JPS6385305A - Apparatus for measuring depth of fine groove - Google Patents

Apparatus for measuring depth of fine groove

Info

Publication number
JPS6385305A
JPS6385305A JP23288686A JP23288686A JPS6385305A JP S6385305 A JPS6385305 A JP S6385305A JP 23288686 A JP23288686 A JP 23288686A JP 23288686 A JP23288686 A JP 23288686A JP S6385305 A JPS6385305 A JP S6385305A
Authority
JP
Japan
Prior art keywords
depth
fine groove
optical path
light
path difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23288686A
Other languages
Japanese (ja)
Other versions
JPH0665963B2 (en
Inventor
Ryohei Kawabata
川端 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23288686A priority Critical patent/JPH0665963B2/en
Publication of JPS6385305A publication Critical patent/JPS6385305A/en
Publication of JPH0665963B2 publication Critical patent/JPH0665963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the depth of a fine groove on the way of a process, by forming optical route data from the spectrum signal due to the output of a spectroscope and calculating the depth of the fine groove on the basis of said data. CONSTITUTION:In a fine groove depth measuring apparatus used in inspection after the groove of a silicon substrate is formed by etching, the light emitted from a light source 1 passes through the lens system of a microscope to be condensed to the substrate 2 having a fine groove formed thereto. The reflected light from the substrate 2 is guided to a diffraction lattice 4 through the lens system and a slit 3 to be spectrally diffracted. The measurement of spectral intensity is performed at once using a multichannel type photodetector 5 without performing mechanical scanning. The signal obtained by the 5 is digitalized in a data processing part 6 to be operationally processed into a predetermined wave form. By this method, the depth of the fine groove can be accurately monitored on the way of a process.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は超LSI製造プロセスの検査技術に関し、特に
は微細溝深さ測定技術に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an inspection technique for a VLSI manufacturing process, and more particularly to a technique for measuring the depth of microgrooves.

〈従来の技術〉 現在、メガビット級のダイナミックRAMt−%現する
ために、従来の2次元的な素子形成の枠組みを越えて3
次元的な素子形成技術が開発されつつある。その−例と
して、従来のシリコン表面に素子を形成する方法に代わ
って、シリコン表面に微細な溝を形成し溝側面にも素子
を形成することにより、実効的な表面積を増加させ集積
度を向上させる方法がある。本方法において形成される
シリコン溝の典型的な寸法は、更に高集積化を図るため
に溝幅数1100nと狭く、深さ数μmであシ、溝のア
スペクト比は(溝深さと溝幅の比)5から10にも達す
る。本方法を使用して超LSI製造するためには、この
溝の深さを正確に測定し、そのデータに基づいて工程管
理を行う必要がある。
<Prior art> Currently, in order to realize megabit-class dynamic RAMt-%, three-dimensional
Dimensional device formation techniques are being developed. For example, instead of the conventional method of forming elements on the silicon surface, by forming fine grooves on the silicon surface and forming elements on the sides of the groove, the effective surface area is increased and the degree of integration is improved. There is a way to do it. Typical dimensions of the silicon trench formed by this method are as narrow as 1100 nm in width and several μm in depth in order to achieve higher integration, and the aspect ratio of the trench is (groove depth to groove width ratio) reaches 5 to 10. In order to manufacture a VLSI using this method, it is necessary to accurately measure the depth of this groove and perform process control based on that data.

溝の深さを測定装置として、従来から触針式表面荒さ測
定装置が用いられている。前記触針式測定装置の場合、
触針の先端の曲率半径が数μ程度であるため、上述の如
く寸法サブミクロンの溝には触針が入らず、深さの測定
が不可能であるという問題があった。また、たとえ触針
が溝に入ったとしても接触測定であるので基板を汚染し
やすいという欠点もあった。以上の問題を解決するため
に、微細溝深さ測定としては、一般に、基板を割り、断
面走査、電子顕微鏡写真(以下SEM断面写真)を撮る
方法が行われている。
A stylus type surface roughness measuring device has conventionally been used as a device for measuring the depth of a groove. In the case of the stylus type measuring device,
Since the radius of curvature of the tip of the stylus is on the order of several μm, there is a problem in that the stylus cannot enter the submicron groove as described above, making it impossible to measure the depth. Another disadvantage is that even if the stylus enters the groove, the substrate is likely to be contaminated because it is a contact measurement. In order to solve the above problems, the depth of the fine grooves is generally measured by splitting the substrate, scanning the cross section, and taking an electron micrograph (hereinafter referred to as an SEM cross-sectional photograph).

〈発明が解決しようとする問題点〉 上述するSEM断面写真を撮って溝深さを測定する方法
は、サンプルを破壊しなければならないため、超LSI
の製造工程の検査に常時用いることができない。従って
、製造工程での溝深さの管理は甘くならざるを得す、こ
のため、工程のマージンを多く見積る必要が発生し、ま
た、歩留にも悪影響を与えるという問題がある。
<Problems to be Solved by the Invention> The method of measuring the groove depth by taking SEM cross-sectional photographs described above requires destroying the sample, so
cannot be used constantly for inspection of manufacturing processes. Therefore, the groove depth has to be controlled loosely in the manufacturing process, which makes it necessary to estimate a large margin for the process, which also has a negative impact on the yield.

〈問題を解決するための手段〉 本発明は上述する問題を解決するためになされたもので
、溝を形成した基板に光を照射して得られる反射光を分
光し、多チヤンネル型の受光素子にて出力を取出し、こ
の出力波形を例えば高速フーリエ変換、最大エントロピ
ー法等の波形処理技術を用いて演算し、光学行路差を得
る。前記光学行路差に基づいて溝深さを検出する微細溝
深さ測定装置を提供するものである。
<Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems, and it splits the reflected light obtained by irradiating light onto a substrate in which grooves are formed, thereby creating a multi-channel light-receiving element. The output waveform is calculated using a waveform processing technique such as fast Fourier transform or maximum entropy method to obtain an optical path difference. The present invention provides a micro groove depth measuring device that detects groove depth based on the optical path difference.

〈作用〉 上述の如く溝深さの測定を、光を照射してその反射光か
ら得られる情報を利用して行なうことにより、被測定基
板に接触する必要がないため該基板を汚染することがな
く、また該基板を破壊する必要がないため、歩留りの向
上が図れるものである。
<Function> As described above, by measuring the groove depth by irradiating light and using information obtained from the reflected light, there is no need to contact the substrate to be measured, so there is no need to contaminate the substrate. Moreover, since there is no need to destroy the substrate, the yield can be improved.

〈実施例〉 第1図は本発明の一実施例であシ、基板シリコンの溝堀
りエツチング後の検査に使用した場合の微細溝深さ測定
装置の構成図である。光源1から出た光は顕微鏡のレン
ズ系を通して基板2上に集光される。該基板2には微細
溝が加工されている。
<Embodiment> FIG. 1 is an embodiment of the present invention, and is a block diagram of a micro-groove depth measuring device used for inspection after trenching and etching of a silicon substrate. Light emitted from a light source 1 is focused onto a substrate 2 through a lens system of a microscope. The substrate 2 is machined with fine grooves.

基板2からの反射光は上記レンズ系とスリット3を通し
て回折格子4に導かれ分光される。分光強度の測定は多
チヤンネル型の受光素子5を用いて機械的走査なしに一
度に行う。多チヤンネル型の受光素子は、(1)分光時
間が短い(演算を含め3秒以内)、(2)情報の利用効
率が高い(明るい)、という長所を持っている。木実施
例では400 nmから800 nmの領域を約400
チヤンネルの直線型多チヤンネル受光素子を用いている
The reflected light from the substrate 2 is guided to the diffraction grating 4 through the lens system and the slit 3, and is separated into spectra. The measurement of spectral intensity is carried out at once without mechanical scanning using a multi-channel type light receiving element 5. Multichannel photodetectors have the following advantages: (1) Spectral time is short (within 3 seconds including calculation), and (2) information is used efficiently (bright). In the wood example, the area from 400 nm to 800 nm is approximately 400 nm.
A linear multi-channel photodetector is used.

受光素子5で得られた信号は、データ処理部6において
デジタル化された後、後述する波形処理技術を演算処理
される。
The signal obtained by the light-receiving element 5 is digitized in the data processing section 6, and then subjected to arithmetic processing using a waveform processing technique described later.

第2図は、0.8μmの幅の溝が1.6μmの周期で繰
り返されるパターン(サンプル5−1)について、上記
多チヤンネル受光素子5から得られる反射分光スペクト
ル強度を示し、第3図は1.2μmの幅の溝が2.4μ
mの周期で繰り返されるパターン(サンプ/L/5−2
)について、上記多チャンネ/l’型受光素子5から得
られる反射分光スペクトル強度を示している。第2図、
第3図において横軸は波数であり、分光面積は約20μ
雇四方である。
FIG. 2 shows the reflection spectrum intensity obtained from the multichannel light receiving element 5 for a pattern (sample 5-1) in which grooves with a width of 0.8 μm are repeated at a period of 1.6 μm, and FIG. 1.2μm wide groove is 2.4μm
Pattern repeated with a period of m (samp/L/5-2
), the reflection spectrum intensity obtained from the multi-channel/l' type light receiving element 5 is shown. Figure 2,
In Figure 3, the horizontal axis is the wave number, and the spectral area is approximately 20μ.
Hire Shimo.

顕微鏡の対物レンズは10倍を用いる。光学系の開口数
を最適化することによフ、アスペクト比の大きい溝パタ
ーンでも深い溝底部と表面からの反射光が干渉し、第2
図や第3図のような干渉スペクトルが得られることが見
いだされた。
A 10x objective lens is used for the microscope. By optimizing the numerical aperture of the optical system, even in a groove pattern with a large aspect ratio, the reflected light from the deep groove bottom and the surface will interfere, and the second
It was discovered that interference spectra such as those shown in Fig. 3 and Fig. 3 can be obtained.

ここでサンプルS−1はエツチング終了後マスク材料と
して用いた5i02を除去したもので、サンプIV S
 −2はエツチング直後のものである。
Here, sample S-1 was obtained by removing 5i02 used as a mask material after etching, and sample S-1 was obtained by removing 5i02 used as a mask material after etching.
-2 is immediately after etching.

即ちサンプ/L/ S −1では1種類の干渉が繰返し
て出現しているのに対して、サンプ/L’ S −2の
反射分光ヌベクトル強度である第3図においては、2種
以上の周期を持つ信号が観測されている。これは、前記
サンプルS−2が第4図に示す断面図をもち、5i(h
表面の反射光■、5i02 とSi境界面からの反射光
■、溝底部からの反射光■とすると、SiO□の膜厚と
Siのエツチング溝深さに対応して3つの光学行路差が
存在するために起こるものである。
In other words, in Sump/L/S-1, one type of interference appears repeatedly, whereas in Figure 3, which shows the reflected spectral nuvector intensity of Sump/L'S-2, two or more types of interference appear repeatedly. A signal with . This is because the sample S-2 has the cross-sectional view shown in FIG.
Assuming the reflected light from the surface ■, the reflected light from the 5i02 and Si interface ■, and the reflected light from the groove bottom ■, there are three optical path differences corresponding to the SiO□ film thickness and the Si etching groove depth. It happens because it happens.

ところで、溝深さの検査はエツチング直後に行うのが望
ましい。これは、溝深さがスペックよシ浅い場合、追加
のエツチングを直ちに施すことが可能になるからである
。第3図の干渉スペクトルから、直ちに溝深さの情報を
得ることは困難である。そこで、スペクトル解析の手法
を用いて信号を分離しエツチング深さを得る方法を試み
た。本実施例では信号の解析方法として高速フーリエ変
換(以下FFT)を採用し、それらはデータ処理部6に
おいて実行する。
By the way, it is desirable to inspect the groove depth immediately after etching. This is because if the groove depth is shallower than the specifications, additional etching can be performed immediately. It is difficult to immediately obtain information about the groove depth from the interference spectrum shown in FIG. Therefore, we attempted a method to separate the signals and obtain the etching depth using a spectrum analysis method. In this embodiment, fast Fourier transform (hereinafter referred to as FFT) is employed as a signal analysis method, and is executed in the data processing section 6.

FFTの数値演算は、パヌカル言語を用いて記述し80
86系のCPU用にコンパイルしたオブジェクトプログ
ラムを用いて行った。本プロゲラ約10秒である。これ
は、製造工程での検査を実施するのて十分なスピードで
ある。
FFT numerical operations are described using the Panucal language.80
This was done using an object program compiled for 86 series CPU. This progera takes about 10 seconds. This is fast enough to perform inspections during the manufacturing process.

第5図は、第2図及び第3図の反射分光スペクトμ信号
にFFTを施した結果を示す。縦軸は反射分光スペクト
ル強度を示し、横軸は光学行路差情報に相当する。また
処5図中にて観測されるピークにおいて、サンプ/l’
 S −1のピークをA1サンプIV S −2の2つ
のピークをそれぞれB、Cと名付けると、ピークAはS
i基板表面の反射光と溝底部からの反射光との干渉に基
いて出現している出力であり、横軸の値が両反射光の光
学行路差を示し、ピークBは第4図中の光■と■との光
学行路差を示し、ピークCは第4図中の光■と■との光
学行路差を示す。この光学行路差に基づき、Si溝深さ
及び5i02膜膜厚が得られる。
FIG. 5 shows the results of performing FFT on the reflection spectrum μ signals of FIGS. 2 and 3. FIG. The vertical axis indicates the reflection spectrum intensity, and the horizontal axis corresponds to optical path difference information. In addition, in the peak observed in Figure 5, sample/l'
If the peak of S-1 is named A1 sample IV and the two peaks of S-2 are named B and C, then peak A is S
This is the output that appears based on the interference between the reflected light from the i-substrate surface and the reflected light from the groove bottom, and the value on the horizontal axis indicates the optical path difference between the two reflected lights, and the peak B is as shown in Figure 4. It shows the optical path difference between the lights ■ and ■, and peak C shows the optical path difference between the lights ■ and ■ in FIG. Based on this optical path difference, the Si groove depth and the 5i02 film thickness can be obtained.

表1はサンプルS−1,s、−2について、FFT処理
にて得られた光学行路差、該光学行路差から算出した溝
深さ若しくは5i02嘆膜厚と、SEM断面写真から得
た各測定結果とを分解能と共に示す。ここで5i02の
屈折率は1.45として、計算を行なった。− 表1 〔単位;μm〕 □□□= ここで、フーリエ変換の分解能とは、離散フーリエ変換
の理論によって与えられる量で、変換前のシグナルの帯
域幅の逆数に相当する。従って、可視領域の分光を行う
限り、フーリエ変換の分解能は光学行路差にして800
 nm前後で大きい。
Table 1 shows the optical path difference obtained by FFT processing, the groove depth or 5i02 membrane thickness calculated from the optical path difference, and each measurement obtained from the SEM cross-sectional photograph for samples S-1, s, and -2. The results are shown along with the resolution. Here, the calculation was performed assuming that the refractive index of 5i02 was 1.45. - Table 1 [Unit: μm] □□□= Here, the resolution of Fourier transform is a quantity given by the theory of discrete Fourier transform, and corresponds to the reciprocal of the bandwidth of the signal before transform. Therefore, as long as spectroscopy is performed in the visible region, the resolution of Fourier transform is 800 in optical path difference.
It is large, around nm.

そこで分光スペクトル信号の演算処理の第2例として、
最大エントロピー法(以下M E M )を採用した。
Therefore, as a second example of arithmetic processing of spectral signals,
The maximum entropy method (hereinafter M EM ) was adopted.

MEMにおいても上記FFT同様パスカル言語t−用い
て記述し8086系のCPU用にコンパイルしたオブジ
ェクトプログラムを用いて行った。
Similar to the above-mentioned FFT, MEM was also performed using an object program written in the Pascal language t- and compiled for an 8086 series CPU.

−では約70秒である。これも、製造工程での検査を実
施するのに十分なスピードである。
-, it is about 70 seconds. This is also fast enough to perform inspections during the manufacturing process.

第6図は第2図及び第3図の反射分光スペクトル信号に
M E Mを施した結果を示す。縦軸は反射分光スペク
)/し強度を示し、横軸は光学行路差情報に相当するb
また第6図中にて観測されるピークにおいて、サンプル
S−1のピークをAI 、サンプルS−2の2つのピー
クをそれぞれB+ 、 C+と名付けると、ピークAI
はSi基板表面の反射光と溝底部からの反射光との干渉
に基いて出現し、横軸の値は両反射光の光学行路差を示
し、ピークBlは第4図中の光■と■との光学行路差を
示し、ピークC1は第4図中の光■と■との光学行路差
を示す。この光学行路差に基つき、Si溝深さ及び5i
02膜膜厚が得られる。
FIG. 6 shows the results of applying MEM to the reflection spectrum signals of FIGS. 2 and 3. FIG. The vertical axis shows the reflection spectrum spectrum)/the intensity, and the horizontal axis corresponds to the optical path difference information.
In addition, among the peaks observed in Fig. 6, if the peak of sample S-1 is named AI, and the two peaks of sample S-2 are named B+ and C+, respectively, the peak AI
appears based on the interference between the reflected light from the Si substrate surface and the reflected light from the bottom of the groove, and the value on the horizontal axis indicates the optical path difference between the two reflected lights, and the peak Bl is between the light ■ and ■ in Fig. 4. The peak C1 shows the optical path difference between the lights ``■'' and ``■'' in FIG. Based on this optical path difference, the Si groove depth and 5i
02 film thickness is obtained.

表2はMEM処理を実行することにて得られた光学行路
差、該光学行路差から算出した溝深さ及び5i02膜膜
厚と、SEM断面写真から得た各測定結果とを分解能と
共に示す。ここで5i02の屈折率は1.45として計
算を行なった。
Table 2 shows the optical path difference obtained by performing the MEM process, the groove depth and 5i02 film thickness calculated from the optical path difference, and each measurement result obtained from the SEM cross-sectional photograph, together with the resolution. Here, the calculation was performed assuming that the refractive index of 5i02 was 1.45.

すことで計算上の分解能はいくらでも小さくすることが
可能であり゛、高精度で光学行路差を求める表2中の、
M E Mよシ得た光学行路差をもとに算出した溝深さ
及びSiO2膜膜厚とS E M断面写真より得た溝深
さ及び5i02膜膜厚とは、それぞれ測定の精度の範囲
でよく一致しており、MEMを用いた本実施例により微
細溝深さ測定が精度よく実現していることを示している
By doing so, the computational resolution can be made as small as possible.
The groove depth and SiO2 film thickness calculated based on the optical path difference obtained from MEM and the groove depth and 5i02 film thickness obtained from the SEM cross-sectional photograph are each within the range of measurement accuracy. The results are in good agreement with each other, indicating that the micro groove depth can be measured with high accuracy by this example using MEM.

ターの次数の選択が重要である。フィルター次数の選択
法として次の3つの方法を試した。
The selection of the order of the filter is important. We tried the following three methods to select the filter order.

(1)  フィルター次数を1から順に増大させ最終予
測誤差の極小値を与えるフィルター次数を選択する。
(1) The filter order is increased sequentially from 1 and the filter order that gives the minimum value of the final prediction error is selected.

(2)設定されたフィルター次数の範囲の最終予測誤差
をすべて計算しその最小値を与えるフィルター次数を選
択する。
(2) Calculate all final prediction errors within the set filter order range and select the filter order that gives the minimum value.

(3)  フィルター次数を最終予測誤差の予測誤差フ
ィルター次数依存性に関わら、ず、あらかじめ設定され
た値に固定して演算する。
(3) Calculate the filter order by fixing it to a preset value, regardless of the dependence of the final prediction error on the prediction error filter order.

(1)の方法は演算時間は早いが、ノイズの多い波形を
観測するときに最終予測誤差のノイズによる振舞いを極
小値と見誤り、その結果、正しいヌベクトル解析が不能
になる場合がある。(2)の方法は今回の信号解析では
、多くの場合よい結果が得られた。ただし、微細溝の面
積が小さく溝底部からの信号がマヌク表面からの信号に
比べて小さい場合に、溝深さに相当する光学行路差をノ
イズと判断し消し去る場合がある。(3)は(2)で解
析できない場合に有効であり、大きな振幅に乗った小さ
い信号からもヌベクトル解析が可能である。ただし、ま
れにノイズを信号と見誤り偽の光学行路差を与えること
がある。こ几を避けるため予想誤差フィルターの次数の
範囲を30から60にし、この範囲からフィルター次数
を選択するとよい。各種の構造の微細溝の測定結果から
、(2)と(3)を上記の特徴を意識しながら場合によ
り使い分けることが適当であることが分かった。実用的
には、シリコン基板上に分光しやすい検査マークを作れ
ば(幅1μm前後の溝が2μrrL程度のピッチで並ん
でいるパターン等)、(2)の方式で失敗なく溝深さの
測定が可能であることが確かめられた。々お、(J)に
おいて偽の信号を見分けるためには、7Ht=去5fi
の結果との信号の積を取ることが有効である。
Method (1) is fast in calculation time, but when observing a noisy waveform, the behavior of the final prediction error due to noise may be mistaken for a local minimum value, and as a result, correct nuvector analysis may not be possible. Method (2) yielded good results in most cases in this signal analysis. However, if the area of the fine groove is small and the signal from the groove bottom is smaller than the signal from the surface of the groove, the optical path difference corresponding to the groove depth may be determined to be noise and erased. (3) is effective when analysis cannot be performed using (2), and Nuvector analysis is possible even from a small signal riding on a large amplitude. However, in rare cases, noise may be mistaken for a signal and a false optical path difference may be given. In order to avoid this problem, it is preferable to set the order of the expected error filter in the range of 30 to 60 and select the filter order from this range. From the results of measurements of microgrooves of various structures, it has been found that it is appropriate to use (2) and (3) depending on the situation, keeping in mind the above characteristics. Practically speaking, if an inspection mark that can be easily analyzed by spectroscopy is made on a silicon substrate (such as a pattern in which grooves with a width of around 1 μm are lined up at a pitch of about 2 μrrL), the groove depth can be measured without failure using method (2). It was confirmed that it is possible. In order to identify a false signal in (J), 7Ht = 5fi
It is useful to take the product of the signal with the result of .

本実施例では、シリコン基板の溝堀りエツチング後の溝
深さ測定の場合を述べたが、一般の微細溝の深さ測定に
本発明が利用できるのは明白である。
In this embodiment, the case of measuring the groove depth after trenching and etching of a silicon substrate has been described, but it is obvious that the present invention can be used for measuring the depth of general fine grooves.

また、一般の多層膜や基板上に形成された微細溝の底面
に形成された各揮膜の光学膜厚測定に関しても本発明が
有効であると考えられる。
It is also believed that the present invention is effective in measuring the optical thickness of each volatile film formed on the bottom surface of a microgroove formed on a general multilayer film or substrate.

く効 果〉 本発明を用いることによって、微細溝の深さを工程途中
で正確にモニターできるようになった。
Effects> By using the present invention, it has become possible to accurately monitor the depth of microgrooves during the process.

その結果、微細溝を用いるLSIの製造プロセスの信頼
性が向上し、高集積メモリーに代表される超LSIの歩
留りが向上する。
As a result, the reliability of the LSI manufacturing process using microgrooves is improved, and the yield of VLSIs typified by highly integrated memories is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による構成図、第2図はサン
プルs−1の反射分光スペクトル強度を波数に対しプロ
ットした図、第3図はサンプルS−2の反射分光スペク
トル強度を波数に対しプロットした図、第4図はサンプ
/l/ S −2の断面図、第5図は第2図及び第3図
の反射分光スベク)/し信号を高速フーリエ変換した結
果を表す図、第6図は第2図及び第3図の反射分光スペ
クトル信号を最大エントロピー法にて処理した結果を表
す図である。 1:光源  2:基板  3ニスリツト  4:回折格
子  5:多チヤンネル受光素子6:データ処理部 代理人 弁理士  杉 山 毅 至(他1名)縛処纜O
−9%ml 第2図 /3   15    /7    /9   2/ 
   27  25’敗敷CX10” & 3 第3図 第4図 0      5000       10000  
    15CODt哩行氾   [nm、1 1に5図 0       〃〃       /ω〃     
 15χり光学イ1路裏  (nm) 第6図
Fig. 1 is a block diagram according to an embodiment of the present invention, Fig. 2 is a diagram plotting the reflection spectral intensity of sample s-1 against the wave number, and Fig. 3 is a diagram plotting the reflection spectral intensity of sample S-2 against the wave number. Figure 4 is a cross-sectional view of the sample /l/S-2, Figure 5 is a diagram showing the results of fast Fourier transform of the reflection spectroscopy signal of Figures 2 and 3. FIG. 6 is a diagram showing the results of processing the reflection spectroscopic spectrum signals of FIGS. 2 and 3 using the maximum entropy method. 1: Light source 2: Substrate 3 Nislit 4: Diffraction grating 5: Multi-channel light receiving element 6: Data processing department agent Patent attorney Takeshi Sugiyama (and 1 other person)
-9%ml Figure 2 /3 15 /7 /9 2/
27 25' defeat CX10''& 3 Figure 3 Figure 4 0 5000 10000
15 CODt roaring flood [nm, 1 to 5 figure 0 〃〃 /ω〃
Figure 6

Claims (1)

【特許請求の範囲】 1)微細溝所持面に光を照射するための光源と、該光源
の微細溝所持面に対する照射光及び反射光を導く顕微鏡
と、 該顕微鏡により導出された反射光を受光して分光する反
射型分光器と、 該分光器出力による分光スペクトル信号から光学行路差
情報を形成する演算手段と、 前記光学行路差情報に基づいて微細溝深さを算出する演
算手段とを備えてなることを特徴とする微細溝深さ測定
装置。 2)上記反射型分光器の受光素子が多チャンネル型受光
素子であることを特徴とする特許請求の範囲第1項記載
の微細溝深さ測定装置。 3)上記光学行路差情報を形成する演算手段が高速フー
リエ変換を用いてなることを特徴とする特許請求の範囲
第1項記載の微細溝深さ測定装置。 4)上記光学行路差情報を形成する演算手段が最大エン
トロピー法を用いてなることを特徴とする特許請求の範
囲第1項記載の微細溝深さ測定装置。
[Claims] 1) A light source for irradiating light onto a surface with microgrooves, a microscope that guides the irradiated light and reflected light from the light source to the surface with microgrooves, and receives the reflected light derived by the microscope. a reflection spectrometer that performs spectroscopy, a calculation means that forms optical path difference information from a spectral signal output from the spectrometer, and a calculation means that calculates a microgroove depth based on the optical path difference information. A micro-groove depth measuring device that is characterized by 2) The micro-groove depth measuring device according to claim 1, wherein the light-receiving element of the reflection spectrometer is a multi-channel type light-receiving element. 3) The fine groove depth measuring device according to claim 1, wherein the calculation means for forming the optical path difference information uses fast Fourier transform. 4) The micro groove depth measuring device according to claim 1, wherein the calculation means for forming the optical path difference information uses a maximum entropy method.
JP23288686A 1986-09-29 1986-09-29 Fine groove depth measuring device Expired - Lifetime JPH0665963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23288686A JPH0665963B2 (en) 1986-09-29 1986-09-29 Fine groove depth measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23288686A JPH0665963B2 (en) 1986-09-29 1986-09-29 Fine groove depth measuring device

Publications (2)

Publication Number Publication Date
JPS6385305A true JPS6385305A (en) 1988-04-15
JPH0665963B2 JPH0665963B2 (en) 1994-08-24

Family

ID=16946379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23288686A Expired - Lifetime JPH0665963B2 (en) 1986-09-29 1986-09-29 Fine groove depth measuring device

Country Status (1)

Country Link
JP (1) JPH0665963B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087121A (en) * 1987-12-01 1992-02-11 Canon Kabushiki Kaisha Depth/height measuring device
US5384639A (en) * 1992-05-13 1995-01-24 International Business Machines Corporation Depth measurement of high aspect ratio structures
KR100852076B1 (en) 2006-08-25 2008-08-13 다이니폰 스크린 세이조우 가부시키가이샤 Measuring method and apparatus for measuring depth of trench pattern
JP2011196785A (en) * 2010-03-18 2011-10-06 Disco Corp Measurement apparatus and laser processing machine of to-be-processed object held on chuck table
JP2013242192A (en) * 2012-05-18 2013-12-05 Shimadzu Corp Etching monitor apparatus
JP2014002068A (en) * 2012-06-19 2014-01-09 Shimadzu Corp Thickness monitoring device, etching depth monitoring device, and thickness monitoring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489722B (en) * 2011-04-06 2017-01-18 Precitec Optronik Gmbh Apparatus and method for determining a depth of a region having a high aspect ratio that protrudes into a surface of a semiconductor wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087121A (en) * 1987-12-01 1992-02-11 Canon Kabushiki Kaisha Depth/height measuring device
US5384639A (en) * 1992-05-13 1995-01-24 International Business Machines Corporation Depth measurement of high aspect ratio structures
KR100852076B1 (en) 2006-08-25 2008-08-13 다이니폰 스크린 세이조우 가부시키가이샤 Measuring method and apparatus for measuring depth of trench pattern
US7710579B2 (en) 2006-08-25 2010-05-04 Dainippon Screen Mfg. Co., Ltd. Measuring method and apparatus for measuring depth of trench pattern
JP2011196785A (en) * 2010-03-18 2011-10-06 Disco Corp Measurement apparatus and laser processing machine of to-be-processed object held on chuck table
JP2013242192A (en) * 2012-05-18 2013-12-05 Shimadzu Corp Etching monitor apparatus
JP2014002068A (en) * 2012-06-19 2014-01-09 Shimadzu Corp Thickness monitoring device, etching depth monitoring device, and thickness monitoring method

Also Published As

Publication number Publication date
JPH0665963B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US6753972B1 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
JP5519688B2 (en) Film thickness measuring apparatus and film thickness measuring method
TWI303090B (en) Method for in-situ monitoring of patterned substrate processing using reflectometry
US6327035B1 (en) Method and apparatus for optically examining miniature patterns
JP2005530144A (en) Single structure optical measurement
JPH0252205A (en) Film thickness measuring method
US10203195B2 (en) Noise reduction techniques, fractional bi-spectrum and fractional cross-correlation, and applications
TWI671835B (en) Metrology test structure design and measurement scheme for measuring in patterned structures
US20070139657A1 (en) Three-dimensional geometric measurement and analysis system
JP5862433B2 (en) Surface treatment status monitoring device
WO2012077652A1 (en) Etching monitoring apparatus
US20130169958A1 (en) Surface Processing Progress Monitoring System
JPS6385305A (en) Apparatus for measuring depth of fine groove
JP4775685B2 (en) Method and apparatus for shallow angle interference for determining real-time etching rates
JP5888111B2 (en) Etching monitor device
JP2000097648A (en) Device and method for measuring difference in level
JP2013048183A (en) Etching monitoring device
JPH08313422A (en) Apparatus for evaluating characteristics of thin film
JP2746852B2 (en) Transmitted light measurement device
JP3417834B2 (en) Method and apparatus for measuring phase shift amount for processing phase shift mask
JPH01145508A (en) Measuring apparatus
JPS63158849A (en) Inspection method for fine groove
JPH0654217B2 (en) Interference film thickness measurement method
JP2002005634A (en) Method and apparatus for measuring level difference, and etching method
JPH0232204A (en) Measuring method for registration pattern dimension

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term