JP5786352B2 - Manufacturing method of fiber reinforced resin sheet - Google Patents

Manufacturing method of fiber reinforced resin sheet Download PDF

Info

Publication number
JP5786352B2
JP5786352B2 JP2011029698A JP2011029698A JP5786352B2 JP 5786352 B2 JP5786352 B2 JP 5786352B2 JP 2011029698 A JP2011029698 A JP 2011029698A JP 2011029698 A JP2011029698 A JP 2011029698A JP 5786352 B2 JP5786352 B2 JP 5786352B2
Authority
JP
Japan
Prior art keywords
plate
sheet
frp
mold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011029698A
Other languages
Japanese (ja)
Other versions
JP2012166463A (en
Inventor
寺澤 知徳
知徳 寺澤
高野 恒男
恒男 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2011029698A priority Critical patent/JP5786352B2/en
Publication of JP2012166463A publication Critical patent/JP2012166463A/en
Application granted granted Critical
Publication of JP5786352B2 publication Critical patent/JP5786352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属製の部材(補強材)を備えた繊維強化樹脂板材を製造する方法に関する。   The present invention relates to a method for producing a fiber-reinforced resin plate provided with a metal member (reinforcing material).

鉄道車両のドアやシートの背もたれなどには、芯材として、繊維強化樹脂からなる概略板状の成形品、すなわち繊維強化樹脂板材が使用されることがある。このように繊維強化樹脂板材を芯材に用いる場合、芯材により高い剛性を付与するために、リブを形成したり、凹凸を形成したりすることが多い。例えば特許文献1には、ドアの芯材として、上下方向に延びる複数の凹条が形成された繊維強化樹脂板材が開示されている。また、特許文献2には、繊維強化樹脂板材の両側部に、上下方向に延びる凸条(側補強部)が形成された背もたれの骨格材が記載されている。その他には、芯材の裏面にコルゲート形状の補強材を後加工で接着して、芯材の剛性を高める方法も知られている。   For a door of a railway vehicle, a seat back, or the like, a substantially plate-shaped molded product made of a fiber reinforced resin, that is, a fiber reinforced resin plate material may be used as a core material. Thus, when using a fiber reinforced resin board | plate material for a core material, in order to provide high rigidity with a core material, a rib is often formed or an unevenness | corrugation is formed. For example, Patent Document 1 discloses a fiber-reinforced resin plate material in which a plurality of concave stripes extending in the vertical direction are formed as a door core material. Patent Document 2 describes a backrest skeleton material in which ridges (side reinforcing portions) extending in the vertical direction are formed on both side portions of a fiber reinforced resin plate material. In addition, a method of increasing the rigidity of the core material by bonding a corrugated reinforcing material to the back surface of the core material by post-processing is also known.

特開2004−339778号公報JP 2004-339778 A 特開2005−194号公報JP-A-2005-194

しかしながら、リブの形成には、SMC(シートモールディングコンパウンド)などの短繊維系材料を用いた複合成形が必要となり、成形工程が増加するうえ、十分な剛性が得られにくいという問題があった。また、凹凸を形成する方法でも、満足のいく剛性が得られない場合が多かった。また、後加工により、芯材の裏面にコルゲート形状の補強材を接着する方法では、接着工程の分だけ工程数が増加し、生産性の点で問題があった。   However, the rib formation requires composite molding using a short fiber material such as SMC (Sheet Molding Compound), which increases the number of molding steps and has difficulty in obtaining sufficient rigidity. In addition, there are many cases where satisfactory rigidity cannot be obtained even by the method of forming irregularities. Further, in the method of bonding a corrugated reinforcing material to the back surface of the core material by post-processing, the number of processes increases by the number of bonding processes, which is problematic in terms of productivity.

本発明は上記事情を鑑みてなされたもので、工程数を増加させることなく、高い剛性を備えた繊維強化樹脂板材を製造することを目的とする。   This invention is made | formed in view of the said situation, and it aims at manufacturing the fiber reinforced resin board | plate material provided with high rigidity, without increasing the number of processes.

本発明の繊維強化樹脂板材の製造方法は、長繊維に熱硬化性樹脂が含浸したプリプレグを具備するシート状物の少なくとも一部に、金属製部材を配置し、前記シート状物と前記金属製部材とを金型で圧縮成形し一体化する、繊維強化樹脂板材の製造方法である。
前記シート状物は2層以上から構成され、前記シート状物の前記金属製部材と接する層の樹脂含有量が、それ以外の層の樹脂含有量よりも大きいことが好適である。
前記金型のキャビティは、前記シート状物が硬化した繊維強化樹脂と前記金属製部材との線膨張係数の差によって生じる繊維強化樹脂板材の反り変形を打ち消す形状に、予め形成されていることが好適である。
In the method for producing a fiber-reinforced resin plate material of the present invention, a metal member is disposed on at least a part of a sheet-like material comprising a prepreg in which a long fiber is impregnated with a thermosetting resin, and the sheet-like material and the metal-made material are produced. This is a method for producing a fiber-reinforced resin plate material, in which a member is compressed and integrated with a mold.
The sheet-like material is composed of two or more layers, and it is preferable that the resin content of the layer in contact with the metal member of the sheet-like material is larger than the resin content of the other layers.
The cavity of the mold may be formed in advance in a shape that counteracts the warp deformation of the fiber reinforced resin plate material caused by the difference in coefficient of linear expansion between the fiber reinforced resin obtained by curing the sheet-like material and the metal member. Is preferred.

本発明によれば、工程数を増加させることなく、高い剛性を備えた繊維強化樹脂板材を製造できる。   According to the present invention, a fiber-reinforced resin plate having high rigidity can be manufactured without increasing the number of steps.

本発明の製造方法により製造された繊維強化樹脂板材の一例を示す(a)斜視図、(b)断面図である。It is the (a) perspective view and (b) sectional view showing an example of the fiber reinforced resin board manufactured by the manufacturing method of the present invention. 図1の繊維強化樹脂板材の製造工程において、(a)シート状物の片面に角パイプを配置した状態を示す斜視図、(b)シート状物で角パイプを被覆して得たプリフォーム示す斜視図である。In the manufacturing process of the fiber reinforced resin sheet of FIG. 1, (a) a perspective view showing a state in which a square pipe is arranged on one side of a sheet-like material, and (b) a preform obtained by coating the square pipe with a sheet-like material. It is a perspective view. 図1の繊維強化樹脂板材の製造に使用される金型の一例を示す斜視図である。It is a perspective view which shows an example of the metal mold | die used for manufacture of the fiber reinforced resin board | plate material of FIG. 図1の繊維強化樹脂板材において、反り変形が生じた場合の要部を示す模式的な断面図である。In the fiber reinforced resin board | plate material of FIG. 1, it is typical sectional drawing which shows the principal part when curvature deformation arises. 図1の繊維強化樹脂板材の製造に使用される金型の他の例を示す断面図である。It is sectional drawing which shows the other example of the metal mold | die used for manufacture of the fiber reinforced resin board | plate material of FIG. 本発明の製造方法により製造された繊維強化樹脂板材の他の例を示す斜視図である。It is a perspective view which shows the other example of the fiber reinforced resin board manufactured by the manufacturing method of this invention. 本発明の製造方法により製造された繊維強化樹脂板材の他の例を示す斜視図である。It is a perspective view which shows the other example of the fiber reinforced resin board manufactured by the manufacturing method of this invention. 本発明の製造方法により製造された繊維強化樹脂板材の他の例を示す斜視図である。It is a perspective view which shows the other example of the fiber reinforced resin board manufactured by the manufacturing method of this invention. 本発明の製造方法により製造された繊維強化樹脂板材の一例を示す(a)斜視図と、(b)断面図である。It is the (a) perspective view and (b) sectional view which show an example of the fiber reinforced resin board manufactured by the manufacturing method of the present invention. 図9の繊維強化樹脂板材の製造に使用される金型の一例を示す斜視図である。It is a perspective view which shows an example of the metal mold | die used for manufacture of the fiber reinforced resin board | plate material of FIG. 図9の繊維強化樹脂板材において、反り変形が生じた場合の様子を示す斜視図である。FIG. 10 is a perspective view showing a state when warpage deformation occurs in the fiber-reinforced resin plate material of FIG. 9. 図9の繊維強化樹脂板材の製造に使用される金型の他の例を示すイメージ図である。It is an image figure which shows the other example of the metal mold | die used for manufacture of the fiber reinforced resin board | plate material of FIG.

以下、本発明について詳細に説明する。
図1は、本発明の製造方法により製造された繊維強化樹脂板材の一例を示す(a)斜視図、(b)断面図である。
図1の繊維強化樹脂板材10Aは、繊維強化樹脂(以下、FRPという場合もある。)からなる長方形の平板状のFRP板材本体11と、FPR板材本体11の片面において、長手方向の両側端部に沿って配置され、FRP板材本体11を補強する2本の金属製の角パイプ(金属製部材)12とを備えている。この例のFRP板材10Aは、2本の角パイプ12の外周がFRP板材本体11の両側端部によりそれぞれ被覆された状態で、FRP板材本体11と角パイプ12とが一体化したものである。
Hereinafter, the present invention will be described in detail.
FIG. 1A is a perspective view and FIG. 1B is a cross-sectional view showing an example of a fiber reinforced resin plate produced by the production method of the present invention.
1A is a rectangular flat plate-shaped FRP plate body 11 made of fiber reinforced resin (hereinafter sometimes referred to as FRP), and both end portions in the longitudinal direction on one side of the FPR plate body 11. , And two metal square pipes (metal members) 12 that reinforce the FRP plate body 11. The FRP plate member 10 </ b> A in this example is obtained by integrating the FRP plate member main body 11 and the square pipe 12 in a state in which the outer periphery of the two square pipes 12 is covered with both end portions of the FRP plate member main body 11.

FRP板材本体11を構成するFRPは、強化繊維としての長繊維と、マトリックス樹脂としての熱硬化性樹脂とを含む。
長繊維とは、FRP板材本体11中において途切れのない連続した繊維のことを意味し、例えば炭素繊維、アラミド繊維、ボロン繊維、スチール繊維、PBO繊維、高強度ポリエチレン繊維、ガラス繊維などを例示でき、これらを1種以上使用できる。これらのなかでも、炭素繊維を使用すると、より剛性が高く、例えば鉄道車両のドアやシートの背もたれの芯材として好適なFRP板材10Aを製造することができる。
FRP which comprises the FRP board | plate material main body 11 contains the long fiber as a reinforced fiber, and the thermosetting resin as a matrix resin.
The long fiber means an unbroken continuous fiber in the FRP plate body 11, and examples thereof include carbon fiber, aramid fiber, boron fiber, steel fiber, PBO fiber, high-strength polyethylene fiber, and glass fiber. One or more of these can be used. Among these, when carbon fiber is used, it is possible to manufacture an FRP plate material 10A that has higher rigidity and is suitable, for example, as a core material for the back of a door or seat of a railway vehicle.

熱硬化性樹脂としては、たとえば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ベンゾオキサジン樹脂等が挙げられる。これらのなかでも、長繊維との接着性、補強材である金属製部材との接着性のいずれもが優れていることから、エポキシ樹脂が好ましい。
金属製部材の材質(金属)としては、アルミニウム、鉄、ステンレス、各種合金等が挙げられる。これらのなかでも、コストを重視する場合は、SS400(JIS規格)などの汎用鋼材が好ましく、軽量性を重視する場合はアルミニウムが好ましい。
Examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, and a benzoxazine resin. Among these, an epoxy resin is preferable because it has excellent adhesion to long fibers and adhesion to a metal member that is a reinforcing material.
Examples of the material (metal) of the metal member include aluminum, iron, stainless steel, and various alloys. Among these, general-purpose steel materials such as SS400 (JIS standard) are preferable when cost is important, and aluminum is preferable when weight is important.

図1のFRP板材10Aは次のようにして製造することができる。
まず、FRP板材本体11を形成するためシート状物として、一方向に配向した長繊維に熱硬化性樹脂が含浸したプリプレグを具備するものを用意する。
シート状物は、少なくとも1層のプリプレグを備えたものであればよく、場合によっては、シート状物の一方の表面に、長繊維を含まない樹脂層を備えたものでもよい。この例では、長繊維の配向角度が0°の層と90°の層とが互い違いに5層積層した構成となるようにプリプレグを積層した、いわゆる5ply(0/90/0/90/0)のプリプレグ積層体をシート状物として使用する。
The FRP plate 10A of FIG. 1 can be manufactured as follows.
First, in order to form the FRP plate body 11, a sheet-like material is prepared that includes a prepreg impregnated with a thermosetting resin into long fibers oriented in one direction.
The sheet-like material may be one provided with at least one prepreg, and in some cases, one surface of the sheet-like material may be provided with a resin layer not containing long fibers. In this example, so-called 5 ply (0/90/0/90/0), in which prepregs are laminated such that five layers of layers having an orientation angle of long fibers of 0 ° and 90 ° are alternately laminated. The prepreg laminate is used as a sheet.

ついで、図2(a)に示すように、シート状物13の片面に、2本の角パイプ12を略平行に配置し、シート状物13の両側端部を角パイプ12に巻き付けて角パイプ12の外周を覆い、図2(b)に示すプリフォーム14を製造する。
なお、プリフォーム14の製造時には、角パイプ12とシート状物13との付着性を高めるために、あらかじめ角パイプ12の外周をアセトンなどの有機溶剤で拭いて、脱脂処理しておくことが好ましい。また、シート状物13の両側端部を角パイプ12に巻き付けた後には、脱気処理を行い、シート状物13と角パイプ12との間のエアや、シート状物13を構成するプリプレグ間のエアを抜き、密着性を高めることが好ましい。
Next, as shown in FIG. 2 (a), two square pipes 12 are arranged substantially in parallel on one side of the sheet-like material 13, and both end portions of the sheet-like material 13 are wound around the square pipe 12 to form the square pipe. The preform 14 shown in FIG.
In addition, at the time of manufacture of the preform 14, in order to improve the adhesion between the square pipe 12 and the sheet-like material 13, it is preferable to wipe the outer periphery of the square pipe 12 with an organic solvent such as acetone in advance and degrease it. . In addition, after the both end portions of the sheet-like material 13 are wound around the square pipe 12, a deaeration process is performed, and air between the sheet-like material 13 and the square pipe 12 or between the prepregs constituting the sheet-like material 13. It is preferable to release the air to improve the adhesion.

ついで、図3に示すように、上型21と下型22とからなり、図2(b)のプリフォーム14とほぼ同じ形状のキャビティを形成する金型20を用意する。この金型20のキャビティは、幅W、長さL、高さHの凸部を有する上型21と、幅W、長さL、深さDの凹部を有する下型22とによって形成される。
ついで、この金型20内にプリフォーム14を配置して金型20を閉じ、圧縮成形する。成形温度(金型温度)、成形圧力、成形時間(硬化時間)などの圧縮条件は、シート状物13のプリプレグを構成する熱硬化性樹脂の種類などに応じて適宜決定することができる。また、金型には、適宜必要な抜き勾配を設定することができる。
このように金型20を用いて圧縮成形することにより、プリフォーム14のシート状物13に含まれる熱硬化性樹脂が熱硬化するとともに、熱硬化したシート状物13、すなわちFRP平板本体11と角パイプ12とが一体化し、平板状のFRP板材本体11の片面に2本の角パイプ12を備えた図1のFRP板材10Aを製造することができる。
Next, as shown in FIG. 3, a mold 20 is prepared which comprises an upper mold 21 and a lower mold 22 and forms a cavity having substantially the same shape as the preform 14 of FIG. The cavity of the mold 20 includes an upper mold 21 having a convex portion having a width W 1 , a length L 1 , and a height H 1 , and a lower mold having a concave portion having a width W 2 , a length L 1 , and a depth D 1. 22.
Next, the preform 14 is placed in the mold 20, the mold 20 is closed, and compression molding is performed. Compression conditions such as molding temperature (mold temperature), molding pressure, and molding time (curing time) can be appropriately determined according to the type of thermosetting resin that constitutes the prepreg of the sheet-like material 13. In addition, a necessary draft can be appropriately set for the mold.
Thus, by performing compression molding using the mold 20, the thermosetting resin contained in the sheet-like material 13 of the preform 14 is thermally cured, and the thermally-cured sheet-like material 13, that is, the FRP flat plate body 11 and The FRP plate 10A of FIG. 1 in which the square pipe 12 is integrated and the two square pipes 12 are provided on one side of the flat plate-like FRP plate main body 11 can be manufactured.

このようにして製造されたFRP板材10Aは、金属製部材を備えたものであるため、例えば、FRP板材自体に凹凸が形成されて剛性が付与された板材や、短繊維系材料を用いた後加工によりリブが形成された板材に比べて、より高い剛性を備える。よって、例えば鉄道車両のドアやシートの背もたれの芯材など、高い剛性が要求される用途に好適に使用される。
また、以上説明したFRP板材10Aの製造方法は、プリプレグを具備するシート状物13の片面に、金属製部材を配置し、シート状物13と金属製部材とを金型20で圧縮成形して一体化する方法であって、補強材をFRP板材本体に接着する接着工程や、短繊維系材料を用いたリブの形成などの後加工が不要である。よって、工程数を増加させることなく、高い剛性を備えたFRP板材10Aを製造することができる。
Since the FRP plate material 10A manufactured in this way is provided with a metal member, for example, after using a plate material in which irregularities are formed on the FRP plate material itself and rigidity is provided, or a short fiber material is used. Compared to a plate material on which ribs are formed by processing, it has higher rigidity. Therefore, it is suitably used for applications that require high rigidity, such as railcar doors and seat back cores.
Moreover, the manufacturing method of FRP board | plate material 10A demonstrated above arrange | positions a metal member on the single side | surface of the sheet-like material 13 which comprises a prepreg, and compression-molds the sheet-like material 13 and a metal member with the metal mold | die 20. This is a method of integration, and does not require post-processing such as a bonding step of bonding the reinforcing material to the FRP plate body and formation of a rib using a short fiber material. Therefore, FRP board material 10A provided with high rigidity can be manufactured, without increasing the number of processes.

このような圧縮成形により、金属製部材とFRP板材本体11とを一体化する場合、金属はFRPよりも線膨張係数が大きいため、圧縮成形して得られたFRP板材10Aには、このような金属とFRPとの線膨張係数の差に起因した反り変形が生じやすい。具体的には金属製の角パイプ12の方がFRP板材本体11よりも線膨張係数が大きく圧縮成形後の冷却による収縮が大きいために、図4に要部を拡大して示すように、得られたFRP板材10Aにおいて、角パイプ12の4つの各面に対応する面部分が、それぞれ矢印で示す外側(FRP本体側)に凸に反りやすい。
そこで、このような反り変形を抑制するために、圧縮成形に用いる金型として、そのキャビティが、成形後のFRP板材10Aのこのような反り変形を打ち消す形状に予め形成された金型を用いることが好ましい。具体的には図5に示すように、上型21’および下型22’において、角パイプ12の各面に対応する面部分Pのキャビティ形状がそれぞれ内側(金属製部材側)に凸とされ、反り変形と逆の形状に形成された金型20’を用いる。このようにキャビティが、FRPと金属製部材との線膨張係数の差によって生じるFRP板材10Aの反り変形を打ち消す形状に予め形成されていると、圧縮成形後の冷却により金属製部材が大きく収縮しても、反り変形の抑制されたFRP板材10Aを得ることができる。
なお、キャビティ形状を金属製部材側に凸とする程度は、FRP板材10Aに要求される寸法精度、金属製部材およびFRPの材質(両者の線膨張係数の差の度合い)などに応じて、適宜設定できる。
When the metal member and the FRP plate body 11 are integrated by such compression molding, since the metal has a larger linear expansion coefficient than FRP, the FRP plate material 10A obtained by compression molding has such a Warpage deformation due to the difference in coefficient of linear expansion between metal and FRP tends to occur. Specifically, the metal square pipe 12 has a larger linear expansion coefficient than the FRP plate body 11 and has a larger shrinkage due to cooling after compression molding. Therefore, as shown in FIG. In the obtained FRP plate member 10A, the surface portions corresponding to the four surfaces of the square pipe 12 are likely to warp convexly on the outer side (FRP main body side) indicated by arrows.
Therefore, in order to suppress such warp deformation, a mold whose cavity is formed in advance in a shape that cancels such warp deformation of the molded FRP plate 10A is used as a mold used for compression molding. Is preferred. Specifically, as shown in FIG. 5, in the upper mold 21 ′ and the lower mold 22 ′, the cavity shapes of the surface portions P corresponding to the respective surfaces of the square pipe 12 are respectively convex on the inner side (metal member side). A mold 20 ′ formed in a shape opposite to the warp deformation is used. As described above, when the cavity is formed in advance so as to cancel the warp deformation of the FRP plate 10A caused by the difference in the linear expansion coefficient between the FRP and the metal member, the metal member is greatly contracted by cooling after the compression molding. However, the FRP plate material 10A in which warpage deformation is suppressed can be obtained.
Note that the degree of convexity of the cavity shape toward the metal member side depends on the dimensional accuracy required for the FRP plate 10A, the material of the metal member and the FRP (the degree of difference in linear expansion coefficient between the two), and the like. Can be set.

また、このような反り変形を抑制する方法としては、FRP板材本体11を形成するシート状物を2層以上とし、金属製部材と接する層の樹脂含有量をそれ以外の層の樹脂含有量よりも大きくする方法も挙げられる。金属、熱硬化性樹脂、FRPの線膨張係数の大きさは、金属>熱硬化性樹脂>FRPの順である。よって、金属製部材と接する層の樹脂含有量を大きくして、その層の線膨張係数を大きくして金属製部材の線膨張係数に近づけることによって、線膨張係数の差に起因する反り変形を抑制することができる。この場合、金属製部材と接する層は、長繊維を含まずに樹脂のみからなる、樹脂含有量が100質量%の樹脂層であってもよい。
なお、シート状物が3層以上である場合には、金属製部材と接する層の樹脂含有量がそれ以外の2層以上の層の平均の樹脂含有量よりも大きければよい。
また、シート状物をこのような構成とするとともに、圧縮成形時には図5に示すような金型20’を用いる方法によれば、より反り変形を抑制することができる。
Moreover, as a method of suppressing such warpage deformation, the sheet-like material forming the FRP plate body 11 is made into two or more layers, and the resin content of the layer in contact with the metal member is determined from the resin content of the other layers. A method of increasing the size is also mentioned. The magnitude of the linear expansion coefficient of metal, thermosetting resin, and FRP is in the order of metal> thermosetting resin> FRP. Therefore, by increasing the resin content of the layer in contact with the metal member and increasing the linear expansion coefficient of the layer so as to approach the linear expansion coefficient of the metal member, warping deformation caused by the difference in the linear expansion coefficient is reduced. Can be suppressed. In this case, the layer in contact with the metal member may be a resin layer having a resin content of 100% by mass, which is made of only resin without containing long fibers.
In addition, when a sheet-like object is three or more layers, the resin content of the layer which contact | connects a metal member should just be larger than the average resin content of the other two or more layers.
Moreover, while making a sheet-like object into such a structure, according to the method using metal mold | die 20 'as shown in FIG. 5 at the time of compression molding, curvature deformation can be suppressed more.

以上説明した図1のFRP板材10Aでは、金属製部材である角パイプ12は、FPR板材本体11の片面の両側端部に配置されているが、配置本数、配置パターンは、FRP板材の用途、求められる剛性などに応じて適宜設定でき、特に制限はない。
例えば、図6に示すように、FRP板材本体11の両側端部に加えて、長手方向の一端部にも配置されているコ字状の配置形態や、図7に示すように、両側端部に加えて長手方向の両端部にも配置され、すなわちFRP板材本体11の全外周縁部に亘って枠状に配置されているロ字状の配置形態など、FRP板材本体11の外周縁部の少なくとも一部に配置されている各種形態が例示できる。
また、図8に示すように、FRP板材本体11の全外周縁部に加えて、両側端部の角パイプ12を連結する1本以上の角パイプ12をさらに備えた梯子状の配置形態なども例示できる。これらのいずれの配置パターンの場合でも、角パイプ12の外周はFRP板材本体11により被覆されていることが好ましい。角パイプ12を被覆する際には、プリフォームの製造時において、シート状物に角パイプ12の配置パターンに応じた切込みを入れるなどして、角パイプ12の全外周を被覆できるようにすればよい。
In the FRP plate member 10A of FIG. 1 described above, the square pipes 12 that are metal members are arranged on both side ends of one side of the FPR plate member main body 11, but the number of arrangement and the arrangement pattern are the uses of the FRP plate member, It can be set as appropriate according to the required rigidity and is not particularly limited.
For example, as shown in FIG. 6, in addition to the both side ends of the FRP plate body 11, a U-shaped arrangement that is also arranged at one end in the longitudinal direction, or both side ends as shown in FIG. In addition to the outer peripheral edge of the FRP plate main body 11 such as a square-shaped arrangement which is also arranged at both ends in the longitudinal direction, that is, arranged in a frame shape over the entire outer peripheral edge of the FRP plate main body 11. Various forms arranged at least in part can be exemplified.
Further, as shown in FIG. 8, in addition to the entire outer peripheral edge portion of the FRP plate body 11, a ladder-like arrangement form that further includes one or more square pipes 12 that connect the square pipes 12 at both ends. It can be illustrated. In any of these arrangement patterns, it is preferable that the outer periphery of the square pipe 12 is covered with the FRP plate body 11. When covering the square pipe 12, it is possible to cover the entire outer periphery of the square pipe 12 by cutting the sheet-like material according to the arrangement pattern of the square pipe 12 when manufacturing the preform. Good.

また、この例では、金属製部材として、横断面が四角形である角パイプ12を用いているが、FRP板材の用途、求められる剛性などに応じて、円形、四角形以外の多角形、異形など、任意の横断面形状を備えた中空のパイプを用いることができる。また、金属製部材としては、パイプではなく、外周の一部が開口し、横断面形状が例えばコ字状などの部材や、中空ではない中実の部材などを用いてもよい。しかしながら、パイプは、外周の一部が開口した例えば横断面形状がコ字状などの部材よりも高い剛性を付与でき、かつ、中実の部材よりも軽量である点などで好適である。
さらに、FRP板材の形状としても、図示例のような四角形(長方形)に限定されず、概略平板状であれば、目的に応じて種々の形状にすることができる。
Further, in this example, the square pipe 12 having a rectangular cross section is used as the metal member, but depending on the use of the FRP plate material, required rigidity, etc., a circle, a polygon other than a rectangle, an irregular shape, etc. A hollow pipe with any cross-sectional shape can be used. Further, as the metal member, a member having a part of the outer periphery opened and having a cross-sectional shape of, for example, a U shape, a solid member that is not hollow, or the like may be used instead of the pipe. However, the pipe is suitable in that it can give higher rigidity than a member having a part of the outer periphery opened, for example, a U-shaped cross section, and is lighter than a solid member.
Further, the shape of the FRP plate material is not limited to a quadrangle (rectangular shape) as shown in the illustrated example, and can be various shapes depending on the purpose as long as it is a substantially flat plate shape.

また、FRP板材本体11を構成するシート状物は、少なくとも1層のプリプレグを備えたものであればよく、上述したとおり、1層のプリプレグからなるものでも、2層以上のプリプレグが積層したものでも、さらには、一方の面の最外層に長繊維を含まない熱硬化性樹脂のみからなる樹脂層を備えたものでもよい。
また、シート状物が2層以上のプリプレグを備える場合、各プリプレグに含まれる熱硬化性樹脂の種類は異なっていてもよいが、互いの密着性の観点からは、同じ熱硬化性樹脂であることが好ましい。また、各プリプレグに含まれる長繊維の種類は、同じでも異なっていてもよい。
Further, the sheet-like material constituting the FRP plate material main body 11 only needs to have at least one layer of prepreg, and as described above, even one layer of prepreg is laminated with two or more layers of prepreg. However, the outermost layer on one side may be provided with a resin layer made of only a thermosetting resin not containing long fibers.
Moreover, when a sheet-like material is provided with two or more layers of prepregs, the types of thermosetting resins contained in each prepreg may be different, but from the viewpoint of mutual adhesion, they are the same thermosetting resin. It is preferable. Moreover, the kind of long fiber contained in each prepreg may be the same or different.

図9は、本発明の製造方法により製造されたFRP板材の他の一例を示す斜視図である。
図9のFRP板材10Bは、FRPからなる長方形の概略平板状のFRP板材本体11と、FPR板材本体11の片面において、短手方向の中央部に長手方向に沿って配置され、FRP板材本体11を補強する1枚の金属板(金属製部材)15とを備え、金型での圧縮成形により、FRP板材本体11と金属板15とが一体化したものである。この例のFRP板材10Bの両側端部は、金属板15が配置された側に向けて立ち上がる立上がり部11a,11bになっていて、金属板15は、立上がり部11a、11b以外の部分に長手方向に沿って配置されている。
FIG. 9 is a perspective view showing another example of the FRP plate material manufactured by the manufacturing method of the present invention.
The FRP plate member 10B of FIG. 9 is arranged along the longitudinal direction at the center in the short direction on one side of the rectangular substantially flat plate-like FRP plate member main body 11 made of FRP and the FPR plate member main body 11, and the FRP plate member main body 11 The FRP plate material main body 11 and the metal plate 15 are integrated by compression molding with a metal mold. Both end portions of the FRP plate material 10B of this example are rising portions 11a and 11b that rise toward the side where the metal plate 15 is disposed, and the metal plate 15 extends in the longitudinal direction at portions other than the rising portions 11a and 11b. Are arranged along.

図9のFRP板材10Bは次のようにして製造することができる。
まず、図10に示すように、上型31と下型32からなり、FRP板材10Bに沿う形状のキャビティを形成する金型30を用意する。具体的には、この金型30のキャビティは、立上がり部11a,11bに対応する部分も含めた幅がWで、長さがLであり、所定の絞り量(FRP板材10Bの深さ)となるように形成されたものである。また、金型を閉じた際に上型31と下型32とで形成される隙間のうち、金属板が有る部分(金属板インサート部)に対応する隙間と、金属板が無い部分に対応する隙間は、それぞれ適切な範囲に設定されている。
The FRP plate 10B of FIG. 9 can be manufactured as follows.
First, as shown in FIG. 10, a mold 30 is prepared which includes an upper mold 31 and a lower mold 32 and forms a cavity having a shape along the FRP plate material 10B. Specifically, the cavity of the mold 30, the rising portion 11a, a width W 3 which portion is also included which corresponds to 11b, a length L 2, a predetermined aperture amount (the depth of the FRP plate 10B ). Further, among the gaps formed between the upper mold 31 and the lower mold 32 when the mold is closed, the gap corresponding to the portion with the metal plate (metal plate insert portion) and the portion without the metal plate are supported. Each gap is set to an appropriate range.

一方、FRP板材本体11を形成するためのシート状物として、一方向に配向した長繊維に熱硬化性樹脂が含浸したプリプレグを具備する長方形のシート状物を用意する。この例で用いるシート状物も、少なくとも1層のプリプレグを備えたものであればよいが、この例では、長繊維の配向角度が0°の層と−45°の層と+45°の層とが5層積層した構成となるようにプリプレグを積層した、いわゆる5ply(0/+45/0/−45/0)のシート状物を用いている。   On the other hand, as a sheet-like material for forming the FRP plate body 11, a rectangular sheet-like material comprising a prepreg in which long fibers oriented in one direction are impregnated with a thermosetting resin is prepared. The sheet-like material used in this example may also have at least one prepreg, but in this example, a long fiber orientation angle of 0 °, −45 °, + 45 °, and A so-called 5ply (0 / + 45/0 / −45 / 0) sheet-like material in which prepregs are laminated so as to have a structure in which five layers are laminated is used.

ついで、図10の金型30内にシート状物と金属板とを下側から順次配置して金型30を閉じ、圧縮成形する。成形温度(金型温度)、成形圧力、成形時間(硬化時間)などの圧縮条件は、プリプレグを構成する熱硬化性樹脂の種類に応じて適宜決定することができる。
このように圧縮成形することにより、シート状物に含まれる熱硬化性樹脂が熱硬化するとともに、熱硬化したシート状物(FRP板材本体11)と金属板15とが一体化し、平板状のFRP板材本体11と、その片面に配置された金属板15とが一体化した図9のFRP板材10Bを製造することができる。
Next, the sheet 30 and the metal plate are sequentially arranged from the lower side in the mold 30 shown in FIG. 10, and the mold 30 is closed and compression molded. Compression conditions such as molding temperature (mold temperature), molding pressure, and molding time (curing time) can be appropriately determined according to the type of thermosetting resin constituting the prepreg.
By performing compression molding in this manner, the thermosetting resin contained in the sheet-like material is thermoset, and the thermally-cured sheet-like material (FRP plate body 11) and the metal plate 15 are integrated to form a flat plate-like FRP. The FRP plate 10B of FIG. 9 in which the plate main body 11 and the metal plate 15 arranged on one side thereof are integrated can be manufactured.

図9の例のFRP板材10Bにおいても、金属とFRPの線膨張係数の差に起因した反り変形が生じやすい。具体的には図11に示すように、金属板15の方がFRP板材本体11よりも線膨張係数が大きく、より収縮するために、FRP板材本体11側に凸に反りやすい。また、この例のように、長尺なFRP板材10Bの場合には、短手方向よりも長手方向の反りが顕著となり、主に長手方向に湾曲した反り形状となりやすい。
そこで、この例の場合にも、反り変形を抑制するために、圧縮成形に用いる金型として、そのキャビティが、成形後のFRP板材のこのような反り変形を打ち消す形状に予め形成された金型を用いることが好ましい。具体的には、図12のイメージ図に示すように、反り変形に応じた所定の曲率で、長手方向のキャビティCの形状が金属板15の配置された側(図12中上側)に凸となるように湾曲した金型を用いる。図12の金型では、このような湾曲により、キャビティCの上型側の長さL’が下型側の長さL’’よりもやや長くなっている。
これにより、圧縮成形後に金属製部材である金属板15が大きく収縮しても、長手方向の反り変形の抑制されたFRP板材10Bを得ることができる。
なお、短手方向の反りも抑制する必要がある場合には、短手方向のキャビティ形状についても同様に金属板15側に凸に湾曲させた金型を用いればよい。また、キャビティ形状を金属製部材側に凸とする程度は、FRP板材10Bに要求される寸法精度、金属製部材およびFRPの材質(両者の線膨張係数の差の度合い)などに応じて、適宜設定できる。
Also in the FRP plate member 10B of the example of FIG. 9, warp deformation is likely to occur due to the difference in the linear expansion coefficient between the metal and the FRP. Specifically, as shown in FIG. 11, the metal plate 15 has a larger coefficient of linear expansion than the FRP plate material body 11 and contracts more easily, so that the metal plate 15 is likely to warp convex toward the FRP plate material body 11 side. Further, as in this example, in the case of the long FRP plate material 10B, the warpage in the longitudinal direction becomes more remarkable than the short direction, and the warp shape is mainly curved in the longitudinal direction.
Therefore, also in this example, in order to suppress warping deformation, as a mold used for compression molding, a mold whose cavity is formed in advance in a shape that cancels such warping deformation of the molded FRP plate material. Is preferably used. Specifically, as shown in the image diagram of FIG. 12, the shape of the cavity C in the longitudinal direction is convex toward the side where the metal plate 15 is disposed (upper side in FIG. 12) with a predetermined curvature corresponding to warp deformation. A curved mold is used. In the mold shown in FIG. 12, due to such a curvature, the length L 2 ′ on the upper mold side of the cavity C is slightly longer than the length L 2 ″ on the lower mold side.
Thereby, even if the metal plate 15 which is a metal member contracts greatly after compression molding, the FRP plate material 10B in which warpage deformation in the longitudinal direction is suppressed can be obtained.
In addition, when it is necessary to suppress the warpage in the short direction, a mold that is convexly curved toward the metal plate 15 may be used for the cavity shape in the short direction. Further, the degree of convexity of the cavity shape toward the metal member side is appropriately determined according to the dimensional accuracy required for the FRP plate 10B, the material of the metal member and the FRP (the degree of difference in linear expansion coefficient between the two), and the like. Can be set.

また、この例の場合にも、シート状物を2層以上から構成し、金属板15と接する層の樹脂含有量をそれ以外の層の樹脂含有量よりも大きくすることによって、上述のような線膨張係数の差に起因した反り変形を抑制することができる。また、このように樹脂含有量が調整されたシート状物を用いるとともに、成形後のFRP板材の反り変形を打ち消す形状にキャビティが予め形成された金型を用いることも好ましい。   Also in this example, the sheet-like material is composed of two or more layers, and the resin content of the layer in contact with the metal plate 15 is made larger than the resin content of the other layers as described above. Warpage deformation due to the difference in linear expansion coefficient can be suppressed. In addition, it is also preferable to use a sheet-like material whose resin content is adjusted as described above and a mold in which a cavity is formed in advance so as to cancel the warp deformation of the molded FRP plate.

以上説明した製造方法により製造されたFRP板材10A,10Bの用途には特に制限はなく、例えば鉄道車両のドアやシートの背もたれの芯材、自動車部材、鉄道車両外面部部材、船舶用部材、産業機械用部材などとして好適に使用できる。   There is no particular limitation on the use of the FRP plate members 10A and 10B manufactured by the manufacturing method described above. For example, a core material of a backrest of a door or seat of a railway vehicle, an automobile member, a railcar outer surface member, a marine member, an industry It can be suitably used as a machine member.

以下、本発明について、実施例を挙げて具体的に説明する。
[実施例1]
図1に示すように、長方形の平板状のFRP板材本体11と、FPR板材本体11の片面において、長手方向の両側端部に沿って配置された2本の金属製の角パイプ12とを備えたFRP板材10Aを次のようにして製造した。
まず、一方向に配向した長繊維(炭素繊維)に熱硬化性樹脂(エポキシ樹脂)が含浸した一方向プリプレグ(樹脂含有量:30質量%、厚み0.2mm、三菱レイヨン(株)製「TR391E250S」)を用意し、長繊維の配向角度が0°の層と90°の層とが5層積層した構成となるように該プリプレグを積層し、5ply(0/90/0/90/0)のシート状物(300mm×300mm)を作製した。
ついで、図2に示すように、このシート状物13の片面に、角パイプ12を略平行に配置し、シート状物13の両側端部を角パイプ12に巻き付けて角パイプ12の外周を覆い、プリフォーム14を製造した。
角パイプ12としては、横断面が28mm×28mmの正方形であり、長さが300mm、厚みが2mmである鋼材(SS400)製角パイプを用いた。
また、プリフォーム14の製造に際しては、角パイプ12とシート状物13との付着性を高めるために、あらかじめ角パイプ12の外周をアセトンで拭く脱脂処理を行った。そして、シート状物13の両側端部を角パイプ12に巻き付けた後には、角パイプ12の両端にゴム材で栓をしたうえで脱気処理(デバルク)を行い、シート状物13と角パイプ12との間のエアや、シート状物13の層間のエアを抜き、密着性を向上させた。
ついで、図3に示す金型20を用意し、金型20内にプリフォーム14を配置して金型20を閉じ、圧縮成形した。その後、金型20を開き、図1のFRP板材10Aを得た。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example 1]
As shown in FIG. 1, a rectangular flat plate-shaped FRP plate material main body 11 and two metal square pipes 12 arranged on both sides in the longitudinal direction on one side of the FPR plate material main body 11 are provided. The FRP plate material 10A was manufactured as follows.
First, a unidirectional prepreg (resin content: 30% by mass, thickness 0.2 mm, manufactured by Mitsubishi Rayon Co., Ltd.) “TR391E250S” in which long fibers (carbon fibers) oriented in one direction are impregnated with a thermosetting resin (epoxy resin). )), And the prepreg is laminated so that a layer in which the orientation angle of the long fiber is 0 ° and 90 ° is laminated, and 5 ply (0/90/0/90/0) A sheet-like material (300 mm × 300 mm) was prepared.
Next, as shown in FIG. 2, the square pipe 12 is arranged substantially in parallel on one side of the sheet-like material 13, and both end portions of the sheet-like material 13 are wound around the square pipe 12 to cover the outer periphery of the square pipe 12. A preform 14 was manufactured.
As the square pipe 12, a square pipe made of steel (SS400) having a square cross section of 28 mm × 28 mm, a length of 300 mm, and a thickness of 2 mm was used.
Further, when the preform 14 was manufactured, a degreasing process was performed in which the outer periphery of the square pipe 12 was wiped with acetone in advance in order to improve the adhesion between the square pipe 12 and the sheet-like material 13. And after winding the both ends of the sheet-like material 13 around the square pipe 12, the both ends of the square pipe 12 are plugged with rubber material, and then deaeration treatment (debulk) is performed. 12 and the air between the layers of the sheet-like material 13 were removed to improve the adhesion.
Next, the mold 20 shown in FIG. 3 was prepared, the preform 14 was placed in the mold 20, the mold 20 was closed, and compression molding was performed. Thereafter, the mold 20 was opened to obtain the FRP plate material 10A shown in FIG.

圧縮成形条件、用いた金型20のサイズは以下のとおりである。
成形温度(金型温度):上型140℃、下型140℃
成形圧力:3.6MPa
成形時間(硬化時間):600秒
上型の凸部:幅W=40mm、長さL=300mm、高さH=39mm
下型の凹部:幅W=100mm、長さL=300mm、深さD=30mm
The compression molding conditions and the size of the mold 20 used are as follows.
Molding temperature (mold temperature): upper mold 140 ° C, lower mold 140 ° C
Molding pressure: 3.6 MPa
Molding time (curing time): 600 seconds Upper convex portion: width W 1 = 40 mm, length L 1 = 300 mm, height H 1 = 39 mm
Lower mold recess: width W 2 = 100 mm, length L 1 = 300 mm, depth D 1 = 30 mm

[実施例2]
図9に示すように、長方形の平板状のFRP板材本体11と、FPR板材本体の片面において、短手方向の中央部に長手方向に沿って配置された1枚の金属板15とを備えたFRP板材10Bを次のようにして製造した。
まず、一方向に配向した長繊維(炭素繊維)に熱硬化性樹脂(エポキシ樹脂)が含浸した一方向プリプレグ(樹脂含有量:30質量%、厚み0.2mm)を用意し、長繊維の配向角度が0°の層と−45°の層と+45°の層とが5層積層した構成となるように該プリプレグを積層し、5ply(0/+45/0/−45/0)のシート状物(110mm×400mm)を作製した。
ついで、図10に示す金型30を用意した。
そして下型上に、シート状物と金属板(鋼材平板:79mm×399mm×2mm(t))15とを順次配置して金型30を閉じ、実施例1と同じ条件で圧縮成形した。その後、金型30を開き、図9のFRP板材10Bを得た。
なお、金型30を閉じて形成されるキャビティは以下のサイズである。
幅W=100mm
長さL=400mm
絞り量(深さ)=10mm
金属板が有る部分(金属板インサート部)に対応する隙間=4mm
金属板が無い部分に対応する隙間=2mm
[Example 2]
As shown in FIG. 9, a rectangular flat plate-shaped FRP plate material main body 11 and a single metal plate 15 arranged along the longitudinal direction at the central portion in the short direction on one side of the FPR plate material main body were provided. FRP board material 10B was manufactured as follows.
First, a unidirectional prepreg (resin content: 30% by mass, thickness 0.2 mm) in which a unidirectionally oriented long fiber (carbon fiber) is impregnated with a thermosetting resin (epoxy resin) is prepared. The prepreg is laminated so that five layers of a 0 ° layer, a −45 ° layer, and a + 45 ° layer are laminated, and a sheet shape of 5 ply (0 / + 45/0 / −45 / 0) is obtained. The thing (110 mm x 400 mm) was produced.
Next, a mold 30 shown in FIG. 10 was prepared.
Then, a sheet-like material and a metal plate (steel plate: 79 mm × 399 mm × 2 mm (t)) 15 were sequentially arranged on the lower mold, the mold 30 was closed, and compression molding was performed under the same conditions as in Example 1. Then, the metal mold | die 30 was opened and the FRP board | plate material 10B of FIG. 9 was obtained.
Note that the cavity formed by closing the mold 30 has the following size.
Width W 3 = 100mm
Length L 2 = 400mm
Aperture amount (depth) = 10 mm
The gap corresponding to the part with the metal plate (metal plate insert) = 4mm
The gap corresponding to the part where there is no metal plate = 2mm

[実施例3]
シート状物として、一方の表面を構成する層(配向角度0°の層)のみ、プリプレグの樹脂含有量を40質量%とし、それ以外の4層のプリプレグの樹脂含有量を30質量%とした5plyのシート状物を用いた以外は、実施例2と同様にして、図9のFRP板材11Bを圧縮成形により得た。なお、樹脂含有量が40質量%とされた層と金属板15とが接するように、これらを金型30内に配置した。
[Example 3]
As a sheet-like material, only the layer constituting one surface (layer having an orientation angle of 0 °) has a resin content of the prepreg of 40% by mass, and the resin content of the other four layers of the prepreg is 30% by mass. The FRP plate 11B of FIG. 9 was obtained by compression molding in the same manner as in Example 2 except that a 5 ply sheet was used. In addition, these were arrange | positioned in the metal mold | die 30 so that the layer by which resin content was 40 mass% and the metal plate 15 contact | connected.

[実施例4]
図12に示すように、長手方向のキャビティCの形状が金属板側に凸となるように湾曲した金型を用いた以外は、実施例2と同様にして、図9のFRP板材10Bを得た。具体的には、キャビティCの上型側の長さL’が400.44mm、下型側の長さL2’’が400.01mmとなるような曲率で湾曲した金型を用いた。
[Example 4]
As shown in FIG. 12, the FRP plate material 10B of FIG. 9 is obtained in the same manner as in Example 2 except that a mold that is curved so that the shape of the cavity C in the longitudinal direction is convex toward the metal plate side is used. It was. Specifically, a mold that was curved with such a curvature that the length L 2 ′ on the upper mold side of the cavity C was 400.44 mm and the length L 2 ″ on the lower mold side was 400.01 mm was used.

以上の各実施例によれば、工程数を増加させることなく、高い剛性を備えたFRP板材を製造することができた。
また、特に実施例2と、実施例3および4とで得られたFRP板材を比較すると、実施例2で得られたFRP板材には、FRP板材本体側に凸の反り変形が認められたが、実施例3および4で得られた各FRP板材にはこのような反り変形はほとんど認められず、実施例3および4の方法によれば、FRP板材の反り変形を抑制できることが明らかであった。
According to each of the above examples, an FRP plate having high rigidity could be manufactured without increasing the number of steps.
In particular, when the FRP plate materials obtained in Example 2 and Examples 3 and 4 were compared, the FRP plate material obtained in Example 2 was found to have a convex warpage deformation on the FRP plate material main body side. The FRP plate materials obtained in Examples 3 and 4 hardly show such warp deformation, and according to the methods of Examples 3 and 4, it was clear that the warp deformation of the FRP plate material can be suppressed. .

10A,10B 繊維強化樹脂板材
12 角パイプ(金属製部材)
13 シート状物
15 金属板(金属製部材)
20,30 金型
C キャビティ
10A, 10B Fiber reinforced resin plate 12 Square pipe (metal member)
13 Sheet 15 Metal plate (metal member)
20, 30 Mold C Cavity

Claims (1)

長繊維に熱硬化性樹脂が含浸したプリプレグを具備するシート状物の少なくとも一部に、金属製部材を配置し、前記シート状物と前記金属製部材とを金型で圧縮成形し一体化する、繊維強化樹脂板材の製造方法であって、
前記シート状物は2層以上から構成され、前記シート状物の前記金属製部材と接する層の樹脂含有量が、それ以外の層の樹脂含有量よりも大きい、繊維強化樹脂板材の製造方法。
A metal member is disposed on at least a part of a sheet-like material having a prepreg in which a long-fiber is impregnated with a thermosetting resin, and the sheet-like material and the metal member are compression-molded and integrated with a mold. A method for producing a fiber-reinforced resin plate ,
The said sheet-like material is comprised from two or more layers, The manufacturing method of the fiber reinforced resin board | plate material whose resin content of the layer which contact | connects the said metal members of the said sheet-like material is larger than the resin content of the other layer.
JP2011029698A 2011-02-15 2011-02-15 Manufacturing method of fiber reinforced resin sheet Active JP5786352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029698A JP5786352B2 (en) 2011-02-15 2011-02-15 Manufacturing method of fiber reinforced resin sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029698A JP5786352B2 (en) 2011-02-15 2011-02-15 Manufacturing method of fiber reinforced resin sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015012270A Division JP5958569B2 (en) 2015-01-26 2015-01-26 Manufacturing method of fiber reinforced resin sheet

Publications (2)

Publication Number Publication Date
JP2012166463A JP2012166463A (en) 2012-09-06
JP5786352B2 true JP5786352B2 (en) 2015-09-30

Family

ID=46971098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029698A Active JP5786352B2 (en) 2011-02-15 2011-02-15 Manufacturing method of fiber reinforced resin sheet

Country Status (1)

Country Link
JP (1) JP5786352B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986484B2 (en) * 2012-10-10 2015-03-24 The Boeing Company Shape-distorting tooling system and method for curing composite parts
JP6459557B2 (en) * 2015-01-27 2019-01-30 日本精工株式会社 Manufacturing method of housing member and cover member of gear box of electric power steering apparatus
JP7033022B2 (en) * 2018-06-29 2022-03-09 ダイキョーニシカワ株式会社 Fiber reinforced panel and its manufacturing method
CN109984895A (en) * 2019-04-04 2019-07-09 厦门新凯复材科技有限公司 A kind of composite fibre plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866989A (en) * 1994-06-24 1996-03-12 Kobe Steel Ltd Irregular shape fiber reinforced plastic and its manufacture
JP3129606B2 (en) * 1994-08-17 2001-01-31 住友ベークライト株式会社 Composite molding

Also Published As

Publication number Publication date
JP2012166463A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5597134B2 (en) Molding method of molding material
JP5315713B2 (en) Method for manufacturing preform for FRP member
US20060280927A1 (en) Lightweight composite fairing bar an method for manufacturing the same
JP5786352B2 (en) Manufacturing method of fiber reinforced resin sheet
JP5958569B2 (en) Manufacturing method of fiber reinforced resin sheet
JP2015178241A (en) Method of producing fiber-reinforced resin material
WO2012077430A1 (en) Method for manufacturing composite material
JP5682843B2 (en) Long fiber reinforced resin molded body and method for producing the same
JP5427503B2 (en) FIBER-REINFORCED RESIN COMPONENT, ITS MANUFACTURING METHOD, AND MANUFACTURING DEVICE
EP3081373B1 (en) Composite material structure
JP4941811B2 (en) Manufacturing method of preform and FRP molded body
JP5023785B2 (en) Fiber reinforced plastic
JP5992946B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JP6955872B2 (en) Fiber reinforced plastic molded product
JP5064981B2 (en) Fiber reinforced composite material
WO2014156682A1 (en) Fiber-reinforced resinous vehicular floor structure and manufacturing method of same
JPWO2019069639A1 (en) Method for manufacturing fiber-reinforced resin member, fuel tank, and fiber-reinforced resin member
KR101932635B1 (en) Composite material article manufacturing method
KR20190134132A (en) Composite rim of wheel for vehiclepiston pin and manufacturing method of the same
JP4459401B2 (en) Composite beam forming method
KR20130105873A (en) Molding die
JP4971645B2 (en) Body structure and vehicle
JP6858541B2 (en) Manufacturing method of composite material molded product
JP2018153950A (en) Method of manufacturing composite structure of CFRP member and metal member
US20180051142A1 (en) Method and system of producing fiber reinforced plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250