JP2017198091A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017198091A
JP2017198091A JP2016087268A JP2016087268A JP2017198091A JP 2017198091 A JP2017198091 A JP 2017198091A JP 2016087268 A JP2016087268 A JP 2016087268A JP 2016087268 A JP2016087268 A JP 2016087268A JP 2017198091 A JP2017198091 A JP 2017198091A
Authority
JP
Japan
Prior art keywords
supercharging pressure
control
turbine
gain
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016087268A
Other languages
English (en)
Inventor
淳一 村瀬
Junichi Murase
淳一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016087268A priority Critical patent/JP2017198091A/ja
Publication of JP2017198091A publication Critical patent/JP2017198091A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】過給圧が目標値になるように制御弁の開度に対してフィードバック制御を行う場合において、EGR装置による排気の再循環がフィードバック制御の目標値追従性に影響することを抑制する。
【解決手段】制御装置は、センサによる検出或いはモデルによる推定により過給圧を取得する。そして、制御弁であるウエストゲートバルブの開度に基づいてフィードバック制御のゲインを変更するとともに、センサによる検出或いはモデルによる推定により取得された過給圧が大きくなるほど、又はタービンの運転条件から推定されるタービンの仕事量が大きくなるほど、フィードバック制御のゲインを小さく設定する。
【選択図】図3

Description

本発明は、排気通路に配置されたタービンを有するターボチャージャと、タービンをバイパスするバイパス通路に設けられてバイパス通路の開口面積を変更する制御弁と、排気通路から吸気通路へ排気の一部を再循環させるEGR装置と、を備えた内燃機関を制御する制御装置に関する。
特開2002−115551号公報には、ターボチャージャにより過給された吸気の圧力である過給圧を可変にするアクチュエータ、特に、可変ノズルに対するフィードバック制御に関する技術が開示されている。詳しくは、同公報に開示された技術によれば、目標過給圧と実過給圧との差(或いは、目標吸入空気量と実吸入空気量との差)が小さくなるように、PI制御によって可変ノズルの開口割合のフィードバック補正量が演算される。また、同公報に開示された技術によれば、PI制御における各ゲインは可変ノズルの開口割合と実排気量とに基づいて設定される。
特開2002−115551号公報 特開2006−274834号公報
ところで、排気通路から吸気通路へ排気の一部を再循環させるEGR装置が内燃機関に備えられる場合、再循環される排気量、すなわち、EGR量に応じてアクチュエータの操作に対するターボチャージャの過給感度は変化する。排気の再循環の有無によらず過給圧を目標値に応答良く追従させるためには、EGR量に応じて変化するターボチャージャの過給感度に合わせて、フィードバック制御のゲインも変化させればよい。しかし、排気量にはEGR量の情報は含まれていない。このため、上記の技術のごとく実排気量に基づいて設定したゲインでは、排気の再循環が行われているときには、過給圧を目標値に応答良く追従させることができないおそれがある。
本発明は、上述の課題に鑑みてなされたものであり、過給圧が目標値になるように制御弁の開度に対してフィードバック制御を行う場合において、EGR装置による排気の再循環がフィードバック制御の目標値追従性に影響することを抑えることのできる内燃機関の制御装置を提供することを目的とする。
本発明に係る内燃機関の制御装置は、排気通路に配置されたタービンを有するターボチャージャと、タービンをバイパスするバイパス通路に設けられてバイパス通路の開口面積を変更する制御弁と、排気通路から吸気通路へ排気の一部を再循環させるEGR装置と、を備えた内燃機関を制御する制御装置であって、次のように構成される。
すなわち、本発明に係る内燃機関の制御装置は、ターボチャージャによって過給された吸気の圧力である過給圧を検出又は推定による取得する過給圧取得部と、制御弁の開度を制御する制御部とを備える。制御部は、内燃機関の運転状態に基づいて過給圧の目標値を設定するとともに、過給圧取得部によって取得された過給圧がその目標値になるように制御弁の開度に対してフィードバック制御を行うように構成されている。さらに、制御部は、フィードバック制御におけるゲインを制御弁の開度に基づいて変更するとともに、過給圧取得部によって取得された過給圧が大きくなるほど、又はタービンの運転条件から推定されるタービンの仕事量が大きくなるほど、ゲインを小さく設定するように構成されている。
制御弁の開度に対するターボチャージャの過給感度との相関が高い状態量としては、タービンの仕事量を挙げることができる。EGR装置による排気の再循環が行われる場合、EGRガス量に応じてタービンの仕事量は変化する。すなわち、タービンの仕事量はEGR量の情報が含まれた状態量でもある。過給圧取得部によって取得される過給圧は、タービンの仕事量と相関のある状態量であるので、これもまた過給感度が高く且つEGR量の情報が含まれた状態量として挙げることができる。過給圧やタービン仕事量が大きいほど過給感度は高くなることから、過給圧又はタービン仕事量が小さいときはフィードバック制御におけるゲインを大きく設定し、過給圧又はタービン仕事量が大きくなるほどゲインを小さく設定することで、EGR装置による排気の再循環がフィードバック制御の目標値追従性に影響することを抑えるようにゲインを適正化することができる。
本発明に係る内燃機関の制御装置によれば、フィードバック制御におけるゲインを制御弁の開度に基づいて変更するとともに、過給圧又はタービンの仕事量が大きくなるほどゲインを小さく設定することによって、EGR装置による排気の再循環がフィードバック制御の目標値追従性に影響することを抑えることができる。
本発明の実施の形態に係る内燃機関システムの構成を示す図である。 制御装置により実行される過給圧フィードバック制御のルーチンを示すフローチャートである。 制御装置が有するフィードバック補正量の演算構造を示す図である。 固定ゲインマップのイメージを示す図である。 可変ゲイン補正係数マップのイメージを示す図である。 WGV開度とゲインとの関係について説明する図である。 過給圧又はタービン仕事量と過給感度との関係について示す図である。 過給圧又はタービン仕事量と過給感度との関係にWGV開度が与える影響について示す図である。
以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
図1は、本発明の実施の形態に係る内燃機関システムの構成を示す図である。この実施の形態の内燃機関2は、圧縮着火式の内燃機関である。内燃機関2には4つの気筒が直列に設けられ、気筒ごとにインジェクタ8が設けられている。内燃機関2には吸気マニホールド4と排気マニホールド6が取り付けられている。
吸気マニホールド4には、エアクリーナ20から取り込まれた空気(新気)が流れる吸気通路10が接続されている。吸気通路10にはターボチャージャのコンプレッサ14が取り付けられている。吸気通路10のコンプレッサ14よりも下流には、コンプレッサ14で過給された吸気を冷却するインタークーラ22が設けられている。吸気通路10のインタークーラ22よりも下流には、全開を基本状態とするスロットル(いわゆるディーゼルスロットル)24が設けられている。
排気マニホールド6には、内燃機関2から排出された排気が流れる排気通路12が接続されている。排気通路12には、ターボチャージャのタービン16が取り付けられている。タービン16にはウエストゲートバルブ(以下、WGVと表記する)18が設けられている。WGV18は、タービン16をバイパスする図示しないバイパス通路に設けられ、このバイパス通路の開口面積を変更するように構成された制御弁である。
内燃機関2は、排気系から吸気系へ排気の一部を再循環させるEGR装置を備えている。EGR装置は、吸気通路10におけるスロットル24の下流の位置と排気マニホールド6とをEGR通路30によって接続している。EGR通路30には、EGR通路30の開口面積を変更するEGR弁32が設けられている。EGR通路30のEGR弁32に対して排気側には、EGRガスを冷却するEGRクーラ34が設けられている。また、EGR通路30には、EGRクーラ34をバイパスするバイパス通路36が設けられている。EGR通路30とバイパス通路36が合流する箇所には、EGRクーラ34を流れるEGRガスの流量とバイパス通路36を流れるEGRガスの流量との比率を変更するバイパス弁38が設けられている。
内燃機関2には、その運転状態に関する情報を得るためのセンサが取り付けられている。吸気通路10のエアクリーナ20よりも下流には、吸気通路10に取り込まれた吸入空気量(新気の流量)を検出するためのエアフローメータ60が取り付けられている。吸気通路10のコンプレッサ14とインタークーラ22との間、インタークーラ22とスロットル24との間、及び吸気マニホールド4には、それぞれ圧力センサ58,56,54が取り付けられている。これらの圧力センサ58,56,54によって検出される圧力は、何れもコンプレッサ14によって過給された吸気の圧力である。以下、過給圧とは、これらの圧力センサ58,56,54の中のある特定の圧力センサによって検出される圧力を指すものとする。さらに、内燃機関2には、クランク軸の回転を検出するクランク角センサ52や、アクセル開度に応じた信号を出力するアクセル開度センサ62なども設けられている。
上述した各種のセンサ及びアクチュエータは、内燃機関2を制御する制御装置100に電気的に接続されている。制御装置100は、少なくとも1つのCPU、少なくとも1つのROM、少なくとも1つのRAMを有するECU(Electronic Control Unit)である。ただし、制御装置100は、複数のECUから構成されていてもよい。制御装置100では、ROMに記憶されているプログラムをRAMにロードし、CPUで実行することで、内燃機関2に対する様々な制御が行われる。
制御装置100により行われる内燃機関2の制御には、EGR率フィードバック制御が含まれる。EGR率フィードバック制御では、現在EGR率が目標EGR率になるように、EGR率を制御可能なアクチュエータであるEGR弁32とスロットル24とを操作することが行われる。目標EGR率は、予め用意されているマップを用いて、燃料噴射量とエンジン回転速度とから算出される。燃料噴射量は、アクセル開度センサ62により得られたアクセル開度に基づいて算出される。エンジン回転速度は、クランク角センサ52が出力する信号から検出される。一方、現在EGR率は、エアフローメータ60によって検出された吸入空気量とエンジン回転速度と過給圧とに基づいて推定される。
EGR率フィードバック制御では、詳しくは、目標EGR率と現在EGR率との間のEGR率偏差が計算される。次に、そのEGR率偏差に基づいてPI制御が行われて、そのフィードバック補正量であるPI補正量が算出される。そして、PI補正量に基づいてEGR弁32の開度に対する補正量とスロットル24の開度に対する補正量がそれぞれ算出される。各補正量によれば、目標EGR率に対して現在EGR率が不足している場合には、EGR弁32の開度は開き側に補正され、スロットル24の開度は閉じ側に補正される。逆に、目標EGR率に対して現在EGR率が過剰な場合には、EGR弁32の開度は閉じ側に補正され、スロットル24の開度は開き側に補正される。
制御装置100により行われる内燃機関2の制御には、さらに、過給圧フィードバック制御が含まれる。過給圧フィードバック制御では、現在過給圧が目標過給圧になるようにWGV18を操作することが行われる。図2は、制御装置100が実行する過給圧フィードバック制御のルーチンを示すフローチャートである。以下、図2を用いて、制御装置100が行う過給圧フィードバック制御の詳細について説明する。
フローチャートのステップS1では、制御装置100は、クランク角センサ52が出力する信号よりエンジン回転速度を検出する。ステップS2では、アクセル開度センサ62により得られたアクセル開度に基づいて燃料噴射量を算出する。そして、ステップS3は、予め用意されているマップを用いて、ステップS1で得たエンジン回転速度とステップS2で得た燃料噴射量とから目標過給圧を算出するとともに、目標過給圧に対応するWGV18のベース開度(フィードフォワード制御によるWGV18の開度、以下、ベースWGV開度という)を算出する。有効な目標過給圧が設定される領域、すなわち、ターボチャージャによる過給が行われる領域の少なくとも一部は、有効な目標EGR率が設定される領域、すなわち、EGR装置による排気の再循環が行われる領域と重なっている。
ステップS4では、制御装置100は、圧力センサ58,56,54のうちの所定の圧力センサにより現在過給圧を検出する。ただし、ここで用いる現在過給圧は、モデルによる推定値であってもよい。例えば、コンプレッサ14の動特性をモデル化したコンプレッサモデルにより、エアフローメータ60による検出される吸入空気量と、大気圧と、コンプレッサ14の回転速度とから過給圧を推定するようにしてもよい。つまり、過給圧は検出により取得してもよいし、推定により取得してもよい。そして、ステップS5では、ステップS3で算出した目標過給圧とステップS4で検出或いは推定した現在過給圧との間の過給圧偏差を算出する。
次に、ステップS6では、制御装置100は、ステップS5で算出した過給圧偏差に基づいてPID制御を行い、フィードバック補正量であるPID補正量を算出する。そして、ステップS7では、ステップS6で算出したフィードバック補正量をステップS3で算出したベースWGV開度に加算することによって最終WGV開度を算出する。フィードバック補正量を加えることにより、目標過給圧に対して現在過給圧が不足している場合には、最終WGV開度は閉じ側に補正される。逆に、目標過給圧に対して現在過給圧が過剰な場合には、最終WGV開度は開き側に補正される。制御装置100は、ステップS7で算出した最終WGV開度に従ってWGV18を操作する。
このようなルーチンにより行われる過給圧フィードバック制御において、この実施の形態に特有の内容を有する処理は、ステップS6で行われるフィードバック補正量の計算である。フィードバック補正量の演算においては、PID制御により、過給圧偏差からP補正量(フィードバック補正量の比例項)、I補正量(フィードバック補正量の積分項)、及びD補正量(フィードバック補正量の微分項)が計算される。P補正量の計算では、過給圧偏差に対して比例ゲインが乗じられる。I補正量の計算では、過給圧偏差の積分値に対して積分ゲインが乗じられる。そして、D補正量の計算では、過給圧偏差の微分値に対して微分ゲインが乗じられる。比例ゲイン、積分ゲイン、及び微分ゲインの設定値はそれぞれに異なってはいるが、その設定方法には、以下に述べるこの実施の形態に特有の共通点がある。この共通点について説明するにあたり、本明細書では、比例ゲイン、積分ゲイン、微分ゲインを総称してゲインと呼ぶ(或いは、比例ゲイン、積分ゲイン、微分ゲインのそれぞれを成分とするベクトルをゲインと呼ぶ)。
図3は、制御装置100が有するフィードバック補正量の演算構造を示す図である。この実施の形態では、フィードバック補正量の計算に2種類のマップが用いられる。第1のマップは、ゲインの基本値である固定ゲインを決定するための固定ゲインマップである。固定ゲインマップでは、過給圧偏差が引数として用いられる。第2のマップは、固定ゲインの補正に用いる可変ゲイン補正係数を決定するための可変ゲイン補正係数マップである。可変ゲイン補正係数マップでは、現在WGV開度と過給圧が引数として用いられる。ただし、現在WGV開度に代えてベースWGV開度を引数として用いてもよい。また、引数として用いる過給圧は絶対圧ではなくゲージ圧である。過給圧の検出に用いられる圧力センサの出力が絶対圧である場合には、別に設けられた大気圧センサの出力を用いてゲージ圧に補正したものが可変ゲイン補正係数マップの引数として用いられる。制御装置100は、固定ゲインに可変ゲイン補正係数をかけたものを用いてフィードバック補正量を演算する。
固定ゲインマップの詳細について図4を用いて説明する。図4は、固定ゲインマップのイメージを示す図である。この図に示すように、過給圧偏差のゼロを中心とする一定範囲は、過給圧偏差の増減に関係なく固定ゲインをゼロとする不感帯とされている。不感帯の外の過給圧偏差が正の領域では、過給圧偏差の増加量に対して固定ゲインの増加量が正比例する領域とされている。また、不感帯の外の過給圧偏差が負の領域では、過給圧偏差の減少量に対して固定ゲインの減少量が正比例する領域とされている。つまり、目標過給圧に対する現在過給圧の不足量が大きいほど、また、目標過給圧に対する現在過給圧の過剰量が大きいほど、過給圧偏差の変化量に対するフィードバック補正量の変化量が大きくなるように、固定ゲインマップは作成されている。
次に、可変ゲイン補正係数マップの詳細について図5を用いて説明する。図5は、可変ゲイン補正係数マップのイメージを示す図である。この図に示すように、過給圧を一定とした場合には、WGV開度の中央付近において可変ゲイン補正係数は最小値とされ、WGV開度が中央付近から離れて全閉に近づくほど、また、WGV開度が中央付近から離れて全開に近づくほど、可変ゲイン補正係数は大きい値とされる。WGV開度を一定とした場合には、過給圧が小さいほど、可変ゲイン補正係数は大きい値とされる。
可変ゲイン補正係数マップにおけるWGV開度と可変ゲイン補正係数との関係は、WGV18が有する過給圧の制御特性に基づいている。図6に描かれている左側のチャートは、WGV開度(或いは有効開口面積)と過給圧との関係を示している。このチャートに示すように、WGV開度の中央付近において過給圧はWGV開度の変化に対して急激に変化するが、中央付近よりも開き側及び閉じ側でのWGV開度の変化に対する過給圧の変化は僅かである。つまり、WGV開度と過給圧との関係は非線形であり、WGV開度の変化に対する過給圧の応答性は現在のWGV開度に依存する。このため、過給偏差のフィードバックに対する過給圧の応答性をWGV開度によらずに一定に近づけるには、図6の右側のチャートに示すように、WGV開度に応じてゲインを可変にする必要がある。
一方、可変ゲイン補正係数マップにおける過給圧と可変ゲイン補正係数との関係は、WGV開度に対するターボチャージャの過給感度とタービン仕事量との相関関係に基づいている。以下の式で表されるタービン仕事量は、WGV開度に対するターボチャージャの過給感度との相関が高い状態量である。以下の式において、Ltはタービン仕事量、Cpgは係数、Gaは吸入空気量、Gfは噴射された燃料の質量流量、GwgvはWGV18を通過する排気の流量、T4はタービン前温度、P4はタービン前圧力、P6はタービン後圧力、κは比熱比である。
Figure 2017198091
前述の通り、この実施の形態では、ターボチャージャによる過給が行われる領域の少なくとも一部は、EGR装置による排気の再循環が行われる領域と重なっている。EGR装置による排気の再循環が行われる場合、上記の式に含まれるタービン前温度T4やタービン前圧力P4は、EGRガス量に応じて変化する状態量であるため、タービン仕事量LtもEGRガス量に応じて変化する。すなわち、上記の式で表されるタービン仕事量Ltは、EGR量の情報が含まれた状態量でもある。
上記の式において、Ga、T4、P4、P6はセンサによる検出値を用いることができる。Gfは燃料噴射量から計算することができる。GwgvはWGV開度とタービン16の前後の圧力P4、P6から計算することができる。タービン16の運転条件を表すこれらのパラメータGa、Gf、Gwgv、T4、P4、P6を取得して上記の式を計算することにより、タービン仕事量Ltを推定することができる。ただし、この実施の形態では、タービン前温度T4やタービン16の前後の圧力P4、P6の検出を不要にするため、タービン仕事量Ltに代えて、タービン仕事量Ltとの相関が高い過給圧(ゲージ圧)を採用している。タービン16がされた仕事は、コンプレッサ14がする仕事となり、コンプレッサ14が仕事をすることで過給圧が上昇する。ゆえに、過給圧の大気圧に対する上昇分であるゲージ圧は、タービン仕事量との相関が高い状態量であると言える。つまり、過給圧(ゲージ圧)は、タービン仕事量と同様に、過給感度が高く且つEGR量の情報が含まれた状態量として挙げることができる。
図7は、過給圧(ゲージ圧)又はタービン仕事量と過給感度との関係について示す図である。図7に示すように、過給感度はタービン仕事量が大きいほど、すなわち、過給圧(ゲージ圧)が大きいほど高くなる。よって、過給偏差のフィードバックに対する過給圧の応答性を過給圧によらずに一定に近づけるには、前掲の図5に示す通り、過給圧(ゲージ圧)やタービン仕事量が小さいほどゲインを大きくする必要がある。また、過給圧(ゲージ圧)又はタービン仕事量と過給感度との関係は、図8に示すように、WGV開度によって変化する。ゆえに、前掲の図5に示す通り、WGV開度に応じてゲインを変化させる必要もある。
制御装置100によって実施される過給圧フィードバック制御によれば、過給圧が小さいときはゲインを大きくし、過給圧が大きくなるほどゲインを小さくするように可変ゲイン補正係数によるゲインの補正が行わる。この補正が行われることで、EGR装置による排気の再循環がフィードバック制御の目標値追従性に影響することを抑えるようにゲインは最適化される。これにより、過給圧が目標過給圧へ収束するのに要する時間を短縮することができる。
2 エンジン
8 インジェクタ
10 吸気通路
12 排気通路
14 コンプレッサ
16 タービン
18 WGV
24 スロットル
30 EGR通路
32 EGR弁
34 EGRクーラ
100 制御装置

Claims (1)

  1. 排気通路に配置されたタービンを有するターボチャージャと、前記タービンをバイパスするバイパス通路に設けられて前記バイパス通路の開口面積を変更する制御弁と、前記排気通路から吸気通路へ排気の一部を再循環させるEGR装置と、を備えた内燃機関を制御する制御装置であって、
    過給圧を検出又は推定により取得する過給圧取得部と、
    前記制御弁の開度を制御する制御部と、を備え、
    前記制御部は、前記内燃機関の運転状態に基づいて過給圧の目標値を設定するとともに、前記過給圧取得部によって取得された過給圧が前記目標値になるように前記制御弁の開度に対してフィードバック制御を行うように構成され、且つ、
    前記制御部は、前記フィードバック制御におけるゲインを前記制御弁の開度に基づいて変更するとともに、前記過給圧取得部によって取得された過給圧が大きくなるほど、又は前記タービンの運転条件から推定される前記タービンの仕事量が大きくなるほど、前記ゲインを小さく設定するように構成されている
    ことを特徴とする内燃機関の制御装置。
JP2016087268A 2016-04-25 2016-04-25 内燃機関の制御装置 Pending JP2017198091A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016087268A JP2017198091A (ja) 2016-04-25 2016-04-25 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087268A JP2017198091A (ja) 2016-04-25 2016-04-25 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017198091A true JP2017198091A (ja) 2017-11-02

Family

ID=60237600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087268A Pending JP2017198091A (ja) 2016-04-25 2016-04-25 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017198091A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359367B2 (ja) 2019-07-17 2023-10-11 株式会社トランストロン エンジン吸気系制御装置及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7359367B2 (ja) 2019-07-17 2023-10-11 株式会社トランストロン エンジン吸気系制御装置及びその制御方法

Similar Documents

Publication Publication Date Title
JP4335249B2 (ja) 内燃機関の制御装置
US7100375B2 (en) System for limiting rotational speed of a turbocharger
CN102797571B (zh) 用于估计废气再循环量的装置
CN108626038B (zh) 内燃机的控制装置
JP5754514B2 (ja) 過給エンジンの制御装置
JP6375912B2 (ja) 内燃機関の制御装置
US10309298B2 (en) Control device of an engine
JP5246298B2 (ja) 内燃機関の吸気漏洩診断装置
JP2013053546A (ja) 過給機の制御装置
JP5854131B2 (ja) 過給機付き内燃機関の制御装置
JP6630814B2 (ja) 内燃機関のegr制御装置及びegr制御方法
WO2014080523A1 (ja) 内燃機関の制御装置
JP2018044457A (ja) エンジンの制御方法、及び、エンジン
JP6809447B2 (ja) 内燃機関の排気還流装置
US7546760B2 (en) Device for pressure-based load detection
JP2017198091A (ja) 内燃機関の制御装置
JP2013155613A (ja) 過給エンジンの制御装置
JP5111534B2 (ja) 内燃機関のegr制御装置
JP2019203435A (ja) エンジンの制御装置
KR101535368B1 (ko) 엔진 제어 장치
JP6575480B2 (ja) 内燃機関の排気還流装置
JP6930902B2 (ja) バルブ制御装置
EP3075991B1 (en) Control device for internal combustion engine
JP2015206307A (ja) 内燃機関の制御装置
JP2010270634A (ja) 圧縮着火内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105