JPH06331320A - Film thickness measuring device - Google Patents

Film thickness measuring device

Info

Publication number
JPH06331320A
JPH06331320A JP11570693A JP11570693A JPH06331320A JP H06331320 A JPH06331320 A JP H06331320A JP 11570693 A JP11570693 A JP 11570693A JP 11570693 A JP11570693 A JP 11570693A JP H06331320 A JPH06331320 A JP H06331320A
Authority
JP
Japan
Prior art keywords
light
film
film thickness
thin film
reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11570693A
Other languages
Japanese (ja)
Inventor
Junzo Uchida
順三 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11570693A priority Critical patent/JPH06331320A/en
Publication of JPH06331320A publication Critical patent/JPH06331320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the thickness of the film on the surface of a semiconductor wafer by simply positioning the film on the pattern to be measured provided on the surface of the semiconductor wafer with high accuracy. CONSTITUTION:A silicon wafer 17 wherein an SiO2 film 23 is formed on a silicon substrate 22 is irradiated with the light from a white light source and the positioning of a part to be measured is performed on the basis of the reflected light from the silicon wafer 17. At the time, the thickness of the SiO2 film is measured on the basis of the reflected light from the silicon wafer 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパターン付き半導体ウエ
ハ表面の薄膜の膜厚を測定する装置に係り、特にパター
ン上の特定の測定位置に高精度、簡便に位置決めし精度
良く膜厚を測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the film thickness of a thin film on the surface of a patterned semiconductor wafer, and in particular, it can accurately and simply position it at a specific measurement position on the pattern to measure the film thickness with good accuracy. Regarding the device.

【0002】[0002]

【従来の技術】従来では、膜厚測定装置の例としては光
の干渉を利用した方式や分光反射率測定方式などの光学
的手法が知られている。例えば光の干渉を利用した方式
では特開昭57-19607号公報に示されているように薄膜の
膜厚をレーザ光で測定するものが知られている。その装
置の概略構成図を図7に示す。
2. Description of the Related Art Conventionally, as an example of a film thickness measuring device, an optical method such as a method utilizing light interference or a spectral reflectance measuring method is known. For example, as a method utilizing light interference, there is known a method of measuring the film thickness of a thin film with a laser beam as disclosed in Japanese Patent Laid-Open No. 57-19607. FIG. 7 shows a schematic configuration diagram of the device.

【0003】この図において半導体レーザ素子45、レ
ンズ46、平面鏡47により、自己結合型半導体レーザ
48が形成されている。平面鏡47は半導体レーザ素子
45からの出射光に対して直角に対向して適当な反射率
をもち表面には誘電体膜49が形成されている。
In this figure, a semiconductor laser element 45, a lens 46, and a plane mirror 47 form a self-coupling type semiconductor laser 48. The plane mirror 47 faces the light emitted from the semiconductor laser element 45 at a right angle and has an appropriate reflectance, and a dielectric film 49 is formed on the surface thereof.

【0004】半導体レーザ素子45から出射された光は
平面鏡47により反射され再び半導体レーザ素子45の
発光部に帰還する。帰還する光の量により半導体レーザ
素子45の活性領域内の光密度が変化し半導体レーザ素
子45の端子電圧が変化するので平面鏡47の反射率の
変化は半導体レーザ素子45の端子電圧の変化として検
知できる。
The light emitted from the semiconductor laser element 45 is reflected by the plane mirror 47 and returns to the light emitting portion of the semiconductor laser element 45 again. Since the light density in the active region of the semiconductor laser element 45 changes depending on the amount of light to be returned and the terminal voltage of the semiconductor laser element 45 changes, a change in the reflectance of the plane mirror 47 is detected as a change in the terminal voltage of the semiconductor laser element 45. it can.

【0005】ところで平坦な面上に一様な厚さを有する
誘電体膜があるときこの面の反射率および透過率は入射
する光の波長と膜物質の屈折率とで決まる周期で、膜の
厚さの変化と共に変化する。従って反射率や透過率の変
化を光強度の変化として検出すれば膜厚の測定ができ
る。これが光の干渉を利用した膜厚測定装置の原理であ
る。
By the way, when there is a dielectric film having a uniform thickness on a flat surface, the reflectance and the transmittance of this surface are a cycle determined by the wavelength of incident light and the refractive index of the film substance, It changes with changes in thickness. Therefore, the film thickness can be measured by detecting the change in the reflectance or the transmittance as the change in the light intensity. This is the principle of the film thickness measuring device utilizing the interference of light.

【0006】さて、誘電体膜49の形成に伴いその厚さ
が変化すると平面鏡47の反射率が周期的に変化する。
よって平面鏡47に誘電体膜49が蒸着されるような配
置を取れば半導体レーザ素子45のみを動作させること
で簡便に誘電体膜49の膜厚をモニタすることができ
る。
When the thickness of the dielectric film 49 changes as the dielectric film 49 is formed, the reflectance of the plane mirror 47 changes periodically.
Therefore, by disposing the dielectric film 49 on the plane mirror 47 by vapor deposition, the film thickness of the dielectric film 49 can be easily monitored by operating only the semiconductor laser element 45.

【0007】例えば屈折率が約1.5のSiO2 の薄膜
を用いた誘電体膜49を測定する場合に、屈折率が約
3.6のGaAs結晶を平面鏡47に用いると平面鏡4
7の屈折率は32〜35%の範囲でSiO2 の膜厚の変
化と共に周期的に変化する。
For example, when measuring a dielectric film 49 using a SiO 2 thin film having a refractive index of about 1.5, if a GaAs crystal having a refractive index of about 3.6 is used for the plane mirror 47, the plane mirror 4
The refractive index of No. 7 changes periodically with the change of the film thickness of SiO 2 in the range of 32 to 35%.

【0008】このほか分光反射率測定方式に関するもの
は弊社の先願である特願平5-79819 号明細書に記載され
ている。また市販の分光反射率測定方式の膜厚測定装置
については大日本スクリーン社の「ラムダエース」シリ
ーズやナノメトリクス社の「ナノスペック」シリーズな
どが知られている。上述した装置を始めとする従来の装
置では、膜厚の測定装置と、測定部位への位置決め装置
とが一体となったものは存在しなかった。
In addition, a method relating to the spectral reflectance measurement method is described in Japanese Patent Application No. 5-79819, which is our prior application. Further, as a commercially available film thickness measuring apparatus of a spectral reflectance measuring method, "Lambda Ace" series by Dainippon Screen Co., Ltd. and "Nanospec" series by Nanometrics Co., Ltd. are known. No conventional device including the above-described device has a film thickness measuring device and a measuring device positioning device integrated with each other.

【0009】[0009]

【発明が解決しようとする課題】上記したような装置を
始めとする従来の光学的手法による膜厚測定装置では、
以下に述べるような問題点が発生してくる。即ち上記の
技術などの従来技術では予め被測定対象に測定光が照射
されるようにせねばならない。しかし被測定対象が半導
体ウエハ表面の回路パターン上の薄膜の膜厚であった場
合、特に精度が高い位置決めをしなければならないが、
従来技術においては位置決め装置は別に構成する必要が
あった。実際に上記の市販品においても位置決め装置は
別途購入しなければならなかった。
SUMMARY OF THE INVENTION In a conventional film thickness measuring device using an optical method including the above-mentioned device,
The following problems will occur. That is, in the conventional techniques such as the above technique, it is necessary to irradiate the measurement object with the measurement light in advance. However, when the object to be measured is the film thickness of the thin film on the circuit pattern on the surface of the semiconductor wafer, it is necessary to perform positioning with high accuracy,
In the prior art, the positioning device had to be configured separately. In fact, even with the above commercial products, the positioning device had to be purchased separately.

【0010】具体的には、この様な位置決め装置は半導
体ウエハ表面に形成されたアラインメントマークを顕微
鏡などで光学的に拡大し、それをカメラで撮像し、その
撮像画面を画像処理装置で処理して前記アラインメント
マークの位置を算出し、その位置情報に基づき位置決め
テーブルを駆動させて前記半導体ウエハを位置決めする
ものが代表的である。
Specifically, such a positioning device optically enlarges an alignment mark formed on the surface of a semiconductor wafer with a microscope or the like, images it with a camera, and processes the imaged screen with an image processing device. Typically, the position of the alignment mark is calculated and the positioning table is driven based on the position information to position the semiconductor wafer.

【0011】上述したような位置決め装置は機構が複雑
となり高額である。また装置自体が巨大なため、主とし
て半導体ウエハが扱われるクリーンルーム内に載置した
り、半導体ウエハの加工装置に内蔵することが非常に困
難となっていた。
The positioning device as described above has a complicated mechanism and is expensive. In addition, since the apparatus itself is huge, it has been very difficult to place it in a clean room where semiconductor wafers are mainly handled or to be built in a semiconductor wafer processing apparatus.

【0012】[0012]

【課題を解決するための手段】本発明は、上記したよう
な技術的課題を解決するためになされたものであり、基
板上に薄膜と、配線パターンの形成部とを有している半
導体ウエハに測定光を照射し、上記半導体ウエハからの
反射光に基づいて上記薄膜の膜厚を測定する膜厚測定装
置において、上記薄膜の被測定部分への位置決めに用い
るデータの算出と、上記薄膜の膜厚の測定とを上記半導
体ウエハからの反射光を用いて単一の光学系で行うこと
を特徴とする膜厚測定装置である。
The present invention has been made to solve the above-mentioned technical problems, and is a semiconductor wafer having a thin film and a wiring pattern forming portion on a substrate. In the film thickness measuring device for irradiating the measuring light to, and measuring the film thickness of the thin film based on the reflected light from the semiconductor wafer, calculation of data used for positioning the thin film to the measured portion, and the thin film The film thickness measuring device is characterized in that the film thickness is measured with a single optical system by using the reflected light from the semiconductor wafer.

【0013】また上記反射光の干渉光を分光し、この分
光した光の反射率と波長との関係に基づいて上記薄膜の
被測定部分への位置決めに用いるデータの算出と、上記
薄膜の膜厚データの測定とをすることを特徴とする膜厚
測定装置である。
Further, the interference light of the reflected light is dispersed, data used for positioning the thin film on the portion to be measured is calculated based on the relationship between the reflectance and the wavelength of the dispersed light, and the film thickness of the thin film is calculated. It is a film thickness measuring device characterized by measuring data.

【0014】さらに上記反射光の干渉光を分光し、この
分光した光の強度と波長との関係に基づいて上記薄膜の
被測定部分への位置決めに用いるデータの算出と、上記
薄膜の膜厚データの測定とをすることを特徴とする膜厚
測定装置である。
Further, the interference light of the reflected light is spectrally divided, data used for positioning the thin film on the portion to be measured is calculated based on the relationship between the intensity and wavelength of the dispersed light, and the film thickness data of the thin film. Is a film thickness measuring device.

【0015】[0015]

【作用】本発明の膜厚測定装置は上記したような構成に
より、半導体ウエハ表面の被測定パターン上に高精度、
簡便に位置決めし、この半導体ウエハ表面の膜厚を測定
することを可能とするものである。
The film thickness measuring apparatus of the present invention has the above-mentioned structure, and is highly accurate on the pattern to be measured on the surface of the semiconductor wafer.
It is possible to easily position and measure the film thickness on the surface of the semiconductor wafer.

【0016】[0016]

【実施例】本発明の膜厚測定装置の第1の実施例を図1
に示す。この膜厚測定装置は白色光源1、レンズ2、レ
ンズ3、スリット4、レンズ5、ビームスプリッタ6、
対物レンズ7、レンズ8、回折格子9、1次元撮像素子
10、インターフェース11、xyステージ12、基台
13、xyステージドライバ14、処理回路15、イン
ターフェース16からなる。
EXAMPLE A first example of the film thickness measuring apparatus of the present invention is shown in FIG.
Shown in. This film thickness measuring device includes a white light source 1, a lens 2, a lens 3, a slit 4, a lens 5, a beam splitter 6,
The objective lens 7, the lens 8, the diffraction grating 9, the one-dimensional image sensor 10, the interface 11, the xy stage 12, the base 13, the xy stage driver 14, the processing circuit 15, and the interface 16.

【0017】ここで測定対象は図2および図3に示すよ
うなパターン付きウエハを用いることとする。図2
(a)に示すようにこのパターン付きウエハであるシリ
コンウエハ17上の全面には、ダイシングライン18で
区切られたメモリやロジックなどの素子19が形成され
ている。図2(b)に示すように素子19は電気回路が
形成されたセル20と、Al電極パッド21とから構成
されている。
Here, the measurement target is a patterned wafer as shown in FIGS. 2 and 3. Figure 2
As shown in (a), elements 19 such as memories and logics, which are separated by dicing lines 18, are formed on the entire surface of a silicon wafer 17 which is a patterned wafer. As shown in FIG. 2B, the element 19 is composed of a cell 20 in which an electric circuit is formed and an Al electrode pad 21.

【0018】また図3に示すように図2(b)をA−A
´線で断面を区切るとシリコン基板22とAl電極パッ
ド21はSiO2 膜23で覆われている。白色光源1か
ら出射した光ビームはレンズ2、レンズ3、スリット
4、レンズ5、ビームスプリッタ6、対物レンズ7を介
してシリコンウエハ17上にビーム径約30μmで入射
する。ここで前記光ビームは合焦状態でシリコンウエハ
17に入射するほうがよい。
Further, as shown in FIG. 3, FIG.
The silicon substrate 22 and the Al electrode pad 21 are covered with the SiO 2 film 23 when the cross section is sectioned by the line. The light beam emitted from the white light source 1 is incident on the silicon wafer 17 through the lens 2, the lens 3, the slit 4, the lens 5, the beam splitter 6, and the objective lens 7 with a beam diameter of about 30 μm. Here, it is preferable that the light beam is incident on the silicon wafer 17 in a focused state.

【0019】シリコンウエハ17はパターンの付いてい
る面を上面とし、自身のオリエンテーションフラットを
機械的な基準として、基台13上に大まかに位置決めさ
れている。ここでAl電極パッド21は一辺が約100
μmの長さであるが、機械的に大まかな位置決めをする
だけでは前記光ビームをAl電極パッド21上に位置決
めすることは非常に困難である。
The silicon wafer 17 is roughly positioned on the base 13 with the patterned surface as the upper surface and its orientation flat as a mechanical reference. Here, the Al electrode pad 21 has a side of about 100.
Although the length is μm, it is very difficult to position the light beam on the Al electrode pad 21 only by performing a rough mechanical positioning.

【0020】前記光ビームはセル20やAl電極パッド
21もしくはシリコン基板22を覆っているSiO2
23に入射する。図3に示すように入射した光はSiO
2膜23の表面およびSiO2 膜23とAl電極パッド
21もしくはシリコン基板22との界面で反射し、両反
射光u1 ,u2 は干渉を起こす。図4に反射率と波長の
関係図、即ちu1 ,u2 による干渉光の干渉縞波形の一
例を示す。
The light beam is incident on the SiO 2 film 23 covering the cell 20, the Al electrode pad 21 or the silicon substrate 22. As shown in FIG. 3, the incident light is SiO 2.
The reflected light u 1 and u 2 are reflected by the surface of the second film 23 and the interface between the SiO 2 film 23 and the Al electrode pad 21 or the silicon substrate 22. FIG. 4 shows the relationship between the reflectance and the wavelength, that is, an example of the interference fringe waveform of the interference light due to u 1 and u 2 .

【0021】反射した光は対物レンズ7、ビームスプリ
ッタ6、レンズ8を介して回折格子9に入射して分光さ
れる。分光された光は1次元撮像素子10に入射して各
波長ごとの光の強度を電気信号に光電変換する。光電変
換された電気信号はインターフェース11を介して処理
回路15に入力する。ここで、ある波長λ1 について考
えると前記光ビームがシリコンウエハ17のどの場所に
入射しているかにより反射率r1 が異なる。即ちAl電
極パッド21上の反射率はシリコン基板22上の反射率
より大きいのでAl電極パッド21と前記光ビームとの
相対位置により反射率が異なる。
The reflected light is incident on the diffraction grating 9 through the objective lens 7, the beam splitter 6, and the lens 8 and is dispersed. The dispersed light enters the one-dimensional image sensor 10 and photoelectrically converts the intensity of light of each wavelength into an electric signal. The photoelectrically converted electric signal is input to the processing circuit 15 via the interface 11. Here, considering a certain wavelength λ 1 , the reflectance r 1 differs depending on where on the silicon wafer 17 the light beam is incident. That is, since the reflectance on the Al electrode pad 21 is higher than the reflectance on the silicon substrate 22, the reflectance differs depending on the relative position between the Al electrode pad 21 and the light beam.

【0022】図5(a)・(b)に前記光ビームの照射
面とAl電極パッド21との相対位置(x,y方向)
と、反射率r1 との関係を示す。ここで波長λ1 はAl
電極パッド21上の反射率とシリコン基板22上の反射
率との差が最大となる波長とする。
5A and 5B, the relative position between the irradiation surface of the light beam and the Al electrode pad 21 (x, y directions).
And the reflectance r 1 . Here, the wavelength λ 1 is Al
The wavelength is such that the difference between the reflectance on the electrode pad 21 and the reflectance on the silicon substrate 22 is maximum.

【0023】この実施例では処理回路15からの指令に
基づいてインターフェース16で制御して、xyステー
ジドライバ14を介してxyステージ12をx,y方向
に走査しながら、1次元撮像素子10で検出した光から
処理回路15において反射率r1 を求める。
In this embodiment, control is performed by the interface 16 based on a command from the processing circuit 15 so that the xy stage 12 is scanned by the xy stage driver 14 in the x and y directions and detected by the one-dimensional image pickup device 10. The reflectance r 1 is obtained in the processing circuit 15 from the obtained light.

【0024】処理回路15は前記光ビームの照射面が全
てAl電極パッド21に入射して且つ反射率r1 が最大
となった時点でxyステージ12の走査を停止する指令
をインターフェース16に出す。つまり前記反射率r1
の変化を検出することによりシリコンウエハ17の位置
決めを行う。処理回路15では光電変換された電気信号
に基づき下式によりセル20やAl電極パッド21もし
くはシリコン基板22を覆っているSiO2 膜23の膜
厚dの算出を行う。
The processing circuit 15 issues a command to the interface 16 to stop the scanning of the xy stage 12 when the irradiation surface of the light beam is entirely incident on the Al electrode pad 21 and the reflectance r 1 becomes maximum. That is, the reflectance r 1
The silicon wafer 17 is positioned by detecting the change in The processing circuit 15 calculates the film thickness d of the SiO 2 film 23 covering the cell 20, the Al electrode pad 21, or the silicon substrate 22 by the following formula based on the photoelectrically converted electric signal.

【0025】[0025]

【数1】 [Equation 1]

【0026】ここでλm は干渉縞波形に現れたm番目の
反射率の極大もしくは極小を与える波長であり、λm-l
はλm から波長の増加する方向にl番目の反射率の極大
もしくは極小を与える波長である。またnはSiO2
23の屈折率、θは前記光ビームのSiO2 膜23への
入射角である。
Here, λ m is the wavelength that gives the maximum or minimum of the m-th reflectance appearing in the interference fringe waveform, and λ ml
Is a wavelength that gives the maximum or minimum of the l-th reflectance in the direction of increasing wavelength from λ m . Further, n is the refractive index of the SiO 2 film 23, and θ is the incident angle of the light beam on the SiO 2 film 23.

【0027】なお本発明はこの第1の実施例に限定され
るものではなく要旨を逸脱しない範囲で種々変更が可能
である。例えば投受光系に光ファイバを用いた本発明の
第2の実施例を図6に示す。この膜厚測定装置において
は、測定光学系24が白色光源25、レンズ26、レン
ズ27、レンズ28、投受光ファイバ29、スリット3
0、反射ミラー31、回折格子32、および1次元撮像
素子33を有している。そして処理回路35が備えられ
ており、この処理回路35にはインターフェース34を
介して1次元撮像素子33が接続されており、加えてイ
ンターフェース36を介してxyステージドライバ37
が接続されている。
The present invention is not limited to this first embodiment, and various changes can be made without departing from the scope of the invention. For example, FIG. 6 shows a second embodiment of the present invention in which an optical fiber is used for the light projecting / receiving system. In this film thickness measuring device, the measuring optical system 24 includes a white light source 25, a lens 26, a lens 27, a lens 28, a light projecting / receiving fiber 29, and a slit 3.
0, a reflection mirror 31, a diffraction grating 32, and a one-dimensional image sensor 33. A processing circuit 35 is provided, and the one-dimensional image pickup device 33 is connected to the processing circuit 35 via an interface 34. In addition, an xy stage driver 37 is connected via an interface 36.
Are connected.

【0028】投受光ファイバ29は投光端38、投受光
端39および受光端40を有しており、これらのうち投
光端38はレンズ26を介して白色光源25に対向して
いる。また受光端40は1次元撮像素子33のの側に導
かれておりレンズ27に対向している。投受光端39は
ファイバガイド部41を介してxyステージ43の基台
44上のシリコンウエハ17上に導かれておりレンズ2
8を介して窓42に対向している。ここで本実施例でも
第1の実施例と同じく薄膜としてSiO2 膜23が採用
されている。
The light projecting / receiving fiber 29 has a light projecting end 38, a light projecting / receiving end 39, and a light receiving end 40, of which the light projecting end 38 faces the white light source 25 via the lens 26. Further, the light receiving end 40 is guided to the side of the one-dimensional image pickup device 33 and faces the lens 27. The light emitting / receiving end 39 is guided via the fiber guide portion 41 onto the silicon wafer 17 on the base 44 of the xy stage 43.
The window 42 is opposed to the window 42. Here, also in this embodiment, as in the first embodiment, the SiO 2 film 23 is adopted as a thin film.

【0029】まず白色光源25から出射された光ビーム
はレンズ26を通って平行光となり投受光ファイバ29
の投光端38に入射する。投受光ファイバ29に入射し
た前記光ビームは投受光端39へ伝送され投受光端39
から出射した前記光ビームはレンズ27および窓42を
通ってシリコンウエハ17に入射する。
First, the light beam emitted from the white light source 25 passes through the lens 26 to become parallel light, and the light emitting / receiving fiber 29
Is incident on the light projecting end 38 of The light beam incident on the light projecting / receiving fiber 29 is transmitted to the light projecting / receiving end 39 and is transmitted to the light projecting / receiving end 39.
The light beam emitted from the laser beam enters the silicon wafer 17 through the lens 27 and the window 42.

【0030】シリコンウエハ17に入射したこの光ビー
ムはSiO2 膜23の表面およびSiO2 膜23とAl
電極パッド21もしくはシリコン基板22との界面で反
射し、第1の実施例と同様に図3に示す両反射光u1
2 は干渉を起こす。そして干渉光が投受光端42に入
射して投光端40へ伝送される。
[0030] The light beam incident on the silicon wafer 17 and the surface and the SiO 2 film 23 of SiO 2 film 23 Al
Both reflected lights u 1 , shown in FIG. 3, reflected at the interface with the electrode pad 21 or the silicon substrate 22 and shown in FIG.
u 2 causes interference. Then, the interference light enters the light projecting / receiving end 42 and is transmitted to the light projecting end 40.

【0031】投光端40から出射した干渉光はレンズ2
7に絞られてスリット30を通過し反射ミラー31によ
り回折格子32に導かれる。そして前記干渉光は回折格
子32により分光され、分光された光は1次元撮像素子
33に入射する。
The interference light emitted from the light projecting end 40 is reflected by the lens 2
It is narrowed down to 7, passes through the slit 30, and is guided to the diffraction grating 32 by the reflection mirror 31. Then, the interference light is split by the diffraction grating 32, and the split light is incident on the one-dimensional image sensor 33.

【0032】1次元撮像素子33は入射光を光電変換し
各波長ごとの光の強度に応じた信号を出力する。光電変
換された電気信号はインターフェース34を介して処理
回路35に入力する。この実施例でも処理回路35から
の指令に基づいてインターフェース36で制御して、x
yステージドライバ37を介してxyステージ43を
x,y方向に走査しながら、1次元撮像素子33で検出
した光から処理回路35において反射率r1 を求める。
The one-dimensional image pickup device 33 photoelectrically converts incident light and outputs a signal corresponding to the intensity of light for each wavelength. The photoelectrically converted electrical signal is input to the processing circuit 35 via the interface 34. Also in this embodiment, x is controlled by the interface 36 based on a command from the processing circuit 35,
While scanning the xy stage 43 in the x and y directions via the y stage driver 37, the processing circuit 35 obtains the reflectance r 1 from the light detected by the one-dimensional image sensor 33.

【0033】処理回路35は投受光端39から出射した
前記光ビームの照射面が全てAl電極パッド21に入射
して且つ反射率r1 が最大となった時点でxyステージ
43の走査を停止する指令をインターフェース36に出
す。つまり前記反射率r1の変化を検出することにより
シリコンウエハ17の位置決めを行う。
The processing circuit 35 stops the scanning of the xy stage 43 when the irradiation surface of the light beam emitted from the light emitting / receiving end 39 is entirely incident on the Al electrode pad 21 and the reflectance r 1 becomes maximum. The command is issued to the interface 36. That is, the silicon wafer 17 is positioned by detecting the change in the reflectance r 1 .

【0034】さらに1次元撮像素子33の出力信号はイ
ンターフェース34を介して処理装置35に送られ処理
装置35は入力された信号と第1の実施例中において上
述した式により、セル20やAl電極パッド21もしく
はシリコン基板22を覆っているSiO2 膜23の膜厚
dの算出を行う。
Further, the output signal of the one-dimensional image pickup device 33 is sent to the processing device 35 through the interface 34, and the processing device 35 uses the input signal and the above-mentioned formula in the first embodiment to calculate the cell 20 and the Al electrode. The film thickness d of the SiO 2 film 23 covering the pad 21 or the silicon substrate 22 is calculated.

【0035】なお上記の2つの実施例においては回折格
子を用いて分光をしているが、分光は回折格子に限らず
他の分光手段を用いても良い。また1次元撮像素子を用
いずに回折格子を回転し光電子倍増管で受光する方式で
も同様の効果が得られる。
In the above two embodiments, the diffraction is performed using the diffraction grating, but the spectroscopy is not limited to the diffraction grating, and other spectroscopic means may be used. Also, the same effect can be obtained by a method in which the diffraction grating is rotated and light is received by the photomultiplier tube without using the one-dimensional image sensor.

【0036】そしてxyステージ43を走査する方式に
限らず光学系全体を走査する方式や光ビームをミラーな
どで走査する方式でも良い。上記の2つの実施例では1
つの測定波長について反射率を測定して位置決めを行っ
ていたが、特定波長帯域について反射率を測定してその
積分値に基づいて位置決めをすることができる。もしく
は複数個の波長を用いてAl電極パッド21上の反射率
とシリコン基板22上の反射率との差をそれぞれ求め
て、その反射率の差の最大値に基づいて位置決めするこ
ともできる。
The method of scanning the xy stage 43 is not limited to the method of scanning the entire optical system or the method of scanning the light beam with a mirror or the like. 1 in the above two examples
Although the reflectance was measured for one measurement wavelength and the positioning was performed, the reflectance can be measured for a specific wavelength band and the positioning can be performed based on the integrated value. Alternatively, it is also possible to obtain the difference between the reflectance on the Al electrode pad 21 and the reflectance on the silicon substrate 22 using a plurality of wavelengths, and perform positioning based on the maximum value of the difference in the reflectance.

【0037】加えて本発明の膜厚測定装置は、大気中の
測定に限らずシリコンウエハ17を水中に水没させた状
態でも水に対応した光学パラメータを持った光学系を用
いることにより測定が可能である。また研磨材を含み清
浄ではない水中での測定やシリコンウエハ17の表面に
研磨材が付着した状態での測定においても、測定光の波
長を研磨材を透過するように選ぶことにより位置決めが
できる。そして膜厚を求めることもできる。
In addition, the film thickness measuring apparatus of the present invention is not limited to the measurement in the atmosphere, but can be measured by using the optical system having the optical parameter corresponding to water even when the silicon wafer 17 is submerged in water. Is. Further, also in the measurement in unclean water containing the polishing material and the measurement in the state where the polishing material is adhered to the surface of the silicon wafer 17, the positioning can be performed by selecting the wavelength of the measurement light so as to pass through the polishing material. Then, the film thickness can be obtained.

【0038】実施例においては被測定薄膜にSiO2
23を、被測定パターンにAl電極パッド21を用いた
が被測定対象はこれらに限られることはない。またAl
電極パッド21上の反射率とシリコン基板22上の反射
率を比較しているが双方の比較ができるパラメータなら
ば反射率でなくとも反射光を分光した光の強度を用いて
比較しても良い。実際には処理回路15・35の構成を
変えることで容易に実現は可能である。
In the embodiment, the SiO 2 film 23 is used as the thin film to be measured and the Al electrode pad 21 is used as the pattern to be measured, but the object to be measured is not limited to these. Also Al
The reflectance on the electrode pad 21 and the reflectance on the silicon substrate 22 are compared with each other. However, if the parameters are such that the two can be compared, the intensity may be compared by using the intensity of light obtained by dispersing the reflected light instead of the reflectance. . Actually, it can be easily realized by changing the configurations of the processing circuits 15 and 35.

【0039】[0039]

【発明の効果】本発明によればパターン付き半導体ウエ
ハ表面の薄膜の膜厚を測定する装置において、特にパタ
ーン上の特定の測定位置に高精度、簡便に位置決めする
と同時に精度良く膜厚を測定する装置が提供できる。こ
のようにするとパターン上の特定の測定位置に位置決め
をするための複雑な装置を他に接続する必要がないので
測定装置全体を小形化でき、低価格で測定装置全体を製
作することができる。
According to the present invention, in the apparatus for measuring the film thickness of the thin film on the surface of the patterned semiconductor wafer, particularly, the film thickness is accurately and simply positioned at a specific measurement position on the pattern and at the same time, the film thickness is accurately measured. A device can be provided. In this way, since it is not necessary to connect a complicated device for positioning at a specific measurement position on the pattern, it is possible to downsize the entire measuring device and manufacture the entire measuring device at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す概略構成図。FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

【図2】(a)はシリコンウエハの構成図。(b)は
(a)の拡大図。
FIG. 2A is a configuration diagram of a silicon wafer. (B) is an enlarged view of (a).

【図3】図2(b)のA−A´線における断面図。FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG.

【図4】反射率と干渉光の波長との関係図。FIG. 4 is a diagram showing the relationship between the reflectance and the wavelength of interference light.

【図5】(a)は光ビームの照射面とAl電極パッドと
の相対位置の関係図。(b)はこの相対位置と反射率r
1 との関係図。
FIG. 5A is a relationship diagram of a relative position between a light beam irradiation surface and an Al electrode pad. (B) is the relative position and the reflectance r
Relationship diagram with 1 .

【図6】本発明の第2の実施例を示す概略構成図。FIG. 6 is a schematic configuration diagram showing a second embodiment of the present invention.

【図7】従来例を示す概略構成図。FIG. 7 is a schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1・25…白色光源 2・3・5・8・26・27・28・46…レンズ 4・30…スリット 6…ビームスプリッタ 7…対物レンズ 9・32…回折格子 10・33…1次元撮像素子 11・16・34・36…インターフェース 12・43…xyステージ 13・44…基台 14・37…xyステージドライバ 15・35…処理回路 17…シリコンウエハ 19…素子 20…セル 21…Al電極パッド 22…シリコン基板 23…SiO2 膜 24…測定光学系 29…投受光ファイバ 31…反射ミラー 38…投光端 39…投受光端 40…受光端 41…ファイバガイド部 42…窓 45…半導体レーザ素子 47…平面鏡 48…自己結合型半導体レーザ 49…誘電体膜1.25 ... White light source 2/3/5/8/26/27/28/46 ... Lens 4/30 ... Slit 6 ... Beam splitter 7 ... Objective lens 9.32 ... Diffraction grating 10.33 ... One-dimensional image sensor 11.16.34.36 ... Interface 12.43 ... XY stage 13.44 ... Base 14.37 ... XY stage driver 15.35 ... Processing circuit 17 ... Silicon wafer 19 ... Element 20 ... Cell 21 ... Al electrode pad 22 Silicon substrate 23 SiO 2 film 24 Measurement optical system 29 Light emitting / receiving fiber 31 Reflecting mirror 38 Light emitting end 39 Light emitting / receiving end 40 Light receiving end 41 Fiber guide portion 42 Window 45 Semiconductor laser device 47 ... Plane mirror 48 ... Self-coupling type semiconductor laser 49 ... Dielectric film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に薄膜と、配線パターンの形成
部とを有している半導体ウエハに測定光を照射し、上記
半導体ウエハからの反射光に基づいて上記薄膜の膜厚を
測定する膜厚測定装置において、上記薄膜の被測定部分
への位置決めに用いるデータの検出と、上記薄膜の膜厚
データの測定とを上記半導体ウエハからの反射光を用い
て単一の光学系で行うことを特徴とする膜厚測定装置。
1. A film for irradiating a semiconductor wafer having a thin film and a wiring pattern forming portion on a substrate with measuring light, and measuring the film thickness of the thin film based on the reflected light from the semiconductor wafer. In the thickness measuring device, it is possible to detect the data used for positioning the thin film on the portion to be measured and to measure the film thickness data of the thin film with a single optical system using the reflected light from the semiconductor wafer. Characteristic film thickness measuring device.
【請求項2】 上記反射光の干渉光を分光し、この分
光した光の反射率と波長との関係に基づいて上記薄膜の
被測定部分への位置決めに用いるデータの検出と、上記
薄膜の膜厚データの測定とをすることを特徴とする請求
項1記載の膜厚測定装置。
2. The interference light of the reflected light is spectrally separated, and the data used for positioning the thin film on the portion to be measured is detected based on the relationship between the reflectance and the wavelength of the dispersed light, and the film of the thin film. The film thickness measuring device according to claim 1, which measures thickness data.
【請求項3】 上記反射光の干渉光を分光し、この分
光した光の強度と波長との関係に基づいて上記薄膜の被
測定部分への位置決めに用いるデータの検出と、上記薄
膜の膜厚データの測定とをすることを特徴とする請求項
1記載の膜厚測定装置。
3. Interfering light of the reflected light is separated, and data used to position the thin film on a portion to be measured is detected based on the relationship between the intensity and wavelength of the separated light, and the film thickness of the thin film. The measurement of data is performed, The film thickness measuring device of Claim 1 characterized by the above-mentioned.
JP11570693A 1993-05-18 1993-05-18 Film thickness measuring device Pending JPH06331320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11570693A JPH06331320A (en) 1993-05-18 1993-05-18 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11570693A JPH06331320A (en) 1993-05-18 1993-05-18 Film thickness measuring device

Publications (1)

Publication Number Publication Date
JPH06331320A true JPH06331320A (en) 1994-12-02

Family

ID=14669198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11570693A Pending JPH06331320A (en) 1993-05-18 1993-05-18 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JPH06331320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280258A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Method and device for producing laminate
JP2009059427A (en) * 2007-08-31 2009-03-19 Hoya Corp Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and apparatus for measuring substrate thickness
JP2009180640A (en) * 2008-01-31 2009-08-13 Oki Semiconductor Co Ltd Film thickness measuring method
JP2013197553A (en) * 2012-03-22 2013-09-30 Hitachi Cable Ltd Substrate with piezoelectric film, piezoelectric film element, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280258A (en) * 2001-03-19 2002-09-27 Matsushita Electric Ind Co Ltd Method and device for producing laminate
JP4705256B2 (en) * 2001-03-19 2011-06-22 パナソニック株式会社 LAMINATE MANUFACTURING METHOD AND CHIP CAPACITOR
JP2009059427A (en) * 2007-08-31 2009-03-19 Hoya Corp Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and apparatus for measuring substrate thickness
JP2009180640A (en) * 2008-01-31 2009-08-13 Oki Semiconductor Co Ltd Film thickness measuring method
JP2013197553A (en) * 2012-03-22 2013-09-30 Hitachi Cable Ltd Substrate with piezoelectric film, piezoelectric film element, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100571863B1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
US7295330B2 (en) Film mapping system
US7705974B2 (en) Metrology system with spectroscopic ellipsometer and photoacoustic measurements
JP2859159B2 (en) Method and apparatus for in-situ real-time observation of the morphology and thickness of a localized area of a surface layer of a thin-layer structure
JPH05248825A (en) Equipment for measuring thickness of thin film
JPH04337403A (en) Photointegration type displacement sensor
JP2008083059A (en) Measuring system and measuring device for wafer
JP2005091003A (en) Two-dimensional spectral apparatus and film thickness measuring instrument
JP5871242B2 (en) Film thickness measuring apparatus and film thickness measuring method
US6900900B2 (en) Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements
JP5273644B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP2916321B2 (en) Method for detecting internal defects in multilayer semiconductor substrate, etc.
JPH09133517A (en) Distribution measuring device
JPH06331320A (en) Film thickness measuring device
JP3657345B2 (en) Film thickness inspection system
JPH1047926A (en) Device for measuring film thickness and method therefor
TW202140993A (en) Film thickness measuring device and film thickness measuring method
JP3391030B2 (en) Electronic device manufacturing method and pattern exposure method
JP2000146528A (en) Method for measuring optical aberration of positional deviation inspecting device and method for inspecting positional deviation
JP2003097924A (en) Shape measuring system and method using the same
JP3004076B2 (en) Sample surface position measurement device
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus
JP5387962B2 (en) Measuring apparatus and measuring method
JP2001041713A (en) Minute region measuring device
RU2077753C1 (en) Method and device for detection of physical characteristics of semiconductor plate