JP6544171B2 - Surface treatment status monitoring device - Google Patents

Surface treatment status monitoring device Download PDF

Info

Publication number
JP6544171B2
JP6544171B2 JP2015182433A JP2015182433A JP6544171B2 JP 6544171 B2 JP6544171 B2 JP 6544171B2 JP 2015182433 A JP2015182433 A JP 2015182433A JP 2015182433 A JP2015182433 A JP 2015182433A JP 6544171 B2 JP6544171 B2 JP 6544171B2
Authority
JP
Japan
Prior art keywords
light
measurement
surface treatment
size
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015182433A
Other languages
Japanese (ja)
Other versions
JP2017058217A5 (en
JP2017058217A (en
Inventor
塁 加藤
塁 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015182433A priority Critical patent/JP6544171B2/en
Publication of JP2017058217A publication Critical patent/JP2017058217A/en
Publication of JP2017058217A5 publication Critical patent/JP2017058217A5/ja
Application granted granted Critical
Publication of JP6544171B2 publication Critical patent/JP6544171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、試料表面に形成される微細構造の大きさ、例えばエッチング加工によって半導体基板の表面に形成される微細な孔や溝の深さを測定する表面処理状況モニタリング装置に関する。   The present invention relates to a surface treatment status monitoring device that measures the size of a microstructure formed on a sample surface, for example, the depth of fine holes or grooves formed on the surface of a semiconductor substrate by etching.

半導体集積回路の製造プロセスでは、シリコンウエハ等の半導体基板にTSV(=Through Silicon Via:シリコン貫通ビア)等の微細な孔(ホール)や溝(トレンチ)を形成するためにエッチング加工が行われている。通常、エッチング加工を行う際には、加工前に、基板上で孔や溝を形成しない部分にレジスト膜によるマスキングを行っておく。これにより、加工中にマスキングされていない部分のみが選択的に削られ、加工後にレジスト膜を除去すると孔や溝が形成された基板が得られる。このときに形成される孔や溝の深さは、エッチング時間、エッチングガスの種類、ガス圧などの様々な条件に依存することから、穴や溝の深さを目標深さにするために、加工中に孔や溝の深さの時間的な変化をモニタリングしながらエッチングの終了点を決めたり条件を調整したりする制御が行われる。   In the process of manufacturing a semiconductor integrated circuit, etching is performed to form fine holes (holes) and trenches (trench) such as TSV (= Through Silicon Via) in a semiconductor substrate such as a silicon wafer. There is. In general, when performing etching processing, masking with a resist film is performed on a portion of the substrate where holes and grooves are not formed before processing. As a result, only the unmasked portion is selectively scraped off during processing, and when the resist film is removed after processing, a substrate with holes and grooves formed is obtained. Since the depth of the hole or groove formed at this time depends on various conditions such as etching time, type of etching gas, gas pressure, etc., in order to make the depth of the hole or groove a target depth, During processing, control is performed to determine the etching end point and adjust the conditions while monitoring temporal changes in the depths of the holes and grooves.

特許文献1には、表面をレジスト膜によりマスキングした基板をエッチング加工して溝を形成する際に、加工中の基板の表面にレーザ光を照射して溝の深さの時間的な変化をモニタリングする方法が記載されている。加工中の基板の表面に照射されたレーザ光は、レジスト膜の表面、基板の表面、及びエッチングにより形成された溝の表面でそれぞれ反射される。これらの反射光が干渉して生じる干渉光のうち、レジスト膜の表面からの反射光と溝の表面からの反射光から生成される干渉光、及び基板の表面からの反射光と溝の表面からの反射光から生成される干渉光の強度はいずれも、エッチング加工中に溝の深さを反映して変動する。具体的には、溝の深さがレーザ光の波長の4分の1変化する毎に、これらの干渉光の強度の変化の傾向が増加から減少、あるいは減少から増加に転じる。つまり、測定される干渉光の総強度は固定値と周期的に増減する値の和で表される。特許文献1に記載の方法では、干渉光の総強度を連続的に観察し、溝の深さがレーザ光の波長の4分の1変化する毎に現れる極大値と極小値とを捉えることによって溝の深さの時間的な変化をモニタリングする。   In Patent Document 1, when forming a groove by etching a substrate whose surface is masked with a resist film, laser light is irradiated to the surface of the substrate being processed to monitor a temporal change in the depth of the groove How to do it is described. The laser light emitted to the surface of the substrate being processed is reflected from the surface of the resist film, the surface of the substrate, and the surface of the groove formed by etching. Among the interference light generated due to the interference of these reflected light, the interference light generated from the light reflected from the surface of the resist film and the light reflected from the surface of the groove, and the light reflected from the surface of the substrate and the surface of the groove The intensity of the interference light generated from the reflected light of any of the layers fluctuates reflecting the depth of the groove during the etching process. Specifically, each time the groove depth changes by a quarter of the wavelength of the laser light, the tendency of the change in the intensity of the interference light changes from an increase to a decrease, or from a decrease to an increase. That is, the total intensity of the interference light to be measured is represented by the sum of a fixed value and a value that periodically increases and decreases. In the method described in Patent Document 1, the total intensity of the interference light is continuously observed, and the maximum value and the minimum value that appear each time the groove depth changes by a quarter of the wavelength of the laser light are captured. Monitor temporal changes in groove depth.

しかし、この方法では、干渉光の強度の変化の傾向が逆になったことを確認した後でなければ極大値や極小値(以下、これらをまとめて「極値」と呼ぶ。)を決定することができない。そのため、実際に極値が現れるタイミングと極値を決定するタイミングの間にタイムラグが生じる。また、極値を決定した後、次の極値を決定するまでの間は、溝の深さを決定することができない。つまり、この方法では時々刻々と変化する溝の深さをリアルタイムで測定することができないという問題があった。   However, in this method, the maximum value or the minimum value (hereinafter collectively referred to as “extreme value”) is determined unless it is confirmed that the tendency of the change in intensity of the interference light is reversed. I can not do it. Therefore, a time lag occurs between the timing at which the extremum actually appears and the timing at which the extremum is determined. In addition, after the extreme value is determined, the depth of the groove can not be determined until the next extreme value is determined. That is, in this method, there is a problem that it is not possible to measure the groove depth which changes every moment in real time.

こうした問題を解決すべく、本発明者は、表面処理加工によって試料表面に形成される微細構造の大きさをリアルタイムで測定することができる表面処理状況モニタリング装置を提案した(特許文献2)。   In order to solve such problems, the present inventor has proposed a surface treatment status monitoring device capable of measuring in real time the size of a fine structure formed on a sample surface by surface treatment processing (Patent Document 2).

図1に表面処理状況モニタリング装置の概略構成を示す。この表面処理状況モニタリング装置は、光源110と、測定光学系120と、分光部130と、データ処理部140とを備える。光源110と測定光学系120、また測定光学系120と分光部130は、それぞれ光ファイバを介して接続されている。   FIG. 1 shows a schematic configuration of the surface treatment status monitoring device. The surface processing situation monitoring device includes a light source 110, a measurement optical system 120, a light separating unit 130, and a data processing unit 140. The light source 110 and the measurement optical system 120, and the measurement optical system 120 and the light separating unit 130 are connected to each other via an optical fiber.

光源110には、例えば中心波長が820nm、半値全幅が15nmであり可干渉性の光を発するスーパールミネセントダイオード(SLD)光源が用いられる。光源110から発せられた測定光は入射側光ファイバ121に取り込まれ、ファイバカプラ122を介して光ファイバ123内を進行し、光ファイバ123の先端から出射する。光ファイバ123から出射した測定光はコリメートレンズ124を介して試料150上に照射される。   As the light source 110, for example, a super luminescent diode (SLD) light source is used which emits coherent light having a center wavelength of 820 nm and a full width at half maximum of 15 nm. The measurement light emitted from the light source 110 is taken into the incident side optical fiber 121, travels through the optical fiber 123 through the fiber coupler 122, and exits from the tip of the optical fiber 123. The measurement light emitted from the optical fiber 123 is irradiated onto the sample 150 through the collimator lens 124.

光源110から照射された光は、試料150の表面と、該表面に形成された溝151の底面でそれぞれ反射する(図2)。これらの反射光160、161はコリメートレンズ124を介して光ファイバ123に入射する。光ファイバ123に入射した反射光160、161はファイバカプラ122に導かれ、少なくともその一部が干渉して干渉光を生成し分光部130に達する。分光部130に達した干渉光を含む測定光は、回折格子等の分光手段131により波長分散され、CCDラインセンサ等のアレイ検出器132により波長ごとに検出される。各波長に対応したアレイ検出器132からの出力信号はデータ処理部140に入力される。   The light emitted from the light source 110 is reflected on the surface of the sample 150 and the bottom of the groove 151 formed on the surface, respectively (FIG. 2). These reflected lights 160 and 161 enter the optical fiber 123 through the collimator lens 124. The reflected lights 160 and 161 incident on the optical fiber 123 are guided to the fiber coupler 122, and at least a part of them is interfered to generate interference light and reach the light splitting unit 130. The measurement light including the interference light that has reached the light separating unit 130 is wavelength dispersed by the light separating means 131 such as a diffraction grating, and is detected for each wavelength by the array detector 132 such as a CCD line sensor. An output signal from the array detector 132 corresponding to each wavelength is input to the data processing unit 140.

データ処理部140では、アレイ検出器132からの出力信号に基づき干渉光を含む測定光のスペクトル(図3(a))を作成する。続いて、測定光スペクトルの軸を波長から波数に変換する(図3(b))。さらに、表面処理開始前に取得した試料の表面からの反射光のスペクトルを用いて測定光スペクトルの強度を正規化する(図3(c))。そして、正規化後の測定光スペクトルを周波数解析(フーリエ変換)してパワースペクトルを取得し(図3(d))、該パワースペクトル上のピーク位置から溝の深さを決定する。このように、特許文献2に記載の表面処理状況モニタリング装置では、干渉光を含む測定光を検出して得たデータを数学的に処理するのみで溝の深さを決定するため、リアルタイムでの測定が可能である。   The data processing unit 140 creates a spectrum (FIG. 3A) of the measurement light including the interference light based on the output signal from the array detector 132. Subsequently, the axis of the measurement light spectrum is converted from wavelength to wave number (FIG. 3 (b)). Furthermore, the intensity of the measurement light spectrum is normalized using the spectrum of the reflected light from the surface of the sample acquired before the start of the surface treatment (FIG. 3 (c)). Then, the measurement light spectrum after normalization is subjected to frequency analysis (Fourier transform) to obtain a power spectrum (FIG. 3 (d)), and the depth of the groove is determined from the peak position on the power spectrum. As described above, in the surface treatment status monitoring device described in Patent Document 2, the depth of the groove is determined only by mathematically processing the data obtained by detecting the measurement light including the interference light. Measurement is possible.

特開平10−325708号公報JP 10-325708 A 特開2013−120063号公報JP, 2013-120063, A 特開2014−206467号公報JP, 2014-206467, A

特許文献2に記載の装置では、測定光スペクトルを取得して、波数に対する干渉光の強度の変化(干渉波)を周波数解析して溝の深さを求める。しかし、微細な溝の場合、波数に対する干渉波の周期が長くなる。図4に一例(溝の深さ4.0μmの例)を示すように、溝が浅くなると、干渉波の周期が測定光スペクトルの全域(SLDの波長帯域に相当)よりも長くなる。すると、測定光スペクトルにおいて1周期未満(図4の例では約3/4周期)の干渉波しか確認することができず、高い精度で溝の深さを求めることが難しくなる、という問題があった。   In the apparatus described in Patent Document 2, the measurement light spectrum is acquired, and the change in the intensity of interference light with respect to the wave number (interference wave) is frequency analyzed to obtain the depth of the groove. However, in the case of fine grooves, the period of the interference wave with respect to the wave number becomes long. As shown in FIG. 4 as an example (example of the groove depth of 4.0 μm), when the groove becomes shallow, the period of the interference wave becomes longer than the entire area of the measurement light spectrum (corresponding to the wavelength band of SLD). Then, only the interference wave of less than one cycle (about 3/4 in the example of FIG. 4) can be confirmed in the measurement light spectrum, and there is a problem that it becomes difficult to obtain the groove depth with high accuracy. The

本発明が解決しようとする課題は、表面処理加工によって試料の表面に形成される孔若しくは溝の深さや段差の大きさ、又は増加若しくは減少する膜層や基板の厚さといった測定対象構造の大きさを測定する表面処理状況モニタリング装置において、微小な構造の大きさをリアルタイムで、かつ従来よりも高い精度で測定することである。   The problem to be solved by the present invention is the size of the structure to be measured, such as the depth of a hole or groove formed on the surface of a sample by surface treatment or the size of a step, or the thickness of a film layer or substrate increasing or decreasing. In the surface treatment status monitoring device that measures the size of a micro structure, the size of a micro structure is to be measured in real time and with higher accuracy than in the past.

上記課題を解決するために成された本発明は、表面処理加工によって基板上に形成される孔若しくは溝の深さや段差、又は増加若しくは減少する膜層や基板の厚さといった、試料表面に形成される測定対象構造の大きさを測定する表面処理状況モニタリング装置であって、
a) 所定の波長幅と可干渉性を有する光を発する複数の光源であって、発する光の波長帯域が相互に異なる複数の光源と、
b) 前記複数の光源からそれぞれ発せられた照射光を前記試料表面の測定対象構造を含む範囲に照射する照射光学系と、
c) 前記測定対象構造の大きさを規定する2つの部位でそれぞれ反射した光の干渉により生じた干渉光を含む測定光を波長分散して検出する検出部と、
d) 前記検出部からの出力信号に基づき測定光スペクトルを生成するスペクトル生成部と、
e) 前記測定光スペクトルを周波数解析して前記測定対象構造の大きさを決定する構造決定部と
を備えることを特徴とする。
The present invention, which has been made to solve the above problems, is formed on the surface of a sample, such as the depth or step of a hole or groove formed on a substrate by surface treatment, or the thickness of a film layer or substrate increasing or decreasing. A surface treatment status monitoring device for measuring the size of the target structure to be measured;
a) a plurality of light sources emitting light having a predetermined wavelength width and coherence, the plurality of light sources having mutually different wavelength bands of emitted light,
b) an irradiation optical system which irradiates irradiation light emitted from each of the plurality of light sources to a range including the measurement target structure on the surface of the sample;
c) A detection unit for wavelength-dispersing and detecting measurement light including interference light generated by interference of light respectively reflected by two portions defining the size of the measurement target structure;
d) a spectrum generation unit that generates a measurement light spectrum based on the output signal from the detection unit;
e) A structure determination unit that performs frequency analysis on the measurement light spectrum to determine the size of the measurement target structure.

上記測定対象構造の大きさを規定する2つの部位は、例えば、測定対象構造が基板表面に形成された溝である場合には、基板の表面と溝の底面である。また、測定対象構造が膜層である場合には、上記2つの部位は膜層の上面と下面である。上記測定光には、上記干渉光だけでなく、干渉しなかった反射光も含まれる。   For example, when the structure to be measured is a groove formed on the surface of the substrate, the two portions defining the size of the structure to be measured are the surface of the substrate and the bottom of the groove. Further, when the structure to be measured is a film layer, the two parts are the upper surface and the lower surface of the film layer. The measurement light includes not only the interference light but also reflected light which has not interfered.

本発明に係る表面処理状況モニタリング装置では、互いに波長帯域が異なる複数の光源を用いるため、従来に比べて照射光の波長帯域が広くなる。例えば、従来同様の波長幅を有し相互に発光帯域が異なる2つのSLD光源を用いると、従来の倍の波長帯域で干渉光の強度変化を測定することができる。これにより、従来の光源では1/2周期の干渉波しか得られず構造の大きさを測定することが困難であった微細構造についても、従来の倍である1周期の干渉波を取得して周波数解析を行い、該微細構造の大きさを高い精度で測定することができる。また、本発明に係る表面処理状況モニタリング装置では、特許文献2に記載の装置と同様に干渉光を演算処理するのみであるため、リアルタイムで測定対象構造の大きさを測定することができる。   In the surface treatment condition monitoring apparatus according to the present invention, since the plurality of light sources having different wavelength bands are used, the wavelength band of the irradiation light becomes wider than in the prior art. For example, when two SLD light sources having the same wavelength width as each other and having different emission bands from each other are used, it is possible to measure the intensity change of the interference light in the wavelength band twice as large as the conventional one. As a result, with a conventional light source, only a half cycle interference wave can be obtained and it is difficult to measure the size of the structure. Frequency analysis can be performed to measure the size of the microstructure with high accuracy. Further, in the surface treatment status monitoring device according to the present invention, the interference light is only processed in the same manner as the device described in Patent Document 2, so the size of the measurement target structure can be measured in real time.

SLD光源の場合、1つの光源に使用するダイオードの種類と数を増やせば発光帯域を広げることはできるものの、そのようなSLD光源は特殊でありコストが増大する。一方、本発明の表面処理状況モニタリング装置では、独立した2つの光源を併用して波長帯域を広げるため、例えば汎用の安価なSLD光源を複数、適宜に組み合わせて装置を安価に構成することができる。また、例えば、想定される最小の測定対象構造から少なくとも1周期の干渉波が得られるように合成波長帯域の広さを決定し、その要件を満たすように複数の光源を組み合わせることが可能であり、1つの光源のみを使用する従来の装置に比べて設計の自由度が高くなる。なお、合成波長帯域とは、上記複数の光源から発せられる照射光の波長のうちの最短波長と最長波長で規定される帯域を意味する。   In the case of the SLD light source, although it is possible to widen the emission band by increasing the type and number of diodes used for one light source, such an SLD light source is special and increases the cost. On the other hand, in the surface treatment status monitoring device of the present invention, the wavelength band can be expanded by using two independent light sources in combination. For example, the device can be configured inexpensively by combining a plurality of inexpensive SLD light sources for general use. . Also, for example, it is possible to determine the width of the combined wavelength band so that at least one cycle of interference wave can be obtained from the smallest possible measurement target structure, and to combine multiple light sources to meet the requirements. Compared to the conventional device using only one light source, the degree of freedom in design is high. In addition, a synthetic | combination wavelength zone | band means the zone | band prescribed | regulated by the shortest wavelength and the longest wavelength among the wavelengths of the irradiated light emitted from the said several light source.

本発明に係る表面処理状況モニタリング装置では、相互の発光帯域が連続しない(離間する)複数の光源を適宜に組み合わせて用いることもできる。ただし、この場合には、前記複数の光源からそれぞれ発せられる照射光の波長帯域の総和が前記合成波長帯域の半分以上であることが望ましい。   In the surface treatment status monitoring device according to the present invention, a plurality of light sources in which the light emission bands are not continuous (separated) can be used in combination as appropriate. However, in this case, it is desirable that the total of the wavelength bands of the irradiation lights respectively emitted from the plurality of light sources be half or more of the combined wavelength band.

合成波長帯域が広い光源を用いても、実際に試料に照射する光(照射光)の波長帯域においてしか測定光スペクトルを取得することはできない。従って、微細構造の大きさを高い精度で求めるためには、実際に取得する測定光スペクトルの波長帯域に少なくとも1/2周期の干渉波が含まれるように前記複数の光源を選択することが望ましい。   Even if a light source with a wide synthetic wavelength band is used, the measurement light spectrum can be acquired only in the wavelength band of the light (irradiated light) actually irradiated to the sample. Therefore, in order to obtain the size of the fine structure with high accuracy, it is desirable to select the plurality of light sources so that at least a half period interference wave is included in the wavelength band of the measurement light spectrum to be actually acquired. .

本発明に係る表面処理状況モニタリング装置では、前記構造決定部が、前記測定光スペクトルを表面処理加工前の前記試料表面からの反射光のスペクトルにより正規化した後に周波数解析することが望ましい。   In the surface treatment status monitoring device according to the present invention, it is preferable that the structure determination unit performs frequency analysis after normalizing the measurement light spectrum with a spectrum of light reflected from the sample surface before surface treatment processing.

上述したとおり、検出される測定光には、干渉しなかった反射光も含まれる。こうした測定光のスペクトルをそのまま周波数解析すると、得られるパワースペクトルの低周波数領域に反射光のピーク形状に由来するピークが現れるため、測定対象構造の大きさを示すピークを判別することが難しくなることがある。特に測定対象構造が小さい場合に該構造の大きさを示すピークの判別が難しくなる。上記のように、測定光スペクトルデータを試料表面からの反射光のスペクトルデータによって正規化しておくことにより、パワースペクトルから反射光のピークに由来するピークを取り除き、より高い精度で測定対象構造の大きさを測定することができる。   As described above, the measurement light to be detected also includes the reflected light which has not interfered. If the spectrum of such measurement light is directly subjected to frequency analysis, a peak derived from the peak shape of the reflected light appears in the low frequency region of the obtained power spectrum, making it difficult to determine the peak indicating the size of the structure to be measured. There is. In particular, when the structure to be measured is small, it is difficult to determine the peak indicating the size of the structure. As described above, by normalizing the measurement light spectrum data by the spectrum data of the reflected light from the sample surface, the peak derived from the peak of the reflected light is removed from the power spectrum, and the size of the structure to be measured with higher accuracy. Can be measured.

本発明に係る表面処理状況モニタリング装置を用いることにより、微小な測定対象構造の大きさをリアルタイムで、かつ従来よりも高い精度で測定することができる。   By using the surface treatment status monitoring device according to the present invention, it is possible to measure the size of a minute measurement target structure in real time and with higher accuracy than in the past.

従来の表面処理状況モニタリング装置の要部構成図。The principal part block diagram of the conventional surface treatment condition monitoring apparatus. 試料表面における反射光について説明する図。The figure explaining the reflected light in the sample surface. 従来の表面処理状況モニタリング装置において、測定光スペクトルから測定対象構造の大きさを測定する手順を説明する図。The figure which demonstrates the procedure which measures the magnitude | size of measurement object structure from a measurement light spectrum in the conventional surface treatment condition monitoring apparatus. 測定対象構造の大きさが微小である場合の干渉波について説明する図。The figure explaining the interference wave in case the magnitude | size of measurement object structure is minute. 本発明に係る表面処理状況モニタリング装置の一実施例の要部構成図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part block diagram of one Example of the surface treatment condition monitoring apparatus which concerns on this invention. 本実施例において使用する2つのSLD光源の発光帯域を示す図。The figure which shows the light emission zone | band of two SLD light sources used in a present Example. 本実施例における表面処理状況モニタリング装置において、測定光スペクトルから測定対象構造の大きさを測定する手順を説明する図。The figure which demonstrates the procedure which measures the magnitude | size of measurement object structure from a measurement light spectrum in the surface treatment condition monitoring apparatus in a present Example. 本実施例の装置を用いて測定対象構造の大きさを測定した結果を従来と比較したグラフ。The graph which compared the result of having measured the magnitude | size of measurement object structure using the apparatus of a present Example with the past. 本実施例の装置を用いて測定対象構造の大きさを測定した場合の測定誤差を従来と比較したグラフ。The graph which compared the measurement error at the time of measuring the size of measurement object structure using the device of a present example with the conventional. 相互に大きさが異なる3種類の測定対象構造の大きさを本実施例の表面処理状況モニタリング装置で測定した例。The example which measured the magnitude | size of three types of measurement object structures which mutually differ in a magnitude | size with the surface treatment condition monitoring apparatus of a present Example. 微小な測定対象構造に関する周波数解析部の測定値を示す図。The figure which shows the measured value of the frequency analysis part regarding a minute measurement object structure.

以下、本発明に係る表面処理状況モニタリング装置の一実施例について、図面を参照して説明する。本実施例の表面処理状況モニタリング装置1の要部構成を図5に示す。本実施例の表面処理状況モニタリング装置1では、エッチング加工により試料50の表面に形成される溝の深さ(測定対象構造の大きさ)をリアルタイム測定してモニタリングする。   Hereinafter, an embodiment of a surface treatment status monitoring device according to the present invention will be described with reference to the drawings. The principal part structure of the surface treatment condition monitoring apparatus 1 of a present Example is shown in FIG. In the surface treatment status monitoring device 1 of the present embodiment, the depth (the size of the structure to be measured) of the groove formed on the surface of the sample 50 by etching is monitored in real time.

本実施例の表面処理状況モニタリング装置1は、光源部10、測定光学系20、分光部30、及びデータ処理部40を備えている。光源部10は、互いに発する光の波長帯域が異なる第1SLD光源11、第2SLD光源12を有している。図6に示すように、第1SLD光源11の発光帯域は約790nm〜約850nmであり、第2SLD光源の発光帯域は約890nm〜約900nmである。第1SLD光源11と第2SLD光源12から発せられた照射光は、それぞれ光源部第1光ファイバ13と光源部第2光ファイバ14に導入され、光源部ファイバカプラ15で合成されて合成照射光となり、測定光学系20の測定系第1光ファイバ21に送られる。なお、第1SLD光源11は、図1〜図4を参照して説明した従来の表面処理状況モニタリング装置において用いられているSLD光源と同じものである。   The surface treatment status monitoring device 1 of the present embodiment includes a light source unit 10, a measurement optical system 20, a light separating unit 30, and a data processing unit 40. The light source unit 10 includes a first SLD light source 11 and a second SLD light source 12 which have different wavelength bands of light emitted from each other. As shown in FIG. 6, the emission band of the first SLD light source 11 is about 790 nm to about 850 nm, and the emission band of the second SLD light source is about 890 nm to about 900 nm. The irradiation lights emitted from the first SLD light source 11 and the second SLD light source 12 are introduced to the light source part first optical fiber 13 and the light source part second optical fiber 14, respectively, and are synthesized by the light source part fiber coupler 15 to become synthesized irradiation light. , And is sent to the measurement system first optical fiber 21 of the measurement optical system 20. The first SLD light source 11 is the same as the SLD light source used in the conventional surface treatment status monitoring device described with reference to FIGS. 1 to 4.

測定光学系20の測定系第1光ファイバ21に導入された合成照射光は、測定系ファイバカプラ22を介して測定系第2光ファイバ23を進み、その先端から出射する。測定系第2光ファイバ23から出射した合成照射光はコリメートレンズ24を介して試料50の表面に照射される。   The combined irradiation light introduced into the measurement system first optical fiber 21 of the measurement optical system 20 travels through the measurement system second optical fiber 23 via the measurement system fiber coupler 22 and is emitted from the tip thereof. The combined irradiation light emitted from the measurement system second optical fiber 23 is irradiated onto the surface of the sample 50 via the collimator lens 24.

図5内の拡大図で示すように、試料50の表面、及び該試料50の表面に形成された溝51の底面でそれぞれ反射した光60、61はコリメートレンズ24を通って測定系第2光ファイバ23に入射する。測定系第2光ファイバ23に入射した反射光60、61は測定系ファイバカプラ22において少なくとも一部が干渉して干渉光となり、測定系第3光ファイバ25を通って分光部30に送られる。   As shown in the enlarged view in FIG. 5, the light 60, 61 reflected by the surface of the sample 50 and the bottom of the groove 51 formed in the surface of the sample 50 respectively passes through the collimating lens 24 and the measurement system second light It enters the fiber 23. The reflected lights 60 and 61 incident on the measurement system second optical fiber 23 interfere with each other at least in part in the measurement system fiber coupler 22 to become interference light, and are transmitted to the light splitting unit 30 through the measurement system third optical fiber 25.

分光部30に入射した干渉光を含む測定光は、回折格子31により波長分離され、CCDラインセンサ32で波長ごとに検出される。CCDラインセンサ32からの出力信号は、データ処理部40に送られ、記憶部41に保存されるとともに後述する処理に供される。なお、分光部30では測定光を波長分離し、波長ごとにその強度を検出できる構成であればよく、回折格子以外の分光素子や、CCDラインセンサ以外の検出器を用いることもできる。   The measurement light including the interference light that has entered the light splitting unit 30 is wavelength-separated by the diffraction grating 31, and is detected by the CCD line sensor 32 for each wavelength. An output signal from the CCD line sensor 32 is sent to the data processing unit 40, stored in the storage unit 41, and provided for processing to be described later. The light separating unit 30 may be configured to separate the measurement light into wavelengths and detect the intensity for each wavelength, and a light separating element other than the diffraction grating or a detector other than the CCD line sensor may be used.

データ処理部40は、記憶部41のほか、機能的にスペクトル生成部42、周波数解析部43、フィッティング演算部44、及び構造決定部45を備えている。データ処理部40の実体は一般的なパーソナルコンピュータであり、記憶部41を除く各部の機能は、所定のプログラムを実行することにより実現される。また、データ処理部40には入力部48と表示部49が接続されている。記憶部41には、エッチング加工前の試料50の表面からの反射光のスペクトルのデータ、及び該反射光の強度とエッチング加工中の測定光を含む測定光の強度の関係を表す式であって試料50に形成される溝51の深さをパラメータとして含む理論式が保存されている。この理論式については後述する。   The data processing unit 40 functionally includes a spectrum generation unit 42, a frequency analysis unit 43, a fitting calculation unit 44, and a structure determination unit 45 in addition to the storage unit 41. The substance of the data processing unit 40 is a general personal computer, and the functions of the units excluding the storage unit 41 are realized by executing a predetermined program. Further, an input unit 48 and a display unit 49 are connected to the data processing unit 40. The storage unit 41 is a formula representing the relationship between the data of the spectrum of the reflected light from the surface of the sample 50 before etching and the intensity of the reflected light and the intensity of the measuring light including the measuring light during the etching. A theoretical equation including the depth of the groove 51 formed in the sample 50 as a parameter is stored. The theoretical formula will be described later.

スペクトル生成部42は、CCDラインセンサ32の出力信号から波長ごとの測定光の強度を取得し(図7(a))、波長を波数に変換して、波数を横軸とする測定光スペクトルを生成する(図7(b))。続いて、構造決定部45は、記憶部41から反射光のスペクトル強度を読み出し、測定光スペクトルの強度を反射光スペクトルの強度で除して正規化する(図7(c))。これにより、干渉光の強度変化を強調したスペクトル(干渉波に相当)が得られる。さらに、構造決定部45は正規化後の測定光スペクトルを周波数解析してパワースペクトルを取得し、該パワースペクトルに現れるピークの位置から溝の深さを決定する(図7(d))。   The spectrum generation unit 42 obtains the intensity of the measurement light for each wavelength from the output signal of the CCD line sensor 32 (FIG. 7A), converts the wavelength into a wave number, and measures the measurement light spectrum with the wave number as the horizontal axis. It generates (FIG. 7 (b)). Subsequently, the structure determination unit 45 reads the spectral intensity of the reflected light from the storage unit 41, and normalizes the intensity of the measurement light spectrum by dividing it by the intensity of the reflected light spectrum (FIG. 7 (c)). Thus, a spectrum (corresponding to an interference wave) in which the change in intensity of the interference light is emphasized can be obtained. Further, the structure determination unit 45 analyzes the frequency of the normalized measurement light spectrum to obtain a power spectrum, and determines the depth of the groove from the position of the peak appearing in the power spectrum (FIG. 7 (d)).

図7(d)に示すように、溝の深さ(測定対象構造の大きさ)が数十μm以上ある場合には、図3を参照して説明したように、従来の表面処理状況モニタリング装置でも同程度で測定対象構造の大きさをモニタリングすることができる。これは、1つの光源から発せられる光の波長帯域で取得した測定光スペクトルに、干渉光の強度変化(干渉波)が複数周期現れるためである。換言すると、測定光スペクトルに現れる干渉波が1周期よりも少なくなると、周波数解析の精度が悪化し、測定対象構造の大きさを決定することが困難になる。具体的には、図4で説明したように、第1SLD光源11に相当する1つの光源のみを用いる従来の装置では、測定対象構造の大きさが概ね10μm以下(図4は4μm)になると測定光スペクトルに現れる干渉波の周期が1周期程度まで少なくなり、測定対象構造の大きさを測定することが困難になる。   As shown in FIG. 7 (d), when the depth of the groove (the size of the structure to be measured) is several tens of μm or more, as described with reference to FIG. However, the size of the structure to be measured can be monitored at the same level. This is because the change in intensity of the interference light (interference wave) appears in a plurality of cycles in the measurement light spectrum acquired in the wavelength band of the light emitted from one light source. In other words, when the interference wave appearing in the measurement light spectrum is less than one cycle, the accuracy of the frequency analysis is deteriorated, and it becomes difficult to determine the size of the measurement target structure. Specifically, as described in FIG. 4, in the conventional device using only one light source corresponding to the first SLD light source 11, measurement is performed when the size of the structure to be measured is approximately 10 μm or less (4 μm in FIG. 4) The period of the interference wave appearing in the light spectrum decreases to about one cycle, and it becomes difficult to measure the size of the structure to be measured.

一方、本実施例の表面処理状況モニタリング装置1では、第1SLD光源11に加え、該第1SLD光源と発光帯域が異なる第2SLD光源12を用いるため、図7(c)に破線で示すように、第1SLD光源の発光帯域に加え、第2SLD光源12の波長帯域でも測定光スペクトルを取得する。そのため、従来の装置よりも多くの周期の干渉波を取得して周波数解析を行い、高精度で測定対象構造の大きさを測定することができる。   On the other hand, in the surface treatment status monitoring apparatus 1 of the present embodiment, in addition to the first SLD light source 11, the second SLD light source 12 having a different light emission band from the first SLD light source 11 is used, as shown by the broken line in FIG. In addition to the emission band of the first SLD light source, the measurement light spectrum is acquired also in the wavelength band of the second SLD light source 12. Therefore, it is possible to acquire an interference wave with more cycles than that of the conventional device, perform frequency analysis, and measure the size of the measurement target structure with high accuracy.

図8及び図9に、本実施例の表面処理状況モニタリング装置1と、従来の表面処理状況モニタリング装置でそれぞれ測定対象構造の大きさを測定した結果を示す。図8は測定対象構造の大きさが30μm以下における測定値を比較したグラフである。図9は、測定対象構造の大きさが10μm〜200μmの範囲における測定値の誤差を比較したグラフである。図8から、測定対象構造が10μmよりも大きい場合には、本実施例の装置と従来の装置の測定結果のいずれにもおいても良好な測定結果が得られているが、測定対象構造の大きさが10μm以下になると本実施例の装置を用いた方が測定精度が高くなっていることが分かる。また、図9から、10μm〜200μmの全範囲にわたり、本実施例の装置を用いると従来よりも測定誤差が小さくなることが分かる。   FIGS. 8 and 9 show the results of measuring the size of the structure to be measured with the surface treatment status monitoring device 1 of this example and the conventional surface treatment status monitoring device. FIG. 8 is a graph comparing measurement values when the size of the structure to be measured is 30 μm or less. FIG. 9 is a graph comparing errors of measured values in the range of 10 μm to 200 μm in the size of the structure to be measured. From FIG. 8, when the structure to be measured is larger than 10 μm, good measurement results are obtained in any of the measurement results of the device of the present embodiment and the conventional device. When the size is 10 μm or less, it is understood that the measurement accuracy is higher when the apparatus of the present embodiment is used. Further, it can be understood from FIG. 9 that the measurement error is smaller than in the conventional case when the apparatus of this embodiment is used over the whole range of 10 μm to 200 μm.

本実施例の表面処理状況モニタリング装置1では、相互に連続する波長帯域の光を発する2つの光源を用いることも可能であるが、上述したように、相互の波長帯域が離間する2つの光源を組み合わせることが好ましい。   Although it is possible to use two light sources that emit light in mutually continuous wavelength bands in the surface treatment status monitoring device 1 of the present embodiment, as described above, two light sources having mutually separated wavelength bands may be used. It is preferable to combine them.

本実施例の表面処理状況モニタリング装置1を用いて、深さ3.2μmの溝について得た測定光スペクトルを図10(a)に示す。図10(a)の上段は、波数を横軸とする測定光スペクトル、反射光スペクトル、及び干渉波であり、下段は、波数を横軸とする、反射光スペクトルを用いた正規化後のスペクトルである。また、図10(b)に深さ3.6μmの溝について得たもの、図10(c)に深さ4.0μmの溝について得たものをそれぞれ同様に示す。   The measurement light spectrum acquired about the groove | channel of 3.2 micrometers in depth using the surface treatment condition monitoring apparatus 1 of a present Example is shown to Fig.10 (a). The upper part of FIG. 10 (a) is the measurement light spectrum with the wave number as the horizontal axis, the reflected light spectrum, and the interference wave, and the lower part is the spectrum after normalization with the reflected light spectrum with the wave number as the horizontal axis. It is. Further, FIG. 10 (b) shows the one obtained for the groove having a depth of 3.6 μm, and FIG. 10 (c) shows the one obtained for the groove having a depth of 4.0 μm in the same manner.

第1SLD光源11の波長帯域における図10(a)〜(c)のスペクトルを比較すると、3つのスペクトルの形状及び干渉波の形状が非常に似ていることが分かる。そのため、これらを周波数解析により判別することは難しい。これら3つの構造を判別するには、相互に形状が異なる、第1SLD光源11の波長帯域とは別の波長帯域でスペクトル(干渉波)を取得する必要がある。本実施例の装置では、スペクトル(干渉波)の形状が異なる波長帯域で発光する第2SLD光源12を用いることにより、相互に大きさが異なる3つの測定対象構造を判別することができる。   When the spectra of FIGS. 10A to 10C in the wavelength band of the first SLD light source 11 are compared, it can be seen that the shapes of the three spectra and the shapes of the interference waves are very similar. Therefore, it is difficult to distinguish them by frequency analysis. In order to discriminate these three structures, it is necessary to acquire a spectrum (interference wave) in a wavelength band different from the wavelength band of the first SLD light source 11 having mutually different shapes. In the apparatus of the present embodiment, by using the second SLD light source 12 which emits light in wavelength bands different in the shape of spectrum (interference wave), three measurement object structures which are different in size can be distinguished.

ここで、第1SLD光源11の波長帯域に隣接する波長帯域で発光する第2光源を用いようとすると、約850nm〜約900nmの帯域で発光するものを用いなければならない。一般に、強度が同程度であると、発光帯域が広いほど光源は高価になる。また、上記例の場合、第1SLD光源11の波長帯域に近い波長で測定光スペクトルを取得しても3つの測定対象構造を判別することは困難である。従って、本実施例のように、相互に発光帯域が離間する2つの光源を組み合わせることで、安価に構成可能な装置で効率よくスペクトル(干渉波)の形状を判別し、高精度で測定対象構造の大きさを測定することができる。   Here, if it is intended to use a second light source emitting in a wavelength band adjacent to the wavelength band of the first SLD light source 11, one emitting in a band of about 850 nm to about 900 nm should be used. In general, the light source is more expensive as the emission band is wider when the intensity is comparable. Further, in the case of the above example, even if the measurement light spectrum is acquired at a wavelength close to the wavelength band of the first SLD light source 11, it is difficult to distinguish the three measurement target structures. Therefore, as in the present embodiment, by combining two light sources having mutually separated light emission bands, the shape of the spectrum (interference wave) can be efficiently determined by an apparatus that can be configured inexpensively, and the structure to be measured with high accuracy The size of the can be measured.

しかし、2つの光源の発光帯域が極端に大きく離間しており、また、それらの帯域幅が狭いと、実際に干渉光を含む測定光を検出してスペクトルを取得できる帯域が狭くなり、周波数解析に足る周期の干渉波が得られなくなるため、測定対象構造の大きさを高精度に測定することは難しい。本実施例ではこの点を考慮し、測定対象構造の最小サイズ(本実施例では4.0μm)を予め決めておく。そして、該サイズの構造を測定した場合に、合成波長帯域に少なくとも1周期の干渉波が現れ、かつ、2つの光源がそれぞれ実際に発する照射光の波長帯域の総和が、上記合成波長帯域の半分以上を占める(即ち、少なくとも1/2周期の干渉波が得られる)ように2つの光源を組み合わせて構成している。   However, if the emission bands of the two light sources are extremely far apart, and their bandwidths are narrow, the bandwidth in which the measurement light including the interference light can be detected and the spectrum can be acquired becomes narrow, and the frequency analysis It is difficult to measure the size of the structure to be measured with high accuracy because interference waves with sufficient frequency can not be obtained. In the present embodiment, in consideration of this point, the minimum size (4.0 μm in the present embodiment) of the structure to be measured is determined in advance. Then, when the structure of the size is measured, interference waves of at least one cycle appear in the combined wavelength band, and the sum of the wavelength bands of the irradiation light actually emitted by the two light sources is half of the combined wavelength band. The two light sources are combined so as to occupy the above (that is, an interference wave of at least 1/2 cycle can be obtained).

上記のとおり、本実施例では、測定対象構造の最小サイズを4.0μmとしたが、エッチング加工では、処理開始後、溝の深さが4.0μmに達するまでの間も溝の深さをモニタリングすることが望ましい。本実施例の表面処理状況モニタリング装置1では、このような場合にフィッティング演算部44を用いる。   As described above, in the present embodiment, the minimum size of the structure to be measured is 4.0 μm, but in the etching process, the groove depth is monitored even after the treatment starts until the groove depth reaches 4.0 μm. Is desirable. In the surface treatment situation monitoring apparatus 1 of the present embodiment, the fitting operation unit 44 is used in such a case.

フィッティング演算部44は、記憶部41から反射光スペクトルの強度データ及び理論式を読み出す。この理論式は、反射光強度と測定光強度の関係を、測定対象構造の大きさを1つのパラメータとして含む式で表すものであり、例えば特許文献3において本発明者が提案した以下の式(1)を用いることができる。上述した周波数解析では、測定光スペクトルを反射光スペクトルで正規化することにより、反射光の影響を除外して解析した。一方、式(1)では、測定光の強度を試料50の表面からの反射光に対応する項(Rr(λ)と括弧内の第1項の積)と干渉光に対応する項(Rr(λ)と括弧内の第2項の積)で表す。そして、パラメータα1、α2、及びT(t)を適宜に変更して測定光スペクトルの実測強度と整合させ(フィッティングし)、測定対象構造の大きさを推定する。

Figure 0006544171
The fitting operation unit 44 reads the intensity data and theoretical formula of the reflected light spectrum from the storage unit 41. This theoretical expression represents the relationship between the reflected light intensity and the measurement light intensity as an expression including the size of the structure to be measured as a single parameter, and for example, the following expression proposed by the inventor in Patent Document 3 1) can be used. In the above-described frequency analysis, the measurement light spectrum was normalized with the reflected light spectrum to exclude and analyze the influence of the reflected light. On the other hand, in equation (1), the intensity of the measurement light corresponds to the term (the product of Rr (λ) and the first term in parentheses) corresponding to the reflected light from the surface of the sample 50 and the term (Rr ( It is represented by the product of λ) and the second term in parentheses. Then, the parameters α 1 , α 2 , and T (t) are appropriately changed to match (fit) the measured intensity of the measurement light spectrum, and the size of the measurement target structure is estimated.
Figure 0006544171

式(1)において、λは測定光の波長、tは時間、Rr(λ)は試料50の表面からの反射光の強度、α1は試料50の表面からの反射光の強度に対応する係数、α2は上記干渉光の強度に対応する係数、T(t)は時間tにおける測定対象構造の大きさ、n(λ)は波長λにおける測定対象構造を構成する材料の屈折率である。これらのうち、α1、α2は試料50表面の状態(例えば平坦性や表面温度)や測定対象構造の大きさT(t)とともに変化する。上述したように、反射光スペクトルの強度データRr(λ)は事前に測定され記憶部41に保存されている。 In equation (1), λ is the wavelength of the measurement light, t is the time, Rr (λ) is the intensity of the reflected light from the surface of the sample 50, and α 1 is a coefficient corresponding to the intensity of the reflected light from the surface of the sample 50 Α 2 is a coefficient corresponding to the intensity of the interference light, T (t) is the size of the structure to be measured at time t, and n (λ) is the refractive index of the material constituting the structure to be measured at wavelength λ. Among these, α 1 and α 2 change with the state of the surface of the sample 50 (for example, flatness and surface temperature) and the size T (t) of the structure to be measured. As described above, the intensity data Rr (λ) of the reflected light spectrum is measured in advance and stored in the storage unit 41.

ある時点tで測定光を波長分離して検出すると、複数の波長における測定光の強度が得られ、上述のとおりスペクトル生成部42により測定光スペクトルが生成される。これと並行して、フィッティング演算部44は、上式(1)のパラメータα1、α2、及びT(t)としてそれぞれ適当な初期値を使用し、測定光を検出した波長と同じ複数の波長における測定光強度を計算する。フィッティング演算部44は、続いて、複数の波長のそれぞれにおける実測強度と計算強度の差を求め、最小二乗法など適宜の手法を用いて該複数の波長における差の総和が最小になるようにパラメータα1、α2、及びT(t)を決定する。これにより、測定対象構造の大きさT(t)を推定することができる。 When the measurement light is wavelength-separated and detected at a certain time point t, the intensities of the measurement light at a plurality of wavelengths are obtained, and the spectrum generation unit 42 generates the measurement light spectrum as described above. In parallel with this, the fitting operation unit 44 uses appropriate initial values as the parameters α 1 , α 2 and T (t) in the above equation (1), and a plurality of wavelengths equal to the wavelength at which the measurement light is detected. Calculate the measured light intensity at the wavelength. Subsequently, the fitting operation unit 44 obtains the difference between the measured intensity and the calculated intensity at each of the plurality of wavelengths, and uses a suitable method such as the least square method to minimize the total sum of the differences at the plurality of wavelengths. Determine α 1 , α 2 , and T (t). Thereby, the size T (t) of the structure to be measured can be estimated.

周波数解析と異なり、フィッティング演算部44による計算では測定対象構造が小さくてもその大きさを推定することができる。しかし、フィッティング演算部44による演算では、複数のパラメータを少しずつ変更しながら最適値を見つけ出すため、データ処理部40への負荷が大きくなる。そのため、フィッティング演算部44による演算の回数を極力抑えることが好ましい。   Unlike frequency analysis, even if the measurement target structure is small, the size can be estimated by the calculation by the fitting calculation unit 44. However, in the calculation by the fitting calculation unit 44, the load on the data processing unit 40 becomes large because the optimum value is found while changing a plurality of parameters little by little. Therefore, it is preferable to minimize the number of calculations performed by the fitting calculation unit 44.

そこで、本実施例において、エッチング加工開始直後は、周波数解析とフィッティング演算部44による推定の両方を用いて測定対象構造の大きさを決定する。図11に示すように、周波数解析では、測定対象構造の大きさが上述した最小サイズ(4.0μm)よりも小さくなると精度が低下する。そこで、エッチング加工開始後、しばらくの間、構造決定部45はフィッティング演算部44による推定結果を測定結果として用い、周波数解析部の結果との差を求める。そして、例えば連続する所定回数の推定値の差が、予め設定した閾値以下であることを確認した時点、あるいは測定対象構造の大きさが上記最小サイズに達した時点で、フィッティング演算部44による推定を終了する。そして、それ以降、構造決定部45は、周波数解析の結果に基づき溝の深さ(測定対象構造の大きさ)を決定する。これにより、測定対象構造のサイズが上述した最小サイズ以下であっても高精度で測定することができ、かつデータ処理部40にかかる負荷を最小限に抑えることができる。   Therefore, in the present embodiment, immediately after the start of etching, the size of the structure to be measured is determined using both frequency analysis and estimation by the fitting operation unit 44. As shown in FIG. 11, in the frequency analysis, if the size of the structure to be measured is smaller than the above-described minimum size (4.0 μm), the accuracy is degraded. Therefore, for a while after the start of the etching process, the structure determination unit 45 uses the estimation result by the fitting calculation unit 44 as a measurement result to obtain a difference from the result of the frequency analysis unit. Then, for example, when it is confirmed that the difference between estimated values of a predetermined number of consecutive times is less than or equal to a preset threshold, or when the size of the measurement target structure reaches the minimum size, estimation by the fitting operation unit 44 Finish. Then, after that, the structure determination unit 45 determines the depth of the groove (the size of the measurement target structure) based on the result of the frequency analysis. As a result, even if the size of the measurement target structure is equal to or less than the above-described minimum size, measurement can be performed with high accuracy, and the load on the data processing unit 40 can be minimized.

上記実施例は一例であって、本発明の趣旨に沿って適宜に変更することができる。上記実施例では2つのSLD光源11、12を用いたが、他の種類の光源を用いてもよく、また3つ以上の光源を組み合わせてもよい。また、上記実施例では、2つのSLD光源11、12から発せられた光を光源部ファイバカプラ15において合成した合成照射光を試料50の表面に照射したが、2つの光源から発せられた照射光を合成することなく試料50の表面の同じ領域に照射してもよい。   The above-described embodiment is an example, and can be appropriately modified in accordance with the spirit of the present invention. Although two SLD light sources 11 and 12 are used in the above embodiment, other types of light sources may be used, and three or more light sources may be combined. Further, in the above embodiment, although the combined irradiation light obtained by combining the light emitted from the two SLD light sources 11 and 12 in the light source unit fiber coupler 15 is irradiated to the surface of the sample 50, the irradiated light emitted from the two light sources The same region of the surface of the sample 50 may be irradiated without synthesizing the

上記実施例では、エッチング加工中の溝の深さをリアルタイムで測定する(モニタリングする)例を中心に説明したが、そのほかにも表面処理加工によって基板上に形成される孔の深さや段差、又は増加若しくは減少する膜層や基板の厚さといった、試料表面に形成される様々な測定対象構造の大きさをリアルタイムで測定することができる。   In the above embodiments, the example has been described focusing on the example of measuring (monitoring) the depth of the groove during etching in real time, but in addition, the depth or level difference of the hole formed on the substrate by surface treatment, or It is possible to measure in real time the size of various measurement target structures formed on the sample surface, such as increasing or decreasing film layer and substrate thickness.

上記実施例では、エッチング加工の場合に開始直後からしばらくの間、フィッティング演算部44を用いる例を説明したが、レジスト膜の厚さの測定のように、対象構造が徐々に小さくなる場合には、測定開始からしばらくの間は周波数解析部43のみにより大きさを決定し、その値が予め設定した最小サイズに到達した時点(あるいはその少し前の時点)からフィッティング演算部44を用いるようにすることもできる。   In the above embodiment, an example in which the fitting calculation unit 44 is used for a while from immediately after the start in the etching process has been described, but in the case where the target structure is gradually reduced as in the measurement of the resist film thickness For a while after the start of the measurement, the size is determined only by the frequency analysis unit 43, and the fitting calculation unit 44 is used from the time when the value reaches the preset minimum size (or a time slightly before). It can also be done.

1…表面処理状況モニタリング装置
10…光源部
11…第1SLD光源
12…第2SLD光源
13…光源部第1光ファイバ
14…光源部第2光ファイバ
15…光源部ファイバカプラ
20…測定光学系
21…測定系第1光ファイバ
22…測定系ファイバカプラ
23…測定系第2光ファイバ
24…コリメートレンズ
25…測定系第3光ファイバ
30…分光部
31…回折格子
32…CCDラインセンサ
40…データ処理部
41…記憶部
42…スペクトル生成部
43…周波数解析部
44…フィッティング演算部
45…構造決定部
48…入力部
49…表示部
50…試料
51…溝
DESCRIPTION OF SYMBOLS 1 ... surface processing condition monitoring apparatus 10 ... light source part 11 ... 1st SLD light source 12 ... 2nd SLD light source 13 ... light source part 1st optical fiber 14 ... light source part 2nd optical fiber 15 ... light source part fiber coupler 20 ... measurement optical system 21 ... Measurement system first optical fiber 22 Measurement system fiber coupler 23 Measurement system second optical fiber 24 Collimator lens 25 Measurement system third optical fiber 30 spectroscopy unit 31 diffraction grating 32 CCD line sensor 40 data processing unit 41 storage unit 42 spectrum generation unit 43 frequency analysis unit 44 fitting operation unit 45 structure determination unit 48 input unit 49 display unit 50 sample 51 groove

Claims (4)

表面処理加工によって基板上に形成される孔若しくは溝の深さや段差、又は増加若しくは減少する膜層や基板の厚さといった、試料表面に形成される測定対象構造の大きさを測定する表面処理状況モニタリング装置であって、
a) 所定の波長幅と可干渉性を有する光を発する複数の光源であって、発する光の波長帯域が相互に異なる複数の光源と、
b) 前記複数の光源からそれぞれ発せられた照射光を前記試料表面の測定対象構造を含む範囲に照射する照射光学系と、
c) 前記測定対象構造の大きさを規定する2つの部位でそれぞれ反射した光の干渉により生じた干渉光を含む測定光を波長分散して検出する検出部と、
d) 前記検出部からの出力信号に基づき測定光スペクトルを生成するスペクトル生成部と、
e) 前記測定光スペクトルを周波数解析して前記測定対象構造の大きさを決定する構造決定部と
を備え
前記複数の光源からそれぞれ発せられる照射光の波長帯域の総和が、前記複数の光源から発せられる照射光の波長のうちの最短波長と最長波長で規定される合成波長帯域の半分以上であることを特徴とする表面処理状況モニタリング装置。
The surface treatment status to measure the size of the measurement target structure formed on the sample surface, such as the depth or step of the hole or groove formed on the substrate by surface treatment processing, or the thickness of the film layer or substrate increasing or decreasing A monitoring device,
a) a plurality of light sources emitting light having a predetermined wavelength width and coherence, the plurality of light sources having mutually different wavelength bands of emitted light,
b) an irradiation optical system which irradiates irradiation light emitted from each of the plurality of light sources to a range including the measurement target structure on the surface of the sample;
c) A detection unit for wavelength-dispersing and detecting measurement light including interference light generated by interference of light respectively reflected by two portions defining the size of the measurement target structure;
d) a spectrum generation unit that generates a measurement light spectrum based on the output signal from the detection unit;
e) a structure determination unit that performs frequency analysis on the measurement light spectrum to determine the size of the measurement target structure ;
The sum of the plurality of wavelength bands of illumination light from the light source is emitted respectively, more than half der Rukoto synthetic wavelength band defined by the shortest wavelength and the longest wavelength of the wavelength of the irradiation light emitted from the plurality of light sources Surface treatment status monitoring device characterized by
前記複数の光源の発光帯域が相互に離間していることを特徴とする請求項1に記載の表面処理状況モニタリング装置。   The surface treatment status monitoring device according to claim 1, wherein light emission zones of the plurality of light sources are separated from each other. 前記構造決定部が、前記測定光スペクトルを表面処理加工前の前記試料表面からの反射光のスペクトルにより正規化した後に周波数解析することを特徴とする請求項1又は2に記載の表面処理状況モニタリング装置。 The surface treatment status monitoring according to claim 1 or 2 , wherein the structure determination unit performs frequency analysis after normalizing the measurement light spectrum with a spectrum of light reflected from the sample surface before surface treatment processing. apparatus. f) 前記表面処理加工前の前記試料表面からの反射光の強度と前記測定光の強度の関係を表す数式であって前記測定対象構造の大きさをパラメータに含む理論式を用い、該理論式により表される演算スペクトルを前記測定光スペクトルにフィッティングすることにより前記測定対象構造の大きさを推定するフィッティング演算部
を備え、
前記構造決定部が前記周波数解析の結果及び前記フィッティング演算部による推定結果に基づいて前記測定対象構造の大きさを決定することを特徴とする請求項1からのいずれかに記載の表面処理状況モニタリング装置。
f) A mathematical expression that represents the relationship between the intensity of the reflected light from the sample surface before the surface treatment and the intensity of the measurement light, using a theoretical expression that includes the size of the structure to be measured as a parameter A fitting operation unit configured to estimate the size of the measurement target structure by fitting the operation spectrum represented by
The surface treatment status according to any one of claims 1 to 3 , wherein the structure determination unit determines the size of the measurement target structure based on the result of the frequency analysis and the estimation result of the fitting operation unit. Monitoring device.
JP2015182433A 2015-09-16 2015-09-16 Surface treatment status monitoring device Expired - Fee Related JP6544171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182433A JP6544171B2 (en) 2015-09-16 2015-09-16 Surface treatment status monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182433A JP6544171B2 (en) 2015-09-16 2015-09-16 Surface treatment status monitoring device

Publications (3)

Publication Number Publication Date
JP2017058217A JP2017058217A (en) 2017-03-23
JP2017058217A5 JP2017058217A5 (en) 2018-03-08
JP6544171B2 true JP6544171B2 (en) 2019-07-17

Family

ID=58391450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182433A Expired - Fee Related JP6544171B2 (en) 2015-09-16 2015-09-16 Surface treatment status monitoring device

Country Status (1)

Country Link
JP (1) JP6544171B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103906B2 (en) * 2018-09-28 2022-07-20 株式会社ディスコ Thickness measuring device
KR102659131B1 (en) * 2024-02-01 2024-04-23 ㈜넥센서 Fine groove measurement system using spectroscopic interferometer and Fourier ptychographic microscopy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460659B2 (en) * 1997-10-22 2010-05-12 株式会社ルネサステクノロジ Thin film thickness measuring method and apparatus, thin film device manufacturing method and apparatus using the same
JP3946470B2 (en) * 2001-03-12 2007-07-18 株式会社デンソー Method for measuring thickness of semiconductor layer and method for manufacturing semiconductor substrate
JP6107353B2 (en) * 2013-04-12 2017-04-05 株式会社島津製作所 Surface treatment status monitoring device

Also Published As

Publication number Publication date
JP2017058217A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5410806B2 (en) Film thickness measuring apparatus and measuring method
JP5519688B2 (en) Film thickness measuring apparatus and film thickness measuring method
US9007599B2 (en) Depth of hole measurement by subtracting area of two spectra separated by time
WO2012077652A1 (en) Etching monitoring apparatus
JP2016080668A (en) Device and method for monitoring surface treatment state
JP6544171B2 (en) Surface treatment status monitoring device
US9228828B2 (en) Thickness monitoring device, etching depth monitoring device and thickness monitoring method
JP2013120063A (en) Surface treatment condition monitoring apparatus
JP2013152191A (en) Multi-wavelength interferometer
US9460973B2 (en) Surface processing progress monitoring system
KR101398835B1 (en) Spectral interferometer using comb generation and detection technique for real-time profile measurement
JP2005084019A (en) Temperature measuring method of substrate
JP2015059800A (en) Raman spectroscopic measuring method and raman spectroscopic measuring apparatus
JP2017125685A (en) Thickness measurement device and thickness distribution measurement device
KR102510305B1 (en) Plasma processing device and plasma processing method
JP4969545B2 (en) Semiconductor manufacturing equipment
JP2014013185A (en) Spectral imaging device adjustment method and spectral imaging system
JP2017058217A5 (en)
WO2022172532A1 (en) Film thickness measuring device and film thickness measuring method
KR20120133603A (en) Surface shape measurement device chromatic aberration
JP6987326B2 (en) Light distance measuring equipment and processing equipment
JP6316069B2 (en) Three-dimensional shape change detection method and three-dimensional shape processing apparatus
TW202433026A (en) Semiconductor manufacturing device and semiconductor device manufacturing method
JP2011089972A (en) Optical inspection system and optical inspection device
JP2015137909A (en) Etching monitor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R151 Written notification of patent or utility model registration

Ref document number: 6544171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees