JP2005084019A - Temperature measuring method of substrate - Google Patents

Temperature measuring method of substrate Download PDF

Info

Publication number
JP2005084019A
JP2005084019A JP2003319546A JP2003319546A JP2005084019A JP 2005084019 A JP2005084019 A JP 2005084019A JP 2003319546 A JP2003319546 A JP 2003319546A JP 2003319546 A JP2003319546 A JP 2003319546A JP 2005084019 A JP2005084019 A JP 2005084019A
Authority
JP
Japan
Prior art keywords
substrate
interference
temperature
thin film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003319546A
Other languages
Japanese (ja)
Inventor
Nobuo Ishii
信雄 石井
Akifumi Ito
昌文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2003319546A priority Critical patent/JP2005084019A/en
Publication of JP2005084019A publication Critical patent/JP2005084019A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure accurately the temperature of a substrate having a plurality of layers even if a thin film layer causing multiple interference exists, concerning a temperature measuring method of the substrate. <P>SOLUTION: A measuring object 31 and a reference light mirror 32 are irradiated with low coherence light from two or more different low-coherence light sources 51, 52, 53 having different center wavelengths, and interference intensities are measured in each wavelength from interference waveforms of reflected light. Then, a mutual ratio in each wavelength is determined and compared with a film thickness-interference ratio characteristic acquired beforehand, to thereby estimate the film thickness of the thin film layer of the measuring object 31. Then, the temperature of the measuring object 31 is determined from the change of an optical path length after subtracting an influence portion of the thin film layer from the interference waveform. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,基板の温度測定方法に関するものである。   The present invention relates to a substrate temperature measuring method.

低コヒーレンス干渉計を用いて多層構造物の裏面側からの干渉波形を測定して,その位相変化から各層の温度を測定することが提案されている(非特許文献1参照。)。これは,試料に低コヒーレント光を照射した際に得られる反射光と参照光との干渉波形を測定して,温度変化前のものと比較することで当該試料の温度を測定するものである。   It has been proposed to measure an interference waveform from the back side of a multilayer structure using a low coherence interferometer, and to measure the temperature of each layer from the phase change (see Non-Patent Document 1). In this method, the temperature of the sample is measured by measuring the interference waveform between the reflected light and the reference light obtained when the sample is irradiated with low-coherent light and comparing it with that before the temperature change.

「光ファイバ型低コヒーレンス干渉計を用いた多層構造試料の温度測定法」(平成13年電気関係学会関西支部連合会講演論文集)"Temperature Measurement Method for Multi-layered Samples Using Optical Fiber Type Low Coherence Interferometer" (Proceedings of the 2001 Kansai Branch Federation of Electrical Engineering Society)

しかしながら前記従来技術では,多層構造を有する構造体の中で,低コヒーレント光の波長より短い,極めて薄い薄膜層が存在すると,干渉波形相互が重畳して1つの干渉波形としか認識できず,各層の温度を測定できず,結果として基板の温度が測定できない場合が生ずる。   However, in the prior art, if there is a very thin thin film layer shorter than the wavelength of the low coherent light in the structure having a multilayer structure, the interference waveforms overlap each other and can be recognized as only one interference waveform. As a result, the substrate temperature cannot be measured.

これを改善するため,低コヒーレント光の波長を短くすると,物質によっては吸収されてしまって反射せず,干渉波形が得られなくなるおそれがある。しかも現在入手しうる低コヒーレンス長の光源として,中心波長が1.3μmで最も低コヒーレンスのものは,コヒーレンス長が2μm程度であり,これを使用すれば理論上800nm程度の厚さのものであれば分離できるが,装置が非常に高価であり,実用上問題がある。
さらにまた,干渉波形のピークが重なると,本来正しく測定できる厚さのものまで正しく測定できないと言う問題が生ずる。
In order to improve this, if the wavelength of the low coherent light is shortened, some materials may be absorbed and not reflected, and an interference waveform may not be obtained. Moreover, as the currently available low-coherence length light source, the one with the center wavelength of 1.3 μm and the lowest coherence has a coherence length of about 2 μm. Can be separated, but the equipment is very expensive and has practical problems.
Furthermore, when the peaks of the interference waveform overlap, there arises a problem that it is impossible to correctly measure a thickness that can be measured correctly.

本発明はかかる点に鑑みてなされたものであり,測定対象基板に,極めて薄い膜が形成されていても,非接触で当該基板の温度を測定することをその目的としている。   The present invention has been made in view of such a point, and an object of the present invention is to measure the temperature of the substrate in a non-contact manner even if an extremely thin film is formed on the substrate to be measured.

そのため本発明の基板の温度測定方法は,低コヒーレンス光を利用して,前記低コヒーレンス光のコヒーレンス長よりも短い厚さの薄膜層を有する複数層基板の温度を測定する方法であって,前記低コヒーレンス光を前記基板の表面又は裏面に照射し,前記基板からの反射光と参照光との干渉を測定し,その時の干渉波形を複数層基板全体のものとみなし,温度変化前の前記複数層基板の同様な干渉波形とのズレ(例えばピーク間の長さ,位相のズレなど)を測定し,それによって得られた光路長変化に基づいて前記基板の温度を求めることを特徴とするものである。   Therefore, the substrate temperature measurement method of the present invention is a method for measuring the temperature of a multi-layer substrate having a thin film layer having a thickness shorter than the coherence length of the low coherence light using low coherence light, Low coherence light is irradiated on the front or back surface of the substrate, the interference between the reflected light from the substrate and the reference light is measured, the interference waveform at that time is regarded as the entire multi-layer substrate, Measuring a deviation (for example, length between peaks, phase deviation, etc.) from a similar interference waveform of a layer substrate, and determining the temperature of the substrate based on a change in optical path length obtained thereby. It is.

干渉波形の測定による膜厚の測定については,たとえばマイケルソン干渉計等において知られているが,ここに低コヒーレンス光としてSLD(Super Luminescent Diode)を用いた際の原理について説明すると,例えば図1のように,低コヒーレンス光源1から出た光は,ビームスプリッタ2によって2つに分波される。一方は,参照光として参照光ミラーで反射され,他方は信号光として試料Aで反射され,ビームスプリッタ2に戻る。両者はビームスプリッタ2で再び合波され干渉が生じ,その干渉光信号を受光器5で受信する。   The measurement of the film thickness by measuring the interference waveform is known, for example, in a Michelson interferometer or the like. The principle when an SLD (Super Luminescent Diode) is used as the low coherence light will be described here. For example, FIG. As described above, the light emitted from the low coherence light source 1 is demultiplexed into two by the beam splitter 2. One is reflected by the reference light mirror as reference light, and the other is reflected by the sample A as signal light and returns to the beam splitter 2. Both are combined again by the beam splitter 2 to cause interference, and the interference light signal is received by the light receiver 5.

このとき,低コヒーレンス光源のコヒーレンス長が数十μmと短いため,干渉する範囲が狭く,参照光と信号光の光路長がコヒーレント長の範囲において一致した場合にのみ干渉を生じる。試料Aが半導体基板のように層構造体である場合,各層で光が反射するため,参照光ミラー3を駆動機構6で一定速度で駆動させることによる連続的な参照光光路長の変化に伴い,各々の光学的距離がほぼ等しい位置でガウス型のピークを持った干渉波形が得られる。このことより,低コヒーレンス干渉計を用いて層構造体である試料Aの深度方向,例えば各種の膜を分離し各膜についての測定が可能となる。   At this time, since the coherence length of the low-coherence light source is as short as several tens of μm, the interference range is narrow, and interference occurs only when the optical path lengths of the reference light and the signal light match within the coherent length range. When the sample A is a layer structure such as a semiconductor substrate, light is reflected by each layer. Therefore, the reference light mirror 3 is driven at a constant speed by the drive mechanism 6 and the reference light path length is continuously changed. , An interference waveform having a Gaussian peak is obtained at a position where the optical distances are approximately equal. From this, it becomes possible to measure each film by separating various films, for example, various films, in the depth direction of the sample A which is a layer structure using a low coherence interferometer.

ここで,低コヒーレンス干渉計の干渉波形についてまず説明すると,参照光ミラー3を駆動させていない初期状態においてのビームスプリッタから試料,参照光ミラーまでの距離をそれぞれl,lとし,参照光ミラーの移動距離をΔlとする。
図1の干渉計において,参照光ミラー3と試料Aから反射される光波の電界をそれぞれ,
Here, the interference waveform of the low coherence interferometer will be described first. The distances from the beam splitter to the sample and the reference light mirror in the initial state where the reference light mirror 3 is not driven are defined as l 1 and l 2 respectively. Let the movement distance of the mirror be Δl.
In the interferometer of FIG. 1, the electric fields of the light waves reflected from the reference light mirror 3 and the sample A are respectively

Figure 2005084019
Figure 2005084019

受光器5に入射する合成電界Eは重ね合わせの原理より,   The combined electric field E incident on the light receiver 5 is based on the principle of superposition.

Figure 2005084019
Figure 2005084019

と書き表され,受光器5からの光電流iは次のように表される。

Figure 2005084019
The photocurrent i from the light receiver 5 is expressed as follows.
Figure 2005084019

低コヒーレンス干渉計では,参照光ミラー3を駆動することで参照光光路長を変化させる。この参照光ミラー3を一定の速度Vで移動させるとき,参照光路長l’は,l’=l’+Vtで変化することになる。ここで,l’はミラーの可動範囲の中心までの光路,tは中心からある点までの移動するときにかかる時間である。参照光の周波数がわずかに変化するのは,この参照光ミラー3が移動することにより,ドップラー効果のためである。参照光ミラー3が受ける周波数fは, In the low coherence interferometer, the reference light optical path length is changed by driving the reference light mirror 3. When the reference light mirror 3 is moved at a constant speed V, the reference optical path length l ′ 1 changes as l ′ 1 = l ′ 1 + Vt. Here, l ′ 1 is the optical path to the center of the movable range of the mirror, and t is the time taken to move from the center to a certain point. The frequency of the reference light slightly changes because of the Doppler effect as the reference light mirror 3 moves. The frequency f 1 received by the reference light mirror 3 is

Figure 2005084019
Figure 2005084019

となり,このシフトした周波数を持つ光波が,さらに移動する参照光ミラーから反射されてビームスプリッタに向かい,これが参照光となる。したがって,参照光の周波数fは, Then, the light wave having the shifted frequency is reflected from the moving reference light mirror and travels to the beam splitter, which becomes the reference light. Therefore, the frequency f 2 of the reference light is

Figure 2005084019
Figure 2005084019

となり,ドップラーシフト周波数fdは, And the Doppler shift frequency fd is

Figure 2005084019
Figure 2005084019

となる。式(1−3)から広帯域なスペクトル幅をもつ光源を用いた光干渉計での光干渉は,参照光ミラー3を一定の速度で移動させることから,参照光の周波数がわずかに異なる多数の正弦関数の和であると考えられる。その時のパワースペクトル密度を It becomes. Since the optical interference in the optical interferometer using the light source having a wide spectrum width from the expression (1-3) moves the reference light mirror 3 at a constant speed, a large number of reference light frequencies slightly different from each other. It is considered to be the sum of sine functions. The power spectral density at that time

Figure 2005084019
Figure 2005084019

とすると干渉光強度は, Then the interference light intensity is

Figure 2005084019
Figure 2005084019

となり,これを解くことにより, And by solving this,

Figure 2005084019
Figure 2005084019

と求められる。ここで,fは光源の中心周波数,Δfは半値全幅とする。 Is required. Here, f 0 is the center frequency of the light source, and Δf is the full width at half maximum.

また,式(1−6)からわかるように,参照光ミラー3の走査速度に比例してドップラーシフト周波数も高くなる。このとき,干渉光強度は,振幅強度をA(t),干渉信号の位相をθ(t)として式(1−5)を書き換えると,   Further, as can be seen from the equation (1-6), the Doppler shift frequency increases in proportion to the scanning speed of the reference light mirror 3. At this time, the interference light intensity is expressed by rewriting equation (1-5) with the amplitude intensity as A (t) and the phase of the interference signal as θ (t).

Figure 2005084019
Figure 2005084019

式(1−5),式(1−10)より振幅強度A(t)は,   From the expressions (1-5) and (1-10), the amplitude intensity A (t) is

Figure 2005084019
Figure 2005084019

と表すことができ,干渉光強度は参照光ミラー3の速度に依存しドップラーシフトしたビート周波数上で変化することがわかり,ガウス型のピークを持った干渉波形が検出される。   The interference light intensity depends on the speed of the reference light mirror 3 and changes on the beat frequency shifted by the Doppler shift, and an interference waveform having a Gaussian peak is detected.

以上のように説明できる低コヒーレンス干渉計を用い,干渉波形にみられるガウス型ピークの頂点を求めることで,深度方向への各層境界間の距離,例えば基板上の膜厚を知ることができる。   By using the low-coherence interferometer that can be explained as described above and obtaining the peak of the Gaussian peak in the interference waveform, the distance between the layer boundaries in the depth direction, for example, the film thickness on the substrate can be known.

次にそのような膜厚を測定することによって,基板の温度を測定する原理について説明する。前記したように,低コヒーレンス干渉計を用いることで,層構造体である測定対象物の深度方向についての測定可能である。したがって,ある温度においての線膨張による膜厚の変化と屈折率変化による各層の光路長の変化を検出することで温度変化の測定が可能になる。   Next, the principle of measuring the temperature of the substrate by measuring such a film thickness will be described. As described above, by using a low-coherence interferometer, it is possible to measure in the depth direction of a measurement object that is a layer structure. Therefore, the temperature change can be measured by detecting the change in the film thickness due to the linear expansion at a certain temperature and the change in the optical path length of each layer due to the change in the refractive index.

図1に示した試料Aが,試料A1,試料A2の層構造体を有している場合を例にとって説明すると,図1における(1)は試料1の表面,(2)は試料A1と試料A2の境界面,(3)は試料A2の裏面を表している。また,参照光ミラー3を動かしていない初期状態でのビームスプリッタ2から参照光ミラー3までの距離をl,測定対象物である試料Aまでの距離をlとし,参照光ミラー3の移動距離をΔflとする。試料A1,試料A2それぞれの膜厚をd,d,また屈折率をn,nとすると,試料A1の光路長LThe case where the sample A shown in FIG. 1 has the layer structure of the samples A1 and A2 will be described as an example. In FIG. 1, (1) is the surface of the sample 1, and (2) is the sample A1 and the sample. The boundary surface of A2, (3) represents the back surface of the sample A2. Further, the distance from the beam splitter 2 to the reference light mirror 3 in the initial state where the reference light mirror 3 is not moved is defined as l 1 , and the distance from the sample A as the measurement object is defined as l 2. Let the distance be Δfl. When the film thicknesses of the samples A1 and A2 are d 1 and d 2 and the refractive indexes are n 1 and n 2 , the optical path length L 1 of the sample A1 is

Figure 2005084019
Figure 2005084019

となる。 It becomes.

ここで,各試料に温度変化を与えると線膨張による膜厚の変化ならびに屈折率変化を受け光路長が変化する温度がΔT変化すると,
線膨張による膜厚の変化 d→d(1+αΔT) (2−2)
屈折率変化 n→n(1+βΔT) (2−3)
(α:試料A1の線膨張率
β:試料A1の屈折率変化の温度係数)
以上のように膜厚,屈折率共に変化する。ここで,αは波長に依存性は無いが,βは波長依存性がある。つまり,温度をΔT変化させたときの光路長をL’とおくと,
’=n(1+βΔT)×(1+αΔT)
=n・d{1+(α+β)ΔT} (2−4)
となり,光路長の変化量は,
’− L=n{1+(α+β)ΔT}d−n・d
=n・d(α+β)ΔT (2−5)
で表すことができる。これらの式から,α,βが分かれば温度変化ΔTを求めることができる。
Here, when the temperature change is given to each sample, if the temperature at which the optical path length changes due to the change in the film thickness due to the linear expansion and the change in the refractive index changes by ΔT,
Change in film thickness due to linear expansion d 1 → d 1 (1 + α 1 ΔT) (2-2)
Refractive index change n 1 → n 1 (1 + β 1 ΔT) (2-3)
1 : linear expansion coefficient of sample A1
β 1 : Temperature coefficient of change in refractive index of sample A1)
As described above, both the film thickness and the refractive index change. Here, α has no wavelength dependence, but β has wavelength dependence. In other words, if the optical path length when the temperature is changed by ΔT is L 1 ′,
L 1 ′ = n 1 (1 + β 1 ΔT) × (1 + α 1 ΔT)
= N 1 · d 1 {1+ (α 1 + β 1 ) ΔT} (2-4)
The amount of change in the optical path length is
L 1 ′ − L 1 = n 2 {1+ (α 1 + β 1 ) ΔT} d 1 −n 1 · d 1
= N 1 · d 11 + β 1 ) ΔT (2-5)
It can be expressed as From these equations, if α 1 and β 1 are known, the temperature change ΔT can be obtained.

また,試料A1と試料A2の重ね合わせた光路長L1+2は, In addition, the optical path length L 1 + 2 obtained by superimposing the sample A1 and the sample A2 is

Figure 2005084019
Figure 2005084019

さらに試料の温度がΔT’変化すると,式(2−6),(2−7)より   Furthermore, when the temperature of the sample changes by ΔT ′, from equations (2-6) and (2-7)

Figure 2005084019
Figure 2005084019

式(2−7)から明らかなように,L’− Lは試料A1の光路長変化から求められるので,α,βが分かれば,光路長変化から各層の膜厚と温度を測定できることになる。したがって,温度変化前のデータと照合し,その光路長変化を測定すれば,資料の温度を測定することが可能になるのである。 As is clear from the equation (2-7), L 1 ′ −L 1 is obtained from the change in the optical path length of the sample A1, so that if α 2 and β 2 are known, the film thickness and temperature of each layer can be determined from the change in the optical path length. It can be measured. Therefore, it is possible to measure the temperature of the data by comparing the data before the temperature change and measuring the change in the optical path length.

以上のことから,温度変化前と温度変化後とでは,干渉波形のピーク位置の幅が変化する。図1に示した試料A1,試料A2に即してより具体的に説明すると,図2に示したように,試料Aを例えばヒータ7で加熱すると,温度変化前と変化後では,干渉波形の位相がずれるのである。この温度変化による位相のズレを読みとることで,各試料の温度変化を知ることが可能になるのである。   From the above, the width of the peak position of the interference waveform changes before and after the temperature change. More specifically, referring to the sample A1 and the sample A2 shown in FIG. 1, when the sample A is heated by, for example, the heater 7 as shown in FIG. 2, the interference waveform is changed before and after the temperature change. The phase is shifted. By reading the phase shift due to this temperature change, it becomes possible to know the temperature change of each sample.

ただし,既述したように,多層構造を有する構造体の中で,低コヒーレント光の波長より短い,極めて薄い薄膜層が存在すると,干渉波形相互が重畳して1つの干渉波形としか認識できず,波形を分離する事はできない。   However, as described above, in the structure having a multilayer structure, when an extremely thin thin film layer shorter than the wavelength of the low coherent light is present, the interference waveforms are overlapped with each other so that only one interference waveform can be recognized. The waveform cannot be separated.

発明者らは,そのような薄膜層による温度に与える影響は,他の層と比べて極めて小さいことに着目した。すなわち低コヒーレント光の波長より短い,極めて薄い膜層は,その温度を測定するのは困難ではあるが,結局は極めて薄い膜層であるから,当該薄膜層のない基板や,他の層を合わせた基板全体の温度を,当該薄膜層を有する複数層基板全体の温度とみても,実用上は問題がない。したがって,低コヒーレンス光を前記基板の表面又は裏面に照射し,前記基板からの反射光と参照光との干渉を測定し,その時の干渉波形を複数層基板全体のものとみなし,重畳した(多重干渉した)波形によって得られる光路長を,対象基板の全体のものと擬制しても実用上差し支えないものとして扱い,変化前の光路長との変化によって得られる温度を,当該基板(すなわち,複数層基板全体)の温度として求めることが可能になる。   The inventors have noted that the effect of such a thin film layer on temperature is extremely small compared to other layers. In other words, it is difficult to measure the temperature of an extremely thin film layer shorter than the wavelength of the low coherent light, but after all it is an extremely thin film layer, so the substrate without the thin film layer and other layers are combined. If the temperature of the entire substrate is regarded as the temperature of the entire multilayer substrate having the thin film layer, there is no practical problem. Therefore, the front or back surface of the substrate is irradiated with low-coherence light, the interference between the reflected light from the substrate and the reference light is measured, and the interference waveform at that time is regarded as the entire multi-layer substrate and superimposed (multiplexed) The optical path length obtained by the interfering waveform is treated as being practically acceptable even if it is assumed to be the whole of the target substrate, and the temperature obtained by the change from the optical path length before the change is determined as the substrate (that is, plural It becomes possible to obtain the temperature of the entire layer substrate).

なお本明細書でいう低コヒーレンス光とは,コヒーレンス長は1〜100μmのものをいう。   In addition, the low coherence light referred to in this specification means that having a coherence length of 1 to 100 μm.

薄膜層の存在により,反射光と参照光との干渉が多重干渉を起こした場合,重畳した部分では,多重干渉を起こさない場合と比べて,重畳した分,位相幅に変動が生ずる。通常は,干渉波の波形(各干渉波形のピーク値に沿って得られる包絡線の波形)カーブが緩慢なものとなる。
これを利用して,予め基板の膜厚−波形特性のパターンをとっておき,測定された干渉波形を当該パターンと比較することによって,多重干渉を引き起こす薄膜層の厚さを推定することができる。
その後は,当該薄膜の膜厚による多重干渉分を前記測定された干渉波形から差し引き,その結果から光路長変化を算出して前記基板の温度を割り出すことが可能である。
When the interference between the reflected light and the reference light causes multiple interference due to the presence of the thin film layer, the overlapped portion has a variation in the phase width corresponding to the overlap as compared with the case where multiple interference does not occur. Usually, the waveform of the interference wave (the waveform of the envelope obtained along the peak value of each interference waveform) curve is slow.
By utilizing this, it is possible to estimate the thickness of the thin film layer that causes multiple interference by taking a pattern of the film thickness-waveform characteristics of the substrate in advance and comparing the measured interference waveform with the pattern.
After that, it is possible to subtract the multiple interference due to the film thickness of the thin film from the measured interference waveform and calculate the optical path length change from the result to determine the temperature of the substrate.

すなわち,多重干渉の影響を受けた干渉波形の包絡線は通常のガウス形状から崩れてくる。この波形解析から薄膜層の膜厚を求め,膜厚を基に計算した多重干渉の影響を元の干渉波形から取り除くことでガウス形状に補正して基板の温度を求めることができる。   That is, the envelope of the interference waveform affected by the multiple interference collapses from the normal Gaussian shape. From this waveform analysis, the film thickness of the thin film layer is obtained, and the influence of multiple interference calculated based on the film thickness is removed from the original interference waveform, whereby the temperature of the substrate can be obtained by correcting the Gaussian shape.

これを図3に基づいて説明すると,薄膜基板の裏面入射の際における低コヒーレンス光源の薄膜層での多重干渉信号は,   This will be explained with reference to FIG. 3. The multiple interference signal in the thin film layer of the low coherence light source when the back surface incidence of the thin film substrate is performed is

Figure 2005084019
Figure 2005084019

で表される。ここで, It is represented by here,

Figure 2005084019
Figure 2005084019

である。この式の第1項は基板と薄膜層の境界面における干渉信号を表し,第2項は薄膜層と大気層の境界面での干渉信号となる。そして,その以下の項は薄膜層での多重干渉による項である。   It is. The first term of this equation represents the interference signal at the interface between the substrate and the thin film layer, and the second term is the interference signal at the interface between the thin film layer and the atmospheric layer. The following terms are terms due to multiple interference in the thin film layer.

薄膜厚dが変化する場合,上記の式で第2項以下の干渉信号の強度が変化する。薄膜層の光路長が低コヒーレンス光源のコヒーレンス長より短い場合は,多重干渉による信号が重ね合され,得られる干渉信号の強度が変化する。そこで第2項以下の項を多重干渉信号から差し引くことにより,基板と薄膜層の境界面での干渉信号を補正でき,薄膜厚が変化するような条件においても基板の光路長を精度良く計測できる。そして,その光路長の変化から温度を計測することが可能である。 When the thin film thickness d 3 is varied, the intensity of the second term following the interference signal changes by the above formula. When the optical path length of the thin film layer is shorter than the coherence length of the low-coherence light source, signals due to multiple interference are superimposed, and the intensity of the obtained interference signal changes. Therefore, by subtracting the second and subsequent terms from the multiple interference signal, the interference signal at the interface between the substrate and the thin film layer can be corrected, and the optical path length of the substrate can be accurately measured even under conditions where the thin film thickness changes. . The temperature can be measured from the change in the optical path length.

上部薄膜層の多重干渉が単なる膜厚だけでなく屈折率変化によるものも含まれる場合は,異なる波長の低コヒーレンス光源を用い同様に多重干渉の影響を受けた干渉波形の差が温度による影響が小さいことを利用して,その差のフリンジ形状(各干渉波形のピーク値に沿って得られる包絡線)から上部薄膜層の膜厚を求める。同様にこの膜厚から計算した多重干渉の影響を補正することで,基板の温度を求める。   If the multiple interference of the upper thin film layer includes not only the film thickness but also the refractive index change, the difference in the interference waveform affected by the multiple interference is also affected by the temperature using a low-coherence light source with a different wavelength. Using the smallness, the film thickness of the upper thin film layer is obtained from the fringe shape of the difference (envelope obtained along the peak value of each interference waveform). Similarly, the temperature of the substrate is obtained by correcting the influence of multiple interference calculated from this film thickness.

この場合の具体的な計算は,前記した図3に即して説明した計算式と同様であり,基板厚d2を求め,次いで当該計算式によって計算すればよい。   The specific calculation in this case is the same as the calculation formula described with reference to FIG. 3, and the substrate thickness d2 may be obtained and then calculated by the calculation formula.

また中心波長が異なった2以上の異なった低コヒーレンス光を前記基板の表面又は裏面に照射し,各干渉波形の最大振幅値の相互比率,すなわち強度比をとって前記薄膜の膜厚を推定して,多重干渉分を算出し,これを前記干渉波形から差し引き,それによって得られた光路長変化に基づいて前記基板の温度を割り出すようにしてもよい。   Further, two or more different low coherence lights having different center wavelengths are irradiated on the front surface or the back surface of the substrate, and the thickness of the thin film is estimated by taking the mutual ratio of the maximum amplitude values of each interference waveform, that is, the intensity ratio. Then, multiple interference components may be calculated, subtracted from the interference waveform, and the temperature of the substrate may be determined based on the optical path length change obtained thereby.

発明者の知見によれば,中心波長が異なった2以上の異なった低コヒーレンス光を前記基板の表面又は裏面に照射したとき,干渉波形の強度が波長の異なった低コヒーレンス光ごとに異なることを発見した。したがって,その強度比−膜厚特性を予めとっておけば,多重干渉の原因となる薄膜層の膜厚を逆算して求めることができる。   According to the inventor's knowledge, when two or more different low-coherence lights having different center wavelengths are irradiated on the front or back surface of the substrate, the intensity of the interference waveform differs for each low-coherence light having a different wavelength. discovered. Therefore, if the intensity ratio-film thickness characteristic is taken in advance, the film thickness of the thin film layer that causes multiple interference can be calculated by back calculation.

本発明によれば,測定対象基板に,多重干渉を起こすような極めて薄い膜が形成されていても,非接触で当該基板の温度を測定することができる。   According to the present invention, even if an extremely thin film that causes multiple interference is formed on a measurement target substrate, the temperature of the substrate can be measured in a non-contact manner.

以下,本発明の好ましい実施の形態について説明すると,図4は,温度計測システムの一例の概要を示し,低コヒーレンス光源11には,SLDを使用している。その中心波長は1.5μm,コヒーレンス長は48μmのものを使用した。また干渉波形のピークのズレ幅を測定するための変位測定用の光源12には,波長が0.85μmのレーザーダイオードを使用している。すなわち前記干渉波形のピーク間に対するこのレーザ光の干渉波形の波数(フリンジ数)を調べることで,前記干渉波形の位相のズレを読みとることができる。このこのなお図4に示したシステムにおいて光の経路となり,各部材を接続して光の経路となる光ファイバケーブル13には,全て0.85μm帯用シングルモードファイバを使用している。   Hereinafter, a preferred embodiment of the present invention will be described. FIG. 4 shows an outline of an example of a temperature measurement system, and an SLD is used as the low coherence light source 11. The center wavelength was 1.5 μm and the coherence length was 48 μm. Further, a laser diode having a wavelength of 0.85 μm is used as the displacement measuring light source 12 for measuring the peak deviation width of the interference waveform. That is, the phase shift of the interference waveform can be read by examining the wave number (fringe number) of the interference waveform of the laser beam with respect to the peak of the interference waveform. In this system shown in FIG. 4, a single mode fiber for the 0.85 μm band is used for the optical fiber cable 13 that becomes the optical path and connects the members to form the optical path.

低コヒーレンス光源11から出た低コヒーレンス光と,変位測定用の光源12から出て光アイソレータ14を経たレーザ光は,光ファイバカプラ21で合波されて,光ファイバカプラ22へと送られる。光ファイバカプラ22では,低コヒーレンス光は分岐されて一方はコリメートファイバ23から測定対象物31へ,他方はコリメートファイバ24から参照光ミラー32へと照射される。本実施の形態では,測定対象物31はSi基板の上にSiO膜が形成されたものを用意した。参照光ミラー32は,スピーカーの駆動原理を応用したボイスコイルモータ33によって,ミラーが前後方向に高精度,高速で移動が可能である。 The low-coherence light emitted from the low-coherence light source 11 and the laser light emitted from the displacement measurement light source 12 and passed through the optical isolator 14 are combined by the optical fiber coupler 21 and sent to the optical fiber coupler 22. In the optical fiber coupler 22, the low-coherence light is branched and one is irradiated from the collimating fiber 23 to the measurement object 31 and the other is irradiated from the collimating fiber 24 to the reference light mirror 32. In the present embodiment, the measurement object 31 is prepared by forming a SiO 2 film on a Si substrate. The reference light mirror 32 can be moved with high accuracy and high speed in the front-rear direction by a voice coil motor 33 that applies the principle of driving a speaker.

測定対象物31からの反射光と,参照光ミラー32からの反射光とは,光ファイバカプラ22を経由して,コリメートファイバ41から,ボックス42内にある多層膜ミラー43に照射される。この多層膜ミラー43において,測定用のレーザ光と,干渉波形をもった低コヒーレンス光とに分離されて,レーザ光は,フォトディテクタ44で検出され,干渉波形をもった低コヒーレンス光は,フォトディテクタ45で検出される。そしてフォトディテクタ44,45で検出された光信号は,DAQカード46を介して,処理用のパソコン47に取り込まれ,必要な演算プログラムによって,干渉波等がデータとして演算され,また画面上に表示されるようになっている。   The reflected light from the measurement object 31 and the reflected light from the reference light mirror 32 are irradiated from the collimated fiber 41 to the multilayer mirror 43 in the box 42 via the optical fiber coupler 22. In this multilayer mirror 43, the laser beam for measurement and the low coherence light having an interference waveform are separated, and the laser light is detected by the photodetector 44. The low coherence light having the interference waveform is detected by the photo detector 45. Is detected. The optical signals detected by the photodetectors 44 and 45 are taken into the personal computer 47 for processing via the DAQ card 46, and the interference wave and the like are calculated as data by a necessary calculation program and displayed on the screen. It has become so.

このような温度測定システムを使用しての温度測定方法の例を説明する。
(測定例1)
例えば測定試料31において,SiO膜がSi基板に対して十分薄く,かつ膜厚が48μmより薄い場合には,SiO膜とSi基板との間の境界面からの反射による干渉波形とSiOの干渉波形のピークが分離できない。すなわち膜厚が厚い場合には,3つの干渉波形が測定できるはずであるが,干渉波形が重畳して多重干渉となっているため,干渉波のピークが2つしか測定できていない状態となっている。なお図5に示した干渉波形は,フリンジのピークを結んだ包絡線で表示し上半分のみを図示している。この場合には,例えばSiO膜による温度に対する影響は,Si基板のそれよりも十分小さいとみなして,温度変化前後の2つの干渉波のピークのズレを各々測定し,これから光路長の変化を割り出し,その結果に基づいて算出した温度を,SiO膜+Si基板全体の温度として扱うことにより,SiO膜+Si基板全体の温度を測定できることになる。なおピーク間の位置間隔の測定は,例えば測定用レーザ光の干渉波の波数の計測や,より高精度に測定するには,位相のズレまで含めて測定用レーザ光の干渉波を計測すればよい。
An example of a temperature measurement method using such a temperature measurement system will be described.
(Measurement Example 1)
For example, in the measurement sample 31, when the SiO 2 film is sufficiently thin relative to the Si substrate and the film thickness is less than 48 μm, the interference waveform due to reflection from the boundary surface between the SiO 2 film and the Si substrate and the SiO 2 The peak of the interference waveform cannot be separated. In other words, when the film thickness is large, three interference waveforms should be measurable, but the interference waveforms are superimposed to form multiple interference, so that only two interference wave peaks can be measured. ing. The interference waveform shown in FIG. 5 is shown by an envelope connecting fringe peaks, and only the upper half is shown. In this case, for example, the influence of the SiO 2 film on the temperature is considered to be sufficiently smaller than that of the Si substrate, and the deviations of the peaks of the two interference waves before and after the temperature change are measured, and the change in the optical path length is determined from this. indexing, the result the temperature calculated on the basis of, by treating the temperature of the SiO 2 film + Si entire substrate becomes possible to measure the SiO 2 film + Si substrate overall temperature. Note that the measurement of the inter-peak position can be done by, for example, measuring the number of interference waves of the measurement laser beam, or measuring the interference wave of the measurement laser beam including even the phase shift for more accurate measurement. Good.

(測定例2)
SiOの薄い膜層が原因で多重干渉を起こし,そのためSiO膜とSi基板との間の境界面からの反射による干渉波形が重畳した場合,多重干渉起こしている干渉波形において,そのピークが分離できないが波形パターンが変化するとき,干渉波が重畳しているので,波形自体の形状には,当該薄膜の膜厚に応じた固有の形状を有しているはずである。
したがって,予め膜厚−波形パターンのデータをとっておき,測定された波形パターンとを比較することで,測定された干渉波形から薄膜の膜厚を推定することができる。
薄膜の膜厚が推定されると,基板自体の温度変化による光路長変化ががわかる。したがって当該膜厚による多重干渉分を,測定された多重干渉波形から差し引き,その結果から,膜厚の影響を除いた基板自体の温度を,基板のみの光路長変化から算出する。もともとピークが分離できないほど膜厚は薄いものであるから,その影響は基板と比べて極めて小さいものといえる。したがって,これを膜厚+基板全体の温度として扱っても実用上差し支えはない。
(Measurement example 2)
Cause multiple interference due to SiO 2 thin film layer, when the interference wave due to reflection from the interface between the therefore the SiO 2 film and the Si substrate is superimposed, the interference waveform is causing multiple interference, its peak When the waveform pattern changes, the interference wave is superimposed when it cannot be separated, but the waveform itself should have a unique shape corresponding to the thickness of the thin film.
Therefore, the film thickness-waveform pattern data is taken in advance and compared with the measured waveform pattern, so that the film thickness of the thin film can be estimated from the measured interference waveform.
If the thickness of the thin film is estimated, the change in the optical path length due to the temperature change of the substrate itself can be seen. Accordingly, the multiple interference due to the film thickness is subtracted from the measured multiple interference waveform, and from the result, the temperature of the substrate itself excluding the influence of the film thickness is calculated from the change in the optical path length of only the substrate. Since the film thickness is so thin that the peaks cannot be separated from each other, the influence is extremely small compared to the substrate. Therefore, there is no practical problem even if this is handled as the film thickness + the temperature of the entire substrate.

次に中心波長の異なった2以上の低コヒーレンス光源を用いた温度測定システム例について説明する。なお,先に示した図4の温度測定システムと同一部材には,同一符号を付している。   Next, an example of a temperature measurement system using two or more low-coherence light sources having different center wavelengths will be described. In addition, the same code | symbol is attached | subjected to the same member as the temperature measurement system of FIG. 4 shown previously.

図6は,そのときの温度計測システムの一例の概要を示し,低コヒーレンス光源には,その中心波長が1.55μm,1.40μm,1.31μmの異なった3つの低コヒーレンス光源51〜53を用いた。いずれもSLDであり,またコヒーレンス長はいずれも48μmである。また干渉波形のピークのズレ幅を測定するための変位測定用の光源54には,波長が0.85μmのレーザーダイオードを使用している。   FIG. 6 shows an outline of an example of the temperature measurement system at that time. The low-coherence light source includes three low-coherence light sources 51 to 53 having different center wavelengths of 1.55 μm, 1.40 μm, and 1.31 μm. Using. Both are SLDs and the coherence length is 48 μm. Further, a laser diode having a wavelength of 0.85 μm is used as the displacement measuring light source 54 for measuring the peak deviation width of the interference waveform.

3つの低コヒーレンス光源51〜53から出た低コヒーレンス光と,変位測定用の光源54から出たレーザ光は,光ファイバカプラ21で合波されて,さらに光ファイバカプラ22へと送られ,コリメートファイバ23から3つの異なった中心波長の低コヒーレンス光が測定対象物31に対して照射され,また同時にコリメートファイバ24から参照光ミラー32へと照射される。   The low coherence light emitted from the three low coherence light sources 51 to 53 and the laser light emitted from the displacement measurement light source 54 are combined by the optical fiber coupler 21 and further sent to the optical fiber coupler 22 to be collimated. The object 23 is irradiated with low-coherence light having three different center wavelengths from the fiber 23, and at the same time, the reference light mirror 32 is irradiated from the collimating fiber 24.

測定対象物31からの反射光と,参照光ミラー32からの反射光とは,光ファイバカプラ22を経由して,コリメートファイバ41から,ボックス42内にある回折格子をもった分光器61に照射される。この分光器61において,測定用のレーザ光と,干渉波形をもった3つの波長の低コヒーレンス光とに分離されて,レーザ光は,フォトディテクタ62で検出され,干渉波形をもった低コヒーレンス光は,各々波長ごとに,フォトディテクタ63〜65に検出される。そしてフォトディテクタ62〜65で検出された光信号は,DAQカード46を介して,処理用のパソコン47に取り込まれ,必要な演算プログラムによって,干渉波等がデータとして演算されるようになっている。   The reflected light from the measurement object 31 and the reflected light from the reference light mirror 32 are irradiated to the spectroscope 61 having the diffraction grating in the box 42 from the collimating fiber 41 via the optical fiber coupler 22. Is done. In this spectroscope 61, the laser beam for measurement and the low-coherence light of three wavelengths having the interference waveform are separated, and the laser light is detected by the photodetector 62, and the low-coherence light having the interference waveform is , Detected by the photodetectors 63 to 65 for each wavelength. The optical signals detected by the photodetectors 62 to 65 are taken into the personal computer 47 for processing via the DAQ card 46, and interference waves and the like are calculated as data by a necessary calculation program.

(測定例3)
前記基板からの反射光と参照光との干渉を各低コヒーレンス光ごとに測定し,各干渉波形の差分波形を算出して前記薄膜の膜厚を推定して,多重干渉分を算出し,これを前記干渉波形から差し引き,それによって得られた光路長変化に基づいて基板の温度を求める。
(Measurement Example 3)
The interference between the reflected light from the substrate and the reference light is measured for each low-coherence light, the differential waveform of each interference waveform is calculated, the film thickness of the thin film is estimated, and the multiple interference component is calculated. Is subtracted from the interference waveform, and the temperature of the substrate is obtained based on the change in the optical path length obtained thereby.

具体的に説明すると,例えば中心波長が1.55μmと1.31μmのSLDを用いて1mm厚のSiO基板上に,Siが2μm,5μm形成された時の,1.55μmSLD出力(干渉波形の出力)から,1.31μmSLD出力(干渉波形の出力)を差分した波形を図7(Siが2μm形成された時),図8(Siが5μm形成された時)に示す。これら図から明らかなように,波形パターンは,膜厚によって大きく変化する。一方温度によっては差分波形は変化しないため,これから基板上の膜厚が推定できる。ここで求めた膜厚を基に,図3に即した既述の多重干渉信号の説明に述べたように,多重干渉成分を計算し,観測波形(例えば1.55μmSLDのみの波形)から多重干渉分を差し引けば,基板と薄膜の境界のみからの干渉波形が算出でき,そのピーク位置と,基板裏面ピーク位置の間隔から,既述した,膜厚を基に計算した多重干渉の影響を元の干渉波形から取り除いてガウス形状に補正して基板の温度を求める手法,すなわち(2−1)〜(2−7)の式を用いた手法によって求めることができる。 More specifically, for example, when an SLD having a center wavelength of 1.55 μm and 1.31 μm is used to form Si of 2 μm and 5 μm on a 1 mm thick SiO 2 substrate, 1.55 μm SLD output (interference waveform) FIG. 7 (when Si is formed to 2 μm) and FIG. 8 (when Si is formed to 5 μm) are shown as waveforms obtained by subtracting 1.31 μm SLD output (output of interference waveform) from (output). As is apparent from these figures, the waveform pattern varies greatly depending on the film thickness. On the other hand, since the difference waveform does not change depending on the temperature, the film thickness on the substrate can be estimated from this. Based on the film thickness obtained here, as described in the description of the multiple interference signal described above in accordance with FIG. 3, multiple interference components are calculated, and multiple interference is calculated from the observed waveform (for example, a waveform of only 1.55 μm SLD). By subtracting, the interference waveform from only the boundary between the substrate and the thin film can be calculated, and the influence of multiple interference calculated based on the film thickness described above is obtained from the peak position and the interval between the peak positions on the back of the substrate. It is possible to obtain the temperature of the substrate by removing it from the interference waveform and correcting it to a Gaussian shape, that is, a method using the equations (2-1) to (2-7).

(測定例4)
各干渉波形の最大振幅値の相互比率をとって測定試料31のSiO薄膜の膜厚を推定して,多重干渉分を算出し,これを前記干渉波形から差し引き,それによって得られた光路長変化に基づいて前記基板の温度を求める。
(Measurement Example 4)
The mutual ratio of the maximum amplitude value of each interference waveform is taken to estimate the film thickness of the SiO 2 thin film of the measurement sample 31 to calculate the multiple interference component, which is subtracted from the interference waveform, and the optical path length obtained thereby The temperature of the substrate is obtained based on the change.

(1)2波長を使用した場合
Si膜(膜厚1nm〜500nm)−厚さ500nmのSiO基板に対して,中心波長1.55μmと1.31μmの低コヒーレンスを照射したときのSi−SiOの境界面での干渉強度を計算して求めた膜厚−干渉強度比は,図9のようになった。ここで干渉強度(a.u.)とは,既述した式(1−11)によって求められるものである。すなわち各々の波長の干渉波形(包絡線)におけるピーク値である。なお干渉強度比とは,各々の波長の干渉波形(包絡線)におけるピーク値の比をとったものである。
(1) When two wavelengths are used Si film (film thickness 1 nm to 500 nm) -Si-SiO when a low coherence of 1.55 μm and 1.31 μm is irradiated to a SiO 2 substrate having a thickness of 500 nm The film thickness-interference intensity ratio obtained by calculating the interference intensity at the boundary surface 2 was as shown in FIG. Here, the interference intensity (au) is obtained by the equation (1-11) described above. That is, the peak value in the interference waveform (envelope) of each wavelength. The interference intensity ratio is a ratio of peak values in the interference waveform (envelope) of each wavelength.

図9に示したように,干渉強度は,各波長とも約0.13〜約0.8の間をほぼ周期的に推移したような結果が得られるが,波長ごとにその周期はずれ,同じ膜厚でも干渉強度が異なっていることがわかる。   As shown in FIG. 9, the interference intensity has a result that it is almost periodically changed between about 0.13 and about 0.8 for each wavelength. It can be seen that the interference intensity varies even with the thickness.

そこで各膜厚ごとに,その比(1.31μm波長/1.55μm波長)をとると,図10に示したようになった。   Therefore, when the ratio (1.31 μm wavelength / 1.55 μm wavelength) is taken for each film thickness, the result is as shown in FIG.

次に膜と基板の材質を入れ替えて,SiO膜(膜厚1nm〜500nm)−厚さ500nmのSi基板に対して,中心波長1.55μmと1.31μmの低コヒーレンスを照射したときのSi−SiOの境界面での干渉強度を計算して求めた膜厚−干渉強度比は,図11のようになった。また各膜厚ごとに,その比(1.31μm波長/1.55μm波長)をとると,図12に示したようになった。 Next, the materials of the film and the substrate are exchanged, and Si 2 when the low coherence of the central wavelengths 1.55 μm and 1.31 μm is irradiated to the Si 2 substrate (film thickness 1 nm to 500 nm) -500 nm thick. The film thickness-interference intensity ratio obtained by calculating the interference intensity at the boundary surface of SiO 2 is as shown in FIG. Further, when the ratio (1.31 μm wavelength / 1.55 μm wavelength) was taken for each film thickness, the result was as shown in FIG.

これによれば,単純に比の値だけでは,どの膜厚のときか判断はできないが,膜厚が増加していく経過を辿れば,同じ値の時でも膜厚が特定できる。したがって,常時測定,計算しておけば,その前後の値や履歴から,膜厚を推定できる。すなわち,Si膜のSiO膜の薄膜層の膜厚を推定できる。なお十分膜厚が薄く,干渉強度比から一意に膜厚が決まる場合には常時測定する必要はない。
後は,Si−SiOの境界面での干渉波形から,この膜厚分の多重干渉分を引くことにより,SiO基板,Si基板のみの光路長変化を読みとることができ,それによって,SiO基板,Si基板の温度を測定することができる。なお干渉波形から,この膜厚分の多重干渉分を引いて基板のみの光路長変化及び温度変化は,既述した,膜厚を基に計算した多重干渉の影響を元の干渉波形から取り除いてガウス形状に補正して基板の温度を求める手法によって求めることができる。
According to this, it is not possible to determine at what film thickness the value is simply the ratio value, but the film thickness can be specified even at the same value by following the process of increasing film thickness. Therefore, if it is measured and calculated constantly, the film thickness can be estimated from the values and history before and after that. That is, the thickness of the thin film layer of the Si 2 SiO 2 film can be estimated. When the film thickness is sufficiently thin and the film thickness is uniquely determined from the interference intensity ratio, it is not necessary to always measure.
After that, by subtracting the multiple interference amount corresponding to this film thickness from the interference waveform at the Si-SiO 2 interface, the change in optical path length of only the SiO 2 substrate and the Si substrate can be read out. The temperatures of the two substrates and the Si substrate can be measured. By subtracting the multiple interferences for this film thickness from the interference waveform, the optical path length change and temperature change of the substrate alone can be eliminated by removing the influence of the multiple interference calculated based on the film thickness from the original interference waveform. It can be obtained by a method of obtaining the temperature of the substrate by correcting to a Gaussian shape.

(2)3波長を使用した場合
Si膜(膜厚1nm〜500nm)−厚さ500nmのSiO基板に対して,中心波長1.55μm,1.40μm,1.31μmの3つの低コヒーレンス光を各々照射したときのSi−SiOの境界面での干渉強度を計算して求めた膜厚−干渉強度比は,図13のようになった。
(2) When 3 wavelengths are used Si film (film thickness 1 nm to 500 nm)-Three low coherence lights with center wavelengths of 1.55 μm, 1.40 μm, and 1.31 μm are applied to a SiO 2 substrate having a thickness of 500 nm. The film thickness-interference intensity ratio obtained by calculating the interference intensity at the Si—SiO 2 boundary surface when irradiated was as shown in FIG.

また各膜厚ごとに,その比(1.31μm波長/1.55μm波長,1.40μm波長/1.55μm波長,1.40μm波長/1.55μm波長)をとると,図14に示したようになった。   Further, when the ratio (1.31 μm wavelength / 1.55 μm wavelength, 1.40 μm wavelength / 1.55 μm wavelength, 1.40 μm wavelength / 1.55 μm wavelength) is taken for each film thickness, as shown in FIG. Became.

次に膜と基板の材質を入れ替えて,SiO膜(膜厚1nm〜500nm)−厚さ500nmのSi基板に対して,中心波長1.55μm,1.40μm,1.31μmの3つの低コヒーレンスを照射したときのSi−SiOの境界面での干渉強度を計算して求めた膜厚−干渉強度比は,図15のようになった。また各膜厚ごとに,その比(1.31μm波長/1.55μm波長,1.40μm波長/1.55μm波長,1.40μm波長/1.55μm波長)をとると,図16に示したようになった。 Next, the materials of the film and the substrate are switched, and three low coherences with the center wavelengths of 1.55 μm, 1.40 μm, and 1.31 μm are applied to the SiO 2 film (film thickness 1 nm to 500 nm) -500 nm thick Si substrate. FIG. 15 shows the film thickness-interference intensity ratio obtained by calculating the interference intensity at the Si—SiO 2 boundary surface when. Further, when the ratio (1.31 μm wavelength / 1.55 μm wavelength, 1.40 μm wavelength / 1.55 μm wavelength, 1.40 μm wavelength / 1.55 μm wavelength) is taken for each film thickness, as shown in FIG. Became.

これによれば,いずれの場合も,3つの比の値を使用することで,単純に比の値だけで膜厚を推定することが可能になっている。したがって,膜厚の変化の経過,履歴を監視,測定することなく,特定時のみの測定によって,多重干渉を引き起こす薄膜層の膜厚をもとめることができる。その後は,薄膜層による多重干渉分を,前記干渉波形から差し引き,それによって求めた光路長と,温度変化前の光路長とを比較して,その変化分から温度を求める。なおLD干渉波形は,最後の光路長変化分を求めるときに使用する。   According to this, in any case, it is possible to estimate the film thickness simply by using the ratio values by using the three ratio values. Therefore, the film thickness of the thin film layer that causes multiple interference can be obtained by measuring only at a specific time without monitoring and measuring the progress and history of the film thickness change. Thereafter, the multiple interference due to the thin film layer is subtracted from the interference waveform, the optical path length obtained thereby is compared with the optical path length before the temperature change, and the temperature is obtained from the change. The LD interference waveform is used when obtaining the last optical path length change.

なお温度変化が100℃以上の場合には,波長が異なることによる屈折率差の温度による変化が,単なる屈折率の温度変化に比べ3桁ほど小さく無視できることを使って膜厚をより正確に測定することが可能である。   When the temperature change is 100 ° C or higher, the change in the refractive index difference due to the difference in wavelength due to the temperature can be neglected by about three orders of magnitude compared to the simple temperature change in the refractive index. Is possible.

本発明は,多重干渉を起こす薄膜層が,基板の最上面に形成されている場合だけではなく,3層以上の多層膜構造を有する基板の中間層に当該薄膜層が存在する複数層基板に対しても適用できる。   The present invention is not limited to the case where a thin film layer causing multiple interference is formed on the uppermost surface of the substrate, but also to a multi-layer substrate in which the thin film layer exists in an intermediate layer of a substrate having a multilayer film structure of three or more layers. It can also be applied to.

また本発明では,極めて薄い膜厚層の膜厚を推定することができるので,本発明は,膜厚測定にも利用することができ,プロセスの途中でも測定可能であるから,膜厚堆積プロセスやエッチングプロセスにおいて,終点検出に利用できる。   In the present invention, since the film thickness of an extremely thin film layer can be estimated, the present invention can be used for film thickness measurement and can be measured even during the process. It can be used for end point detection in the etching process.

本発明は,極めて薄い膜を有する基板の温度を非接触で測定することができるから,例えば半導体デバイスやFPDの製造プロセスにおいて,エッチングやCVD処理における基板の温度を測定して,好適なプロセスを実現するのに適している。   Since the present invention can measure the temperature of a substrate having an extremely thin film in a non-contact manner, for example, in the manufacturing process of a semiconductor device or FPD, the temperature of the substrate in etching or CVD processing is measured, and a suitable process is performed. Suitable for realization.

低コヒーレンス光干渉計の原理を示すための干渉計の概略図である。It is the schematic of the interferometer for showing the principle of a low coherence optical interferometer. 低コヒーレンス光干渉計の原理を示すための干渉波の様子を示す説明図である。It is explanatory drawing which shows the mode of the interference wave for showing the principle of a low coherence optical interferometer. 多重干渉の様子を示す説明図である。It is explanatory drawing which shows the mode of multiple interference. 1波長の低コヒーレンス光源を用いた温度計測システムの概略を示す説明図である。It is explanatory drawing which shows the outline of the temperature measurement system using the low-coherence light source of 1 wavelength. 薄膜層を有する2層の構造体における多重干渉を起こしている干渉波形を示す説明図である。It is explanatory drawing which shows the interference waveform which has caused the multiple interference in the two-layer structure which has a thin film layer. 2波長以上の低コヒーレンス光源を用いた温度計測システムの概略を示す説明図である。It is explanatory drawing which shows the outline of the temperature measurement system using the low-coherence light source of 2 wavelengths or more. 1mm厚のSiO基板上にSiが2mm形成された時の,1.55μmSLDによる干渉波形出力から1.31μmSLDによる干渉波形出力を差分した波形のグラフである。It is a graph of a waveform obtained by subtracting an interference waveform output by a 1.31 μm SLD from an interference waveform output by a 1.55 μm SLD when 2 mm of Si is formed on a 1 mm thick SiO 2 substrate. 1mm厚のSiO基板上にSiが5mm形成された時の,1.55μmSLDによる干渉波形出力から1.31μmSLDによる干渉波形出力を差分した波形のグラフである。It is a graph of a waveform obtained by subtracting an interference waveform output by a 1.31 μm SLD from an interference waveform output by a 1.55 μm SLD when 5 mm of Si is formed on a 1 mm thick SiO 2 substrate. Si膜厚変化による2波長での膜厚−干渉強度特性のグラフである。It is a graph of the film thickness-interference intensity characteristic in two wavelengths by Si film thickness change. 図9の結果に基づいた膜厚−干渉強度比特性のグラフである。10 is a graph of film thickness-interference intensity ratio characteristics based on the results of FIG. SiO膜厚変化による2波長での膜厚−干渉強度特性のグラフである。Film thickness at two wavelengths by SiO 2 film thickness changes - is a graph of the interference strength properties. 図11の結果に基づいた膜厚−干渉強度比特性のグラフである。It is a graph of the film thickness-interference intensity ratio characteristic based on the result of FIG. Si膜厚変化による3波長での膜厚−干渉強度特性のグラフである。It is a graph of the film thickness-interference intensity characteristic in 3 wavelengths by Si film thickness change. 図13の結果に基づいた膜厚−干渉強度比特性のグラフである。It is a graph of the film thickness-interference intensity ratio characteristic based on the result of FIG. SiO膜厚変化による3波長での膜厚−干渉強度特性のグラフである。Film thickness at three wavelengths by SiO 2 film thickness changes - is a graph of the interference strength properties. 図15の結果に基づいた膜厚−干渉強度比特性のグラフである。It is a graph of the film thickness-interference intensity ratio characteristic based on the result of FIG.

符号の説明Explanation of symbols

11,51,52,53 低コヒーレンス光源
12,54 変位測定用の光源
21,22 光ファイバカプラ
31 測定対象物
32 参照光ミラー
43 多層膜ミラー
44,45,62,63,64,65 フォトディテクタ
61 分光器
11, 51, 52, 53 Low coherence light source 12, 54 Light source for displacement measurement 21, 22 Optical fiber coupler 31 Object to be measured 32 Reference light mirror 43 Multilayer mirror 44, 45, 62, 63, 64, 65 Photo detector 61 Spectroscopy vessel

Claims (6)

低コヒーレンス光を利用して,この低コヒーレンス光のコヒーレンス長よりも短い厚さの薄膜層を有する複数層基板の温度を測定する方法であって,
前記低コヒーレンス光を前記基板の表面又は裏面に照射し,前記基板からの反射光と参照光との干渉を測定し,その時の干渉波形を複数層基板全体のものとみなし,
温度変化前の前記複数層基板の干渉波形とのズレを測定し,それによって得られた光路長変化に基づいて前記基板の温度を求めることを特徴とする,基板の温度測定方法。
A method for measuring the temperature of a multi-layer substrate having a thin film layer having a thickness shorter than the coherence length of the low coherence light by using low coherence light,
Irradiating the front or back surface of the substrate with the low-coherence light, measuring the interference between the reflected light from the substrate and the reference light, and considering the interference waveform at that time as the entire multilayer substrate;
A method for measuring a temperature of a substrate, comprising: measuring a deviation from an interference waveform of the multi-layer substrate before a temperature change, and obtaining a temperature of the substrate based on a change in an optical path length obtained thereby.
低コヒーレンス光を利用して,この低コヒーレンス光のコヒーレンス長よりも短い厚さの薄膜層を有する複数層基板の温度を測定する方法であって,
前記低コヒーレンス光を前記基板の表面又は裏面に照射し,前記基板からの反射光と参照光との干渉を測定し,その時の干渉波形を複数層基板全体のものとみなして,
予め取得していた前記複数層基板の干渉波形の膜厚特性の波形パターンと比較することで,前記薄膜層の膜厚を推定し,
当該膜厚による多重干渉分を前記干渉波形から差し引き,
その結果から光路長変化を算出して前記基板の温度を求めることを特徴とする,
基板の温度測定方法。
A method for measuring the temperature of a multi-layer substrate having a thin film layer having a thickness shorter than the coherence length of the low coherence light by using low coherence light,
Irradiating the front or back surface of the substrate with the low-coherence light, measuring the interference between the reflected light from the substrate and the reference light, and considering the interference waveform at that time as the entire multilayer substrate,
The film thickness of the thin film layer is estimated by comparing with the waveform pattern of the film thickness characteristic of the interference waveform of the multilayer substrate obtained in advance,
Subtract multiple interference due to the film thickness from the interference waveform,
From the result, the optical path length change is calculated to obtain the temperature of the substrate,
Substrate temperature measurement method.
低コヒーレンス光を利用して,この低コヒーレンス光のコヒーレンス長よりも短い厚さの薄膜層を有する複数層基板の温度を測定する方法であって,
中心波長が異なった2以上の異なった低コヒーレンス光を前記基板の表面又は裏面に照射し,
前記基板からの反射光と参照光との干渉を各低コヒーレンス光ごとに測定し,
各干渉波形の差分波形から前記薄膜層の膜厚を推定して,当該薄膜層による多重干渉分を算出し,
これを前記干渉波形から差し引き,それによって得られた光路長変化に基づいて前記基板の温度を求めることを特徴とする,基板の温度測定方法。
A method for measuring the temperature of a multi-layer substrate having a thin film layer having a thickness shorter than the coherence length of the low coherence light by using low coherence light,
Irradiating the front or back surface of the substrate with two or more different low coherence lights having different center wavelengths;
Measure the interference between the reflected light from the substrate and the reference light for each low coherence light,
The film thickness of the thin film layer is estimated from the difference waveform of each interference waveform, and the multiple interference due to the thin film layer is calculated.
Subtracting this from the interference waveform and determining the temperature of the substrate based on the change in the optical path length obtained thereby, the substrate temperature measuring method.
低コヒーレンス光を利用して,この低コヒーレンス光のコヒーレンス長よりも短い厚さの薄膜層を有する複数層基板の温度を測定する方法であって,
中心波長が異なった2以上の異なった低コヒーレンス光を前記基板の表面又は裏面に照射し,
各干渉波形の最大振幅値の相互比率をとって前記薄膜層の膜厚を推定して,当該薄膜層による多重干渉分を算出し,
これを前記干渉波形から差し引き,それによって得られた光路長変化に基づいて前記基板の温度を求めることを特徴とする,基板の温度測定方法。
A method for measuring the temperature of a multi-layer substrate having a thin film layer having a thickness shorter than the coherence length of the low coherence light by using low coherence light,
Irradiating the front or back surface of the substrate with two or more different low coherence lights having different center wavelengths;
Estimating the film thickness of the thin film layer by taking the mutual ratio of the maximum amplitude value of each interference waveform, and calculating the multiple interference due to the thin film layer,
Subtracting this from the interference waveform and determining the temperature of the substrate based on the change in the optical path length obtained thereby, the substrate temperature measuring method.
前記膜は前記基板の最上面に形成されていることを特徴とする,請求項1〜4のいずれかに記載の基板の温度測定方法。 The substrate temperature measuring method according to claim 1, wherein the film is formed on an uppermost surface of the substrate. 前記複数層基板は,3層以上の多層膜基板であることを特徴とする,請求項1〜5のいずれかに記載の基板の温度測定方法。 6. The substrate temperature measuring method according to claim 1, wherein the multi-layer substrate is a multilayer substrate having three or more layers.
JP2003319546A 2003-09-11 2003-09-11 Temperature measuring method of substrate Withdrawn JP2005084019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319546A JP2005084019A (en) 2003-09-11 2003-09-11 Temperature measuring method of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319546A JP2005084019A (en) 2003-09-11 2003-09-11 Temperature measuring method of substrate

Publications (1)

Publication Number Publication Date
JP2005084019A true JP2005084019A (en) 2005-03-31

Family

ID=34418461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319546A Withdrawn JP2005084019A (en) 2003-09-11 2003-09-11 Temperature measuring method of substrate

Country Status (1)

Country Link
JP (1) JP2005084019A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184564A (en) * 2005-12-06 2007-07-19 Tokyo Electron Ltd Method of measuring physical quantity of measurement object in substrate processing apparatus and storage medium
JP2009282103A (en) * 2008-05-20 2009-12-03 Yokogawa Electric Corp Confocal scanner microscope
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
KR101069972B1 (en) 2008-03-10 2011-10-04 도쿄엘렉트론가부시키가이샤 Temperature measurement apparatus and method
JP2012063150A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Physical state measurement device and physical state measurement method
JP2012078179A (en) * 2010-09-30 2012-04-19 Tokyo Electron Ltd Temperature measurement method, storage medium and program
CN103140750A (en) * 2010-09-17 2013-06-05 浜松光子学株式会社 Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
WO2015133349A1 (en) * 2014-03-04 2015-09-11 東京エレクトロン株式会社 Temperature measuring apparatus, projection module, and temperature measuring method
JP2017026494A (en) * 2015-07-23 2017-02-02 株式会社ミツトヨ Device for measuring shape using white interferometer
WO2017159387A1 (en) * 2016-03-14 2017-09-21 浜松ホトニクス株式会社 Observing device and observing method
JP2021060276A (en) * 2019-10-07 2021-04-15 東京エレクトロン株式会社 Temperature measurement system and temperature measurement method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184564A (en) * 2005-12-06 2007-07-19 Tokyo Electron Ltd Method of measuring physical quantity of measurement object in substrate processing apparatus and storage medium
KR101069972B1 (en) 2008-03-10 2011-10-04 도쿄엘렉트론가부시키가이샤 Temperature measurement apparatus and method
JP2009282103A (en) * 2008-05-20 2009-12-03 Yokogawa Electric Corp Confocal scanner microscope
US8649023B2 (en) 2009-03-27 2014-02-11 Hamamatsu Photonics K.K. Film thickness measurement device and measurement method
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
JP2010230515A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Film thickness measuring apparatus and measuring method
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
JP2012063150A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Physical state measurement device and physical state measurement method
CN103140750A (en) * 2010-09-17 2013-06-05 浜松光子学株式会社 Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
US8825434B2 (en) 2010-09-30 2014-09-02 Tokyo Electron Limited Temperature measuring method, storage medium, and program
JP2012078179A (en) * 2010-09-30 2012-04-19 Tokyo Electron Ltd Temperature measurement method, storage medium and program
KR101812541B1 (en) * 2010-09-30 2017-12-27 도쿄엘렉트론가부시키가이샤 Temperature measuring method and storage medium
WO2015133349A1 (en) * 2014-03-04 2015-09-11 東京エレクトロン株式会社 Temperature measuring apparatus, projection module, and temperature measuring method
JP2017026494A (en) * 2015-07-23 2017-02-02 株式会社ミツトヨ Device for measuring shape using white interferometer
WO2017159387A1 (en) * 2016-03-14 2017-09-21 浜松ホトニクス株式会社 Observing device and observing method
US10551294B2 (en) 2016-03-14 2020-02-04 Hamamatsu Photonics K.K. Temporal noise reduction in 2D image of an observation object moving in a flow path
JP2021060276A (en) * 2019-10-07 2021-04-15 東京エレクトロン株式会社 Temperature measurement system and temperature measurement method

Similar Documents

Publication Publication Date Title
TWI465682B (en) Film thickness measuring device and measuring method
US20180364028A1 (en) Device and method for measuring height in the presence of thin layers
TWI497044B (en) Temperature measuring method and storage medium
EP2606311B1 (en) Apparatus and method for measuring distance
US10466031B2 (en) Apparatus for measuring thickness and surface profile of multilayered film structure using imaging spectral optical system and measuring method
US20140125983A1 (en) Interferometery on a planar substrate
KR101069972B1 (en) Temperature measurement apparatus and method
US20080204759A1 (en) Method for demodulating signals from a dispersive white light interferometric sensor and its application to remote optical sensing
JP2005084019A (en) Temperature measuring method of substrate
JP5862433B2 (en) Surface treatment status monitoring device
US7515275B2 (en) Optical apparatus and method for distance measuring
JP2011209223A (en) Apparatus for measuring interference of thickness or temperature
US9494410B2 (en) Method for measuring characteristics of sample
US20140293286A1 (en) N-wavelength interrogation system and method for multiple wavelength interferometers
US9228828B2 (en) Thickness monitoring device, etching depth monitoring device and thickness monitoring method
TWI524062B (en) Method and apparatus for measuring refractive index and method for manufacturing optical element
JP2013120063A5 (en)
JP2013120063A (en) Surface treatment condition monitoring apparatus
JP5888111B2 (en) Etching monitor device
JP2018004409A (en) Refractive index measurement method, refractive index measurement device, and method of manufacturing optical element
CN110603423B (en) Apparatus and method for low coherence reflection with time-frequency detection
KR102079588B1 (en) Method measuring thickness and refractive index of planar samples based on fabry-perot interferometer
US11885609B2 (en) Wafer thickness, topography, and layer thickness metrology system
PL230326B1 (en) Method of measuring the refractive index and dispersion characteristics, especially of liquids

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205