JP2000097648A - Device and method for measuring difference in level - Google Patents

Device and method for measuring difference in level

Info

Publication number
JP2000097648A
JP2000097648A JP10271601A JP27160198A JP2000097648A JP 2000097648 A JP2000097648 A JP 2000097648A JP 10271601 A JP10271601 A JP 10271601A JP 27160198 A JP27160198 A JP 27160198A JP 2000097648 A JP2000097648 A JP 2000097648A
Authority
JP
Japan
Prior art keywords
light
data
intensity distribution
substrate
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10271601A
Other languages
Japanese (ja)
Inventor
Shigenori Isozaki
茂則 磯崎
Kenji Sasaki
賢司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10271601A priority Critical patent/JP2000097648A/en
Publication of JP2000097648A publication Critical patent/JP2000097648A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To permit the accurate measurement of difference in level in a body to be measured without damaging or breaking semiconductor wafers or adding excess processes to measurement by constituting a device so that the input of detected light detected by a detector may be the distribution of intensity of interference light generated by two beams of reflected light. SOLUTION: First, part of light transmitted through a half mirror 3 and travelling straight toward a substrate 8 among light emitted from a light source 2 enters the difference in level in the substrate 8, and other light scans an XY table at a location to irradiate a translucent film 9. When the light source 2 irradiates measuring light, light which has traveled straight through the half mirror 3 is reflected at an embedded member 12 in the difference in level, returned to the half mirror 3, reflected at the half mirror 3, and bent toward a detector 5. Light transmitted through the translucent film 9 on the substrate 8 is similarly reflected at the surface of the substrate 8, reflected at the half mirror 3, and directed toward the detector 5. Therefore, as two beams of light different in reflection intensity distribution travel straight in the same optical axis, they become interference light and are inputted to the detector 5. The detector 5 detects the distribution R of light intensity of the interference light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は平板状の基板に設け
られた段差の測定装置とその方法に関し、特に、半導体
ウエハ表面に形成されたエッチング段差を測定するため
の段差測定装置とその方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for measuring a step provided on a flat substrate, and more particularly to an apparatus and a method for measuring an etching step formed on a surface of a semiconductor wafer. .

【0002】[0002]

【従来の技術】一般の半導体装置の製造工程において
は、単一の物質により形成されている基板、例えばシリ
コン基板等の表面に、数百オングストロームから数μm
程度の微少なエッチング段差が形成され、半導体素子に
おける素子分離や容量膜形成等において利用されてい
る。
2. Description of the Related Art In a general manufacturing process of a semiconductor device, a surface of a substrate formed of a single substance, for example, a silicon substrate, has a thickness of several hundred angstroms to several μm.
A minute etching step is formed, and is used for element isolation in a semiconductor element, formation of a capacitor film, and the like.

【0003】それらの半導体製造工程では、エッチング
段差を測定することによりエッチングレートの日常管理
が実施されている。このエッチング段差は極めて微少な
段差であるため、段差測定方法としてはエッチング段差
を損傷せずに高精度で測定することが要求されている。
In these semiconductor manufacturing processes, daily management of the etching rate is performed by measuring an etching step. Since the etching step is a very small step, it is required to measure the step with high accuracy without damaging the etching step.

【0004】これらの測定は、通常、機械的測定方法、
断面SEMで測定する方法又は光学的測定方法等が用い
られている。
[0004] These measurements are usually made by mechanical measurement methods,
A method of measuring with a cross-sectional SEM, an optical measuring method, or the like is used.

【0005】機械的な方法は、図示しない固定用ステー
ジ上に真空チャック等で固定された基板の表面を測定針
を接触走査させ、段差によって生じるる機械的変位を電
気信号に変換して測定している。
In the mechanical method, the surface of a substrate fixed by a vacuum chuck or the like on a fixing stage (not shown) is scanned by a measuring needle in contact therewith, and mechanical displacement caused by a step is converted into an electric signal and measured. ing.

【0006】また、断面SEMで測定する方法は、ウエ
ハを割ってその断面をSEMで測定している。
In the method of measuring with a cross-sectional SEM, the cross section of the wafer is measured with a SEM.

【0007】また、非破壊検査である光学的測定方法と
しては、特開平8−236592号方法に開示されてい
るように、汎用の分光干渉反射率膜厚計などを利用して
測定する段差測定方法が用いられている。
As an optical measurement method which is a non-destructive inspection, as disclosed in Japanese Patent Application Laid-Open No. 8-236592, a step measurement using a general-purpose spectral interference reflectance film thickness meter or the like is used. A method is used.

【0008】図13はこの段差測定方法の概要を示す原
理図である。すなわち、測定対象物である半導体基板2
0の段差部分の埋め込み部材21の上に屈折率等が既知
の透明膜22を塗布し、段差を透明膜22で埋設して段
差を無くし、埋設した透明膜22の厚さを分光干渉反射
率膜厚計などで測定することによって段差Dを測定して
いる。
FIG. 13 is a principle diagram showing an outline of the step measurement method. That is, the semiconductor substrate 2 which is the object to be measured
A transparent film 22 having a known refractive index or the like is applied on the embedding member 21 at the stepped portion of 0, the step is buried with the transparent film 22 to eliminate the step, and the thickness of the buried transparent film 22 is measured as the spectral interference reflectance. The step D is measured by measuring with a film thickness meter or the like.

【0009】この方法では、透明膜22の上面から段差
の下部までの厚さD1と、透明膜22の上面から段差の
上部までの厚さD2をそれぞれ求め、その差として段差
Dを算出している。
In this method, the thickness D1 from the upper surface of the transparent film 22 to the lower part of the step and the thickness D2 from the upper surface of the transparent film 22 to the upper part of the step are obtained, and the step D is calculated as the difference. I have.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、機械的
測定方法は測定針を基板表面に物理的に接触させるた
め、基板表面に引っ掻き傷を作る惧れがあり、その引っ
掻き傷で測定対象の半導体基板を損傷するのみならず、
引っ掻き傷に伴ってパーティクル(ゴミ)の発生を引起
こす可能性も有る。さらに、原理的に測定針の先端形状
により測定可能な溝のアスペクト比が制限される等の不
具合が存在する。
However, in the mechanical measurement method, since the measuring needle is physically brought into contact with the surface of the substrate, there is a fear that the surface of the substrate may be scratched. Not only damage
There is a possibility that particles (dust) may be generated due to the scratch. Further, there is a problem that the measurable groove aspect ratio is limited by the shape of the tip of the measuring needle in principle.

【0011】また、断面SEMで測定する方法は、ウエ
ハを割って測定する破壊試験であるうえ、時間と費用が
かかるのが課題である。
Further, the method of measuring with a cross-sectional SEM is a destructive test in which a wafer is broken and measured, and also has a problem that it takes time and costs.

【0012】また、汎用の分光干渉反射率膜厚計などを
利用して測定する段差測定方法の場合は、段差を測定す
る前に透明膜を塗布して段差を埋設する工程と、段差を
測定した後に透明膜を除去する工程の2つの工程が測定
のためだけに必要になる。従って、段差測定用だけのた
めに新たな工程を追加しなければならないという問題が
有る。
In the case of a step measuring method using a general-purpose spectral interference reflectance film thickness meter or the like, a step of applying a transparent film and embedding the step before measuring the step, and measuring the step. After that, two steps of removing the transparent film are required only for measurement. Therefore, there is a problem that a new process must be added only for measuring the step.

【0013】本発明は、上記の課題を解決して、被測定
体である半導体ウエハを損傷したり、破壊したり又は半
導体ウエハの測定のための余分な工程を追加することな
く、正確に半導体ウエハ等の被測定体の段差を測定する
段差測定装置とその測定方法を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and can accurately measure a semiconductor wafer without damaging or destroying a semiconductor wafer to be measured or adding an extra process for measuring the semiconductor wafer. An object of the present invention is to provide a step measuring device for measuring a step of a measurement object such as a wafer and a measuring method therefor.

【0014】[0014]

【課題を解決するための手段】請求項1の発明による手
段によれば、表面に透光性膜が形成され、かつ、任意の
箇所に段差が設けられた基板の前記段差を測定するに際
し、光源から測定光を前記段差の底面と前記透光性膜に
照射し、前記透光性膜からの反射光と前記段差からの反
射光とを同一の検出器によって検出し、その検出結果を
演算処理して段差を測定する段差測定装置において、前
記検出器が検出する検出光の入力は、前記2つの反射光
が生成する干渉光の光強度分布であることを特徴とする
段差測定装置にある。
According to the first aspect of the present invention, when measuring a step on a substrate having a surface on which a light-transmitting film is formed and a step provided at an arbitrary position, A measurement light is applied from a light source to the bottom surface of the step and the light transmitting film, and the reflected light from the light transmitting film and the light reflected from the step are detected by the same detector, and the detection result is calculated. In the step measuring apparatus for measuring a step by processing, the input of the detection light detected by the detector is a light intensity distribution of interference light generated by the two reflected lights. .

【0015】請求項2の発明による手段によれば、前記
演算処理は、前記検出器が検出した干渉光の光強度分布
と、予めデータベースに格納されている前記透光性膜の
膜厚や屈折率に基づいて算出された干渉光強度分布毎の
段差データとを比較演算し、最も近似した前記段差デー
タを前記基板の段差とすることを特徴とする段差測定装
置にある。
According to the second aspect of the present invention, the arithmetic processing includes the light intensity distribution of the interference light detected by the detector and the film thickness or refraction of the light transmitting film stored in a database in advance. A step measurement apparatus characterized in that the step data is compared with step data for each interference light intensity distribution calculated based on the ratio, and the step data closest to the step is the step of the substrate.

【0016】請求項3の発明による手段によれば、前記
データベースは、段差測定以前に既知の前記透光性膜の
膜厚データを用いて算出された段差データを格納してい
ることを特徴とする段差測定装置にある。
According to a third aspect of the present invention, the database stores step data calculated using known thickness data of the light-transmitting film before the step measurement. Step measuring device.

【0017】請求項4の発明による手段によれば、前記
データベースは、段差測定時に測定した前記透光性膜の
膜厚データを用いて算出した段差データを格納している
ことを特徴とする段差測定装置にある。
According to a fourth aspect of the present invention, the database stores step data calculated using thickness data of the translucent film measured at the time of step measurement. In the measuring device.

【0018】請求項5の発明による手段によれば、前記
データベースに格納している干渉光のデータは、前記段
差に埋め込み物質を設けた場合と設けない場合とについ
てのデータであることを特徴とする段差測定方法にあ
る。
According to a fifth aspect of the present invention, the data of the interference light stored in the database is data for a case where an embedded material is provided in the step and a case where no embedded material is provided. The step measurement method.

【0019】請求項6の発明による手段によれば、表面
に透光性膜が形成され、かつ、任意の箇所に段差が設け
られた基板の前記段差を光学的に測定する段差測定方法
において、前記段差の反射面からの反射光と前記透光成
膜を透過し前記基板からの反射光とで生成された干渉光
の光強度分布を検出する光強度分布検出ステップと、こ
の光強度分布検出ステップで検出された検出結果と、予
めデータベースに格納されている前記透光性膜の膜厚や
屈折率毎に基づいて算出された干渉光の光強度分布デー
タとを比較演算し、前記データベースに格納されたデー
タから最も近似したデータを選定する比較演算ステップ
と、この比較演算ステップの結果から、選定された光強
度分布に対応してデータべースに格納されている段差の
値を基板の段差と算定する段差算定ステップとを有する
ことを特徴とする段差測定方法にある。
According to the means according to the sixth aspect of the present invention, there is provided a step measuring method for optically measuring the step of a substrate having a surface on which a light-transmitting film is formed and having a step at an arbitrary position, A light intensity distribution detecting step of detecting a light intensity distribution of interference light generated by the reflected light from the reflecting surface of the step and the light transmitted through the light-transmitting film and reflected from the substrate; and detecting the light intensity distribution. The detection result detected in the step is compared with the light intensity distribution data of the interference light calculated based on the thickness and the refractive index of the light-transmitting film stored in the database in advance, and the data is stored in the database. A comparison operation step of selecting the data that is the closest from the stored data; and, based on the result of the comparison operation step, the value of the step stored in the database corresponding to the selected light intensity distribution. With steps In step measurement method characterized by having a step difference calculation step of constant.

【0020】[0020]

【発明の実施の形態】本発明は、平板状の基板である半
導体ウエハ表面に形成されている透光性膜の膜厚や屈折
率毎に変化する反射光や、この反射光と半導体ウエハに
形成された段差に埋め込まれた埋め込み部材からの反射
光とから生成される干渉光強度分布を算出して、パラメ
ータとしてデータベースに格納し、その格納されたデー
タと検出による段差部分での干渉光強度分布とを比較演
算して、干渉光強度分布と対応してデータベースに格納
されている段差データから段差を算定する段差測定装置
とその方法でる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor wafer, which is a flat substrate, with reflected light that changes with the thickness and refractive index of a light-transmitting film formed on the surface of the semiconductor wafer. Calculate the interference light intensity distribution generated from the reflected light from the embedded member embedded in the formed step and store it in the database as a parameter, and the stored data and the interference light intensity at the step portion due to detection A step measuring apparatus and method for calculating a step from a step data stored in a database corresponding to an interference light intensity distribution by performing a comparison operation with a distribution.

【0021】以下本発明に実施の形態について図面を参
照して説明する。図1は本発明の実施の形態の一例を示
すシステム図であり、図2はその基本プロセスを示すブ
ロック図であり、図3(a)は検出した干渉光の光強度
分布を示すグラフで、図3(b)はデータベースに格納
されている干渉光毎の光強度分布を示すグラフである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an example of an embodiment of the present invention, FIG. 2 is a block diagram showing a basic process thereof, and FIG. 3 (a) is a graph showing a light intensity distribution of detected interference light. FIG. 3B is a graph showing a light intensity distribution for each interference light stored in the database.

【0022】図1に示すように、段差測定装置1はハロ
ゲンランプや水銀ランプ等から成る光源2が設けられ、
その光源2の光軸上の前方にハーフミラー3が配置され
ている。また、ハーフミラー3の曲折して光軸のハーフ
ミラー3の後方には検出器5が設けられている。この検
出器5は検出器5からの出力を演算処理する演算部6に
接続されている。演算部は干渉光の光強度分布や各光強
度分布に対応した段差データが格納されているデータベ
ース7に接続されている。
As shown in FIG. 1, a step measuring device 1 is provided with a light source 2 composed of a halogen lamp, a mercury lamp, or the like.
A half mirror 3 is disposed in front of the light source 2 on the optical axis. A detector 5 is provided behind the half mirror 3 on the optical axis by bending the half mirror 3. The detector 5 is connected to an arithmetic unit 6 that performs arithmetic processing on the output from the detector 5. The calculation unit is connected to the database 7 in which the light intensity distribution of the interference light and the step data corresponding to each light intensity distribution are stored.

【0023】一方、被測定体である基板8は、シリコン
基板上にパターニングされたフォトレジストを固定し、
500オングストローム程度にドライエッチングした後
に、フォトレジストを剥離して段差10が形成され、表
面に均一の膜厚の透光性膜9が成膜されている。また、
段差10の底部11は埋め込み部を形成し埋め込み部材
12が埋め込まれている。
On the other hand, the substrate 8 to be measured fixes a patterned photoresist on a silicon substrate,
After dry etching to about 500 angstroms, the photoresist is peeled off to form a step 10, and a translucent film 9 having a uniform thickness is formed on the surface. Also,
A bottom portion 11 of the step 10 forms a buried portion, and a buried member 12 is buried.

【0024】この基板8は図示しない水平なXYテーブ
ル上に載置されている。XYテーブルは図示しない駆動
源によって所定方向に駆動される。
The substrate 8 is placed on a horizontal XY table (not shown). The XY table is driven in a predetermined direction by a driving source (not shown).

【0025】すなわち、これらの構成により、まず、X
Yテーブルに載置した基板8に対して、光源2からの出
射光のうちハーフミラー3を透過して直進する光の一部
が基板8の段差10内に進入し、かつ、他が透光性膜9
を照射する位置にXYテーブルを走査する。
That is, with these configurations, first, X
With respect to the substrate 8 placed on the Y table, part of the light emitted from the light source 2 and traveling straight through the half mirror 3 enters the step 10 of the substrate 8 and the other light is transmitted. Membrane 9
The XY table is scanned at the position where the light is irradiated.

【0026】この位置で光源2から測定光を照射すると
(S1)、ハーフミラー3を直進した光は段差10の埋
め込み部材12で反射してハーフミラー3に戻りハーフ
ミラー3で反射して検出器5へ向かって曲折する。同様
に、基板8上の透光性膜9を透過した光は基板8の表面
で反射した後、ハーフミラー3で反射して検出器5へ向
かう。
When the measuring light is emitted from the light source 2 at this position (S1), the light that has traveled straight through the half mirror 3 is reflected by the embedded member 12 of the step 10, returned to the half mirror 3, reflected by the half mirror 3, and detected by the detector. Turn to 5 Similarly, the light transmitted through the light transmitting film 9 on the substrate 8 is reflected on the surface of the substrate 8 and then reflected by the half mirror 3 toward the detector 5.

【0027】従って、反射強度分布の異なる2つの光が
同一光軸上を直進するため干渉して干渉光となり検出器
5に入力する。検出器5は図3(a)に示すこの干渉光
の光強度分布Rを検出する(S2)。さらに、検出器5
からの出力は演算部6に入力され、データベース7に予
め格納されている図3(b)で示すデータDa、Db、
Dc…………と比較演算される(S3)。
Therefore, two lights having different reflection intensity distributions travel straight on the same optical axis and interfere with each other to become interference light, which is input to the detector 5. The detector 5 detects the light intensity distribution R of the interference light shown in FIG. 3A (S2). Further, the detector 5
Are input to the arithmetic unit 6 and are stored in the database 7 in advance as data Da, Db, and Db shown in FIG.
A comparison operation is performed with Dc (S3).

【0028】なお、データベース7には予め任意の方法
で求めた、半導体ウエハ表面に形成されている透光性膜
9の膜厚や屈折率毎の反射光と、段差穴10に埋め込ま
れた埋め込み部材12からの反射光から生成される干渉
光強度分布を算出してパラメ−タとして格納している。
In the database 7, the reflected light for each film thickness and refractive index of the translucent film 9 formed on the surface of the semiconductor wafer and the embedded light embedded in the step hole 10 are obtained in advance by an arbitrary method. The distribution of the intensity of interference light generated from the light reflected from the member 12 is calculated and stored as a parameter.

【0029】干渉光強度分布の理論値は、透光性膜9通
過後の反射光の光強度をAとし、段差穴10の埋め込み
部材12からの反射光の光強度をBとすると|A+B|
2 である。つまり、干渉光の光強度分布Rと干渉光強度
分布の理論値|A+B|2 を比較演算し、その結果、最
も近似したデータを選定し、その選定されたデータに対
応する段差データを段差Dと算定する(S4)。
The theoretical value of the interference light intensity distribution is | A + B |, where A is the light intensity of the reflected light after passing through the translucent film 9 and B is the light intensity of the reflected light from the embedded member 12 in the step hole 10.
2 That is, the light intensity distribution R of the interference light is compared with the theoretical value | A + B | 2 of the interference light intensity distribution, and as a result, the most approximate data is selected, and the step data corresponding to the selected data is converted to the step D. Is calculated (S4).

【0030】この段差Dの算定方法は、段差穴10内に
埋め込み部材12が埋め込まれて段差穴10が完成され
た状態を対象に算定したが、段差穴10を作成途中であ
る段差穴10の底部11に埋め込み部材12を埋め込む
以前と、埋め込み部材12を埋め込んで完成した段差穴
10との双方の測定から段差Dを算定することで段差D
を精密に算定することも出来る。
The method of calculating the step D is based on the state where the embedding member 12 is embedded in the step hole 10 and the step hole 10 is completed. The step D is calculated by measuring the step D from both the measurement before the embedding member 12 is embedded in the bottom portion 11 and the step hole 10 completed by embedding the embedding member 12.
Can be calculated precisely.

【0031】以下本発明を変形例1として説明すると、
図4は段差穴の底部に埋め込み部材が埋め込まれる以前
の構成を示す側面断面図で、図5(a)はその場合の干
渉光の強度分布を表すグラフで、図5(b)は段差穴底
部に埋め込み部材を埋め込み加工した後の干渉光の強度
分布を表すグラフで、図5(c)は図5(a)の場合の
干渉光の強度分布と図5(b)の場合の干渉光の強度分
布との差を示すグラフで、図5(d)はデータベースに
格納されている図5(c)に対応するデータである。ま
た、図6は段差穴算定ステップの概要を示すブロック図
である。
Hereinafter, the present invention will be described as a first modification.
FIG. 4 is a side sectional view showing a configuration before the embedding member is embedded in the bottom of the step hole. FIG. 5A is a graph showing the intensity distribution of interference light in that case, and FIG. FIG. 5C is a graph showing the intensity distribution of the interference light after the embedding member is embedded in the bottom, and FIG. 5C shows the intensity distribution of the interference light in the case of FIG. 5A and the interference light in the case of FIG. FIG. 5D is data corresponding to FIG. 5C stored in the database. FIG. 6 is a block diagram showing an outline of the step calculation step.

【0032】すなわち、まず、段差穴10に埋め込み部
材12を埋め込む前の工程で段差穴10部に光源2から
測定光を照射して(S11)の干渉光強度分布R1を検
出器5で検出する測定する(S12)。このときは、図
5(a)に示すように段差穴10下面からの反射光がな
いため干渉光の光強度分布は透光性膜9経由の反射光A
のみのものである。すなわち干渉光強度分布R1=|A
2 と考えられる。
That is, first, in a step before the embedding member 12 is embedded in the step hole 10, the measuring light is irradiated from the light source 2 to the step hole 10, and the interference light intensity distribution R 1 of (S 11) is detected by the detector 5. The measurement is performed (S12). At this time, since there is no reflected light from the lower surface of the step hole 10 as shown in FIG.
Only thing. That is, the interference light intensity distribution R1 = | A
| 2 .

【0033】次に、埋め込み部材12を埋め込みこれを
削った後に、光源2から測定光を照射して(S13)の
段差穴10の干渉光強度分布R2を検出器5で検出する
(S14)。この場合は図5(b)に示すように干渉光
強度分布R2=|A+B|2 と考えられる。ただし、B
は段差穴10からの反射光の光強度である。
Next, after the embedding member 12 is embedded and shaved, the measuring light is emitted from the light source 2 and the detector 5 detects the interference light intensity distribution R2 of the step hole 10 (S13) (S14). In this case, it is considered that the interference light intensity distribution R2 = | A + B | 2 as shown in FIG. Where B
Is the light intensity of the reflected light from the step hole 10.

【0034】これらから、図5(c)に示すように段差
穴10に埋め込み部材12が有る場合の干渉光強度分布
R2と、埋め込み部材12を埋め込む前の干渉光強度分
布R1との差波形R=R2−R1を求める(S15)。
From these, as shown in FIG. 5C, a difference waveform R between the interference light intensity distribution R2 when the embedded member 12 is present in the step hole 10 and the interference light intensity distribution R1 before the embedded member 12 is embedded. = R2-R1 is obtained (S15).

【0035】一方、予め既知の膜厚や屈折率を用いて一
層以上の各膜や埋め込み埋め込み部材12から得られる
干渉光の強度値を段差Dをパラメータとして算出して図
5(d)に示すようにデータベース7に格納されてい
る。
On the other hand, the intensity value of the interference light obtained from one or more films or the embedded member 12 is calculated using the step D as a parameter using a known film thickness or refractive index in advance, and is shown in FIG. As described above.

【0036】差波形R(|A+B|2 −|A|2 )と、
データベース7に格納されている干渉モデル(|A+B
2 −|A|2 )とを比較する(S16)。その結果、
最も差波形Rに近い場合に用いたモデルでの段差データ
を基板8の段差Dと算定する(S17)。
The difference waveform R (| A + B | 2 − | A | 2 )
The interference model (| A + B) stored in the database 7
| 2− | A | 2 ) (S16). as a result,
The step data of the model used when it is closest to the difference waveform R is calculated as the step D of the substrate 8 (S17).

【0037】また、上述の方法では、基板8に設けられ
た透光性膜9の各膜の厚さを予め判っている既知の値と
して取扱っているが、場合によっては、埋め込み部材1
2を削り取る工程やそれ以前の工程での、プロセスのば
らつきにより各膜の厚さが変化して、測定した段差Dの
精度が悪くなるなることがある。それを解消するための
方法を以下に変形例2として説明する。
In the above-described method, the thickness of each of the light-transmitting films 9 provided on the substrate 8 is treated as a known value that is known in advance.
In some cases, the thickness of each film changes due to process variations in the step of scraping 2 or in a step before that, and the accuracy of the measured step D may deteriorate. A method for solving this will be described below as a second modification.

【0038】図7は、本発明の変形例2の構成を示す側
面断面図であり、図8(a)は段差穴の近傍にある段差
穴と同じ構造の場所の干渉光強度分布のグラフで、図8
(b)は予め算定してある膜厚毎の干渉光強度分布を示
すグラフで、図9は段差算定のステップの概要を示すブ
ロック図である。
FIG. 7 is a side sectional view showing the configuration of the second modification of the present invention, and FIG. 8A is a graph of the interference light intensity distribution in the vicinity of the step hole and having the same structure as the step hole. , FIG.
(B) is a graph showing the interference light intensity distribution for each film thickness calculated in advance, and FIG. 9 is a block diagram showing an outline of steps for calculating a step.

【0039】すなわち、この変形例では大別すると、膜
厚を算定する工程とその算定された膜厚を用いて上述の
方法と同様に段差Dを算定する工程とに分けられる。
That is, this modification is roughly divided into a step of calculating the film thickness and a step of calculating the step D using the calculated film thickness in the same manner as the above-described method.

【0040】まず、段差穴10に埋め込み部材12を埋
め込む前の工程で図示しないXYステージを測定位置C
へ移動する。この位置で光源2から測定光を照射して
(S21)の干渉光強度分布R1を検出器5で検出する
測定する(S22)。
First, in a step before the embedding member 12 is embedded in the step hole 10, the XY stage (not shown) is moved to the measurement position C.
Move to. At this position, measurement light is emitted from the light source 2 to measure the interference light intensity distribution R1 (S21) detected by the detector 5 (S22).

【0041】データベース7には予め、図8(b)に示
すようにデータとして同じ透光性膜9についての膜厚毎
の干渉光強度分布が格納されている。これにより、検出
された干渉光の光強度分布と格納されているデータとを
比較演算(S23)し、最も近似しているデータを測定
位置Aの膜厚と算定する(S24)。
As shown in FIG. 8B, the interference light intensity distribution for each film thickness of the same translucent film 9 is previously stored in the database 7 as data. As a result, the light intensity distribution of the detected interference light is compared with the stored data (S23), and the closest data is calculated as the film thickness at the measurement position A (S24).

【0042】その算定された膜厚を段差穴10算出用の
膜厚と設定しデータベース7へ入力する(S25)。次
に、段差穴10に埋め込み部材12が埋め込まれた後
に、同様に、図示していないXYステージを測定位置A
へ移動する。この位置で光源2から測定光を照射する
(S26)と、測定光はハーフミラー3を経由し、直進
して段差穴10に進入し段差穴10の底部11の埋め込
み部材12に反射してハーフミラー3に戻り、ハーフミ
ラー3で曲折して検出器5へ向かう。同様にハーフミラ
ー3を経由し、基板8上の透光性膜9を透過して基板8
面で反射して、ハーフミラー3で曲折して検出器5へ向
かう。従って、それぞれ反射した光は、同一光軸所で干
渉して干渉光となる。この干渉光は検出器5で図8
(a)で示すような光強度分布R2として検出される
(S27)。以後図6のステップに従い、差波形Rを求
め(S28)、データベース7に格納されている差波形
データと比較演算(S29)し、段差Dを算出する(S
30)。
The calculated thickness is set as a thickness for calculating the step hole 10 and is input to the database 7 (S25). Next, after the embedding member 12 is embedded in the step hole 10, the XY stage (not shown) is similarly moved to the measurement position A.
Move to. When the measurement light is emitted from the light source 2 at this position (S26), the measurement light travels straight through the half mirror 3, enters the step hole 10, is reflected by the embedded member 12 at the bottom 11 of the step hole 10, and is reflected by the half mirror 3. Returning to the mirror 3, the beam is bent by the half mirror 3 and heads for the detector 5. Similarly, the light passes through the light-transmitting film 9 on the substrate 8 through the half mirror 3 and
The light is reflected by the surface, bent by the half mirror 3 and travels to the detector 5. Therefore, the respective reflected lights interfere with each other at the same optical axis and become interference lights. This interference light is detected by the detector 5 as shown in FIG.
It is detected as the light intensity distribution R2 as shown in (a) (S27). Thereafter, according to the steps in FIG. 6, the difference waveform R is obtained (S28), and the difference waveform data stored in the database 7 is compared with the difference waveform data (S29) to calculate the step D (S28).
30).

【0043】なお、変形例2では段差穴10に埋め込み
部材12を埋め込む前に膜厚を算定しているが、段差穴
10を設ける工程や埋め込み部材12を埋め込む工程で
ばらつきが発生し段差穴10の精度が悪くなることが生
じることがある。以下にそれらを解消した変形例3を説
明する。
In the second modification, the film thickness is calculated before the embedding member 12 is embedded in the step hole 10. However, variations occur in the step of providing the step hole 10 and the step of embedding the embedding member 12, and the step hole 10 Accuracy may deteriorate. Hereinafter, a modified example 3 in which these are eliminated will be described.

【0044】すなわち、図10は本発明の変形例3の構
成を示す側面断面図であり、図11(a)は段差穴の近
傍にある段差穴と同じ構造の場所の干渉光強度分布を示
すグラフで、図11(b)は予め算定してある膜厚毎の
干渉光強度分布を示すグラフで、図12は段差算定のス
テップの概要を示すブロック図である。
That is, FIG. 10 is a side sectional view showing the configuration of the third modification of the present invention, and FIG. 11A shows the interference light intensity distribution at the same structure as the step hole near the step hole. In the graph, FIG. 11B is a graph showing the interference light intensity distribution for each film thickness calculated in advance, and FIG. 12 is a block diagram showing an outline of steps for calculating the step.

【0045】この変形例では、基板8上に段差穴10を
設けた後で、まず、透光性膜9の膜厚測定位置Eの膜厚
を算定する。すなわち、まず、図示しないXYステージ
を測定位置Eへ移動する。この位置で光源2から測定光
を照射する(S40)。測定光はハーフミラー3を経由
し、基板8上の第1層目の透光性膜9を透過して基板8
面で反射して、ハーフミラー3で曲折して検出器5へ向
かう。
In this modification, after forming the step hole 10 on the substrate 8, first, the film thickness of the light transmitting film 9 at the film thickness measuring position E is calculated. That is, first, the XY stage (not shown) is moved to the measurement position E. At this position, measurement light is emitted from the light source 2 (S40). The measurement light passes through the half mirror 3, passes through the first-layer light-transmitting film 9 on the substrate 8,
The light is reflected by the surface, bent by the half mirror 3 and travels to the detector 5.

【0046】この干渉光は検出器5で図11(a)で示
すような光強度分布R1として検出される(S41)。
This interference light is detected by the detector 5 as a light intensity distribution R1 as shown in FIG. 11A (S41).

【0047】データベース7には予め、図11(b)に
示すようにデータとして同じ透光性膜9についての膜厚
毎の干渉光強度分布が格納されている。これにより、検
出された干渉光の光強度分布と格納されているデータと
を比較演算し(S42)、て最も近似しているデータを
測定位置Eの膜厚と算定する(S43)。
As shown in FIG. 11B, the interference light intensity distribution for each film thickness of the same translucent film 9 is previously stored in the database 7 as data. Thereby, the light intensity distribution of the detected interference light is compared with the stored data (S42), and the closest data is calculated as the film thickness at the measurement position E (S43).

【0048】その膜厚値を段差Dの算出用の膜厚と設定
しデータベース7へ入力する(S45)。
The film thickness is set as a film thickness for calculating the step D, and is input to the database 7 (S45).

【0049】次に、図示しないXYステージを測定位置
へ移動する。この位置で光源2から測定光を照射する
(S46)と、測定光はハーフミラー3を経由し、直進
して段差穴10に進入し段差穴10の底部11の埋め込
み部材12に反射してハーフミラー3に戻り、ハーフミ
ラー3で曲折して検出器5へ向かう。同様に、ハーフミ
ラー3を経由し基板8上の透光性膜9を透過して基板8
面で反射して、ハーフミラー3で曲折して検出器5へ向
かう。従って、それぞれ反射した光は、同一光軸所で干
渉して干渉光となる。この干渉光は検出器5で図8
(a)で示すような光強度分布R2として検出される
(S47)。更に、差波形Rを求め(S48)、データ
ベース7に格納されている差波形データと比較演算(S
49)し、段差Dを算出する(S50)。
Next, the XY stage (not shown) is moved to the measurement position. When the measurement light is emitted from the light source 2 at this position (S46), the measurement light travels straight through the half mirror 3, enters the step hole 10, is reflected by the embedded member 12 at the bottom 11 of the step hole 10, and is reflected by the half mirror 3. Returning to the mirror 3, the beam is bent by the half mirror 3 and heads for the detector 5. Similarly, the light passes through the translucent film 9 on the substrate 8 via the half mirror 3 and
The light is reflected by the surface, bent by the half mirror 3 and travels to the detector 5. Therefore, the respective reflected lights interfere with each other at the same optical axis and become interference lights. This interference light is detected by the detector 5 as shown in FIG.
It is detected as the light intensity distribution R2 as shown in (a) (S47). Further, the difference waveform R is obtained (S48), and is compared with the difference waveform data stored in the database 7 (S48).
49) Then, the step D is calculated (S50).

【0050】なお、測定位置はEとAの2箇所で行った
が、更に多くの箇所で行えばより精度が上がるのは言う
までもない。
The measurement positions were measured at two points, E and A. However, it goes without saying that the accuracy can be improved by performing the measurement at more points.

【0051】なお、上記の各例では、段差が一つの場合
について説明したが、複数の段差についても同様に本発
明を適用できる。その場合、複数の段差の平均値として
測定することもできる。
In each of the above examples, the case where there is one step has been described, but the present invention can be similarly applied to a plurality of steps. In that case, it can be measured as an average value of a plurality of steps.

【0052】以上説明したように本発明では、新たに段
差を測定するための基板への加工工程を必要とせずに、
通常の半導体基板の製造工程である、基板上に一層以上
の複数の膜を設けた半導体ウエハに、表面処理を施し任
意の場所に任意の深さの穴を設ける工程と、これに任意
の埋め込み部材を埋め込む工程と、この埋め込み埋め込
み部材を削り取る工程を行い、削り残った埋め込み部材
面までの段差を分光干渉反射率膜厚計などを利用して測
定することができる。
As described above, according to the present invention, a processing step for a substrate for newly measuring a step is not required, and
A process of manufacturing a normal semiconductor substrate, in which a semiconductor wafer having one or more films provided on a substrate is subjected to a surface treatment to provide a hole of an arbitrary depth at an arbitrary place, and an arbitrary embedding in this. The step of embedding the member and the step of scraping the embedded member are performed, and the step to the surface of the remaining embedded member can be measured using a spectral interference reflectance film thickness meter or the like.

【0053】また、段差内に埋め込み埋め込み部材が無
い時の干渉光強度分布と段差内に埋め込み埋め込み部材
が残っている時の干渉光強度分布を分光干渉反射率膜厚
計などを利用して測定し、それぞれの差から削り残った
埋め込み部材面までの段差を測定できる。
The interference light intensity distribution when there is no embedded member in the step and the interference light intensity distribution when the embedded member remains in the step are measured by using a spectral interference reflectance film thickness meter or the like. Then, a step from each difference to the surface of the embedded member left uncut can be measured.

【0054】また、段差内に埋め込み埋め込み部材を削
り取る工程やそれ以前の工程でプロセスがばらついて各
膜の厚さが変化し、測定した段差の精度が悪くなる惧れ
がある場合でも、成膜された一層以上の各膜の厚さを段
差の近傍にある段差と同じ構造の場所の干渉光強度分布
から求めることで測定精度を向上できる。
Further, even if there is a possibility that the thickness of each film changes due to the variation of the process in the step of shaving the embedded member embedded in the step or the step before that, and the accuracy of the measured step may be deteriorated, The measurement accuracy can be improved by obtaining the thickness of each of the one or more films obtained from the interference light intensity distribution at the same structure as the step near the step.

【0055】また、製造工程で任意の深さの穴を設ける
工程やそれ以前の工程でプロセスがばらつき、成膜され
た各膜の厚さが変化して測定した段差の精度が悪くなる
惧れがある場合でも、任意の深さの穴を設ける工程の後
の、成膜された一層以上の各膜の厚さを段差の近傍にあ
る段差と同じ構造の場所の干渉光強度分布から求めるこ
とで測定精度を向上できる。
In addition, there is a concern that the process varies between the step of providing a hole of an arbitrary depth in the manufacturing process and the steps before that, and the thickness of each formed film changes, thereby lowering the accuracy of the measured step. Even if there is, after the step of providing a hole of an arbitrary depth, the thickness of one or more films formed is obtained from the interference light intensity distribution at the same structure as the step near the step. Can improve the measurement accuracy.

【0056】[0056]

【発明の効果】以上に説明したように、本発明では任意
の方法で求めた膜厚や屈析率を用いて基板上の透光性膜
や埋め込み部材から得られる干渉光の光強度分布に関し
て段差をパラメータとして算出し、段差での干渉光強度
測定値と干渉モデルからの算出値とを比較して最も測定
値に近い場合に用いたモデルでの段差値を被測定物の段
差とする段差測定装置および段差測定方法であるから、
新たに段差を測定するためにの基板への加工を必要とし
ないで正確に段差を測定できる。
As described above, according to the present invention, the light intensity distribution of the interference light obtained from the translucent film or the embedded member on the substrate is determined by using the film thickness and the segregation rate obtained by an arbitrary method. Calculate the step as a parameter, compare the measured interference light intensity at the step with the value calculated from the interference model, and use the step value in the model used when it is closest to the measured value as the step of the DUT. Because it is a measuring device and a step measuring method,
The step can be accurately measured without requiring processing of the substrate to newly measure the step.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示すシステム図。FIG. 1 is a system diagram showing an example of an embodiment of the present invention.

【図2】本発明の基本プロセスを示すブロック図FIG. 2 is a block diagram showing a basic process of the present invention.

【図3】(a)本発明で検出した干渉光の光強度分布を
示すグラフ、(b)本発明のデータベースに格納されて
いる段差毎の干渉光強度分布を示すグラフ。
3A is a graph showing the light intensity distribution of the interference light detected by the present invention, and FIG. 3B is a graph showing the interference light intensity distribution for each step stored in the database of the present invention.

【図4】本発明の段差穴の底部に埋め込み部材が埋め込
まれる以前の構成を示す側面断面図。
FIG. 4 is a side sectional view showing a configuration before an embedding member is embedded in the bottom of a step hole according to the present invention.

【図5】(a)本発明の一変形例の干渉光の強度分布を
表すグラフ、(b)同様に段差穴底部に埋め込み部材を
埋め込み加工した後の干渉光の強度分布を表すグラフ、
(c)(a)の場合の干渉光の強度分布と(b)の場合
の干渉光の強度分布との差を示すグラフ、(d)はデー
タベースに格納されている(c)に対応するデータ。
5A is a graph showing the intensity distribution of the interference light according to a modification of the present invention, FIG. 5B is a graph showing the intensity distribution of the interference light after the embedding member is similarly embedded in the bottom of the step hole,
(C) A graph showing a difference between the intensity distribution of the interference light in the case of (a) and the intensity distribution of the interference light in the case of (b), and (d) is data corresponding to (c) stored in the database. .

【図6】本発明の一変形例の段差穴算定ステップの概要
を示すブロック図。
FIG. 6 is a block diagram showing an outline of a step hole calculating step according to a modification of the present invention.

【図7】本発明の一変形例の構成を示す側面断面図。FIG. 7 is a side sectional view showing a configuration of a modification of the present invention.

【図8】(a)本発明の一変形例の段差穴の近傍にある
透光性膜と同じ構造の場所の干渉光強度分布を示すグラ
フ、(b)同じく予め算定してある膜厚毎の干渉光強度
分布を示すグラフ。
FIG. 8A is a graph showing the interference light intensity distribution in the same structure as the translucent film near the step hole according to a modification of the present invention, and FIG. 5 is a graph showing the interference light intensity distribution of FIG.

【図9】本発明の一変形例の段差算定のステップの概要
を示すブロック図。
FIG. 9 is a block diagram showing an outline of steps for calculating a step according to a modification of the present invention.

【図10】本発明の一変形例の構成を示す側面断面図。FIG. 10 is a side sectional view showing a configuration of a modification of the present invention.

【図11】(a)本発明の一変形例の段差穴の近傍にあ
る透光性膜と同じ構造の場所の干渉光強度分布を示すグ
ラフ、(b)同じく予め算定してある膜厚毎の干渉光強
度分布を示すグラフ。
FIG. 11A is a graph showing the interference light intensity distribution in the same structure as the translucent film in the vicinity of the step hole according to a modified example of the present invention, and FIG. 5 is a graph showing the interference light intensity distribution of FIG.

【図12】本発明の一変形例の段差算定のステップの概
要を示すブロック図。
FIG. 12 is a block diagram showing an outline of steps for calculating a step according to a modification of the present invention.

【図13】従来の段差測定方法の概要を示す原理図。FIG. 13 is a principle view showing an outline of a conventional step measurement method.

【符号の説明】[Explanation of symbols]

1…段差測定装置、2…光源、3…ハーフミラー、5…
検出器、6…演算部、7…データベース、8、20…基
板、9…透光性膜、10…段差穴、11…底部、12、
21…埋め込み部材、23…透明膜
DESCRIPTION OF SYMBOLS 1 ... Step measuring device, 2 ... Light source, 3 ... Half mirror, 5 ...
Detector, 6 arithmetic unit, 7 database, 8, 20 substrate, 9 translucent film, 10 step hole, 11 bottom, 12,
21: embedded member, 23: transparent film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA25 BB22 BB25 CC19 DD13 FF52 GG02 GG03 LL46 PP12 QQ25 RR06 RR09 TT07 4M106 AA01 BA04 CA48 DH03 DH12 DH31 DJ18 DJ20  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA25 BB22 BB25 CC19 DD13 FF52 GG02 GG03 LL46 PP12 QQ25 RR06 RR09 TT07 4M106 AA01 BA04 CA48 DH03 DH12 DH31 DJ18 DJ20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面に透光性膜が形成され、かつ、任意
の箇所に段差が設けられた基板の前記段差を測定するに
際し、光源から測定光を前記段差の底面と前記透光性膜
に照射し、前記透光性膜からの反射光と前記段差からの
反射光とを同一の検出器によって検出し、その検出結果
を演算処理して段差を測定する段差測定装置において、 前記検出器が検出する検出光の入力は、前記2つの反射
光が生成する干渉光の光強度分布であることを特徴とす
る段差測定装置。
When measuring a step on a substrate having a surface on which a light-transmitting film is formed and having a step at an arbitrary position, measurement light from a light source is applied to the bottom surface of the step and the light-transmitting film. In the step measurement device for detecting the reflected light from the translucent film and the reflected light from the step by the same detector, and calculating the detection result to measure the step, the detector Wherein the input of the detection light detected by the step is a light intensity distribution of the interference light generated by the two reflected lights.
【請求項2】 前記演算処理は、前記検出器が検出した
干渉光の光強度分布と、予めデータベースに格納されて
いる前記透光性膜の膜厚や屈折率に基づいて算出された
干渉光強度分布毎の段差データとを比較演算し、最も近
似した前記段差データを前記基板の段差とすることを特
徴とする請求項1記載の段差測定装置。
2. The arithmetic processing according to claim 1, wherein the interference light calculated based on a light intensity distribution of the interference light detected by the detector and a film thickness or a refractive index of the light transmitting film stored in a database in advance. 2. The step measuring device according to claim 1, wherein the step data is compared with step data for each intensity distribution, and the step data closest to the step is used as the step of the substrate.
【請求項3】 前記データベースは、段差測定以前に既
知の前記透光性膜の膜厚データを用いて算出された段差
データを格納していることを特徴とする請求項2記載の
段差測定装置。
3. The step measuring device according to claim 2, wherein the database stores step data calculated using known thickness data of the light transmitting film before step measurement. .
【請求項4】 前記データベースは、段差測定時に測定
した前記透光性膜の膜厚データを用いて算出した段差デ
ータを格納していることを特徴とする請求項2記載の段
差測定装置。
4. The step measurement device according to claim 2, wherein the database stores step data calculated using thickness data of the light-transmitting film measured at the time of step measurement.
【請求項5】 前記データベースに格納している干渉光
のデータは、前記段差に埋め込み物質を設けた場合と設
けない場合とについてのデータであることを特徴とする
請求項3記載の段差測定方法。
5. The step measurement method according to claim 3, wherein the data of the interference light stored in the database is data of a case where an embedded substance is provided in the step and a case where no embedded substance is provided. .
【請求項6】 表面に透光性膜が形成され、かつ、任意
の箇所に段差が設けられた基板の前記段差を光学的に測
定する段差測定方法において、 前記段差の反射面からの反射光と前記透光成膜を透過し
前記基板からの反射光とで生成された干渉光の光強度分
布を検出する光強度分布検出ステップと、 この光強度分布検出ステップで検出された検出結果と、
予めデータベースに格納されている前記透光性膜の膜厚
や屈折率毎に基づいて算出された干渉光の光強度分布デ
ータとを比較演算し、前記データベースに格納されたデ
ータから最も近似したデータを選定する比較演算ステッ
プと、 この比較演算ステップの結果から、選定された光強度分
布に対応してデータべースに格納されている段差の値を
基板の段差と算定する段差算定ステップとを有すること
を特徴とする段差測定方法。
6. A step measuring method for optically measuring the step of a substrate having a surface on which a light-transmitting film is formed and having a step at an arbitrary position, wherein the reflected light of the step from a reflecting surface is provided. And a light intensity distribution detecting step for detecting a light intensity distribution of interference light generated by the light transmitted through the light-transmitting film and reflected from the substrate; anda detection result detected in the light intensity distribution detecting step.
Data that is compared with the light intensity distribution data of the interference light calculated based on each of the film thickness and the refractive index of the light-transmitting film stored in the database in advance, and the data closest to the data stored in the database And a step calculation step of calculating the value of the step stored in the database corresponding to the selected light intensity distribution as the step of the substrate from the result of the comparison operation step. A method for measuring a level difference, comprising:
JP10271601A 1998-09-25 1998-09-25 Device and method for measuring difference in level Pending JP2000097648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10271601A JP2000097648A (en) 1998-09-25 1998-09-25 Device and method for measuring difference in level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10271601A JP2000097648A (en) 1998-09-25 1998-09-25 Device and method for measuring difference in level

Publications (1)

Publication Number Publication Date
JP2000097648A true JP2000097648A (en) 2000-04-07

Family

ID=17502359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10271601A Pending JP2000097648A (en) 1998-09-25 1998-09-25 Device and method for measuring difference in level

Country Status (1)

Country Link
JP (1) JP2000097648A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815228B2 (en) 2000-06-20 2004-11-09 Hitachi, Ltd. Film thickness measuring method of member to be processed using emission spectroscopy and processing method of the member using the measuring method
US6890771B2 (en) 2001-11-29 2005-05-10 Hitachi, Ltd. Plasma processing method using spectroscopic processing unit
US6903826B2 (en) 2001-09-06 2005-06-07 Hitachi, Ltd. Method and apparatus for determining endpoint of semiconductor element fabricating process
CN1306568C (en) * 2003-06-12 2007-03-21 松下电器产业株式会社 Terminal testing method and device
US7259866B2 (en) 2003-03-04 2007-08-21 Hitachi High-Technologies Corporation Semiconductor fabricating apparatus with function of determining etching processing state
CN100373557C (en) * 2003-06-05 2008-03-05 东京毅力科创株式会社 Etch amount detection method, etching method, and etching system
US8088247B2 (en) 2006-02-27 2012-01-03 Hitachi High-Technologies Corporation Plasma processing apparatus
KR20120081024A (en) * 2009-10-13 2012-07-18 하마마츠 포토닉스 가부시키가이샤 Film thickness measurement device and film thickness measurement method
CN109073355A (en) * 2016-04-11 2018-12-21 统半导体公司 Method and system for optical check and measurement body surface
JP2020112381A (en) * 2019-01-09 2020-07-27 株式会社ディスコ Thickness measuring device, and processing device equipped with thickness measuring device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411684B2 (en) 2000-06-20 2008-08-12 Hitachi, Ltd. Film thickness measuring method of member to be processed using emission spectroscopy and processing method of the member using the measuring method
US6961131B2 (en) 2000-06-20 2005-11-01 Opnext Japan, Inc. Film thickness measuring method of member to be processed using emission spectroscopy and processing method of the member using the measuring method
US7230720B2 (en) 2000-06-20 2007-06-12 Hitachi, Ltd. Film thickness measuring method of member to be processed using emission spectroscopy and processing method of the member using the measuring method
KR100769607B1 (en) * 2000-06-20 2007-10-23 가부시끼가이샤 히다치 세이사꾸쇼 Method and apparatus for processing semiconductor waper
US6815228B2 (en) 2000-06-20 2004-11-09 Hitachi, Ltd. Film thickness measuring method of member to be processed using emission spectroscopy and processing method of the member using the measuring method
US6903826B2 (en) 2001-09-06 2005-06-07 Hitachi, Ltd. Method and apparatus for determining endpoint of semiconductor element fabricating process
US7009715B2 (en) 2001-09-06 2006-03-07 Hitachi, Ltd. Method and apparatus for determining endpoint of semiconductor element fabricating process and method and apparatus for processing member to be processed
US7126697B2 (en) 2001-09-06 2006-10-24 Hitachi, Ltd. Method and apparatus for determining endpoint of semiconductor element fabricating process
US6890771B2 (en) 2001-11-29 2005-05-10 Hitachi, Ltd. Plasma processing method using spectroscopic processing unit
US8071397B2 (en) 2003-03-04 2011-12-06 Hitachi High-Technologies Corporation Semiconductor fabricating apparatus with function of determining etching processing state
US7259866B2 (en) 2003-03-04 2007-08-21 Hitachi High-Technologies Corporation Semiconductor fabricating apparatus with function of determining etching processing state
CN100373557C (en) * 2003-06-05 2008-03-05 东京毅力科创株式会社 Etch amount detection method, etching method, and etching system
CN1306568C (en) * 2003-06-12 2007-03-21 松下电器产业株式会社 Terminal testing method and device
US8088247B2 (en) 2006-02-27 2012-01-03 Hitachi High-Technologies Corporation Plasma processing apparatus
US8747608B2 (en) 2006-02-27 2014-06-10 Hitachi High-Technologies Corporation Plasma processing apparatus
KR20120081024A (en) * 2009-10-13 2012-07-18 하마마츠 포토닉스 가부시키가이샤 Film thickness measurement device and film thickness measurement method
US20120218561A1 (en) * 2009-10-13 2012-08-30 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
US8885173B2 (en) * 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
TWI486548B (en) * 2009-10-13 2015-06-01 Hamamatsu Photonics Kk Film thickness measuring device and method for measuring film thickness
KR101653854B1 (en) * 2009-10-13 2016-09-02 하마마츠 포토닉스 가부시키가이샤 Film thickness measurement device and film thickness measurement method
CN109073355A (en) * 2016-04-11 2018-12-21 统半导体公司 Method and system for optical check and measurement body surface
JP2020112381A (en) * 2019-01-09 2020-07-27 株式会社ディスコ Thickness measuring device, and processing device equipped with thickness measuring device

Similar Documents

Publication Publication Date Title
US9587932B2 (en) System for directly measuring the depth of a high aspect ratio etched feature on a wafer
EP2446468B1 (en) System for directly measuring the depth of a high aspect ratio etched feature on a wafer
US20160123894A1 (en) Measurement Systems Having Linked Field And Pupil Signal Detection
JP2001345299A (en) Apparatus and method for measuring end point of process and polishing apparatus and method for producing semiconductor device and medium recording signal processing program
WO2005083353A1 (en) Three-dimensional shape measuring and analyzing device
JP2008083059A (en) Measuring system and measuring device for wafer
JP2000241121A (en) Step-difference measuring apparatus, etching monitor using the same, and etching method
JPH0432704A (en) Gap measuring instrument and surface shape measuring instrument
JP2000097648A (en) Device and method for measuring difference in level
US20030222049A1 (en) Methods and apparatuses for trench depth detection and control
JPH10170527A (en) Cantilever and its manufacture
JP2002005635A (en) Method and apparatus for measuring etching depth, and etching system
JP2003075128A (en) Thickness measuring device of material and its method using focal length of optical fiber lens
JPH0665963B2 (en) Fine groove depth measuring device
KR100416497B1 (en) Pattern Inspection System
JPH0494533A (en) Detection of film thickness to be etched, film thickness detector, and etcher
US20050112853A1 (en) System and method for non-destructive implantation characterization of quiescent material
US6229618B1 (en) Method of improving registration accuracy and method of forming patterns on a substrate using the same
JPH03214043A (en) Method and apparatus for measuring reflectivity
JPH06331320A (en) Film thickness measuring device
KR100980257B1 (en) Pattern Depth Measuring Apparatus and Measuring Method of Thin-Film Transistor for Liquid Crystal Display Device
CN117685899A (en) Method for measuring pattern structure morphology parameters
JPS63156332A (en) Surface roughness evaluation of semiconductor crystal
JPH10303262A (en) Method and device for measuring film thickness of multilayered film
JP2003053699A (en) Method of forming pinhole and measuring device