JP2015137886A - Depth measuring instrument - Google Patents

Depth measuring instrument Download PDF

Info

Publication number
JP2015137886A
JP2015137886A JP2014008467A JP2014008467A JP2015137886A JP 2015137886 A JP2015137886 A JP 2015137886A JP 2014008467 A JP2014008467 A JP 2014008467A JP 2014008467 A JP2014008467 A JP 2014008467A JP 2015137886 A JP2015137886 A JP 2015137886A
Authority
JP
Japan
Prior art keywords
light
incident
depth
coherent light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014008467A
Other languages
Japanese (ja)
Inventor
塁 加藤
Rui Kato
塁 加藤
雄三 南雲
Yuzo Nagumo
雄三 南雲
洋臣 後藤
Hiroomi Goto
洋臣 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014008467A priority Critical patent/JP2015137886A/en
Publication of JP2015137886A publication Critical patent/JP2015137886A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a depth measuring instrument which is capable of appropriately measuring a depth of a microstructure as a measurement object even in the case of the microstructure having an extremely small diameter or width.SOLUTION: The depth measuring instrument includes a light source 10 which generates coherent light having a prescribed wavelength width, incidence/emission parts 22 and 25 which emit the coherent light toward a measurement object surface and on which the coherent light reflected by the measurement object surface impinges, a guiding optical system 20 which guides the coherent light from the light source 10 to the incidence/emission parts 22 and 25, an interference optical system 20 which causes the coherent light reflected by the measurement object surface and impinging on the incidence/emission parts 22 and 25 to interfere, and a detection unit 50 which detects interference light obtained by the interference optical system, per wavelength. The depth measuring instrument measures a depth of a microstructure formed on the measurement object surface. In the depth measuring instrument, the incidence/emission parts 22 and 25 are disposed so that an optical axis of the coherent light emitted to the measurement object surface is inclined relative to the measurement object surface.

Description

本発明は、物体表面に設けられた微細構造の深さ、例えば各種のエッチング加工によって半導体基板等に形成される微細な穴や溝の深さを測定するための深さ測定装置に関する。   The present invention relates to a depth measuring apparatus for measuring the depth of a fine structure provided on an object surface, for example, the depth of a fine hole or groove formed in a semiconductor substrate or the like by various etching processes.

半導体集積回路の製造プロセスでは、シリコンウエハ等の半導体基板にTSV(=Through Silicon Via:シリコン貫通ビア)等のごく微細な穴(ホール)、又はごく微細な溝(トレンチ)を形成するために低圧プラズマ等を用いたエッチング加工が行われている。通常、エッチング加工を行う際には、まず、基板上で穴や溝を形成しない部分にレジスト膜によるマスキングを行い、その後にエッチング加工を実行する。これにより、マスキングされていない部分のみが選択的に削られるため、加工後にレジスト膜を除去することで任意の形状の穴や溝を得ることが可能となる。このときに形成される穴や溝の深さは、エッチング時間、エッチングガスの種類及びガス圧などの様々な条件に依存するから、穴や溝の深さを目標深さにするために、加工中に実際の深さをモニタリングしながらエッチングの終了点を決めたり条件を調整したりする制御がなされる。   In the manufacturing process of a semiconductor integrated circuit, a low pressure is used to form a very fine hole (hole) such as TSV (= Through Silicon Via) or a very fine groove (trench) in a semiconductor substrate such as a silicon wafer. Etching using plasma or the like is performed. Usually, when performing etching processing, first, masking is performed with a resist film on a portion of the substrate where holes or grooves are not formed, and then etching processing is performed. As a result, only the unmasked portion is selectively scraped, so that it is possible to obtain holes or grooves of any shape by removing the resist film after processing. The depth of the hole or groove formed at this time depends on various conditions such as the etching time, the type of etching gas, and the gas pressure. Therefore, in order to set the depth of the hole or groove to the target depth, processing is performed. Control is performed to determine the end point of etching and adjust the conditions while monitoring the actual depth.

エッチングによって形成される微細な穴や溝の深さを光学的に測定する装置として、例えば、特許文献1に記載のような深さ測定装置が知られている。この深さ測定装置は、例えばプラズマエッチング装置により加工処理される基板を試料とし、時々刻々と変化する穴や溝の底面と試料表面との間の距離を計測することにより、該穴や溝の深さをリアルタイムでモニタリングする装置である。   As a device for optically measuring the depth of fine holes and grooves formed by etching, for example, a depth measuring device described in Patent Document 1 is known. This depth measuring apparatus uses, for example, a substrate processed by a plasma etching apparatus as a sample, and measures the distance between the bottom surface of the hole or groove and the surface of the sample, which change from moment to moment, thereby measuring the hole or groove. This device monitors depth in real time.

図7に前記深さ測定装置の概略構成を示す。該装置は、光源110と、導入・干渉光学系120と、検出ユニット150と、データ処理部160と、制御部170と、表示部180とを備えている。光源110から発せられた所定の波長幅を有する可干渉光は、導入・干渉光学系120に設けられた光源側光ファイバ121に取り込まれ、ファイバカプラ124を介して試料側光ファイバ122に進み、その先端より空間に射出され、コリメートレンズ125及び計測窓133を介して試料S上に照射される。   FIG. 7 shows a schematic configuration of the depth measuring apparatus. The apparatus includes a light source 110, an introduction / interference optical system 120, a detection unit 150, a data processing unit 160, a control unit 170, and a display unit 180. The coherent light having a predetermined wavelength width emitted from the light source 110 is taken into the light source side optical fiber 121 provided in the introduction / interference optical system 120 and proceeds to the sample side optical fiber 122 via the fiber coupler 124. The sample S is emitted from the tip into the space, and is irradiated onto the sample S through the collimating lens 125 and the measurement window 133.

試料Sの測定対象領域における干渉の状態を図7中の拡大図を用いて説明する。例えばエッチング中における微細穴の深さを計測する場合には、同図に示すように基板191上のレジスト層192表面からの反射光192aと、レジスト層192中に入り込んだ光による基板191表面からの反射光191aと、被エッチング部193である微細穴の底面からの反射光193aと、が主として生じる。   The state of interference in the measurement target region of the sample S will be described with reference to an enlarged view in FIG. For example, when measuring the depth of a fine hole during etching, as shown in the figure, the reflected light 192a from the surface of the resist layer 192 on the substrate 191 and the surface of the substrate 191 due to light entering the resist layer 192 are used. The reflected light 191a and the reflected light 193a from the bottom surface of the fine hole which is the etched portion 193 are mainly generated.

これら反射光191a、192a、及び193aは計測窓133及びコリメートレンズ125を光照射時とは逆に辿って試料側光ファイバ122の端部に入射する。そして、ファイバカプラ124及び検出器側光ファイバ123を経て検出ユニット150に達する。図7から明らかなように、前記複数の反射光191a、192a、及び193aは互いに光路差を有しており、これらの反射光191a、192a、及び193aは主として試料側光ファイバ122を通過する過程で波長毎に干渉して干渉光となる。   These reflected lights 191a, 192a, and 193a enter the end portion of the sample-side optical fiber 122 following the measurement window 133 and the collimator lens 125 in the opposite direction to the time of light irradiation. Then, the light reaches the detection unit 150 through the fiber coupler 124 and the detector-side optical fiber 123. As apparent from FIG. 7, the plurality of reflected lights 191a, 192a, and 193a have optical path differences from each other, and these reflected lights 191a, 192a, and 193a mainly pass through the sample-side optical fiber 122. Thus, interference occurs for each wavelength and becomes interference light.

検出ユニット150に到達した干渉光はコリメートレンズ151、及び複数の減光フィルタ等を含んで成る光量調整部152を経て回折格子153等の分光手段に入射する。そして、該分光手段により波長分散され、CCDラインセンサ等のアレイ検出器154により複数波長の光が同時に検出される。アレイ検出器154による各波長に対応した検出信号はデータ処理部160に入力される。データ処理部160では、前記検出信号に基づいて所定波長範囲の分光スペクトルを作成すると共に、該分光スペクトルをフーリエ変換して得られる信号(フーリエ変換後信号)上におけるピークの位置に基づいて微細穴の深さが算出される。そして、その算出結果が表示部180によりユーザに提示される。   The interference light reaching the detection unit 150 is incident on a spectroscopic unit such as a diffraction grating 153 via a collimator lens 151 and a light amount adjustment unit 152 including a plurality of neutral density filters. Then, wavelength dispersion is performed by the spectroscopic means, and light having a plurality of wavelengths is simultaneously detected by an array detector 154 such as a CCD line sensor. A detection signal corresponding to each wavelength by the array detector 154 is input to the data processing unit 160. The data processing unit 160 creates a spectral spectrum in a predetermined wavelength range based on the detection signal, and fine holes based on the position of the peak on a signal (Fourier transformed signal) obtained by Fourier transforming the spectral spectrum. The depth of is calculated. Then, the calculation result is presented to the user by the display unit 180.

特開2013-120063号公報JP 2013-120063 A

上記従来の深さ測定装置は、測定対象とする穴や溝の径や幅が照射光のスポット径に対して比較的大きい場合には特に問題を生じない。しかしながら、穴や溝の径や幅がごく小さい場合には、該穴や溝の底面からの反射光が導入・干渉光学系120に到達し難くなり、導入・干渉光学系に到達する光は、前記穴や溝の周辺部(すなわちレジスト層表面や試料表面)からの反射光が支配的となる。そのため、検出器への入射光全体の強度に基づいて光量調整部152やアレイ検出器154を調整すると、前記穴や溝の深さを反映した干渉光成分の振幅が小さくなりすぎて測定感度が低下したり、逆に、そうした感度低下が生じないように調整しようとすると、検出器で受光可能な光量の上限(すなわち検出器ダイナミックレンジの上限)をオーバーしてしまったりする場合がある。   The above-mentioned conventional depth measuring apparatus does not cause a problem particularly when the diameter or width of the hole or groove to be measured is relatively large with respect to the spot diameter of the irradiation light. However, when the diameter or width of the hole or groove is very small, the reflected light from the bottom surface of the hole or groove becomes difficult to reach the introduction / interference optical system 120, and the light reaching the introduction / interference optical system is Reflected light from the periphery of the hole or groove (that is, the resist layer surface or the sample surface) becomes dominant. Therefore, if the light amount adjusting unit 152 or the array detector 154 is adjusted based on the intensity of the entire incident light to the detector, the amplitude of the interference light component reflecting the depth of the hole or groove becomes too small, and the measurement sensitivity is reduced. If the adjustment is made so that the sensitivity does not decrease, the upper limit of the amount of light that can be received by the detector (that is, the upper limit of the detector dynamic range) may be exceeded.

本発明はこうした点に鑑みて成されたものであり、その目的とするところは、測定対象とする微細構造の径や幅がごく小さい場合であっても、該微細構造の深さを適切に測定することのできる深さ測定装置を提供することにある。   The present invention has been made in view of these points, and the object of the present invention is to appropriately set the depth of the microstructure even when the diameter and width of the microstructure to be measured are very small. An object of the present invention is to provide a depth measuring apparatus capable of measuring.

上記課題を解決するために成された本発明に係る深さ測定装置は、測定対象面に形成された微細構造の深さを測定する深さ測定装置であって、
a)所定の波長幅を有する可干渉光を発生する光源と、
b)前記測定対象面に向けて前記可干渉光を出射すると共に、該測定対象面で反射した前記可干渉光が入射する入出射部と、
c)前記光源から前記入出射部へ前記可干渉光を導く導入光学系と、
d)前記測定対象面で反射して前記入出射部に入射した前記可干渉光を干渉させる干渉光学系と、
e)前記干渉光学系により得られる干渉光を波長毎に検出する検出部と、
を有し、
前記測定対象面に出射される前記可干渉光の光軸が該測定対象面に対して傾斜するように前記入出射部が配置されていることを特徴としている。
A depth measuring apparatus according to the present invention, which has been made to solve the above problems, is a depth measuring apparatus that measures the depth of a microstructure formed on a measurement target surface,
a) a light source that generates coherent light having a predetermined wavelength width;
b) an incident / exit section that emits the coherent light toward the measurement target surface and on which the coherent light reflected by the measurement target surface is incident;
c) an introduction optical system for guiding the coherent light from the light source to the incident / exit section;
d) an interference optical system that interferes with the coherent light reflected on the measurement target surface and incident on the incident / exit section;
e) a detection unit for detecting the interference light obtained by the interference optical system for each wavelength;
Have
The incident / exit section is arranged such that the optical axis of the coherent light emitted to the measurement target surface is inclined with respect to the measurement target surface.

表面に微細構造を有するシリコン基板等に光を照射した場合、該微細構造の周辺部からの反射光は大部分が同一方向、すなわち正反射方向に進むのに対し、該微細構造の底面からの反射光は該微細構造から出射する際に回折現象によってピンスポットを通過した光のように広がりを持って進行する。従って、前記周辺部からの反射光の進行方向は、底面からの反射光の進行方向に比べ、試料への可干渉光の入射角度の影響を受けやすい。   When light is irradiated onto a silicon substrate or the like having a fine structure on the surface, most of the reflected light from the periphery of the fine structure travels in the same direction, that is, the regular reflection direction, whereas the light from the bottom of the fine structure The reflected light travels with a spread like light that has passed through the pin spot due to diffraction when emitted from the fine structure. Therefore, the traveling direction of the reflected light from the peripheral portion is more susceptible to the incident angle of the coherent light to the sample than the traveling direction of the reflected light from the bottom surface.

従来の深さ測定装置では、図7のように可干渉光を測定対象面に垂直に入射させていたため、前記周辺部からの正反射成分は、入射光と同一経路を辿って入出射部(図7の例の場合、コリメートレンズ125及び試料側光ファイバ122の端部)に入射していた。これに対し、本願発明に係る深さ測定装置では、前記可干渉光を測定対象面に対し傾けて照射することにより、前記周辺部からの正反射成分が光軸を挟んで入射光とは反対の方向に出射するため、入出射部への入射光量を従来よりも大幅に低減することができる。一方、微細構造底面からの反射光の出射方向は前記入射角度の影響を受けにくいため、入出射部への入射光量は大きく変化しない。このように、本発明に係る深さ測定装置では、前記微細構造の周辺部からの反射光を重点的に低減できるため、周辺部からの反射光量と微細構造底面からの反射光量を同量に近づけ、干渉光の消光比(干渉光の山と谷の値の比)を改善して高精度な深さ測定を行うことが可能となる。   In the conventional depth measuring apparatus, since the coherent light is vertically incident on the surface to be measured as shown in FIG. 7, the specular reflection component from the peripheral portion follows the same path as the incident light, and enters and exits ( In the case of the example in FIG. 7, the light is incident on the collimating lens 125 and the end of the sample-side optical fiber 122. On the other hand, in the depth measuring apparatus according to the present invention, the specular reflection component from the peripheral part is opposite to the incident light across the optical axis by irradiating the coherent light with an inclination to the surface to be measured. Therefore, the amount of light incident on the incident / exit section can be greatly reduced as compared with the conventional case. On the other hand, since the outgoing direction of the reflected light from the bottom surface of the fine structure is not easily affected by the incident angle, the incident light quantity to the incident / exit portion does not change greatly. As described above, in the depth measuring apparatus according to the present invention, the reflected light from the peripheral portion of the fine structure can be reduced intensively, so that the reflected light amount from the peripheral portion and the reflected light amount from the bottom surface of the fine structure are the same amount. The interference light extinction ratio (ratio between the peak and valley values of the interference light) can be improved and highly accurate depth measurement can be performed.

以上の通り、本発明に係る深さ測定装置によれば、可干渉光を測定対象面に対して傾けて照射することにより、微細構造の周辺部からの反射光の受光量を重点的に低減することができ、測定対象とする構造の径や幅が微細である場合にも消光比を改善して高精度な深さ測定を行うことが可能となる。   As described above, according to the depth measurement apparatus of the present invention, the amount of reflected light received from the peripheral portion of the fine structure is reduced intensively by irradiating coherent light with an inclination to the surface to be measured. Therefore, even when the diameter or width of the structure to be measured is fine, the extinction ratio can be improved and highly accurate depth measurement can be performed.

本発明の一実施形態に係る深さ測定装置の概略構成図。The schematic block diagram of the depth measuring apparatus which concerns on one Embodiment of this invention. 前記実施形態の深さ測定装置における測定時の反射光の状態を示す模式図。The schematic diagram which shows the state of the reflected light at the time of the measurement in the depth measuring apparatus of the said embodiment. 従来の深さ測定装置における測定時の反射光の状態を示す模式図。The schematic diagram which shows the state of the reflected light at the time of the measurement in the conventional depth measuring apparatus. 試験例における測定条件を示す模式図。The schematic diagram which shows the measurement conditions in a test example. 同試験例で得られた分光スペクトルを示す図。The figure which shows the spectrum obtained by the test example. 前記分光スペクトルをフーリエ変換して得られた波形を示す図。The figure which shows the waveform obtained by Fourier-transforming the said spectrum. 従来の深さ測定装置の概略構成図。The schematic block diagram of the conventional depth measuring apparatus.

本発明の一実施形態に係る深さ測定装置について、図面を参照しつつ説明する。図1は本実施形態に係る深さ測定装置の概略構成を示す図であり、図2、3は深さ測定時の反射光の状態を示す模式図である。   A depth measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of a depth measurement apparatus according to the present embodiment, and FIGS. 2 and 3 are schematic diagrams illustrating a state of reflected light during depth measurement.

この深さ測定装置は、エッチング装置の真空チャンバ31内に配置されたシリコン基板を試料Sとし、該試料Sの上面(本発明における測定対象面)に形成される微細穴や微細溝の深さをモニタリングする装置であり、大別して、光源10、導入・干渉光学系20、計測部30、光学系駆動部40、検出ユニット50、データ処理部60、制御部70、及び表示部80を備えている。なお、前記導入・干渉光学系20は本発明における導入光学系と干渉光学系を兼ねたものとなる。   This depth measuring apparatus uses a silicon substrate disposed in a vacuum chamber 31 of an etching apparatus as a sample S, and the depth of fine holes and fine grooves formed on the upper surface of the sample S (measurement target surface in the present invention). In general, the apparatus includes a light source 10, an introduction / interference optical system 20, a measurement unit 30, an optical system driving unit 40, a detection unit 50, a data processing unit 60, a control unit 70, and a display unit 80. Yes. The introduction / interference optical system 20 serves as both the introduction optical system and the interference optical system in the present invention.

なお、データ処理部60、制御部70、及び表示部80は、深さ測定装置と一体に構成してもよいが、深さ測定装置とネットワーク等を介して接続された外部のコンピュータにより実現されたものであってもよい。外部のコンピュータを用いる場合、該コンピュータに予めインストールされた制御・処理用ソフトウエアを実行することにより、データ処理部60、制御部70、及び表示部80としての機能を発揮させるようにすることができる。   The data processing unit 60, the control unit 70, and the display unit 80 may be integrated with the depth measurement device, but are realized by an external computer connected to the depth measurement device via a network or the like. It may be. When an external computer is used, functions as the data processing unit 60, the control unit 70, and the display unit 80 may be exhibited by executing control / processing software installed in the computer in advance. it can.

光源10としては、低コヒーレンス性を持ちながら発光強度が高く、目的とする深さの計測に必要な波長幅を有する光を放射する光源、例えば中心波長が830nm、半値全幅が40nmであるスーパールミネセントダイオード(SLD)を用いることができる。   The light source 10 is a light source that emits light having a low wavelength coherence and high emission intensity and having a wavelength width necessary for measuring a desired depth, for example, a super luminescence having a center wavelength of 830 nm and a full width at half maximum of 40 nm. A cent diode (SLD) can be used.

導入・干渉光学系20は、光源側光ファイバ21、試料側光ファイバ22、検出器側光ファイバ23、ファイバカプラ24、及びコリメートレンズ25を含んでいる。前記光源10から発せられた測定光は、導入・干渉光学系20の光源側光ファイバ21に取り込まれ、ファイバカプラ24を介して試料側光ファイバ22中を進行し、計測部30に進む。試料側光ファイバ22の端部から出射された測定光はコリメートレンズ25を通過し、計測部30の真空チャンバ31に設けられた計測窓33を介して試料S上に照射される。なお、前記試料側光ファイバ22の端部及びコリメートレンズ25が本発明における入出射部に相当する。また、試料Sは真空チャンバ31内に設けられた試料載置部32の上面に載置されており、該上面が本発明における試料載置面に相当する。   The introduction / interference optical system 20 includes a light source side optical fiber 21, a sample side optical fiber 22, a detector side optical fiber 23, a fiber coupler 24, and a collimating lens 25. The measurement light emitted from the light source 10 is taken into the light source side optical fiber 21 of the introduction / interference optical system 20, travels through the sample side optical fiber 22 via the fiber coupler 24, and proceeds to the measurement unit 30. The measurement light emitted from the end portion of the sample-side optical fiber 22 passes through the collimator lens 25 and is irradiated onto the sample S through the measurement window 33 provided in the vacuum chamber 31 of the measurement unit 30. The end portion of the sample-side optical fiber 22 and the collimating lens 25 correspond to the incident / exiting portion in the present invention. Further, the sample S is placed on the upper surface of the sample placing portion 32 provided in the vacuum chamber 31, and the upper surface corresponds to the sample placing surface in the present invention.

そして試料Sからの反射光のうち計測窓33の方向に反射した光が、計測窓33及びコリメートレンズ25を上記測定光の照射時とは逆に辿って試料側光ファイバ22の端部に入射し、該試料側光ファイバ22の内部で光路差の異なる反射光同士が互いに干渉する。試料側光ファイバ22を通過した光は、更にファイバカプラ24及び検出器側光ファイバ23を経て検出ユニット50に到達する。そして、コリメートレンズ51及び光量調整部52を経て回折格子53により波長毎に分光された後、CCDラインセンサ等のアレイ検出器54により波長毎に並列に検出される。これらの検出信号は、所定の信号処理を経てデータ処理部60に送られ、後述する方法により試料面における被エッチング部の深さの算出に用いられる。   Of the reflected light from the sample S, the light reflected in the direction of the measurement window 33 follows the measurement window 33 and the collimating lens 25 in the opposite direction to the time of irradiation of the measurement light and enters the end of the sample-side optical fiber 22. Then, the reflected lights having different optical path differences interfere with each other inside the sample-side optical fiber 22. The light that has passed through the sample-side optical fiber 22 reaches the detection unit 50 via the fiber coupler 24 and the detector-side optical fiber 23. Then, the light is dispersed for each wavelength by the diffraction grating 53 through the collimating lens 51 and the light amount adjusting unit 52, and then detected in parallel for each wavelength by the array detector 54 such as a CCD line sensor. These detection signals are sent to the data processing unit 60 through predetermined signal processing, and are used to calculate the depth of the etched portion on the sample surface by a method described later.

本実施形態に係る深さ測定装置は、前記導入・干渉光学系20から発せられる測定光の光軸を試料表面に対して傾斜させることを特徴としている。これを実現するため、本実施形態では、試料側光ファイバ22の端面及びコリメートレンズ25が、両者の中心軸が一致し、且つ該中心軸が真空チャンバ31の試料載置部32の上面に対して傾斜するように配置されている。   The depth measurement apparatus according to this embodiment is characterized in that the optical axis of the measurement light emitted from the introduction / interference optical system 20 is inclined with respect to the sample surface. In order to realize this, in the present embodiment, the end surface of the sample-side optical fiber 22 and the collimating lens 25 are coincident with each other in the central axis, and the central axis is relative to the upper surface of the sample mounting portion 32 of the vacuum chamber 31. It is arranged to be inclined.

このときの測定光及び試料からの反射光の状態の一例を図2に示す。また、比較のため、従来の深さ測定装置における測定光及び試料からの反射光の状態の一例を図3に示す。   An example of the state of the measurement light and the reflected light from the sample at this time is shown in FIG. For comparison, FIG. 3 shows an example of the state of the measurement light and the reflected light from the sample in the conventional depth measurement apparatus.

これらの例において、試料Sは、被エッチング体である基板91と、その上に塗布されたエッチング保護用レジストから成るレジスト層92と、レジストが塗布されずに基板91が露出した被エッチング部93と、を有している。また、試料S上への入射スポット光のスポット径は、試料S上の被エッチング部93とその周囲のレジスト層92とに跨るようなサイズとなるように調整されている。これにより、試料S上では、基板表面からの反射光91aと、レジスト層表面からの反射光92aと、被エッチング部からの反射光93aと、が生じる。このうち、被エッチング部からの反射光93aは、被エッチング部93である微細な穴や溝から出射する際に回折現象によってピンスポットを通過した光のように広がりを持って進行する。一方、基板表面からの反射光91aとレジスト層表面からの反射光92aは様々な方向に散乱するが、特に正反射方向への反射光が支配的となる。従って、試料Sと導入・干渉光学系20の間の空間における基板表面からの反射光91aとレジスト層表面からの反射光92aの強度分布は、被エッチング部からの反射光93aの強度分布に比べて測定光の入射角への依存性が高いこととなる。   In these examples, the sample S includes a substrate 91 as an object to be etched, a resist layer 92 made of an etching protection resist applied thereon, and an etched portion 93 where the substrate 91 is exposed without being applied with a resist. And have. Further, the spot diameter of the incident spot light on the sample S is adjusted so as to have a size straddling the etched portion 93 on the sample S and the surrounding resist layer 92. Thereby, on the sample S, reflected light 91a from the substrate surface, reflected light 92a from the resist layer surface, and reflected light 93a from the etched portion are generated. Of these, the reflected light 93a from the etched portion travels with a spread like light that has passed through the pin spot due to the diffraction phenomenon when emitted from the fine holes or grooves that are the etched portion 93. On the other hand, the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface are scattered in various directions, but the reflected light in the regular reflection direction is particularly dominant. Therefore, the intensity distribution of the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface in the space between the sample S and the introduction / interference optical system 20 is compared with the intensity distribution of the reflected light 93a from the etched portion. Therefore, the dependency on the incident angle of the measurement light is high.

従来の深さ測定装置では、図3に示すように、測定光を試料Sに対して垂直に照射するため、基板表面からの反射光91aとレジスト層表面からの反射光92aの多くがコリメートレンズ25に入射することとなる。その結果、上述のようにアレイ検出器54での受光量全体に占める干渉光成分の割合が小さくなり、測定精度が低下するという問題があった。   In the conventional depth measuring apparatus, as shown in FIG. 3, since the measurement light is irradiated perpendicularly to the sample S, most of the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface are collimated lenses. 25 is incident. As a result, as described above, there is a problem that the ratio of the interference light component in the total amount of light received by the array detector 54 is reduced, and the measurement accuracy is lowered.

これに対し、本実施形態に係る深さ測定装置では、図2に示すように、測定光を試料Sに対して傾斜させて照射するため、図3の従来例に比べて、コリメートレンズ25に入射する基板表面からの反射光91aとレジスト層表面からの反射光92aの量を低減することができる。なお、このときコリメートレンズ25に入射する被エッチング部からの反射光93aの光量も低下するが、上述のように被エッチング部からの反射光93aよりも基板表面からの反射光91a及びレジスト層表面からの反射光92aの方が測定光の入射角への依存性が高いため、被エッチング部からの反射光93aの減少量は、基板表面からの反射光91a及びレジスト層表面からの反射光92aの減少量に比べて十分に小さくなる。その結果、アレイ検出器54での受光量全体に占める干渉光成分の割合を高めることができ、測定精度を向上させることができる。   On the other hand, in the depth measuring apparatus according to the present embodiment, as shown in FIG. 2, since the measurement light is irradiated with being inclined with respect to the sample S, the collimating lens 25 is compared with the conventional example of FIG. The amount of reflected light 91a from the incident substrate surface and reflected light 92a from the resist layer surface can be reduced. At this time, the amount of reflected light 93a from the etched portion that is incident on the collimating lens 25 also decreases, but the reflected light 91a and the resist layer surface from the substrate surface rather than the reflected light 93a from the etched portion as described above. Since the reflected light 92a from the surface is more dependent on the incident angle of the measuring light, the amount of reflected light 93a from the etched portion is reduced by the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface. This is sufficiently smaller than the amount of decrease. As a result, the ratio of the interference light component in the total amount of light received by the array detector 54 can be increased, and the measurement accuracy can be improved.

また、本実施形態に係る深さ測定装置は導入・干渉光学系20と試料載置部32との相対位置を変更可能な光学系駆動部40を備えており、制御部70の制御の下に、該光学系駆動部40により導入・干渉光学系20を回動及び/又は並進させることができる。   The depth measurement apparatus according to the present embodiment includes an optical system driving unit 40 that can change the relative position between the introduction / interference optical system 20 and the sample mounting unit 32, and is controlled by the control unit 70. The introduction / interference optical system 20 can be rotated and / or translated by the optical system driving unit 40.

被エッチング部93の深さを反映する干渉光成分の割合は、導入・干渉光学系20に入射する被エッチング部からの反射光93aと、基板表面からの反射光91a及びレジスト層表面からの反射光92aとの強度比が1:1であるときに最も高くなる。そこで、該強度比が前記の値に近づくように、前記光学系駆動部40を調整することが望ましい。   The ratio of the interference light component that reflects the depth of the etched portion 93 includes the reflected light 93a from the etched portion incident on the introduction / interference optical system 20, the reflected light 91a from the substrate surface, and the reflected from the resist layer surface. It becomes the highest when the intensity ratio with the light 92a is 1: 1. Therefore, it is desirable to adjust the optical system driving unit 40 so that the intensity ratio approaches the above value.

なお、測定光の入射角が一定の場合には、試料Sから導入・干渉光学系20までの距離(具体的には試料Sからコリメートレンズ25までの距離)が長いほど、導入・干渉光学系20に入射する基板表面からの反射光91a及びレジスト層表面からの反射光92aの量が低下する(すなわち、これらの反射光91a、92aの受光量の入射角依存性は、前記距離が長いほど大きくなる)。一方、試料Sからの距離が一定の場合には、測定光の入射角を大きくするほど、導入・干渉光学系20に入射する前記反射光91a、92aの量が低下するものの、被エッチング部からの反射光93aの量も低下してしまう。従って、試料Sと導入・干渉光学系20の間に十分な距離(例えば50mm以上)を取り、測定光を極力小さい入射角(例えば1°以下)で試料Sに入射させるようにすれば、被エッチング部からの反射光93aの受光強度を保ちつつ基板表面からの反射光91a及びレジスト層表面からの反射光92aの受光強度を効果的に低減することができる。   When the incident angle of the measurement light is constant, the longer the distance from the sample S to the introduction / interference optical system 20 (specifically, the distance from the sample S to the collimating lens 25), the longer the introduction / interference optical system. The amount of reflected light 91a incident on the substrate surface 20 and the amount of reflected light 92a reflected from the resist layer surface decreases (that is, the incident angle dependency of the amount of received light of these reflected light 91a and 92a increases as the distance increases. growing). On the other hand, when the distance from the sample S is constant, the amount of the reflected light 91a and 92a incident on the introduction / interference optical system 20 decreases as the incident angle of the measurement light is increased. The amount of the reflected light 93a also decreases. Therefore, if a sufficient distance (for example, 50 mm or more) is provided between the sample S and the introduction / interference optical system 20, and the measurement light is incident on the sample S with a minimum incident angle (for example, 1 ° or less), The received light intensity of the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface can be effectively reduced while maintaining the received light intensity of the reflected light 93a from the etched portion.

なお、光学系駆動部40による導入・干渉光学系20の駆動量は、ユーザが図示しない入力手段等を用いて直接指示するようにしてもよいが、アレイ検出器54における受光強度に基づいてデータ処理部60が適切な駆動量を算出し、制御部70が該算出結果に従って導入・干渉光学系20を駆動するよう、光学系駆動部40に指示する構成とすることが望ましい。   The driving amount of the introduction / interference optical system 20 by the optical system driving unit 40 may be instructed directly by the user using an input means or the like (not shown), but the data based on the received light intensity in the array detector 54 It is desirable that the processing unit 60 calculates an appropriate driving amount, and the control unit 70 instructs the optical system driving unit 40 to drive the introduction / interference optical system 20 according to the calculation result.

なお、光学系駆動部40を調整して基板表面からの反射光91a及びレジスト層表面からの反射光92aを減じてもアレイ検出器54への入射光量がダイナミックレンジをオーバーする場合は、光量調整部52による入射光量の調整を行う。この光量調整部52は、NDフィルタ等の減光素子を光路上に入れたり取り出したりすることで、検出ユニット50に導入された反射光全体の強度を低減させるものである。本実施形態では、上述のように検出ユニット50に導入された反射光全体に占める干渉光成分の割合が従来よりも高くなるため、アレイ検出器54への入射光量がダイナミックレンジに収まるよう光量調整部52を調整した場合でも、従来のような計測精度の低下が生じるのを防ぐことができる。   If the amount of incident light on the array detector 54 exceeds the dynamic range even if the optical system driving unit 40 is adjusted to reduce the reflected light 91a from the substrate surface and the reflected light 92a from the resist layer surface, the light amount adjustment is performed. The amount of incident light is adjusted by the unit 52. The light amount adjustment unit 52 reduces the intensity of the entire reflected light introduced into the detection unit 50 by inserting or removing a dimming element such as an ND filter on the optical path. In the present embodiment, as described above, the ratio of the interference light component in the entire reflected light introduced into the detection unit 50 is higher than in the conventional case, so that the amount of light incident on the array detector 54 is adjusted so that it falls within the dynamic range. Even when the portion 52 is adjusted, it is possible to prevent the conventional measurement accuracy from being lowered.

試料Sからの反射光は、上述のようにアレイ検出器54で波長毎に検出され、該検出信号に基づいてデータ処理部60にて波長と信号強度の関係を示す分光スペクトルが作成される。更に、データ処理部60は、該分光スペクトルから干渉光成分を抽出する処理を行って干渉スペクトルを作成し、その横軸を波長から波数に変換した上でフーリエ変換することにより、横軸が各反射面間の距離を表すグラフを求める。なお、図2の試料Sでは、被エッチング部93がある程度エッチングされているため、導入・干渉光学系20で得られる干渉光には、
[i]レジスト層92上面−基板91の上面、
[ii]基板91の上面−被エッチング部93の底面、
[iii]レジスト層92の上面−被エッチング部93の底面
の三種類の反射面の組み合わせに由来する干渉光が含まれる。従って、フーリエ変換後の信号波形にも、上記[i]、[ii]、及び[iii]のそれぞれの光学距離に対応した3つの位置にピークが出現する。そこで、これらのうち最も長い距離を示したピークの位置を、上記[iii]に相当するレジスト層92上面から被エッチング部93の底面までの距離として特定し、これにより被エッチング部93である微細穴又は微細溝の深さを決定する。
The reflected light from the sample S is detected for each wavelength by the array detector 54 as described above, and a spectral spectrum indicating the relationship between the wavelength and the signal intensity is created by the data processing unit 60 based on the detection signal. Further, the data processing unit 60 performs a process of extracting an interference light component from the spectrum, creates an interference spectrum, converts the horizontal axis from a wavelength to a wave number, and performs a Fourier transform so that each horizontal axis A graph representing the distance between the reflecting surfaces is obtained. In the sample S of FIG. 2, since the etched portion 93 is etched to some extent, the interference light obtained by the introduction / interference optical system 20 includes:
[I] Resist layer 92 upper surface−substrate 91 upper surface;
[Ii] The top surface of the substrate 91-the bottom surface of the etched portion 93;
[Iii] Interference light derived from the combination of three types of reflecting surfaces, that is, the upper surface of the resist layer 92 and the bottom surface of the etched portion 93 is included. Therefore, peaks appear at three positions corresponding to the optical distances [i], [ii], and [iii] in the signal waveform after Fourier transform. Therefore, the peak position indicating the longest distance among these is specified as the distance from the upper surface of the resist layer 92 corresponding to the above [iii] to the bottom surface of the etched portion 93, and thereby the fine portion which is the etched portion 93. Determine the depth of the hole or microgroove.

以上のような深さ測定は、真空チャンバ31内における試料Sに対するエッチング処理の実行中に、所定の時間間隔で繰り返し実行され、エッチングの進行に伴って時々刻々と変化する穴深さなどがリアルタイムで算出されて表示部80に表示される。   The depth measurement as described above is repeatedly performed at predetermined time intervals during the execution of the etching process on the sample S in the vacuum chamber 31, and the hole depth that changes momentarily as the etching progresses is real time. Is calculated and displayed on the display unit 80.

以上、本発明の一実施形態を挙げて本発明に係る深さ測定装置について説明を行ったが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲で適宜修正、追加、変更を加えても本願請求の範囲に包含されることは明らかである。   The depth measuring apparatus according to the present invention has been described with reference to one embodiment of the present invention, but the present invention is not limited to the above embodiment, and is appropriately modified within the scope of the present invention. It is obvious that additions and changes are included in the scope of the claims of the present application.

例えば、上記実施形態では、本発明に係る深さ測定装置を、エッチング装置の真空チャンバ31内に載置された処理対象である試料Sに形成される微細穴や微細溝の深さをモニタリングする装置としたが、これに限らず、種々の材料の加工処理において前記材料の処理状況をモニタリングしたり、処理後に加工品表面に設けられた穴や溝の深さを検査したりするための装置としてもよい。   For example, in the above-described embodiment, the depth measuring apparatus according to the present invention monitors the depths of the fine holes and fine grooves formed in the sample S to be processed placed in the vacuum chamber 31 of the etching apparatus. Although it was set as an apparatus, it is not restricted to this, The apparatus for monitoring the processing condition of the said material in the processing of various materials, or inspecting the depth of the hole and groove | channel provided in the workpiece surface after the process It is good.

また、上記実施形態では、測定光の入射角等を調整するために、光学系駆動部40により導入・干渉光学系20を駆動する構成としたが、試料載置部32を駆動する機構を設け、試料側を動かすようにしてもよい。   In the above-described embodiment, the introduction / interference optical system 20 is driven by the optical system driving unit 40 in order to adjust the incident angle of the measurement light, but a mechanism for driving the sample mounting unit 32 is provided. The sample side may be moved.

また、上記実施形態では、制御部70の制御の下に光学系駆動部40が導入・干渉光学系20を駆動することにより、試料Sとの距離や測定光の入射角度を調整する構成となっていたが、これに代わりユーザが手動で導入・干渉光学系20を移動させることにより、前記距離や角度を調整可能な構成としてもよい。また、前記距離や角度を調整可能な構成とせず、常時一定の距離及び角度から深さ測定を行う構成としてもよい。この場合、導入・干渉光学系20(具体的にはコリメートレンズ25の中心)から測定対象面までの距離を50mm以上とし、測定対象面への測定光の入射角を1°以下とすることが望ましい。   In the above embodiment, the optical system driving unit 40 drives the introduction / interference optical system 20 under the control of the control unit 70, thereby adjusting the distance to the sample S and the incident angle of the measurement light. However, instead of this, the distance and angle may be adjusted by the user manually moving the introduction / interference optical system 20. Moreover, it is good also as a structure which does not set it as the structure which can adjust the said distance and angle, and always performs depth measurement from a fixed distance and angle. In this case, the distance from the introduction / interference optical system 20 (specifically, the center of the collimating lens 25) to the measurement target surface is set to 50 mm or more, and the incident angle of the measurement light to the measurement target surface is set to 1 ° or less. desirable.

なお、最良の入射角は、干渉波の消光比が最大となる角度である。そこで光学系駆動部40又は手動によって導入・干渉光学系20を動かして入射角を0度から増加させていき、前記消光比が最大となる入射角に調整することが望ましい。同様に試料との距離についても、光学系駆動部40又は手動によって導入・干渉光学系20を移動させて消光比が最大となる距離に調整することが望ましい。   The best incident angle is the angle at which the extinction ratio of the interference wave is maximized. Therefore, it is desirable to adjust the incident angle at which the extinction ratio is maximized by moving the introduction / interference optical system 20 by the optical system driving unit 40 or manually to increase the incident angle from 0 degree. Similarly, it is desirable that the distance from the sample is adjusted to a distance that maximizes the extinction ratio by moving the introduction / interference optical system 20 by the optical system driving unit 40 or manually.

以下、本発明に係る深さ測定装置の効果を確認するために行った試験例について説明する。図4は、本試験例における測定条件を示す図である。この試験例では、表面に直径10μm、深さ75μmの微細穴94が形成されたシリコン基板91(マスキング膜なし)を試料とし、SLD光源から試料に照射される測定光の入射角θを種々に変更して前記微細穴94の深さ測定を行った。なお、コリメートレンズ25の中心から測定対象面までの距離は120mmとし、前記測定光のスポット径を100μmとして照射スポットが微細穴94とその周辺部に跨るように照射を行った。試料からの反射光は分光器で分光した後にアレイ検出器(量子化ビット数:10ビット)により受光した。   Hereinafter, test examples performed for confirming the effect of the depth measuring apparatus according to the present invention will be described. FIG. 4 is a diagram showing measurement conditions in this test example. In this test example, a silicon substrate 91 (without a masking film) having a micro hole 94 having a diameter of 10 μm and a depth of 75 μm formed on the surface is used as a sample, and various incident angles θ of measurement light irradiated on the sample from the SLD light source It changed and the depth measurement of the said fine hole 94 was performed. The distance from the center of the collimating lens 25 to the measurement target surface was 120 mm, the spot diameter of the measurement light was 100 μm, and irradiation was performed so that the irradiation spot straddled the fine hole 94 and its peripheral part. The reflected light from the sample was dispersed by a spectroscope and then received by an array detector (quantization bit number: 10 bits).

以上により得られた分光スペクトルを図5に示す。これらの分光スペクトルはいずれも横軸が波長[μm]、縦軸がアレイ検出器の入力値(すなわち検出器への入射光量)である。同図の(a)〜(e)は、測定光の入射角θをそれぞれ0°、0.08°、0.17°、0.25°、0.35°としたときの測定結果を示している。なお、このとき光量調整部における減衰量はいずれも−30dbとした。また、同図の(f)は入射角θを同図の(e)と同じ0.35°とし、光量調整部における減衰量を−20dbとしたときの測定結果である。図5(a)〜(e)から明らかなように、測定光の入射角が大きくなるに従って反射光全体の光量が低下するのに対し、基板91表面と穴94の底からの反射光による干渉光成分(図中の楕円で囲んだ部分)の消光比、すなわち干渉光の山と谷の値の比が大きくなっている。また、図5(f)では、減衰量の調整により反射光全体のピーク高さが同図の(a)と同程度となっているが、干渉光成分の消光比は同図の(a)より大きくなっていることがわかる。これは、基板91表面からの反射光の受光量が大きく減少することで微細穴94の底からの反射光量に近づいて干渉光の消光比が改善されたためと、減衰量の変更によりアレイ検出器のダイナミックレンジを有効に利用できたためである。本実施例ではアレイ検出器54への入射光量を光量調節部52により調節したが、アレイ検出器54の露光時間を長くすることによっても同様の効果をえられる。   The spectrum obtained as described above is shown in FIG. In each of these spectrums, the horizontal axis is the wavelength [μm], and the vertical axis is the input value of the array detector (that is, the incident light quantity to the detector). (A)-(e) of the figure shows the measurement results when the incident angle θ of the measurement light is 0 °, 0.08 °, 0.17 °, 0.25 °, and 0.35 °, respectively. ing. At this time, the amount of attenuation in the light amount adjusting unit was set to −30 db. Further, (f) in the figure shows the measurement results when the incident angle θ is set to 0.35 °, which is the same as (e) in the figure, and the attenuation in the light amount adjusting unit is set to −20 db. As apparent from FIGS. 5A to 5E, the amount of reflected light decreases as the incident angle of the measuring light increases, whereas the interference by the reflected light from the surface of the substrate 91 and the bottom of the hole 94 occurs. The extinction ratio of the light component (portion enclosed by an ellipse in the figure), that is, the ratio of the peak and valley values of the interference light is large. Further, in FIG. 5F, the peak height of the entire reflected light is approximately the same as that shown in FIG. 5A by adjusting the attenuation, but the extinction ratio of the interference light component is shown in FIG. You can see that it is getting bigger. This is because the amount of reflected light from the surface of the substrate 91 is greatly reduced to approach the amount of reflected light from the bottom of the fine hole 94 and the extinction ratio of the interference light is improved. This is because the dynamic range can be used effectively. In this embodiment, the amount of light incident on the array detector 54 is adjusted by the light amount adjusting unit 52, but the same effect can be obtained by increasing the exposure time of the array detector 54.

また、図6(a)〜(f)は、それぞれ図5(a)〜(f)の分光スペクトルから干渉光成分を抽出し、横軸を波数に変換した後、フーリエ変換した波形を示している。同図の横軸は微細穴94の深さ[μm]を示しており、75μmの位置に干渉光成分に由来するピーク(図中の矢印で示す箇所)が現れている。同図の(f)では75μmのピークが同図の(a)に比べて高くなっており、同ピークの検出が容易になっていることが分かる。   FIGS. 6A to 6F show waveforms obtained by extracting an interference light component from the spectral spectra of FIGS. 5A to 5F and converting the horizontal axis into wave numbers, and then performing Fourier transform. Yes. The horizontal axis of the figure indicates the depth [μm] of the fine hole 94, and a peak (location indicated by an arrow in the figure) derived from the interference light component appears at a position of 75 μm. In (f) of the figure, the peak of 75 μm is higher than in (a) of the figure, and it can be seen that the detection of the peak is easy.

10…光源
20…導入・干渉光学系
21…光源側光ファイバ
22…試料側光ファイバ
23…検出器側光ファイバ
25…コリメートレンズ
30…計測部
31…真空チャンバ
32…試料載置部
33…計測窓
40…光学系駆動部
50…検出ユニット
52…光量調整部
53…回折格子
54…アレイ検出器
60…データ処理部
70…制御部
91…基板
92…レジスト層
93…被エッチング部
91a…基板表面からの反射光
92a…レジスト層表面からの反射光
93a…被エッチング部からの反射光
DESCRIPTION OF SYMBOLS 10 ... Light source 20 ... Introduction / interference optical system 21 ... Light source side optical fiber 22 ... Sample side optical fiber 23 ... Detector side optical fiber 25 ... Collimator lens 30 ... Measurement part 31 ... Vacuum chamber 32 ... Sample mounting part 33 ... Measurement Window 40 ... Optical system drive unit 50 ... Detection unit 52 ... Light amount adjustment unit 53 ... Diffraction grating 54 ... Array detector 60 ... Data processing unit 70 ... Control unit 91 ... Substrate 92 ... Resist layer 93 ... Etched portion 91a ... Substrate surface Reflected light 92a ... Reflected light from resist layer surface 93a ... Reflected light from etched portion

Claims (4)

測定対象面に形成された微細構造の深さを測定する深さ測定装置であって、
a)所定の波長幅を有する可干渉光を発生する光源と、
b)前記測定対象面に向けて前記可干渉光を出射すると共に、該測定対象面で反射した前記可干渉光が入射する入出射部と、
c)前記光源から前記入出射部へ前記可干渉光を導く導入光学系と、
d)前記測定対象面で反射して前記入出射部に入射した前記可干渉光を干渉させる干渉光学系と、
e)前記干渉光学系により得られる干渉光を波長毎に検出する検出部と、
を有し、
前記測定対象面に出射される前記可干渉光の光軸が該測定対象面に対して傾斜するように前記入出射部が配置されていることを特徴とする深さ測定装置。
A depth measurement device for measuring the depth of a microstructure formed on a measurement target surface,
a) a light source that generates coherent light having a predetermined wavelength width;
b) an incident / exit section that emits the coherent light toward the measurement target surface and on which the coherent light reflected by the measurement target surface is incident;
c) an introduction optical system for guiding the coherent light from the light source to the incident / exit section;
d) an interference optical system that interferes with the coherent light reflected on the measurement target surface and incident on the incident / exit section;
e) a detection unit for detecting the interference light obtained by the interference optical system for each wavelength;
Have
The depth measuring apparatus, wherein the incident / exit section is arranged so that an optical axis of the coherent light emitted to the measurement target surface is inclined with respect to the measurement target surface.
前記入出射部から前記測定対象面までの距離が50mm以上であり、且つ前記測定対象面への可干渉光の入射角が1°以下であることを特徴とする請求項1に記載の深さ測定装置。   The depth according to claim 1, wherein a distance from the incident / exit section to the measurement target surface is 50 mm or more, and an incident angle of coherent light to the measurement target surface is 1 ° or less. measuring device. 更に、
f)前記測定対象面を有する試料を載置するための試料載置面と、
g)前記入出射部と前記試料載置面との相対位置を変更することにより前記測定対象面に対する可干渉光の入射角を調整する入射角調整部と、
を有することを特徴とする請求項1に記載の深さ測定装置。
Furthermore,
f) a sample mounting surface for mounting a sample having the measurement target surface;
g) an incident angle adjusting unit that adjusts an incident angle of coherent light with respect to the measurement target surface by changing a relative position between the incident / exiting unit and the sample mounting surface;
The depth measuring device according to claim 1, wherein:
更に、
h)前記入射角調整部を制御する制御手段、
を有し、
該制御手段が、前記検出部における受光量に基づいて前記相対位置の変更量を決定することを特徴とする請求項3に記載の深さ測定装置。
Furthermore,
h) control means for controlling the incident angle adjustment unit;
Have
The depth measuring apparatus according to claim 3, wherein the control unit determines a change amount of the relative position based on an amount of received light in the detection unit.
JP2014008467A 2014-01-21 2014-01-21 Depth measuring instrument Pending JP2015137886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014008467A JP2015137886A (en) 2014-01-21 2014-01-21 Depth measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014008467A JP2015137886A (en) 2014-01-21 2014-01-21 Depth measuring instrument

Publications (1)

Publication Number Publication Date
JP2015137886A true JP2015137886A (en) 2015-07-30

Family

ID=53768987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014008467A Pending JP2015137886A (en) 2014-01-21 2014-01-21 Depth measuring instrument

Country Status (1)

Country Link
JP (1) JP2015137886A (en)

Similar Documents

Publication Publication Date Title
US10746531B2 (en) Wear amount measuring apparatus and method, temperature measuring apparatus and method and substrate processing system
TWI354340B (en) Measurement of critical dimensions using x-ray dif
JP6196119B2 (en) Shape measuring apparatus and shape measuring method
JP2011238957A (en) Method and apparatus for in-situ monitoring of plasma etching and deposition processes using pulsed broadband light source
US9007599B2 (en) Depth of hole measurement by subtracting area of two spectra separated by time
KR20020070424A (en) Method and apparatus for characterization of microelectronic feature quality
KR102246521B1 (en) Polishing apparatus
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
TWI758478B (en) Polishing apparatus and polishing method
JP2018063148A (en) Measurement device
JP7068831B2 (en) Polishing equipment
US20130169958A1 (en) Surface Processing Progress Monitoring System
JP2014038875A (en) Etching monitoring apparatus
JP2017538102A (en) Method and system for inspecting transparent wafers for electronics, optics or optoelectronics
JP2013048183A (en) Etching monitoring device
JP5081497B2 (en) Plasma processing equipment
JP2007248255A (en) Light intensity measuring method, light intensity measuring instrument, polarized light analyzer and production control device using it
JP2007027478A (en) Etching method and etching device
JP2015137886A (en) Depth measuring instrument
KR20030000274A (en) Multichannel spectrum analyzer for real time plasma monitoring and thin film analysis in semiconductor manufacturing process
JP6544171B2 (en) Surface treatment status monitoring device
JP2019045396A (en) Raman spectrometry device and method for raman spectrometry
JP2002340824A (en) Fluorescent x-ray analyzing device
JPS6385305A (en) Apparatus for measuring depth of fine groove
JPS63295945A (en) Glossiness measuring apparatus