を規定した場合に、積層部7aは、図3および図4(a)中のX´1側からY´1側に向かって、その繊維の配向方向が、45度、0度、90度、−45度、0度、90度、45度、0度、90度、−45度、0度、90度、90度、0度、45度、90度、0度、−45度、90度、0度、45度、90度、0度、および−45度となるように各層が構成されている。   When the fiber orientation direction is defined in this manner, the laminated portion 7a has a fiber orientation direction of 45 degrees from the X′1 side to the Y′1 side in FIGS. 3 and 4A. 0 degree, 90 degree, -45 degree, 0 degree, 90 degree, 45 degree, 0 degree, 90 degree, -45 degree, 0 degree, 90 degree, 90 degree, 0 degree, 45 degree, 90 degree, 0 degree Each layer is configured to be −45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, and −45 degrees.

そして、積層部7cは、図3および図4(a)中のX´´1側からY´´1側に向かって、その繊維の配向方向が、−45度、0度、90度、45度、0度、90度、−45度、0度、90度、45度、0度、90度、90度、0度、−45度、90度、0度、45度、90度、0度、−45度、90度、0度、および45度となるように各層が構成されている。   And as for the lamination | stacking part 7c, the orientation direction of the fiber is -45 degree | times, 0 degree | times, 90 degree | times, 45 from the X "1 side in FIG. 3 and FIG. Degrees, 0 degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees, 45 degrees, 0 degrees, 90 degrees, 90 degrees, 0 degrees, -45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees Each layer is configured to be degrees, −45 degrees, 90 degrees, 0 degrees, and 45 degrees.

そして、積層部7bは、図3および図4(b)中のX´2側からY´2側に向かって、その繊維の配向方向が、−45度、0度、90度、45度、0度、90度、−45度、0度、90度、45度、0度、90度、90度、0度、−45度、90度、0度、45度、90度、0度、−45度、90度、0度、および45度となるように各層が構成されている。   And as for the lamination | stacking part 7b, the orientation direction of the fiber is -45 degree, 0 degree, 90 degree | times, 45 degree | times from X'2 side in FIG.3 and FIG.4 (b) toward Y'2 side, 0 degree, 90 degree, -45 degree, 0 degree, 90 degree, 45 degree, 0 degree, 90 degree, 90 degree, 0 degree, -45 degree, 90 degree, 0 degree, 45 degree, 90 degree, 0 degree, Each layer is configured to be −45 degrees, 90 degrees, 0 degrees, and 45 degrees.

次に、E字状部材7の弱部12(図2参照)における積層部7a、積層部7b、積層部7c、および連結部7dについて説明する。図5に示すように、この弱部12における積層部7a、積層部7b、積層部7c、および連結部7dは、それぞれを構成する層が密である部分と、疎である部分とを有している。このような層の疎密は、後記するように、E字状部材7の作製時におけるプリプレグの積層数によって形成されるものである。   Next, the laminated portion 7a, the laminated portion 7b, the laminated portion 7c, and the connecting portion 7d in the weak portion 12 (see FIG. 2) of the E-shaped member 7 will be described. As shown in FIG. 5, the laminated portion 7a, the laminated portion 7b, the laminated portion 7c, and the connecting portion 7d in the weak portion 12 each have a dense portion and a sparse portion. ing. Such density of the layers is formed by the number of laminated prepregs when the E-shaped member 7 is manufactured, as will be described later.

まず、連結部7dの層構成について説明する。図5に示すように、連結部7dにおける内側部材13a、および内側部材13bに相当する部分では、それらの車内側であって、積層部7aと積層部7bとの間の中央部近傍、および積層部7bと積層部7cとの間の中央部近傍で層が密になっている。そして、それぞれの端部(車体の前後方向)に向かうにつれて層が疎になっている。また、連結部7dにおける外側部材14に相当する部分では、それらの車内側であって、積層部7aと積層部7cとの間の中央部近傍で層が密になっている。   First, the layer configuration of the connecting portion 7d will be described. As shown in FIG. 5, the portions corresponding to the inner member 13 a and the inner member 13 b in the connecting portion 7 d are inside the vehicle, near the center between the stacked portion 7 a and the stacked portion 7 b, and stacked The layers are dense in the vicinity of the central portion between the portion 7b and the laminated portion 7c. And the layer is sparse as it goes to each edge part (front-back direction of a vehicle body). Further, in the portion corresponding to the outer member 14 in the connecting portion 7d, the layers are dense in the vicinity of the center between the laminated portion 7a and the laminated portion 7c on the inner side of the vehicle.

このような連結部7dにおいて、図5中のX1−Y1線部分の層構成は、層が密である内側部材13aおよび内側部材13bと、層が密である外側部材14とが重なり合って、E字状部材7の強部11(図2参照)における連結部7dの層構成(図3中のX1−Y1線部分)と同様になっている。そして、図5中のX3−Y3線部分の層構成は、層が密である内側部材13aおよび内側部材13bと、層が疎である外側部材14とが重なり合って、図6(a)に示すように、X3側からY3側に向かって、その繊維の配向方向が、45度、0度、90度、−45度、0度、90度、45度、0度、90度、−45度、0度、90度、0度、90度、−45度、0度、90度、および−45度となっている。   In such a connecting portion 7d, the layer configuration of the X1-Y1 line portion in FIG. 5 is such that the inner member 13a and the inner member 13b having a dense layer overlap with the outer member 14 having a dense layer. It is the same as the layer structure (X1-Y1 line part in FIG. 3) of the connection part 7d in the strong part 11 (refer FIG. 2) of the character-shaped member 7. FIG. The layer configuration of the X3-Y3 line portion in FIG. 5 is shown in FIG. 6A, with the inner member 13a and inner member 13b having a dense layer overlapping the outer member 14 having a sparse layer. Thus, from the X3 side toward the Y3 side, the orientation direction of the fiber is 45 degrees, 0 degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees, 45 degrees, 0 degrees, 90 degrees, -45 degrees. 0 degrees, 90 degrees, 0 degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees, and -45 degrees.

そして、図5中のX4−Y4線部分の層構成は、層が疎である内側部材13aおよび内側部材13bと、層が疎である外側部材14とが重なり合って、図6(b)に示すように、X4側からY4側に向かって、その繊維の配向方向が、45度、90度、0度、45度、90度、0度、0度、90度、−45度、0度、90度、および−45度となっている。   The layer configuration of the X4-Y4 line portion in FIG. 5 is shown in FIG. 6B, in which the inner member 13a and inner member 13b with sparse layers overlap with the outer member 14 with sparse layers. Thus, from the X4 side toward the Y4 side, the orientation direction of the fibers is 45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, 0 degrees, 90 degrees, -45 degrees, 0 degrees, 90 degrees and -45 degrees.

そして、図5中のX5−Y5線部分の層構成は、層が疎である内側部材13aおよび内側部材13bと、層が密である外側部材14とが重なり合って、図6(c)に示すように、X5側からY5側に向かって、その繊維の配向方向が、45度、90度、0度、45度、90度、0度、90度、0度、45度、90度、0度、−45度、90度、0度、45度、90度、0度、および−45度となっている。   The layer structure of the X5-Y5 line portion in FIG. 5 is shown in FIG. 6C, in which the inner member 13a and inner member 13b with sparse layers overlap with the outer member 14 with dense layers. Thus, from the X5 side to the Y5 side, the orientation direction of the fibers is 45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 Degrees, −45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, and −45 degrees.

次に、E字状部材7の弱部12(図2参照)を形成する積層部7a、積層部7c、および積層部7bの層構成について説明する。図5および図6(d)に示すように、X6−Y6線部分で表わされる、連結部7dから延びる積層部7aの基端部、および連結部7dから延びる積層部7cの基端部には、内側部材13aおよび内側部材13bのそれぞれにおける45度、90度、0度、45度、90度、および0度の層、ならびに連結部7d(外側部材14)の最も車内側に位置する−45度の層が延びている。
また、図5および図6(e)に示すように、X7−Y7線部分で表わされる、連結部7dから延びる積層部7bの基端部には、内側部材13aおよび内側部材13bのそれぞれにおける45度、90度、0度、45度、90度、および0度の層が延びている。
Next, the layer configuration of the laminated portion 7a, the laminated portion 7c, and the laminated portion 7b that form the weak portion 12 (see FIG. 2) of the E-shaped member 7 will be described. As shown in FIGS. 5 and 6 (d), the base end portion of the stacked portion 7a extending from the connecting portion 7d and the base end portion of the stacked portion 7c extending from the connecting portion 7d, represented by the X6-Y6 line portion, The 45 °, 90 °, 0 °, 45 °, 90 °, and 0 ° layers in each of the inner member 13a and the inner member 13b, and −45 located at the innermost side of the connecting portion 7d (outer member 14). The layer of degrees extends.
Further, as shown in FIGS. 5 and 6 (e), the base end portion of the laminated portion 7b extending from the connecting portion 7d, represented by the X7-Y7 line portion, has 45 in each of the inner member 13a and the inner member 13b. The layers of degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, and 0 degrees extend.

弱部12(図2参照)における積層部7aおよび積層部7cのそれぞれは、図5に示すように、これらの基端部を除いて、連結部7d(内側部材13aおよび内側部材13b)の最も車外側に位置する45度の層、ならびに連結部7d(内側部材13aおよび内側部材13b)の最も車内側に位置する−45度の層が車外側に屈曲するように形成されている。つまり、図5および図6(f)に示すように、X8−Y8線部分で表わされる積層部7a、および積層部7cには、内側部材13aおよび内側部材13bのそれぞれにおける45度、および−45度の層が延びている。また、図5および図6(g)に示すように、X9−Y9線部分で表わされる積層部7bには、内側部材13aおよび内側部材13bのそれぞれにおける45度、および45度の層が延びている。   As shown in FIG. 5, each of the laminated portion 7a and the laminated portion 7c in the weak portion 12 (see FIG. 2) is the most of the connecting portion 7d (the inner member 13a and the inner member 13b) except for these base end portions. A 45 degree layer located on the vehicle outer side and a -45 degree layer located on the innermost side of the connecting portion 7d (the inner member 13a and the inner member 13b) are formed to bend outward. That is, as shown in FIGS. 5 and 6 (f), the laminated portion 7a and the laminated portion 7c represented by the X8-Y8 line portion have 45 degrees in each of the inner member 13a and the inner member 13b, and −45. The layer of degrees extends. Further, as shown in FIG. 5 and FIG. 6G, the 45 ° and 45 ° layers of the inner member 13a and the inner member 13b extend to the laminated portion 7b represented by the X9-Y9 line portion. Yes.

ここでは、前記した強部11と同様に、弱部12での積層部7a、積層部7c、および積層部7bの各層における繊維の配向方向を特定するために、図2に示すE字状部材7が延びる上方向と一致する配向方向は0度とし、E字状部材7が延びる上方向に対して車外側に45度をなす方向と一致する配向方向は45度とし、E字状部材7が延びる上方向に対して車外側に90度をなす方向と一致する配向方向は90度とし、E字状部材7が延びる上方向に対して車外側に135度をなす方向と一致する配向方向は−45度と規定する。   Here, in the same manner as the strong portion 11 described above, the E-shaped member shown in FIG. 2 is used to specify the fiber orientation direction in each layer of the laminated portion 7a, the laminated portion 7c, and the laminated portion 7b in the weak portion 12. The orientation direction that coincides with the upward direction in which 7 extends is 0 degrees, the orientation direction that coincides with the direction that forms 45 degrees outward of the vehicle with respect to the upward direction in which the E-shaped member 7 extends is 45 degrees, and the E-shaped member 7 The orientation direction that coincides with the direction that forms 90 degrees on the vehicle outer side with respect to the upward direction in which the E-shaped member extends is 90 degrees, and the orientation direction that coincides with the direction that forms 135 degrees on the vehicle outer side with respect to the upward direction in which the E-shaped member 7 extends Is defined as -45 degrees.

このように繊維の配向方向を規定した場合に、積層部7aの基端部は、図5および図6(d)中のX´6側からY´6側に向かって、その繊維の配向方向が、45度、90度、0度、45度、90度、0度、および−45度となるように各層が構成されている。
そして、積層部7cの基端部は、図5および図6(d)中のX´´6側からY´´6側に向かって、その繊維の配向方向が、−45度、90度、0度、−45度、90度、0度、および45度となるように各層が構成されている。
そして、積層部7bの基端部は、図5および図6(e)中のX´7側からY´7側に向かって、その繊維の配向方向が、−45度、90度、0度、−45度、90度、0度、0度、90度、45度、0度、90度、および45度となるように各層が構成されている。
そして、積層部7aは、図5および図6(f)中のX´8側からY´8側に向かって、その繊維の配向方向が、45度、および−45度となるように各層が構成されている。
そして、積層部7cは、図5および図6(f)中のX´´8側からY´´8側に向かって、その繊維の配向方向が、−45度、および45度となるように各層が構成されている。
そして、積層部7bは、図5および図6(g)中のX´9側からY´9側に向かって、その繊維の配向方向が、−45度、および45度となるように各層が構成されている。
ちなみに、連結部7dから車外側に向かって屈曲するように延びて、E字状部材7の最も外側を覆う−45度層と、最も内側を覆う45度層との間は、前記した熱硬化性樹脂(エポキシ樹脂)で満たされることとなる。
When the fiber orientation direction is defined in this way, the base end portion of the laminated portion 7a is oriented from the X′6 side to the Y′6 side in FIGS. 5 and 6D, and the fiber orientation direction. However, each layer is configured to be 45 degrees, 90 degrees, 0 degrees, 45 degrees, 90 degrees, 0 degrees, and -45 degrees.
And as for the base end part of the lamination | stacking part 7c, the orientation direction of the fiber is -45 degree | times and 90 degree | times from X "6 side in FIG.5 and FIG.6 (d) toward Y" 6 side, Each layer is configured to be 0 degrees, −45 degrees, 90 degrees, 0 degrees, and 45 degrees.
And as for the base end part of the lamination | stacking part 7b, the orientation direction of the fiber is -45 degree | times, 90 degree | times, 0 degree | times toward X'7 side from the X'7 side in FIG.5 and FIG.6 (e). , −45 degrees, 90 degrees, 0 degrees, 0 degrees, 90 degrees, 45 degrees, 0 degrees, 90 degrees, and 45 degrees.
Then, the laminated portion 7a includes each layer so that the orientation direction of the fibers is 45 degrees and -45 degrees from the X'8 side to the Y'8 side in FIG. 5 and FIG. 6 (f). It is configured.
And the laminated part 7c is such that the orientation direction of the fibers becomes −45 degrees and 45 degrees from the X ″ 8 side to the Y ″ 8 side in FIG. 5 and FIG. 6 (f). Each layer is configured.
The laminated portion 7b is formed so that each layer has a fiber orientation direction of −45 degrees and 45 degrees from the X′9 side to the Y′9 side in FIGS. 5 and 6G. It is configured.
By the way, the thermosetting described above extends between the connecting portion 7d so as to bend toward the vehicle outer side, and between the −45 ° layer covering the outermost side of the E-shaped member 7 and the 45 ° layer covering the innermost side. It will be filled with conductive resin (epoxy resin).

ピラー部材4のE字状部材9(図2参照)は、E字状部材7の強部11(図3参照)と同様の層構成となっている。ただし、後記するように、E字状部材9は、E字状部材7のように各層に継ぎ目15(図13参照)を有していない点でE字状部材7と相違している。つまり、E字状部材9における3つの板状の補強部9a,9b,9c(図2参照)は、E字状部材7の強部11における3つの積層部7a,7b,7c(図3参照)に対応しており、補強部9d(図2参照)は、E字状部材7の強部11における連結部7b(図3参照)に対応している。   The E-shaped member 9 (see FIG. 2) of the pillar member 4 has the same layer configuration as the strong portion 11 (see FIG. 3) of the E-shaped member 7. However, as will be described later, the E-shaped member 9 is different from the E-shaped member 7 in that each layer does not have the seam 15 (see FIG. 13) unlike the E-shaped member 7. That is, the three plate-like reinforcing portions 9a, 9b, 9c (see FIG. 2) in the E-shaped member 9 are the three laminated portions 7a, 7b, 7c (see FIG. 3) in the strong portion 11 of the E-shaped member 7. The reinforcing portion 9d (see FIG. 2) corresponds to the connecting portion 7b (see FIG. 3) in the strong portion 11 of the E-shaped member 7.

次に、E字状部材7の積層部7a,7b,7cにおける強部11と、弱部12とにおける双方の機械的物性値の相違について説明する。
E字状部材7の積層部7a,7b,7cにおける強部11は、図3、図4(a)および図4(b)におけるX´1側乃至Y´1側間、X´´1側乃至Y´´1側間、およびX´2側乃至Y´2側間を構成する層に、その繊維の配向方向が、0度、および90度となる層を含んでいる。なお、ここでの配向方向は、積層部7a,7b,7cが延びる上方向と一致する配向方向は0度とし、積層部7a,7b,7cが延びる上方向に対して車外側に90度をなす方向と一致する配向方向は90度と規定してる。
Next, the difference in mechanical property values between the strong portion 11 and the weak portion 12 in the laminated portions 7a, 7b, and 7c of the E-shaped member 7 will be described.
The strong portion 11 in the laminated portions 7a, 7b, and 7c of the E-shaped member 7 is between the X′1 side to the Y′1 side and the X ″ 1 side in FIGS. 3, 4A, and 4B. In the layers constituting between the Y ″ 1 side and between the X′2 side and the Y′2 side, layers in which the orientation directions of the fibers are 0 degrees and 90 degrees are included. The orientation direction here is 0 degree in the orientation direction that coincides with the upward direction in which the laminated portions 7a, 7b, and 7c extend, and is 90 degrees outward of the vehicle with respect to the upward direction in which the laminated portions 7a, 7b, and 7c extend. The orientation direction coinciding with the formed direction is defined as 90 degrees.

そして、積層部7a,7b,7cにおける弱部12は、図5、図6(f)および図6(g)におけるX´8側乃至Y´8側間、X´´8側乃至Y´´8側間、およびX´9側乃至Y´9側間を構成する層が、45度、および−45度層となっている。なお、ここでの配向方向は、積層部7a,7b,7cが延びる上方向に対して車外側に45度をなす方向と一致する配向方向は45度とし、積層部7a,7b,7cが延びる上方向に対して車外側に135度をなす方向と一致する配向方向は−45度と規定している。   The weak portions 12 in the stacked portions 7a, 7b, and 7c are formed between the X′8 side to the Y′8 side and the X ″ 8 side to the Y ″ in FIGS. 5, 6 (f), and 6 (g). The layers constituting the 8 side and the X′9 side to the Y′9 side are 45 ° and −45 ° layers. Note that the orientation direction here is 45 degrees that coincides with the direction of 45 degrees on the vehicle outer side with respect to the upward direction in which the laminated portions 7a, 7b, and 7c extend, and the laminated portions 7a, 7b, and 7c extend. An orientation direction that coincides with a direction that forms 135 degrees on the vehicle outer side with respect to the upward direction is defined as -45 degrees.

ここでは、積層部7a,7b,7cの長手方向に引張り応力が生じた際の、「繊維の配向方向が0度、および90度の箇所(強部11に相当する)」と、「繊維の配向方向が45度、および−45度の箇所(弱部12に相当する)」」とにおける、ひずみ率の相違について説明する。   Here, when tensile stress is generated in the longitudinal direction of the laminated portions 7a, 7b, and 7c, “locations where the orientation direction of the fibers is 0 ° and 90 ° (corresponding to the strong portion 11)” and “ The difference in strain rate between “the orientation direction being 45 degrees and −45 degrees (corresponding to the weak portion 12)” will be described.

図7に示すように、「繊維の配向方向が0度、および90度の箇所」(図7中、「0度/90度方向」で表す)においては、引張り応力に対するひずみ率は小さくなっており、「繊維の配向方向が45度、および−45度の箇所」(図7中、「45度/−45度方向」で表す)においては、引張り応力に対するひずみ率は大きくなっている。言い換えれば、強部11は、強くて脆い特性を有するとともに、弱部12は、弱くて延びる特性を有することとなる。また、圧縮応力に対するひずみ率の関係では、特に図で説明しないが、強部11は、強くて脆い特性を有するとともに、弱部12は、弱くて縮みやすい特性を有することとなる。   As shown in FIG. 7, the strain rate with respect to the tensile stress is small in “locations where the fiber orientation direction is 0 degree and 90 degrees” (represented by “0 degree / 90 degree direction” in FIG. 7). In “locations where the orientation direction of the fibers is 45 degrees and −45 degrees” (represented by “45 degrees / −45 degrees direction” in FIG. 7), the strain rate with respect to the tensile stress is large. In other words, the strong portion 11 has a strong and fragile characteristic, and the weak portion 12 has a weak and extending characteristic. In addition, although the relationship between the strain rate and the compressive stress is not particularly illustrated, the strong portion 11 has strong and fragile characteristics, and the weak portion 12 has weak and easily shrinkable characteristics.

本実施形態での強部11および弱部12は、前記したように、CFRP積層板で形成されているが、他の繊維強化プラスチックや、繊維強化金属で形成されていてもよい。このような他の繊維強化複合材料で形成された強部11および弱部12であっても、繊維の配向方向を制御することで、積層部7a,7b,7cの長手方向に機械的物性値の異なる部材が入れ替わりに連続するように形成することができる。言い換えれば、部材の機械的物性値に異方性を付与することで機械的物性値の変更が可能となる。また、強部11および弱部12の材料は、等方性を有する、繊維強化プラスチック、繊維強化金属、鉄、アルミニウム、樹脂等の材料から選択した相互に機械的物性値の異なる2種を選択して使用してもよい。また、強部11および弱部12は、等方性を有する、鉄、アルミニウム、樹脂等の単一材料の延伸方向を制御することで、機械的物性値に異方性を付与したもので形成してもよい。なお、前記した機械的物性値としては、公知の物性値でよく、前記したひずみ率のほか、例えば、引張強度、圧縮強度、曲げ弾性等が挙げられる。   As described above, the strong portion 11 and the weak portion 12 in the present embodiment are formed of the CFRP laminated plate, but may be formed of other fiber reinforced plastics or fiber reinforced metals. Even in the strong part 11 and the weak part 12 formed of such other fiber-reinforced composite materials, the mechanical property values are controlled in the longitudinal direction of the laminated parts 7a, 7b, 7c by controlling the fiber orientation direction. The different members can be formed so as to be continuously replaced. In other words, the mechanical property value can be changed by providing anisotropy to the mechanical property value of the member. In addition, the material of the strong part 11 and the weak part 12 is selected from two materials having isotropic properties, such as fiber reinforced plastic, fiber reinforced metal, iron, aluminum, and resin, which have different mechanical properties. May be used. In addition, the strong portion 11 and the weak portion 12 are formed by adding anisotropy to mechanical property values by controlling the stretching direction of a single material such as iron, aluminum, or resin having isotropic properties. May be. The mechanical property value described above may be a known physical property value, and includes, for example, tensile strength, compressive strength, flexural elasticity, etc. in addition to the above-described strain rate.

以上のようなピラー部材4は、曲げ変形における荷重特性がフラットになる部材である。ここで「荷重特性がフラット」とは、図8に示すように、ピラー部材4に曲げ変形を加える荷重を入力した際に、曲げ変形の変位量が次第に増大していくとともに、ピーク荷重Xを示した変位量から更に変位量が増大したとしても入力する荷重の変動がフラットになる状態をいう。なお、図8に、比較例として、部材Qの荷重特性を併せて示す。この部材Qは、ピラー部材4と同形状であって、E字状部材7の層構成をE字状部材9と同様に設定したものである。この部材Qは、ピーク荷重Yを示した後に、曲げ変形の変位量がさらに増大することで、入力する荷重が急激に落ち込むように変動する。この部材Qの荷重特性は、フラットでない場合を典型的に表わしている。したがって、本発明の特徴である強弱構造をとらずに、単にCFRP積層板で構成したもの(例えば、部材Q)が配置された車体構造は、本発明の効果を奏し得ない。   The pillar member 4 as described above is a member that has a flat load characteristic in bending deformation. Here, “the load characteristic is flat” means that, as shown in FIG. 8, when a load for applying bending deformation to the pillar member 4 is input, the displacement amount of the bending deformation gradually increases and the peak load X is Even if the amount of displacement further increases from the amount of displacement shown, it means a state in which the fluctuation of the input load becomes flat. FIG. 8 also shows the load characteristics of the member Q as a comparative example. This member Q has the same shape as the pillar member 4, and the layer configuration of the E-shaped member 7 is set in the same manner as the E-shaped member 9. After the peak load Y is shown, the member Q varies so that the load to be input falls sharply as the displacement amount of the bending deformation further increases. The load characteristic of this member Q typically represents the case where it is not flat. Therefore, a vehicle body structure in which a structure (for example, the member Q) simply constituted by a CFRP laminated plate is not used without taking the strength structure that is a feature of the present invention cannot achieve the effects of the present invention.

次に、本実施形態に係る車体構造1の動作について適宜図面を参照しながら説明しつつ、この車体構造1の作用効果について説明する。参照する図面において、図9は、車体構造に荷重が入力された際に、ルーフクロスメンバ、フロアクロスメンバ、およびピラー部材が曲げ変形する様子を示す模式図である。図10は、車体構造の荷重特性を示すグラフであり、縦軸が車体構造に入力される荷重であり、横軸は、車体構造(ピラー部材)の変位量である。図11は、本実施形態に係る車体構造を備える車両に他の車両(相手車両)が側面衝突した際の車体進入量を示すグラフであり、縦軸が相手車両で測定される反力であり、横軸が車体進入量である。   Next, the operation and effect of the vehicle body structure 1 will be described while appropriately describing the operation of the vehicle body structure 1 according to the present embodiment with reference to the drawings. In the drawings to be referred to, FIG. 9 is a schematic diagram showing a state in which a roof cross member, a floor cross member, and a pillar member are bent and deformed when a load is input to the vehicle body structure. FIG. 10 is a graph showing the load characteristics of the vehicle body structure. The vertical axis represents the load input to the vehicle body structure, and the horizontal axis represents the displacement amount of the vehicle body structure (pillar member). FIG. 11 is a graph showing a vehicle body approach amount when another vehicle (an opponent vehicle) collides with a vehicle having the vehicle body structure according to the present embodiment, and the vertical axis is a reaction force measured by the opponent vehicle. The horizontal axis is the vehicle body entry amount.

この車体構造1では、例えば、衝突等によって車両V(図1参照)の側方から荷重が入力すると、図9に示すように、ピラー部材4に荷重が入力されるとともに、ルーフクロスメンバ2にはアルミブラケット6周りでモーメントM1が生じ、フロアクロスメンバ3には、アルミブラケット6周りでモーメントM2が生じる。そして、このモーメントM1によって、ルーフクロスメンバ2は、二点鎖線で示す位置から実線で示す位置へと変位する。また、モーメントM2によって、フロアクロスメンバ3は、二点鎖線で示す位置から実線で示す位置へと変位する。このとき、ルーフクロスメンバ2およびフロアクロスメンバ3は、高強度部材で構成されているので、その変位量が僅かであり、ルーフクロスメンバ2およびフロアクロスメンバ3よりも、ピラー部材4は優先的に曲げ変形を生じる。そして、ピラー部材4は、積層部7a,7b,7cを備えており、この積層部7a,7b,7cには、その長手方向に強くて脆い機械的物性値を示す部分(強部11)と、弱くて延びる機械的物性値を示す部分(弱部12)とが入れ替わりで連続するように配置されている。その結果、ピラー部材4は、フラットな荷重特性を示しながら曲げ変形を生じていく。   In the vehicle body structure 1, for example, when a load is input from the side of the vehicle V (see FIG. 1) due to a collision or the like, the load is input to the pillar member 4 as shown in FIG. A moment M1 is generated around the aluminum bracket 6, and a moment M2 is generated around the aluminum bracket 6 in the floor cross member 3. And by this moment M1, the roof cross member 2 is displaced from the position shown with a dashed-two dotted line to the position shown with a continuous line. Further, the floor cross member 3 is displaced from the position indicated by the two-dot chain line to the position indicated by the solid line by the moment M2. At this time, since the roof cross member 2 and the floor cross member 3 are made of high-strength members, the amount of displacement thereof is small, and the pillar member 4 has priority over the roof cross member 2 and the floor cross member 3. Cause bending deformation. The pillar member 4 includes laminated portions 7a, 7b, and 7c. The laminated portions 7a, 7b, and 7c include a portion (strong portion 11) that exhibits a mechanical property value that is strong and brittle in the longitudinal direction. The portion (weak portion 12) showing a mechanical property value weak and extending is arranged so as to be replaced and continuous. As a result, the pillar member 4 undergoes bending deformation while exhibiting flat load characteristics.

このことは、強くて脆い部分の間に、弱くて延びる部分が挟み込まれることで、曲げ変形の範囲が積層部7a,7b,7cの長手方向の広い範囲で生じるとともに、ピラー部材4に入力された荷重負荷を分散させることによる。つまり、積層部7a,7b,7cの曲げモーメントの分布は、分布荷重時のように、荷重入力部から周辺部に向かって広げられることとなる。また、曲げモーメントの分布が広げられることで、強くて脆い部分にも大きな曲げモーメントがかかることとなって荷重を発生させることができる。つまり、このような積層部7a,7b,7cを備えるピラー部材4は、フラットな荷重特性を示しながら曲げ変形を生じていく。   This is because a weakly extending portion is sandwiched between strong and fragile portions, so that a range of bending deformation occurs in a wide range in the longitudinal direction of the laminated portions 7a, 7b, and 7c, and is input to the pillar member 4. By distributing the load. That is, the distribution of the bending moment of the laminated portions 7a, 7b, and 7c is expanded from the load input portion toward the peripheral portion as in the case of distributed load. Further, since the distribution of the bending moment is expanded, a large bending moment is applied even to a strong and fragile portion, and a load can be generated. That is, the pillar member 4 including such laminated portions 7a, 7b, and 7c undergoes bending deformation while exhibiting flat load characteristics.

次に、このようなピラー部材4を備えた車体構造1の荷重特性を更に具体的に説明する。ここでは、車体構造1の外側からピラー部材4に重さ30tで充分な剛性を有する重量物を時速55kmで衝突させた。その結果、車体構造1では、図10に示すように、ピラー部材4の曲げ変形の変位量(図10の横軸で示す)が次第に増大していくとともに、ピラー部材4の荷重(図10の縦軸で示す)がピークとなる変位量から更に変位量が増大したとしても、入力する荷重の変動がフラットになっている。そして、比較例として、従来のショットピーニング処理した鋼材(SP材)を使用した以外は車体構造1と同様の環状構造(図10中、「従来の車体構造」と記す)においても、車体構造1に行ったと同じ条件で重量物を衝突させた。その結果、図10に示すように、従来の車体構造では、車体構造の構成部材におけるピーク荷重を示した後に構成部材が降伏するために、ピーク荷重後の荷重が低下しており、従来の車体構造はフラットな荷重特性を示していない。そして、車体構造1では、従来の車体構造と比較して荷重値自体が高くなっている。   Next, the load characteristic of the vehicle body structure 1 including such a pillar member 4 will be described more specifically. Here, a heavy object having a sufficient rigidity with a weight of 30 t was caused to collide with the pillar member 4 from the outside of the vehicle body structure 1 at a speed of 55 km / h. As a result, in the vehicle body structure 1, as shown in FIG. 10, the amount of bending deformation of the pillar member 4 (indicated by the horizontal axis in FIG. 10) gradually increases and the load of the pillar member 4 (in FIG. 10). Even if the displacement amount further increases from the displacement amount at which the peak (shown on the vertical axis) becomes a peak, the variation in the input load is flat. As a comparative example, the vehicle body structure 1 is also used in an annular structure (referred to as “conventional vehicle body structure” in FIG. 10) similar to the vehicle body structure 1 except that steel (SP material) subjected to conventional shot peening treatment is used. A heavy object was collided under the same conditions as those described above. As a result, as shown in FIG. 10, in the conventional vehicle body structure, the load after the peak load is reduced because the component member yields after showing the peak load in the component member of the vehicle body structure. The structure does not show flat load characteristics. In the vehicle body structure 1, the load value itself is higher than that of the conventional vehicle body structure.

次に、車体構造1を備えた車両V(図1参照)である自動車(以下、「車体構造1を備えた自動車」という)の側面に、他の自動車(以下、「相手車両」という)を時速55kmで衝突させた際の車体進入量を測定した。具体的には、車体構造1を備えた自動車に相手車両を衝突させた際の、相手車両で測定される反力を測定するとともに、車体構造1を備えた自動車のセンタピラー5(図1参照)の位置における車体進入量を測定した。ちなみに、車体構造1を備えた自動車の重量は1.5tであり、相手車両の重量は30tであった。その結果を図11に示す。なお、図11中、「車体構造1を備えた自動車」を単に「車体構造1」と記す。   Next, another vehicle (hereinafter referred to as “the partner vehicle”) is placed on the side surface of the vehicle (hereinafter referred to as “the vehicle including the vehicle body structure 1”) which is the vehicle V (see FIG. 1) including the vehicle body structure 1. The vehicle body approaching amount when the vehicle was collided at 55 km / h was measured. Specifically, the reaction force measured by the opponent vehicle when the opponent vehicle collides with the automobile provided with the vehicle body structure 1 is measured, and the center pillar 5 of the automobile provided with the vehicle body structure 1 (see FIG. 1). ) Was measured at the position of the vehicle body. Incidentally, the weight of the car provided with the vehicle body structure 1 was 1.5 t, and the weight of the opponent vehicle was 30 t. The result is shown in FIG. In FIG. 11, “the vehicle having the vehicle body structure 1” is simply referred to as “vehicle structure 1”.

また、980MPa級のハイテンシルスチール(以下、「ハイテン」という)を使用した以外は車体構造1と同様の環状構造を適用した自動車においても、車体構造1に行ったと同じ条件で相手車両を衝突させて、前記反力と前記車体進入量とを測定した。ちなみに、ハイテン環状構造を使用した自動車の重量は1.6tであった。その結果を図11に示す。なお、図11中、「ハイテン環状構造を使用した自動車」を単に「ハイテン環状構造」と記す。   Further, even in an automobile to which an annular structure similar to the vehicle body structure 1 is applied except that 980 MPa class high tensile steel (hereinafter referred to as “HITEN”) is used, the opponent vehicle collides with the vehicle body structure 1 under the same conditions. Then, the reaction force and the vehicle body approach amount were measured. Incidentally, the weight of the automobile using the high tension ring structure was 1.6 t. The result is shown in FIG. In FIG. 11, “automobile using a high tension ring structure” is simply referred to as “high tension ring structure”.

また、車体構造1やハイテン環状構造を有していない自動車(以下、単に「従来の車体構造を使用した自動車」という)においても、車体構造1に行ったと同じ条件で相手車両を衝突させて、前記反力と前記車体進入量とを測定した。その結果を図11に示す。なお、図11中、「従来の車体構造を使用した自動車」を単に「従来の車体構造」と記す。   Further, even in an automobile that does not have the vehicle body structure 1 or the high tension ring structure (hereinafter simply referred to as “automobile using a conventional vehicle body structure”), the other vehicle is caused to collide with the vehicle body structure 1 under the same conditions. The reaction force and the vehicle body approach amount were measured. The result is shown in FIG. In FIG. 11, “automobile using a conventional vehicle body structure” is simply referred to as “conventional vehicle body structure”.

車体構造1を備えた自動車は、図11に示すように、ピラー部材4(図1参照)の曲げ変形による荷重の低下を起こさないので、ピラー部材4の折れ曲がりによる車体進入量を、ハイテン環状構造を使用した自動車や、従来の車体構造を使用した自動車と比較して半減することができた。
また、ハイテン環状構造は、ピーク荷重が初期に発生するのみで、衝突のエネルギを充分に吸収することができないために、車体進入量を充分に低減することができないと考えられる。これに対して、車体構造1は、この図11からも、フラットな荷重特性を有することが明らかであり、このことから車体構造1は、車体進入量が充分に低減されたものと考えられる。
また、車体構造1は、ハイテン環状構造と比較して、100kg程度の重量を軽減することができた。
As shown in FIG. 11, the automobile having the vehicle body structure 1 does not cause a decrease in load due to bending deformation of the pillar member 4 (see FIG. 1). Compared to automobiles using a car and automobiles using a conventional body structure, it was halved.
Further, in the high tension ring structure, only the peak load is generated at an early stage, and the collision energy cannot be sufficiently absorbed. Therefore, it is considered that the vehicle body approach amount cannot be sufficiently reduced. On the other hand, it is clear from FIG. 11 that the vehicle body structure 1 also has a flat load characteristic. From this, it is considered that the vehicle body structure 1 has a sufficiently reduced vehicle body approach amount.
Moreover, the vehicle body structure 1 was able to reduce the weight of about 100 kg compared with the high tension ring structure.

以上のような車体構造1および車両Vによれば、外部から荷重が入力した際に、局部的な曲げ変形を充分に抑制し、衝突時の車体変形量を抑制することができる。   According to the vehicle body structure 1 and the vehicle V described above, when a load is input from the outside, local bending deformation can be sufficiently suppressed, and the vehicle body deformation amount at the time of collision can be suppressed.

次に、ピラー部材4の製造方法について適宜図面を参照しながら説明する。参照する図面において、図12は、E字状部材7の製造工程を説明するための斜視図であり、(a)および(b)は、E字状部材7の内側部材の製造工程を示す図、(c)および(d)は、E字状部材7の内側部材の製造工程を示す図である。図13は、図3中のD部拡大図である。   Next, the manufacturing method of the pillar member 4 is demonstrated, referring drawings suitably. In the drawings to be referred to, FIG. 12 is a perspective view for explaining the manufacturing process of the E-shaped member 7, and (a) and (b) are diagrams showing the manufacturing process of the inner member of the E-shaped member 7. (C) And (d) is a figure which shows the manufacturing process of the inner member of the E-shaped member 7. FIG. FIG. 13 is an enlarged view of a portion D in FIG.

この製造方法では、図12(a)に示すように、所定の型(図示せず)に内側部材13a,13b(図3参照)の第1層目(図3に示す内側部材13aまたは内側部材13bの最も車外側に位置する層)に相当する長尺のプリプレグ21が断面視で略C字状に配置される。次いで、このプリプレグ21の折り曲げ部を覆うように略C字状のプリプレグ22aがプリプレグ21の上側に配置される。そして、プリプレグ21の両側面には、その長手方向に沿うように、複数の矩形のプリプレグ22bが所定の間隔をあけて配置される。   In this manufacturing method, as shown in FIG. 12 (a), the first layer (the inner member 13a shown in FIG. 3 or the inner member shown in FIG. 3) is placed on a predetermined mold (not shown) of the inner members 13a and 13b (see FIG. 3). A long prepreg 21 corresponding to the outermost layer 13b is disposed in a substantially C shape in a sectional view. Next, a substantially C-shaped prepreg 22 a is disposed on the upper side of the prepreg 21 so as to cover the bent portion of the prepreg 21. A plurality of rectangular prepregs 22b are arranged on both side surfaces of the prepreg 21 at predetermined intervals along the longitudinal direction.

次に、図12(b)に示すように、プリプレグ22aとプリプレグ22bとの継ぎ目15、およびプリプレグ22aの折り曲げ部を覆うとともに、プリプレグ22bと重なるように複数のプリプレグ23bが前記した所定の間隔で配置される。そして、プリプレグ22aの上側には、プリプレグ22aの長手方向に沿うように、プリプレグ23aが配置される。そして、図12(a)および(b)に示す工程を6工程繰り返すことによって、内側部材13aおよび内側部材13b(図3参照)が形成されることとなる。   Next, as shown in FIG. 12B, the prepreg 22a covers the joint 15 between the prepreg 22a and the bent portion of the prepreg 22a, and a plurality of prepregs 23b are arranged at the predetermined intervals so as to overlap the prepreg 22b. Be placed. And the prepreg 23a is arrange | positioned along the longitudinal direction of the prepreg 22a on the upper side of the prepreg 22a. And the inner member 13a and the inner member 13b (refer FIG. 3) will be formed by repeating the process shown to Fig.12 (a) and (b) 6 processes.

次に、図12(c)に示すように、前記した工程を経て得られた内側部材13aおよび内側部材13bは、横並びに配置される。そして、内側部材13aおよび内側部材13bの長手方向に沿う上側の角部を覆うように、複数のプリプレグ24bが、並べられた内側部材13aおよび内側部材13bの両側面に配置される。このとき、プリプレグ24bは、プリプレグ23aおよびプリプレグ23bとの継ぎ目15aを覆うとともに、プリプレグ23bと重なるように配置される。次に、並べられた内側部材13aおよび内側部材13bの上側には、その長手方向に沿うように、プリプレグ24aが配置される。このとき、プリプレグ24aは、プリプレグ23aとプリプレグ23bとの継ぎ目15bを覆うように配置される。   Next, as shown in FIG. 12C, the inner member 13a and the inner member 13b obtained through the above-described steps are arranged side by side. And the some prepreg 24b is arrange | positioned at the both sides | surfaces of the arranged inner member 13a and the inner member 13b so that the upper corner | angular part along the longitudinal direction of the inner member 13a and the inner member 13b may be covered. At this time, the prepreg 24b is arranged so as to cover the prepreg 23a and the joint 15a between the prepreg 23b and overlap the prepreg 23b. Next, the prepreg 24a is arranged on the upper side of the arranged inner member 13a and inner member 13b so as to be along the longitudinal direction thereof. At this time, the prepreg 24a is disposed so as to cover the joint 15b between the prepreg 23a and the prepreg 23b.

次に、図12(d)に示すように、プリプレグ24bの折り曲げ部を覆うようにプリプレグ24bに重ねて複数のプリプレグ25bが配置される。そして、プリプレグ24aとプリプレグ24bとの継ぎ目15cを覆うようにプリプレグ24aの長手方向に沿ってプリプレグ25aが配置される。そして、図12(c)および(d)に示す工程を5工程繰り返してから、さらに図12(c)に示す工程を行った後に、図3に示す最も車内側に位置する層が積層されることによって、外側部材14(図3参照)が形成される。
ちなみに、プリプレグ22b、プリプレグ23b、プリプレグ24b、およびプリプレグ25bが相互に重なっている部分で強部11(図2参照)が形成され、プリプレグ21の長手方向に沿うようにプリプレグ22b同士の間、プリプレグ23b同士の間、プリプレグ24b同士の間、およびプリプレグ25b同士の間に所定の間隔で設けられた隙間で弱部12(図2参照)が形成される。ちなみに、この弱部12は、前記したように、熱硬化性樹脂で埋められて形成されることとなる。
Next, as shown in FIG. 12 (d), a plurality of prepregs 25b are arranged so as to overlap the prepreg 24b so as to cover the bent portion of the prepreg 24b. And the prepreg 25a is arrange | positioned along the longitudinal direction of the prepreg 24a so that the joint line 15c of the prepreg 24a and the prepreg 24b may be covered. Then, after repeating the process shown in FIGS. 12C and 12D for five steps, and further performing the process shown in FIG. 12C, the layer located on the innermost side shown in FIG. 3 is laminated. Thus, the outer member 14 (see FIG. 3) is formed.
Incidentally, the strong portion 11 (see FIG. 2) is formed at the portion where the prepreg 22b, the prepreg 23b, the prepreg 24b, and the prepreg 25b overlap with each other. The weak part 12 (refer FIG. 2) is formed in the clearance gap provided in the predetermined space between 23b, between the prepregs 24b, and between the prepregs 25b. Incidentally, the weak portion 12 is formed by being filled with a thermosetting resin as described above.

このような工程を経て得られた積層体は、後記するように熱硬化されてE字状部材7となる。ちなみに、E字状部材7では、このような積層工程を経ることによって、図13に示すように、継ぎ目15が、隣接する層20によってオーバーラップされることとなる。その結果、各層20間での所定の強度は維持されることとなる。   The laminated body obtained through such a process is thermally cured to become an E-shaped member 7 as described later. Incidentally, in the E-shaped member 7, the seam 15 is overlapped by the adjacent layers 20 as shown in FIG. As a result, a predetermined strength between the layers 20 is maintained.

次に、E字状部材9を得るための積層体が形成される。この積層体は、継ぎ目15を有していない以外は、E字状部材7を得るための積層体の強部11(図2参照)となる部分と同様の層構成となっている。したがって、図3に示す層構成となるように所定のプリプレグが継ぎ目15(図4参照)なしに順次に積層していくことによってこの積層体は得られる。   Next, the laminated body for obtaining the E-shaped member 9 is formed. This laminated body has the same layer configuration as that of the portion that becomes the strong portion 11 (see FIG. 2) of the laminated body for obtaining the E-shaped member 7 except that the seam 15 is not provided. Therefore, this laminated body is obtained by sequentially laminating a predetermined prepreg without the seam 15 (see FIG. 4) so as to have the layer structure shown in FIG.

そして、E字状部材7を得るための積層体と、E字状部材9を得るための積層体とが、相互の外側部材14に対応する部分で合わせられるとともに、これを熱硬化させることによってピラー部材4が製造される。   And while the laminated body for obtaining the E-shaped member 7 and the laminated body for obtaining the E-shaped member 9 are match | combined in the part corresponding to the mutual outer member 14, this is thermosetted. The pillar member 4 is manufactured.

以上、本発明の車体構造を実施形態に基づいて具体的に説明したが、本発明は、前記実施形態に何ら制限されるものではない。以下、本発明の他の実施形態について適宜図面を参照しながら説明する。なお、参照する図面において、図14(a)および(b)は、他の実施形態に係る車体構造で使用するピラー部材の部分斜視図である。図15(a)および(b)は、車両における車体構造の配置位置を説明するための斜視図である。   The vehicle body structure of the present invention has been specifically described above based on the embodiment. However, the present invention is not limited to the embodiment. Hereinafter, other embodiments of the present invention will be described with reference to the drawings as appropriate. In the drawings to be referred to, FIGS. 14A and 14B are partial perspective views of pillar members used in the vehicle body structure according to another embodiment. FIGS. 15A and 15B are perspective views for explaining the arrangement position of the vehicle body structure in the vehicle.

前記実施形態では、ピラー部材4のE字状部材7が、板状の部材(積層部7a,7b,7c、連結部7d)から形成されているが、本発明の車体構造では、図14(a)に示すように、ピラー部材4が中実の長尺部材であってもよいし、図14(b)に示すように、ピラー部材4が中空の長尺部材であってもよい。このようなピラー部材4では、このピラー部材4の長手方向に沿って、機械的物性値が相互に異なる部材20および部材21が入れ替わりに連続して配置されている。なお、このピラー部材4の断面の外形は、矩形を呈しているが、この形状に特に制限はなく、矩形以外の多角形、円形、楕円形のいずれであってもよい。   In the above-described embodiment, the E-shaped member 7 of the pillar member 4 is formed of a plate-like member (laminated portions 7a, 7b, 7c, connecting portion 7d). However, in the vehicle body structure of the present invention, FIG. As shown to a), the pillar member 4 may be a solid elongate member, and as shown in FIG.14 (b), the pillar member 4 may be a hollow elongate member. In such a pillar member 4, members 20 and 21 having different mechanical property values are alternately arranged continuously along the longitudinal direction of the pillar member 4. In addition, although the external shape of the cross section of this pillar member 4 is exhibiting the rectangle, there is no restriction | limiting in particular in this shape, Any of polygons other than a rectangle, circle, and an ellipse may be sufficient.

また、前記実施形態では、ピラー部材4の長手方向に機械的物性値の異なる2種の部材が入れ替わりに連続して配置されているが、本発明は、機械的物性値の異なる3種以上の部材が入れ替わりに連続して配置されているピラー部材4を備えるものであってもよい。   Moreover, in the said embodiment, although 2 types of members from which a mechanical property value differs in the longitudinal direction of the pillar member 4 are arrange | positioned continuously by replacement, this invention is 3 or more types from which a mechanical property value differs. You may provide the pillar member 4 by which a member is arrange | positioned continuously by changing.

また、前記実施形態では、ピラー部材4の積層部7a,7b,7cを構成する複数層のうち、一部の層で、機械的物性値の異なる2種の部材が入れ替わりに連続して配置されているが、本発明は、積層部7a,7b,7cの全ての層で機械的物性値の異なる2種の材料が入れ替わりに連続して配置されているものであってもよい。   Moreover, in the said embodiment, two types of members from which the mechanical property value differs in some layers among the several layers which comprise the laminated parts 7a, 7b, 7c of the pillar member 4 are arrange | positioned continuously by turns. However, in the present invention, two types of materials having different mechanical property values may be alternately arranged continuously in all layers of the stacked portions 7a, 7b, and 7c.

また、前記実施形態では、ピラー部材4が、積層部7a,7b,7c、および連結部7dを有するE字状部材7と、補強部9a,9b,9c、および連結部9dを有するE字状部材9とで構成されているが、本発明は、ピラー部材4が積層部7a,7b,7cのみで構成されるものであってもよい。   Moreover, in the said embodiment, the pillar member 4 is E-shaped which has the E-shaped member 7 which has lamination | stacking part 7a, 7b, 7c, and the connection part 7d, reinforcement part 9a, 9b, 9c, and the connection part 9d. Although comprised with the member 9, the pillar member 4 may be comprised only by lamination | stacking part 7a, 7b, 7c in this invention.

また、前記実施形態では、車体構造1が車体の両側にそれぞれ設けられるセンタピラー5の間に配置されているが、本発明は、図15(a)に示すように、車体の側面に沿うように配置されていてもよい。このとき、上側の高強度部材2aは、例えば、ルーフサイドレール(図示せず)に沿うように配置され、下側の高強度部材2bは、サイドシル(図示せず)に沿うように配置され、前側の高エネルギ吸収部材4aがフロントピラー(図示せず)に沿うように配置され、後側の高エネルギ吸収部材4bがリアピラー(図示せず)に沿うように配置されてもよい。   Moreover, in the said embodiment, although the vehicle body structure 1 is arrange | positioned between the center pillars 5 each provided in the both sides of a vehicle body, as shown to Fig.15 (a), this invention is along a side surface of a vehicle body. May be arranged. At this time, the upper high-strength member 2a is disposed along the roof side rail (not shown), for example, and the lower high-strength member 2b is disposed along the side sill (not shown). The front high energy absorbing member 4a may be disposed along the front pillar (not shown), and the rear high energy absorbing member 4b may be disposed along the rear pillar (not shown).

また、本発明は、図15(b)に示すように、車体構造1が車体の床面に沿うように配置されていてもよい。このとき、前側の高強度部材2aは、例えば、フロントフロアクロスメンバ(図示せず)に沿うように配置され、後側の高強度部材2bは、リアフロアクロスメンバ(図示せず)に沿うように配置され、左右両側の高エネルギ吸収部材4a,4bがサイドシル(図示せず)に沿うように配置されてもよい。   Further, in the present invention, as shown in FIG. 15B, the vehicle body structure 1 may be arranged along the floor surface of the vehicle body. At this time, for example, the front high strength member 2a is arranged along the front floor cross member (not shown), and the rear high strength member 2b is arranged along the rear floor cross member (not shown). The high energy absorbing members 4a and 4b on the left and right sides may be arranged along side sills (not shown).

実施形態に係る車体構造を備えた車両の斜視図である。1 is a perspective view of a vehicle provided with a vehicle body structure according to an embodiment. 実施形態に係る車体構造を構成するピラー部材の斜視図であり、図1のA部における部分拡大図(一部に破断部を含む)である。It is a perspective view of the pillar member which comprises the vehicle body structure which concerns on embodiment, and is the elements on larger scale in the A section of FIG. 1 (a broken part is included in part). ピラー部材における積層部および連結部の強部の断面を模式的に示す図であり、図2のB−B断面図である。It is a figure which shows typically the cross section of the lamination | stacking part in a pillar member, and the strong part of a connection part, and is BB sectional drawing of FIG. (a)および(b)は、積層部および連結部の強部における層構成を模式的に示す図である。(A) And (b) is a figure which shows typically the layer structure in the strong part of a laminated part and a connection part. ピラー部材における積層部および連結部の弱部の断面を模式的に示す図であり、図2のC−C断面図である。It is a figure which shows typically the cross section of the weak part of the laminated part in a pillar member, and a connection part, and is CC sectional drawing of FIG. (a)から(g)は、積層部および連結部の弱部における層構成を模式的に示す図である。(A)-(g) is a figure which shows typically the layer structure in the weak part of a laminated part and a connection part. 積層部の長手方向に引張り応力が生じた際の、「繊維の配向方向が0度、および90度の箇所」と、「繊維の配向方向が45度、および−45度の箇所」とにおける、ひずみ率の相違について説明するためのグラフである。When tensile stress is generated in the longitudinal direction of the laminated portion, “locations where the fiber orientation direction is 0 ° and 90 °” and “locations where the fiber orientation direction is 45 ° and −45 °” It is a graph for demonstrating the difference in a distortion factor. ピラー部材に曲げ変形を加える荷重を入力した際に、荷重の変動がフラットになる状態を示すグラフであり、縦軸が「曲げ変形を加える荷重」であり、横軸が「曲げ変形の変位量」である。When a load that applies bending deformation to a pillar member is input, it is a graph showing a state in which the fluctuation of the load becomes flat, the vertical axis is “load that applies bending deformation”, and the horizontal axis is “displacement amount of bending deformation”. Is. 車体構造に荷重が入力された際に、ルーフクロスメンバ、フロアクロスメンバ、およびピラー部材が曲げ変形する様子を示す模式図である。It is a schematic diagram showing a state in which a roof cross member, a floor cross member, and a pillar member are bent and deformed when a load is input to the vehicle body structure. 車体構造の荷重特性を示すグラフであり、縦軸が車体構造に入力される荷重であり、横軸は、車体構造(ピラー部材)の変位量である。It is a graph which shows the load characteristic of a vehicle body structure, a vertical axis | shaft is the load input into a vehicle body structure, and a horizontal axis is the displacement amount of a vehicle body structure (pillar member). 車体構造を備える車両に他の車両(相手車両)が側面衝突した際の車体進入量を示すグラフであり、縦軸が相手車両で測定される反力であり、横軸が車体進入量である。It is a graph which shows the vehicle body approach amount when another vehicle (opposite vehicle) collides with the vehicle provided with the vehicle body structure, the vertical axis is the reaction force measured by the partner vehicle, and the horizontal axis is the vehicle body approach amount . (a)および(b)は、E字状部材の内側部材の製造工程を示す図、(c)および(d)は、E字状部材の内側部材の製造工程を示す図である。(A) And (b) is a figure which shows the manufacturing process of the inner member of an E-shaped member, (c) And (d) is a figure which shows the manufacturing process of the inner member of an E-shaped member. 図3中のD部拡大図である。It is the D section enlarged view in FIG. (a)および(b)は、他の実施形態に係る車体構造で使用するピラー部材の部分斜視図である。(A) And (b) is a fragmentary perspective view of the pillar member used with the vehicle body structure which concerns on other embodiment. (a)および(b)は、車両における車体構造の配置位置を説明するための斜視図である。(A) And (b) is a perspective view for demonstrating the arrangement position of the vehicle body structure in a vehicle. 従来の車体構造を示す斜視図である。It is a perspective view which shows the conventional vehicle body structure.

符号の説明Explanation of symbols

1 車体構造
2 ルーフクロスメンバ(高強度部材)
2a 高強度部材
2b 高強度部材
3 フロアクロスメンバ(高強度部材)
4 ピラー部材(高エネルギ吸収部材)
4a 高エネルギ吸収部材
4b 高エネルギ吸収部材
5 センタピラー
6 アルミブラケット(締結部)
7a 積層部
7b 積層部
7c 積層部
M1 モーメント
M2 モーメント
1 Body structure 2 Roof cross member (high strength member)
2a High-strength member 2b High-strength member 3 Floor cross member (high-strength member)
4 Pillar member (high energy absorbing member)
4a High energy absorbing member 4b High energy absorbing member 5 Center pillar 6 Aluminum bracket (fastening part)
7a Laminated portion 7b Laminated portion 7c Laminated portion M1 moment M2 moment

Claims (5)

高エネルギ吸収部材と高強度部材とで環状形状を形成した車体構造であって、
前記高エネルギ吸収部材は、長尺に形成され、
前記環状形状を構成する前記高エネルギ吸収部材の外側に、引張り応力に対するひずみ率が小さい機械的物性値を有する強部、および引張り応力に対するひずみ率が大きい機械的物性値を有する弱部が、長手方向に入れ替わりで連続するように形成されるとともに、3つの板状の積層部と1つの板状の連結部とが組み合わせられて断面視が車外側を向くE字状に形成された第1のE字状部材を備え、
前記環状形状を構成する前記高エネルギ吸収部材の内側に、長手方向にわたって引張り応力に対するひずみ率が小さい機械的物性値を有する強部が形成されるとともに、3つの板状の補強部と1つの板状の連結部とが組み合わせられて断面視が車内側を向くE字状に形成された第2のE字状部材を備え、
これら2つのE字状部材の互いの連結部が接続されて形成されていることを特徴とする車体構造。
A vehicle body structure in which an annular shape is formed by a high energy absorbing member and a high strength member,
The high energy absorbing member is formed in a long shape,
The outside of the high energy absorbing member constituting the annular shape, the tensile strength portion having a mechanical property value ratio is less strain to stress, and tensile weak portion having a mechanical property value distortion factor is large relative to stress, longitudinal is formed to be continuous with turnover in the direction Rutotomoni, first to be combined and three plate-shaped lamination portion and one plate-shaped connecting part cross section is formed in E-shape facing the vehicle exterior E-shaped member
On the inside of the high energy absorbing member constituting the annular shape, is formed the strength portion having a mechanical property value distortion factor is small with respect to tensile stress along the longitudinal direction Rutotomoni, three plate-like reinforcing portion and one plate A second E-shaped member formed in an E-shape in which the cross-sectional view faces the vehicle interior in combination with
A vehicle body structure characterized in that the two E-shaped members are connected to each other .
前記第1のE字状部材は、断面視で略C字状の2つの内側部材同士が並んで一体となるように接続されるとともに、これらの内側部材の外側に断面視で略C字状の外側部材が一体となるように接続されて形成されていることを特徴とする請求項1に記載の車体構造。 The first E-shaped member is connected so that two substantially C-shaped inner members are arranged side by side in a sectional view, and is substantially C-shaped in a sectional view outside the inner members. 2. The vehicle body structure according to claim 1 , wherein the outer members are connected to be integrated. 前記高強度部材が、前記高エネルギ吸収部材との締結部を通じて生じるモーメントによって弾性変形する間、前記高エネルギ吸収部材が曲げ変形を生じることを特徴とする請求項1又は請求項2に記載の車体構造。 3. The vehicle body according to claim 1, wherein the high-energy absorbing member undergoes bending deformation while the high-strength member is elastically deformed by a moment generated through a fastening portion with the high-energy absorbing member. Construction. 請求項1から請求項3のいずれか1項に記載の車体構造を備えることを特徴とする車両。 A vehicle comprising the vehicle body structure according to any one of claims 1 to 3 . 請求項1から請求項3のいずれか1項に記載の車体構造を、車体の両側にそれぞれ設けられるセンタピラーの間に配置したことを特徴とする車両。 A vehicle comprising the vehicle body structure according to any one of claims 1 to 3 disposed between center pillars provided on both sides of the vehicle body.
JP2006037718A 2006-02-15 2006-02-15 Body structure and vehicle Expired - Fee Related JP4971645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037718A JP4971645B2 (en) 2006-02-15 2006-02-15 Body structure and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037718A JP4971645B2 (en) 2006-02-15 2006-02-15 Body structure and vehicle

Publications (2)

Publication Number Publication Date
JP2007216754A JP2007216754A (en) 2007-08-30
JP4971645B2 true JP4971645B2 (en) 2012-07-11

Family

ID=38494505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037718A Expired - Fee Related JP4971645B2 (en) 2006-02-15 2006-02-15 Body structure and vehicle

Country Status (1)

Country Link
JP (1) JP4971645B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008945B1 (en) * 2013-07-25 2018-03-02 Compagnie Plastic Omnium SIDE AMOUNT FOR PERFECTED AUTOMOTIVE VEHICLE CASE
US9751569B2 (en) 2014-03-25 2017-09-05 Honda Motor Co., Ltd. Automobile body structure
JP6366822B2 (en) * 2015-04-03 2018-08-01 本田技研工業株式会社 Body chassis member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197879A (en) * 1990-11-29 1992-07-17 Mazda Motor Corp Vehicle body structure
JP3091734B2 (en) * 1998-12-15 2000-09-25 株式会社オーツカ Impact energy absorber
JP2005088730A (en) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Vehicle body structure
JP2005219624A (en) * 2004-02-05 2005-08-18 Nissan Motor Co Ltd Vehicle body structure
JP4118264B2 (en) * 2004-07-15 2008-07-16 本田技研工業株式会社 Shock absorbing member

Also Published As

Publication number Publication date
JP2007216754A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
US9290212B2 (en) Carbon fiber prepreg-wrapped beam structures
JP2015160524A (en) Vehicle body structure
WO2014020942A1 (en) Air spring
JP2012504075A (en) Fiber composite parts for energy absorption in the case of an aircraft or spacecraft collision, aircraft structural parts of aircraft or spacecraft, and aircraft or spacecraft
CN104245295B (en) With the hat reinforcement for tilting web and the method for forming hat reinforcement
JP2007176328A (en) Frp structure
JPWO2018078990A1 (en) Automotive floor panel and method of manufacturing automotive floor panel
JP2009166408A (en) Structural member
JP2005231618A (en) External plate member for automobile
JP2013212730A (en) Vehicle
JP4971645B2 (en) Body structure and vehicle
JP2006200702A (en) Shock absorbing member
WO2020017662A1 (en) Vehicle structural member
US9598111B2 (en) Microtruss replacing structural foam in body structural application
JP5802598B2 (en) vehicle
US11370463B2 (en) Roof segments for the roof of a carriage body
JP6693605B1 (en) Vehicle structural member
JP2920370B2 (en) Bird-resistant structure at the head of high-speed vehicles
JP2014218179A (en) Energy absorption member
WO2020017647A1 (en) Vehicle structural member
JP5786352B2 (en) Manufacturing method of fiber reinforced resin sheet
JP6961984B2 (en) Column structure
JP5958569B2 (en) Manufacturing method of fiber reinforced resin sheet
JP2021054106A (en) Fiber-reinforced resin composite material and method for manufacturing fiber-reinforced resin composite material
KR101199411B1 (en) Composite bogie frame with metal structure for air reservoir

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120113

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees