JP6545290B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP6545290B2
JP6545290B2 JP2017563772A JP2017563772A JP6545290B2 JP 6545290 B2 JP6545290 B2 JP 6545290B2 JP 2017563772 A JP2017563772 A JP 2017563772A JP 2017563772 A JP2017563772 A JP 2017563772A JP 6545290 B2 JP6545290 B2 JP 6545290B2
Authority
JP
Japan
Prior art keywords
air
humidity
pressure
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017563772A
Other languages
English (en)
Other versions
JPWO2017130675A1 (ja
Inventor
浅野 誠二
誠二 浅野
赤城 好彦
好彦 赤城
伸也 眞戸原
伸也 眞戸原
一浩 押領司
一浩 押領司
鈴木 邦彦
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2017130675A1 publication Critical patent/JPWO2017130675A1/ja
Application granted granted Critical
Publication of JP6545290B2 publication Critical patent/JP6545290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0418Air humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Fluid Pressure (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、エンジンの制御装置に関する。
本発明の従来の技術は、吸気管圧力を算出するのに理想気体の状態方程式P・V=M・R・Tを用いて算出している。Pが吸気管内圧力、Vが吸気管容積、Mが吸気管内の空気の質量、Rが気体定数、Tが吸気管内の気体温度である。本理想気体の状態方程式は本願でも用いられるが、従来技術は空気のモル数の湿度変化により、気体定数Rが変化することが考慮されていなかった。
特許第2908924号公報
本発明は、エンジンの吸気管圧力を算出する制御装置において、空気の湿度を計測、空気の総モル数変化による気体定数の変化を是正し、前記吸気管圧力の算出値の精度を向上させることを目的とする。
上記課題を解決するために本発明は、エンジンの吸気通路に設けられたスロットル絞り弁を通過する空気量を計測する空気量計測部と、前記スロットル絞り弁を通過する空気の湿度を計測する湿度計測部と、が取り付けられた前記エンジンを制御する制御装置において、前記空気量計測部の計測結果に基づいて前記エンジンのシリンダへ流入する空気量を算出する空気量算出部と、前記空気量計測部により計測された空気量と、前記空気量算出部により算出された空気量と、前記湿度計測部により計測された湿度とに基づいて、前記スロットル絞り弁の下流側のインテークマニフォールドの圧力を算出する圧力算出部と、を備えたことを特徴とする。
本発明によれば、吸気管圧力を算出するための気体定数Rに湿度を考慮して補正するため、大気の湿度変化時の吸気管圧力算出値の精度を上げることができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置が制御するエンジン回りの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの他の例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置が制御するエンジン回りの他の例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の内部構成の一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の基本部分の制御のブロック図の図1の例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の基本部分の制御のブロック図の図3の例。 図7のスロットル通過空気流量の具体的な求め方の一例。 式9の理論式をマイコンで演算するブロック図を表したもの。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の算出圧の出力の例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の排気ガス還流装置を備えた場合の一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図1の詳細なフローチャートの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図3の詳細なフローチャートの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図6の詳細なフローチャートの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図7の詳細なフローチャートの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図8の詳細なフローチャートの一例。 本発明の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図9の詳細なフローチャートの一例。
以下、本発明の実施例について図面を用いて説明する。
以下、本発明の実施例について図を用いて説明する。図1は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの一例である。エンジン回転数計算手段101は、エンジンの所定のクランク角度位置に設定されたクランク角度センサの電気的な信号、おもにパルス信号変化の単位時間当たりの入力数をカウントし、演算処理することで、エンジンの単位時間当りの回転数を計算する。吸入空気量計算手段102は、H/Wセンサ出力、吸気温センサ出力、湿度センサ出力、大気圧センサ出力、及び前述のエンジン回転数で、吸気管圧力算出値を計算し、それらを用いてエンジンのシリンダに流入する空気量を演算する。基本燃料計算手段103は、エンジン回転数計算手段101で演算されたエンジンの回転数、及び前述のエンジンのシリンダへ流入する空気量により、各領域におけるエンジンの要求する基本燃料及びエンジン負荷指標を計算する。基本燃料補正係数計算手段104は、エンジン回転数計算手段101で演算されたエンジンの回転数、エンジン負荷により、基本燃料計算手段103で計算された基本燃料のエンジンの各運転領域における補正係数を計算する。
基本点火時期計算手段105は、前述のエンジン回転数、及び前述のエンジン負荷によりエンジンの各領域における最適な点火時期をマップ検索等で決定する。加減速判定手段106は、前述のスロットル開度からエンジンの過渡判定を行い、過渡に伴う加減速燃料補正、及び加減速展示補正量を演算する。吸排バルブタイミング設定手段107は、エンジン回転数計算手段101で演算されたエンジン回転数、及びエンジン負荷により、エンジンに最適な吸気及び排気バルブの開閉タイミングを決定するブロックである。
空燃比帰還制御係数計算手段108は、エンジンの排気管に設定された酸素濃度センサの出力から、エンジンに供給される燃料と空気の混合気が後述する目標空燃比に保たれるように空燃比帰還制御係数を計算する。尚、前述の酸素濃度センサは、本実施例では、排気空燃比に対して比例的な信号を出力するものを示しているが、排気ガスが理論空燃比に対して、リッチ側/リーン側の2つの信号を出力するものでも差し支えはない。
目標空燃比設定手段109は、前述のエンジン回転数、及び前述のエンジン負荷によりエンジンの各領域における最適な目標空燃比をマップ検索等で決定する。本ブロックで決定された目標空燃比は、空燃比帰還制御係数計算手段108の空燃比帰還制御に用いられる。目標空燃比設定手段109は、基本燃料計算手段103で演算された基本燃料を基本燃料補正係数計算手段104の基本燃料補正係数、加減速判定手段106の加減速燃料補正量、及び空燃比帰還制御係数計算手段108の空燃比帰還制御係数等による補正を施す。点火時期補正手段111は、基本燃料補正係数計算手段104でマップ検索された点火時期を、前述の加減速判定手段106の加減速燃料補正量等で補正を施す。
気筒燃料噴射手段112〜115は、基本燃料補正手段110で計算された燃料量をエンジンに供給する燃料噴射手段である。気筒点火手段116〜119は、点火時期補正手段111で補正されたエンジンの要求点火時期に応じてシリンダに流入した燃料混合気を点火する点火手段である。吸気バルブ制御手段120、排気バルブ制御手段121は、吸排バルブタイミング設定手段107で計算された吸排バルブの開閉タイミングを制御する。
図2は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置が制御するエンジン回りの一例を示している。H/Wセンサ201はスロットル部を通過する空気の湿度を計測する湿度センサ201_aが一体となったエンジンのスロットル部を通過する空気量を計測する。エンジンの吸気通路に設けられたスロットル絞り弁202は吸入する空気量を運転者の開度調整をモータにより制限する。大気圧センサ203は大気の圧力を計測する。圧力センサ205は、吸気管204内の空気の温度を計測する吸気温センサ205_aが一体となった吸気管204内の圧力を計測する。燃料噴射弁206はエンジンの要求する燃料を供給する。吸気バルブ制御装置207_aはエンジンの所定のクランク角度位置に設定されたクランク角度センサ207が一体となったエンジンの空気の吸気するタイミングをコントロールする。
排気バルブ制御装置208はエンジンの排気ガスを排気するタイミングをコントロールする。点火モジュール208はエンジンのシリンダ内に供給された燃料の混合気に点火する点火栓に、エンジン制御装置214の点火信号に基づいて点火エネルギを供給する。水温センサ209はエンジンのシリンダブロックに設定されエンジンの冷却水温を検出する。水温センサ210は、エンジンの冷却水温の温度を計測する。酸素濃度センサ211はエンジンの排気管に設定され排気ガス中の酸素濃度を検出する。三元触媒212は、排気管の前記酸素濃度センサ後方に設置されている。またエンジン制御装置214はエンジンの運転、停止のメインスイッチであるイグニッションキイスイッチ213、及びエンジンの各補器類を制御する。
尚、本実施例では湿度センサ201_aとH/Wセンサ201が一体となっているが別体でも問題無い。H/Wセンサ201は熱式空気流量計であると良い。これにより吸気温度の影響を受けず、空気の質量流量を計測することができる。同様に吸気温センサ205_aと圧力センサ205、及びクランク角度センサ207と吸気バルブ制御装置207_aが一体となっているが別体でも問題はない。また湿度センサ201_aはH/Wセンサ201を一体となってスロットルを通過する空気の湿度を計測するようになっているが、前述のように別体としてインテークマニフォールド内の空気の湿度を計測してもよい。
図5は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の内部構成の一例である。CPU501の内部にはエンジンに設置された各センサの電気的信号をデジタル演算処理用の信号に変換、及びデジタル演算用の制御信号を実際のアクチュエータの駆動信号に変換するI/O 部502が設定されている。I/O部502には、吸入空気量センサ503、湿度センサ504、吸気管圧力センサ505、吸気温度センサ506、大気圧センサ507、水温センサ508、クランク角センサ509、スロットル開度センサ510、酸素濃度センサ511及びイグニッションSW512が入力されている。CPU501からの出力信号ドライバ513を介して、燃料噴射弁514〜517、点火コイル518〜521、吸気バルブ位相可変手段522及び排気バルブ位相可変手段523へ出力信号が送られる。
図6は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の基本部分の制御のブロック図の図1の例である。具体的には、図5で示したエンジン制御装置のCPU501は、図6で示すそれぞれの機能ブロックにより図2で示したエンジンの制御を行う。H/Wセンサ601の流量に応じた出力電圧は、ハードフィルタ602でフィルタリングを施され、さらにフィルタリング603でソフトフィルタを施される。フィルタリングを施された空気流量の出力電圧値は、ブロック604で、その電圧に応じた空気流量にテーブル検索にて変換される。エンジン制御装置のCPU501はH/Wセンサ601(空気量計測部)の計測結果に基づいてエンジンのシリンダへ流入する空気量を算出する空気量算出部(ブロック604)を有する。
ブロック605は、本実施例の基本部分のブロックであり、本ブロックに入力された吸気温度THA、湿度センサ出力RH、大気圧Patmを用いて湿度による気体定数の補正を行っている。つまり、エンジン制御装置のCPU501は吸気温度THAと湿度計測部(湿度センサ201_a)により計測された大気の湿度(湿度センサ出力RH)と大気圧Patmを用いて後述する式9に従って、気体定数を補正する気体定数補正部(ブロック605)を有する。
ブロック606はブロック605で補正された気体定数を使って吸気管内の圧力を算出するものであり、ブロック607は前記算出された圧力、吸気温度、及びエンジン回転数によりシリンダへ流入する空気量を計算するものである。つまり、エンジン制御装置のCPU501は、H/Wセンサ601(空気量計測部)により計測された空気量と、空気量算出部(ブロック604)により算出された空気量と、湿度計測部(湿度センサ201_a)により計測された大気の湿度とに基づいて、インテークマニフォールドの圧力を算出する圧力算出部(ブロック606)を有する。
ブロック606内部では、式1の(1)の吸気管に入る空気量(H/Wセンサ軽量空気量QA00)と吸気管から出る空気量(シリンダ流入空気量QAR)に補正された気体定数を含む理論係数を乗じたものを吸気管内の圧力変化分として求めている。尚、マイコン演算故、連続値に対しては式1の(2)に示すように計算周期ΔTとして、式1の(1)にZ変換を施したもので実際は演算している。ブロック607では、式1の(3)の式を演算してシリンダ流入空気量を求めている。
Figure 0006545290
以上のように本実施例では、式9に従って、気体定数補正部(ブロック605)で湿度センサ出力RHを用いて気体定数を補正し、この補正した気体定数を用いて圧力算出部(ブロック606)でインテークマニフォールドの圧力を算出するため、より精度良くインテークマニフォールドの圧力を算出することが可能である。
図3は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの他の例である。エンジン回転数計算手段301は、エンジンの所定のクランク角度位置に設定されたクランク角度センサの電気的な信号、おもにパルス信号変化の単位時間当たりの入力数をカウントし、演算処理することで、エンジンの単位時間当りの回転数を計算する。吸入空気量計算手段302は、H/Wセンサ出力、吸気温センサ出力、スロットルセンサ出力、湿度センサ出力、及び大気圧センサで、タービン−スロットル間圧力算出値、スロットル空気量、吸気管圧力算出値を演算し、それらを用いてエンジンのシリンダに流入する空気量を演算する。基本燃料計算手段303は、エンジン回転数計算手段301で演算されたエンジンの回転数、及び前述のエンジンのシリンダへ流入する空気量により、各領域におけるエンジンの要求する基本燃料及びエンジン負荷指標を計算する。基本燃料補正係数計算手段304は、エンジン回転数計算手段301で演算されたエンジンの回転数、前述のエンジン負荷により、基本燃料計算手段303で計算された基本燃料のエンジンの各運転領域における補正係数を計算する。基本点火時期計算手段305は、前述のエンジン回転数、及び前述のエンジン負荷によりエンジンの各領域における最適な点火時期をマップ検索等で決定する。加減速判定手段306は、前述のスロットル開度からエンジンの過渡判定を行い、過渡に伴う加減速燃料補正、及び加減速展示補正量を演算する。吸排バルブタイミング設定手段307は、前述のエンジン回転数、及び前述のエンジン負荷により、エンジンに最適な吸気及び排気バルブの開閉タイミングを決定する。空燃比帰還制御係数計算手段308は、エンジンの排気管に設定された酸素濃度センサの出力から、エンジンに供給される燃料と空気の混合気が後述する目標空燃比に保たれるように空燃比帰還制御係数を計算する。尚、前述の酸素濃度センサは、実施例では、排気空燃比に対して比例的な信号を出力するものを示しているが、排気ガスが理論空燃比に対して、リッチ側/リーン側の2つの信号を出力するものでも差し支えはない。
目標空燃比設定手段309は、前述のエンジン回転数、及び前述のエンジン負荷によりエンジンの各領域における最適な目標空燃比をマップ検索等で決定する。本ブロックで決定された目標空燃比は、空燃比帰還制御係数計算手段308の空燃比帰還制御に用いられる。基本燃料補正手段310は、基本燃料計算手段303で演算された基本燃料を基本燃料補正係数計算手段304の基本燃料補正係数、加減速判定手段306の加減速燃料補正量、及び空燃比帰還制御係数計算手段308の空燃比帰還制御係数等による補正を施す。点火時期補正手段311は、基本燃料補正係数計算手段304でマップ検索された点火時期を、加減速判定手段306の加減速燃料補正量等で補正を施す。
気筒燃料噴射手段312〜315は、基本燃料補正手段310で計算された燃料量をエンジンに供給する。気筒点火手段316〜319は、点火時期補正手段311で補正されたエンジンの要求点火時期に応じてシリンダに流入した燃料混合気を点火する。吸気バルブ制御手段320、吸気バルブ制御手段321は、吸排バルブタイミング設定手段307で計算された吸排バルブの開閉タイミングを制御する。
図4は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置が制御するエンジン回りの他の例を示している。エンジン400には、スロットル部を通過する空気の湿度を計測する湿度センサ401_aが一体となったエンジンのスロットル部を通過する空気量を計測するH/Wセンサ401が取り付けられる。またエンジン400には、H/Wセンサ401の下流側に設定され排気側のタービンに連動して吸入する空気量を加圧する過給器402、吸入する空気量を運転者の開度調整によりモータにより制限するスロットル絞り弁403、大気の圧力を計測する大気圧センサ404、吸気管405内の空気の温度を計測する吸気温センサ406_aが一体となった吸気管405内の圧力を計測する圧力センサ406が取り付けられる。つまり、H/Wセンサ401は過給器402に流入する空気の湿度を湿度センサ401_aで計測するとともにこの空気量を計測する。
またエンジン400には、エンジンの要求する燃料を供給する燃料噴射弁407、エンジンの所定のクランク角度位置に設定されたクランク角度センサ408が一体となったエンジンの空気の吸気するタイミングをコントロールする吸気バルブ制御装置408_a、エンジンのシリンダ内に供給された燃料の混合気に点火する点火栓に、エンジン制御装置414の点火信号に基づいて点火エネルギを供給する点火モジュール409が取り付けられる。さらにエンジンの排気ガスを排気するタイミングをコントロールする排気バルブ制御装置410、エンジンのシリンダブロックに設定されエンジンの冷却水温を検出する水温センサ411、エンジンの排気管に設定され排気ガス中の酸素濃度を検出する酸素濃度センサ412、エンジンの運転、停止のメインスイッチであるイグニッションキイスイッチ413、及びエンジンの各補器類を制御するエンジン制御装置414などがエンジン400には取り付けられる。尚、図2同様に湿度センサ401_aとH/Wセンサ401が一体となっているが別体でも問題無い。同様に吸気温センサ406_aと圧力センサ406、及びクランク角度センサ208と吸気バルブ制御装置408_aが一体となっているが別体でも問題はない。
また湿度センサ401_aはH/Wセンサ401を一体となってスロットルを通過する空気の湿度を計測するようになっているが、前述のように別体としてタービン−スロットル間、もしくはインテークマニフォールド内の空気の湿度を計測してもよい。
図7は、本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の基本部分の制御のブロック図の図3の例である。具体的には、図5で示したエンジン制御装置のCPU501は、図7で示すそれぞれの機能ブロックにより図4で示したエンジンの制御を行う。ブロック701は吸気温度THA、湿度センサ出力RH、及び大気圧Patmを使って湿度による気体定数の補正を行うブロックである。つまり、エンジン制御装置のCPU501は吸気温度THAと湿度計測部(湿度センサ401_a)により計測された大気の湿度(湿度センサ出力RH)と大気圧Patmを用いて後述する式9に従って、気体定数の補正する気体定数補正部(ブロック701)を有する。
ブロック702はタービン−スロットル間圧力PMTRTHを計算するブロックである。前述の補正された気体定数Rm、吸入空気量QA00、吸気温THA、前回計算されたスロットル通過空気量QAMTH、前回計算されたPMTRTHを用いて、今回のPMTRTHを計算する。したがって、エンジン制御装置のCPU501の圧力算出部(ブロック702)は、H/Wセンサ401(空気量計測部)により計測された空気量と、過給器402の下流側のスロットル絞り弁403を通過する空気量を算出するスロットル通過空気量算出部(ブロック703)により算出された空気量と、湿度計測部(湿度センサ401_a)により計測された大気の湿度に基づいて、タービン−スロットル間圧力PMTRTHを算出する圧力算出部(ブロック702)を有する。
ブロック703はスロットル通過空気量QAMTHを計算するブロックである。前述の補正された気体定数Rm、スロットル開口面積AA、吸気温、前記タービン−スロットル間圧力PMTRTH、及び前回計算された吸気管圧力PMMHGを用いて、QAMTHを計算する。つまり、エンジン制御装置のCPU501は湿度計測部(湿度センサ401_a)により計測された大気の湿度に基づいて、スロットル通過空気量QAMTHを算出するスロットル通過空気量算出部(ブロック703)を有する。
ブロック704は吸気管圧力PMMHGを計算するブロックである。前述の補正された気体定数Rm、吸気温THA、前記スロットル通過空気量QAMTH、前回計算されたシリンダ流入空気量QAR、及び前回計算されたPMMHGを用いて、今回のPMMHGを計算する。つまり、エンジン制御装置のCPU501はスロットル通過空気量算出部(ブロック703)により算出されたスロットル絞り弁403を通過するスロットル通過空気量QAMTHと、圧力算出部(ブロック702)により算出された過給器402と過給器402の下流側のスロットル絞り弁403との間のタービン−スロットル間圧力PMTRTHと、湿度計測部(湿度センサ401_a)により計測された湿度とに基づいて、スロットル絞り弁403の下流側のインテークマニフォールド405の吸気管圧力PMMHGを算出する吸気管圧力算出部(ブロック704)を有する。
ブロック705は、エンジン回転数Ne及び前記吸気管圧力PMMHGから非線形要素である吸気効率ηをマップ検索して求める。ηは前記吸気管圧力に基づいて求めるシリンダ流入空気量の理論値からのズレを補正するものである。ブロック706はシリンダ流入空気量QARを求めるブロックである。前述の補正された気体定数Rm、エンジン回転数Ne、吸気温THA、前記吸気管圧力PMMHG、及び前記吸気効率ηでQARを計算する。つまり、エンジン制御装置のCPU501は、スロットル通過空気量算出部(ブロック703)により算出されたスロットル絞り弁403を通過する空気量と、前記圧力算出部により算出された前記過給器と前記過給器の下流側のスロットル絞り弁との間の圧力と、湿度計測部(湿度センサ401_a)により計測された大気の湿度に基づいて、シリンダ流入空気量QARを算出するシリンダ流入空気量算出部(ブロック705)を有する。尚、本実施例では、タービン−スロットル間圧力を吸入空気量等から算出するとしているが、タービン−スロットルの圧力を得る手段を具備している場合は、その出力値を用いてもよい。
式2は、前述の図7のタービン−スロットル間圧力を求める理論式を示している。式1の(1)は、連続域での理論式を示しており、タービン−スロットル間への微小時間での空気の流入/流出がタービン−スロットル間の圧力勾配となることを示している。式1の(2)は、式1の(1)の式を離散化したものであり、圧力算出部(ブロック702)は、本式を実行することで、タービン−スロットル間圧力PMTRTHを求めている。
Figure 0006545290
式3は、前述の図5のスロットル通過空気量QAMTHを求める理論式を示しており、スロットル通過空気量算出部(ブロック703)は本式を用いてスロットル通過空気量QAMTHを算出している。
Figure 0006545290
式4は、前述の図5の吸気管圧力PMMHGを求める理論式を示している。前述の式2と同様に式4の(1)は連続域での理論式を示しており、吸気管への微小時間での空気の流入/流出が吸気管内の圧力勾配となることを示している。式4の(2)は、前記式4の(1)を離散化したものであり、吸気管圧力算出部(ブロック704)は本式を実行することで、吸気管圧力PMMHGを求めている。
Figure 0006545290
式5は、前述の図7のシリンダ流入空気量QARを求める理論式を示しており、シリンダ流入空気量算出部(ブロック705)は本式を用いてシリンダ流入空気量QARを算出している。
Figure 0006545290
図8は、前述の図7のスロットル通過空気流量の具体的な求め方の一例である。ブロック801では一定吸気温度時の吸気管圧力PMMHGとタービン−スロットル間圧力の比による基準開口面積時の流入空気量のテーブルが設定されており、基準流量を出力する。具体的には式6(1)の計算値が設定されている。ブロック802では、前述の基準流量の吸気温度補正値がテーブル化されており、具体的には式6(2)の計算値が設定されている。乗算器804によりスロットル開口面積AA×タービン−スロットル間圧力PMTRTH/101325×基準流量×吸気温補正値×1/√気体定数Rmでスロットル通過空気流量QAMTHが計算される。
Figure 0006545290
式7は吸気管内の理想気体の状態方程式を示している。Ruは普遍気体定数を示しておりnが空気のモル数の場合である。
Figure 0006545290
式8は気体のモル数が空気質量を空気のモル質量で除したものであることを示している。
Figure 0006545290
式9(1)は式7に式8を代入したものであり、これは式9(2)のように変形できる。本実施例で扱っている気体定数は式9(3)で表されるものであり、前述の普遍気体定数Ruを空気の総モル数Wで除した値であり、空気の総モル数Wは式9(4)式で表されるように絶対湿度xvap、乾燥空気のモル質量Wair、及び水(水蒸気)のモル質量WH2Oから求められる。式9(4)が示すように、気体定数は絶対湿度の影響を受ける。絶対湿度xvapは式9(5)で表され、水の水蒸気圧Pvapを大気圧Patmで除した値であり、水の水蒸気圧Pvapは飽和水蒸気圧Psatに相対湿度RHを100で除した値に乗ずることで求められる。式9(6)は飽和水蒸気圧Psatと気温(吸気温度)tとの関係の近似式を表しており、マイコンで実現する場合は、本式を演算してもよいが、気温(吸気温度)tと飽和水蒸気圧Psatとのテーブルで実現してもよい。式9によると湿度RHが上昇すると空気の総モル数Wが小さくなり、気体定数Rmが大きくなるため、吸気管圧力Pは大きくなる。同様に本式を用いた吸気管算出圧も大きくなる。また大気圧Patmが小さくなると、前述と同様に空気の総モル数Wが小さくなり、気体定数Rmが大きくなるため、吸気管圧力、及び吸気管圧力算出値Pは大きくなる。
Figure 0006545290
図9は式9の理論式をマイコンで演算するブロック図を表したものである。ブロック901で吸気温度THAで飽和水蒸気圧Psatをテーブル検索する。ブロック902で相対湿度RHを100で除し、ブロック903で前述の飽和水蒸気圧Psatに乗ずる。その乗じた値をブロック904で大気圧で除し、絶対湿度xvapを出力する。ブロック905で1から絶対湿度xvapを減算し、ブロック906で乾燥空気のモル質量を乗じ、ブロック907で絶対湿度xvapと水のモル質量を乗じ、ブロック908で乗じた値を加算し、空気の総モル数Wを出力する。ブロック909で普遍気体定数を前述の空気の総モル数Wで除することにより、湿度の補正をされた気体定数Rmを出力する。
図10は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の算出圧の出力の例である。ライン1001は相対湿度を表しており、タイミング1002より変化している。これに対して吸気管算出圧は、本湿度補正がない場合はライン1003のように一定のままであるが、補正がある場合はライン1004のように変化していく。圧力算出部(ブロック606、ブロック702)は、湿度計測部(湿度センサ201_a、湿度センサ401_a)により計測された湿度が上がるほど大きくなるようにインテークマニフォールド(204、405)の圧力を算出する。
図11は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の排気ガス還流装置を備えた場合の一例である。エンジン1100にスロットル部を通過する空気の湿度を計測する湿度センサが一体となったエンジンのスロットル部を通過する空気量を計測するH/Wセンサ1101、吸気通路の内部の空気の温度を計測する吸気温センサが一体となった吸気管1102の内部の圧力を計測する圧力センサ1103、エンジンの排気管1104と吸気管1102をつなぐ通路1105、排気管1104と吸気管1102をつなぐ通路1105の途中に設定され、通路1105の中を流れる排気ガスの流量を調節するEGRバルブ1106、通路1105内の排気ガス温度を計測するEGRガス温センサ1107から構成されている。
式10は吸気管内の圧力の関係を表している。吸気管内実測圧は吸気管内の空気の分圧、すなわち前述の吸気管内算出圧と吸気管内のEGR分圧を加算した値となっている。
Figure 0006545290
式11(1)は式10の関係であり、式11(2)のように変形できる。吸気管内のEGR分圧は吸気管内実測圧から空気分圧(吸気管内算出圧)を減算した値となる。式11(3)は吸気管内のEGRガスの状態方程式を変形したものであり、吸気管内EGRガス密度を表している。同様に式11(4)は吸気管内の空気の状態方程式を変形したものであり、吸気管内の空気密度を表している。この場合のPmは前述の吸気管内算出圧である。式11(5)はEGR率の式であり、吸気管内EGRガス密度を吸気管内EGRガス密度と吸気管内の空気密度を加算した値でEGR率が求められることを示している。
圧力算出部(ブロック606)は、湿度計測部(湿度センサ1101)により計測された湿度から上記した方法によりインテークマニフォールド(吸気管1102)の圧力を算出する。そして、エンジン制御装置のCPU501は、圧力センサ1103の検出値と圧力算出部(ブロック606)により算出された圧力との差が設定値となるようにEGRバルブ1106の開度を制御するEGRバルブ制御部を有する。EGRバルブ制御部は湿度計測部(湿度センサ1101)により計測された湿度が変化すると、排気管と吸気管をつなぐ通路の排気ガス還流量を変化させるようにEGRバルブ1106(絞り弁)の開度を制御する。
ここで請求項11に示したように湿度が高くなると吸気管推定圧は高くなる。そして数11の最後の式よりPmが大きくなるとEGR率が下がるので、湿度が高くなると目標とするEGR率にするためにEGRバルブ制御部はEGRバルブ1106(絞り弁)の開度を大きくするように制御する。
なお、EGRガス量が多くなるとNOx排出量は減るが、エンジンのサージが大きくなる。そこで、上記した設定値はNOx排出量が所定値以下にしつつ、エンジンサージを所定値以下となるように設定する。すなわち、設定値は運転領域においてNOx等のエミッションと、運転性が両立できる値を設定する。
Figure 0006545290
図12は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図1の詳細なフローチャートの一例である。ブロック1201でエンジン回転数を計算する。ブロック1202でH/Wセンサ、吸気温センサ、湿度センサ、及び大気圧センサの出力を読み込む。ブロック1203で湿度による気体定数の補正を行う。ブロック1204で吸気管圧力の算出を行う。ブロック1205で前述の吸気管圧力の算出値からエンジンのシリンダへ流れ込むシリンダ流入空気量を計算する。ブロック1206で前述のエンジン回転数とシリンダ流入空気量からエンジンの基本燃料及びエンジン負荷を計算する。ブロック1207で前述のエンジン回転数とエンジン負荷により前述のエンジンの基本燃料補正係数をマップ検索する。ブロック1208でスロットルセンサ出力による加減速判定を行う。ブロック1209で加減速判定時の燃料補正量を計算する。ブロック1210で酸素濃度センサ出力を読み込む。ブロック1211でエンジンの各運転領域に合った目標空燃比を設定する。ブロック1212で前述の酸素濃度センサ出力と前述の目標空燃比で空燃比帰還制御を行い、空燃比帰還制御係数を計算する。ブロック1213で前述の基本燃料補正係数、加減速判定時の燃料補正量、及び空燃比帰還制御係数で基本燃料の補正を行う。ブロック1214で前述のエンジン回転数と前述のエンジン負荷により基本点火時期をマップ検索する。ブロック1215で加速時に前記基本点火時期の加減速点火時期補正量を計算する。ブロック1216で前記基本点火時期に加減速点火時期補正を施す。ブロック1217でエンジンの各運転領域に合った吸排バルブタイミングを設定する。
図13は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図3の詳細なフローチャートの一例である。
ブロック1301でエンジン回転数を計算する。ブロック1302でH/Wセンサ、吸気温センサ、湿度センサ、スロットルセンサ及び大気圧センサ出力を読み込む。ブロック1303で今回がイグニッションKEY初回の起動かどうか判断する。イグニッションKEY初回の起動の場合は、ブロック1304でタービン−スロットル間算出圧力及び吸気管算出圧を大気圧センサ出力により初期化する。ブロック1305で湿度による気体定数の補正を行う。ブロック1306でタービン−スロットル間算出圧力の計算を行う。ブロック1307でスロットルセンサよりスロットル開口面積を計算する。ブロック1308でスロットル通過空気流量を計算する。
ブロック1309で吸気管圧力算出値を計算する。ブロック1310で前述のエンジン回転数と前述の吸気管圧力算出値でシリンダ流入空気量を計算する。ブロック1311で前述のエンジン回転数と前述のシリンダ流入空気量でエンジンの基本燃料及びエンジン負荷の計算をする。ブロック1312で前述のエンジン回転数と前述のエンジン負荷で基本燃料補正係数をマップ検索する。ブロック1313でスロットルセンサ出力で加減速判定を行う。ブロック1314で前述の加減速判定値より、加減速燃料補正量の計算を行う。ブロック1315で酸素濃度センサ出力を読込む。ブロック1316でエンジンの各運転領域に適した目標空燃比を前述のエンジン回転数とエンジン負荷によりマップ検索を行う。ブロック1317で前述の目標空燃比と前述の酸素濃度センサ出力により空燃比帰還制御係数を計算する。ブロック1318で前述の基本燃料補正係数、加減速燃料補正量及び空燃比帰還制御係数により基本燃料量の補正を行う。ブロック1319で前述のエンジン回転数と前述のエンジン負荷によりエンジンの各運転領域に適した基本点火時期をマップ検索する。ブロック1320で前述の加減速判定で加減速点火時期補正量を計算し、ブロック1321で基本点火時期の補正を行う。ブロック1322でエンジンの各運転領域に適した吸排バルブタイミングの設定を行う。
図14は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図6の詳細なフローチャートの一例である。ブロック1401でH/Wセンサの出力電圧を取り込みハードフィルタによるフィルタリングを施す。ブロック1402で前述のフィルタリングされた電圧を空気流量へ変換する。ブロック1403で大気圧センサ、湿度センサ、及び吸気温度センサの出力を読込む。ブロック1404で湿度による気体定数の補正を行う。ブロック1405で前述の空気流量、前回計算されたシリンダ流入空気量、前述の補正された気体定数で吸気管圧力算出値を演算する。ブロック1406でエンジン回転数を読込む。ブロック1407で前述の吸気管圧力算出値、前述の吸気温度、前述のエンジン回転数、及び前述の補正された気体定数でシリンダ流入空気量を演算する。
図15は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図7の詳細なフローチャートの一例である。ブロック1501で吸気温度センサ、湿度センサ、及び大気圧センサの出力を読込む。ブロック1502で湿度による気体定数の補正を行う。ブロック1503でH/Wセンサ出力値、スロットル通過空気量の前回値、タービン−スロットル間圧力の前回値、前述の補正された気体定数を読込、ブロック1504で今回のタービン−スロットル間圧力を演算する。ブロック1505でスロットル開口面積を読込む。ブロック1506で前述のスロットル開口面積、前述の吸気温度、前述の今回のタービン−スロットル間圧力、前述の補正された気体定数、及び吸気管圧力の前回値でスロットル通過空気量を演算する。ブロック1507で前述の吸気温度、前述のスロットル通過空気量、前述の補正された気体定数、シリンダ流入空気量の前回値、及び前回の吸気管圧力算出値で今回の吸気管圧力算出値を演算する。ブロック1508でエンジン回転数及び前述の吸気管圧力算出値で吸気効率をマップ検索する。ブロック1509でエンジン回転数、前述の吸気温度、前述の吸気管圧力算出値、前述の補正された気体定数、及び前述の吸気効率でシリンダ流入空気量を演算する。
図16は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図8の詳細なフローチャートの一例である。ブロック1601で開口面積AAを読込む。ブロック1602タービン−スロットル間圧力PMTRTHを101325で除する。ブロック1603で吸気間算出圧PMMHGとタービン−スロットル間圧力PMTRTHの圧力比PMMHG/PMTRTHを演算する。ブロック1604で前述の圧力比より基準流量テーブルを検索し、スロットル通過空気量基本値を計算する。ブロック1605で吸気温度を読込む。ブロック1506で前述の吸気温度から吸気温度補正値をテーブル検索する。ブロック1607で前述の補正された気体定数Rmをテーブルで1/√Rmに変換する。ブロック1608で前述の開口面積AA、前述のPMTRTH/101325、前述のスロットル通過空気量基本値、前述の吸気温度補正値、及び前述の1/√Rmを乗算し、スロットル通過空気量QAMTHを演算する。尚本実施例では、スロットル通過空気量QAMTHを前述の如く、テーブル検索を組合わせて計算しているが、式3をそのまま計算してもよいことは言うまでもない。
図17は本実施例の対象となるエンジンの吸気管圧力算出方法を備えたエンジン制御装置の制御ブロックの図9の詳細なフローチャートの一例である。ブロック1701で吸気温度THAを読込む。ブロック1702で前述の吸気温度THAで飽和水蒸気圧テーブルを検索し、飽和水蒸気圧Psatを計算する。ブロック1703で相対湿度RHを読込む。ブロック1704で相対湿度RH/100を演算する。ブロック1705で大気圧Patmを読込む。ブロック1706で前述の飽和水蒸気圧Psat×前述のRH/100/前述の大気圧Patmを計算し、絶対湿度xvapを計算する。ブロック1707で(1−前述の絶対湿度xvap)×乾燥空気のモル質量+前述の絶対湿度xvap×水のモル質量を計算し、空気のモル質量を出力する。ブロック1708で前述の普遍気体定数Ruを前述の空気のモル質量で除し、補正された気体定数Rmを出力する。尚、本実施例の飽和水蒸気圧は吸気温度によるテーブル検索で求めているが、吸気温度による近似式で求めてもよい。
本実施例によれば、湿度に対して気体定数を補正するので、より正確な吸気管の算出圧を計算できる。また吸気管の算出圧を使ったEGR率の計算の精度もあげることができる。
102 吸入空気量計算手段
200 エンジン
201 H/Wセンサ
201_a 湿度センサ
202 スロットル絞り弁
203 大気圧センサ
204 吸気管
205 圧力センサ
205_a 吸気温センサ
206 燃料噴射弁
214 エンジン制御装置
302 吸入空気量計算手段
400 エンジン
401 H/Wセンサ
401_a 湿度センサ
402 過給器
403 スロットル絞り弁
404 大気圧センサ
405 吸気管
406 圧力センサ
406_a 吸気温センサ
407 燃料噴射弁
414 エンジン制御装置
501 CPU
502 I/O
503 吸入空気量センサ
504 湿度センサ
505 吸気管圧力センサ
506 吸気温度センサ
513 出力信号ドライバ
605 湿度による気体定数の補正ブロック
606 吸気管圧力算出ブロック
607 シリンダ流入空気量演算ブロック
701 湿度による気体定数の補正ブロック
702 タービン−スロットル間圧力算出ブロック
703 スロットル通過空気量計算ブロック
704 吸気管圧力算出ブロック
705 吸気効率演算ブロック
706 シリンダ流入空気量演算ブロック
1100 エンジン
1101 湿度センサ一体H/Wセンサ
1102 吸気管
1103 吸気温センサ一体圧力センサ
1104 排気管
1105 EGR配管
1106 EGRバルブ
1107 EGRガス温センサ

Claims (14)

  1. エンジンの吸気通路に設けられたスロットル絞り弁を通過する空気量を計測する空気量計測部と、前記スロットル絞り弁を通過する空気の湿度を計測する湿度計測部と、が取り付けられた前記エンジンを制御する制御装置において、
    前記空気量計測部の計測結果に基づいて前記エンジンのシリンダへ流入する空気量を算出する空気量算出部と、
    前記空気量計測部により計測された空気量と、前記空気量算出部により算出された空気量と、前記湿度計測部により計測された湿度とに基づいて、前記スロットル絞り弁の下流側のインテークマニフォールドの圧力を算出する圧力算出部と、を備え
    前記空気量計測部は前記インテークマニフォールドの空気の湿度を計測することを特徴とする制御装置。
  2. エンジンの吸気通路に設けられ、空気を加圧する過給器と、前記過給器に流れる空気の空気量を計測する空気量計測部と、前記過給器に流れる空気の湿度を計測する湿度計測部と、が取り付けられた前記エンジンを制御する制御装置において、
    前記過給器の下流側のスロットル絞り弁を通過する空気量を算出する空気量算出部と、
    前記空気量計測部により計測された空気量と、前記空気量算出部により算出された空気量と、前記湿度計測部により計測された湿度とに基づいて、前記過給器と前記過給器の下流側のスロットル絞り弁との間の圧力を算出する圧力算出部と、を備えたことを特徴とする制御装置。
  3. 請求項2に記載の制御装置において、
    前記空気量算出部により算出された前記スロットル絞り弁を通過する空気量と、前記圧力算出部により算出された前記過給器と前記過給器の下流側のスロットル絞り弁との間の圧力と、前記湿度計測部により計測された湿度とに基づいて、前記スロットル絞り弁の下流側のインテークマニフォールドの圧力を算出する圧力算出部と、を備えたことを特徴とする制御装置。
  4. 前記空気量計測部は熱式空気流量計である請求項1、又は2に記載の制御装置。
  5. 前記空気量計測部は大気の湿度を計測する請求項に記載の制御装置。
  6. 前記空気量計測部は前記スロットル絞り弁の下流側のインテークマニフォールドの空気の湿度を計測する請求項に記載の制御装置。
  7. 前記湿度計測部は前記過給器と前記過給器の下流側のスロットル絞り弁との間の空気の湿度を計測する請求項2に記載の制御装置。
  8. 前記湿度計測部は前記空気量計測部と一体で構成される請求項7に記載の制御装置。
  9. 前記湿度計測部により計測された湿度を用いて、気体定数を補正する気体定数補正部を有し、前記空気量算出部は前記気体定数補正部により補正された気体定数を用いて前記エンジンのシリンダへ流入する空気量を算出する請求項1に記載の制御装置。
  10. 前記湿度計測部により計測された湿度を用いて、気体定数を補正する気体定数補正部を有し、前記空気量算出部は前記気体定数補正部により補正された気体定数を用いてスロットル絞り弁を通過する空気量を算出する請求項1に記載の制御装置。
  11. 前記圧力算出部は、前記湿度計測部により計測された湿度が上がるほど大きくなるように前記インテークマニフォールドの圧力を算出する請求項1、又は3に記載の制御装置。
  12. 前記圧力算出部は、計測された大気圧が上がるほど小さくなるように前記インテークマニフォールドの圧力を算出する請求項1、又は3に記載の制御装置。
  13. エンジンの吸気通路に設けられたスロットル絞り弁を通過する空気の湿度を計測する湿度計測部と、前記スロットル絞り弁の下流側のインテークマニフォールドの圧力を計測する圧力センサと、エンジンの排気管と吸気管をつなぐ通路との間に設置された絞り弁と、が取り付けられた前記エンジンを制御する制御装置において、
    前記湿度計測部により計測された湿度を用いて前記インテークマニフォールドの圧力を算出する圧力算出部と、
    前記圧力センサの検出値と前記圧力算出部により算出された圧力との差が設定値となるように前記絞り弁の開度を制御する絞り弁制御部と、を備えたことを特徴とする制御装置。
  14. 請求項13に記載の制御装置において、
    前記絞り弁制御部は、前記湿度計測部により計測された湿度が変化すると、前記排気管と前記吸気管をつなぐ通路の排気ガス還流量を変化させるように前記絞り弁の開度を制御する制御装置。
JP2017563772A 2016-01-27 2017-01-10 制御装置 Active JP6545290B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016012933 2016-01-27
JP2016012933 2016-01-27
PCT/JP2017/000373 WO2017130675A1 (ja) 2016-01-27 2017-01-10 制御装置

Publications (2)

Publication Number Publication Date
JPWO2017130675A1 JPWO2017130675A1 (ja) 2018-08-30
JP6545290B2 true JP6545290B2 (ja) 2019-07-17

Family

ID=59398177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017563772A Active JP6545290B2 (ja) 2016-01-27 2017-01-10 制御装置

Country Status (4)

Country Link
US (1) US10900426B2 (ja)
JP (1) JP6545290B2 (ja)
DE (1) DE112017000237T5 (ja)
WO (1) WO2017130675A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296013A (zh) * 2019-05-09 2019-10-01 广西玉柴机器股份有限公司 柴油机大气湿度修正进气量的方法
CN112796898B (zh) * 2019-10-28 2022-08-02 浙江义利汽车零部件有限公司 一种防止水冷式冷却器下游混合气冷凝的方法及装置
FR3140908A1 (fr) * 2022-10-14 2024-04-19 Psa Automobiles Sa Procédé d’estimation de la pression de suralimention naturelle dans un moteur thermique essence équipé d’un turbocompresseur de type à géometrie variable

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2957769B2 (ja) * 1991-08-26 1999-10-06 株式会社日立製作所 熱式空気流量計及びエンジン制御装置
JP2908924B2 (ja) 1991-12-25 1999-06-23 株式会社日立製作所 エンジンの流入空気量検出方法、この方法を実行する装置、この装置を備えた燃料噴射量制御装置
JP2908934B2 (ja) * 1992-06-15 1999-06-23 三菱電機株式会社 吸入空気量値の補正方法
EP0959236B1 (en) 1992-07-03 2004-04-07 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
JPH0674076A (ja) * 1992-07-03 1994-03-15 Honda Motor Co Ltd 内燃機関の吸入空気量算出方法
JPH102772A (ja) * 1996-06-14 1998-01-06 Hitachi Ltd 空気流量測定装置
DE19750496A1 (de) 1997-11-14 1999-05-20 Bosch Gmbh Robert Verfahren zur Bestimmung der von einer Brennkraftmaschine angesaugten Luft und Sensor für eine Brennkraftmaschine
JP3551785B2 (ja) * 1998-10-06 2004-08-11 トヨタ自動車株式会社 内燃機関
US6152118A (en) 1998-06-22 2000-11-28 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US6725848B2 (en) * 2002-01-18 2004-04-27 Detroit Diesel Corporation Method of controlling exhaust gas recirculation system based upon humidity
US7079938B2 (en) 2003-07-25 2006-07-18 Detroit Diesel Corporation Influence of engine parameters on condensation protection strategies
JP2006343136A (ja) * 2005-06-07 2006-12-21 Nissan Motor Co Ltd 水蒸気分圧検出装置、エンジンの吸気流量検出装置およびコレクタ内圧検出装置
JP4929333B2 (ja) * 2009-09-30 2012-05-09 日立オートモティブシステムズ株式会社 センサの構造
FR3003325B1 (fr) * 2013-03-13 2015-08-07 Valeo Sys Controle Moteur Sas Dispositif d'aiguillage d'un fluide pour une vanne ayant au moins trois voies
US9109505B2 (en) * 2013-08-13 2015-08-18 Ford Global Technologies, Llc Methods and systems for condensation control
US9328679B2 (en) * 2013-10-11 2016-05-03 Ford Global Technologies, Llc Methods and systems for an oxygen sensor
JP6141746B2 (ja) 2013-10-16 2017-06-07 日立オートモティブシステムズ株式会社 内燃機関の制御装置
US9453470B2 (en) * 2014-12-19 2016-09-27 Ford Global Technologies, Llc System and method for adjusting engine airflow

Also Published As

Publication number Publication date
US10900426B2 (en) 2021-01-26
WO2017130675A1 (ja) 2017-08-03
JPWO2017130675A1 (ja) 2018-08-30
US20200109673A1 (en) 2020-04-09
DE112017000237T5 (de) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5929015B2 (ja) 内燃機関の排気還流装置
CN103967636B (zh) 外部egr速率反馈
JP5754514B2 (ja) 過給エンジンの制御装置
US9938912B2 (en) Control device for internal combustion engine
JP6545290B2 (ja) 制御装置
WO2014083654A1 (ja) 過給機付きエンジンの制御装置
JPWO2020066548A1 (ja) 内燃機関制御装置
EP3029304A1 (en) Exhaust system state detection device
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
JP4377907B2 (ja) 内燃機関の空気量演算装置および燃料制御装置
WO2014080523A1 (ja) 内燃機関の制御装置
WO2013190933A1 (ja) 内燃機関の排気還流装置及び排気還流装置のegr算出方法
US10240546B2 (en) Method and device for operating an internal combustion engine
CN108699980B (zh) 内燃机控制装置
JP5216787B2 (ja) エンジンの制御装置
JP2015218688A (ja) ターボ過給機付エンジンの制御装置
JP2003314347A (ja) 内燃機関の筒内充填空気量検出装置
JP2013155613A (ja) 過給エンジンの制御装置
EP2708726B1 (en) Method for estimating the exhaust gas flow rate for an internal combustion engine
WO2013175588A1 (ja) 過給エンジンの吸入空気量推定装置
JP2010048133A (ja) エアフロメータの異常検出装置
WO2017010467A1 (ja) 内燃機関のegr制御システム、内燃機関、及び内燃機関のegr制御方法
JP2010270634A (ja) 圧縮着火内燃機関の制御装置
JP2010248949A (ja) エンジンのシリンダ流入空気量計測装置を備えた燃料制御装置
JP2017198091A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6545290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250