JPH01145508A - Measuring apparatus - Google Patents

Measuring apparatus

Info

Publication number
JPH01145508A
JPH01145508A JP30407987A JP30407987A JPH01145508A JP H01145508 A JPH01145508 A JP H01145508A JP 30407987 A JP30407987 A JP 30407987A JP 30407987 A JP30407987 A JP 30407987A JP H01145508 A JPH01145508 A JP H01145508A
Authority
JP
Japan
Prior art keywords
trench
measured
depth
spectral reflection
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30407987A
Other languages
Japanese (ja)
Inventor
Osamu Konouchi
此内 修
Minokichi Ban
箕吉 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30407987A priority Critical patent/JPH01145508A/en
Publication of JPH01145508A publication Critical patent/JPH01145508A/en
Priority to US07/593,253 priority patent/US5087121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate measurement of a depth of a recess, by obtaining spectral reflection characteristic of a part containing the recess of an object to be measured and a part containing no recess to correct a noise component by both the characteristics. CONSTITUTION:A luminous flux of white light source 2 is made to irradiate an object 1 to be measured held on a stage 100 through a condenser lens 3, a half mirror 5 and an objective lens 4. A part of reflected light from the object 1 being measured passes through a pinhole 7 by way of the lens 4, the half mirror 5 and an imaging lens 6 to detect 8 spectral reflection characteristic of the reflected light, which is initially stored 11 as such of a part with a trench through an A/D converter 9 and a gate 10. Then, the object 1 being measured is set to a part with no trench and a spectral reflection characteristic with no trench is stored 12 in the same procedure. Then, a signal processing for the removal of noises or the like is performed with a bandpass filter 14 using the spectral reflection characteristics. Thus, a depth of the recess can be detected at a high accuracy by further performing a computation with a trench depth calculating section 17.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は被測定物の溝や穴の深さを測定する凹凸部深さ
測定装置に関し、例えば半導体製造工程でシリコン基板
上にコンデンサー用として設けた溝、所謂トレンチ等の
様な数ミクロン程度の凹凸部の深さを高精度に測定する
際に好適な凹凸部深さ測定装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an uneven depth measuring device for measuring the depth of grooves and holes in an object to be measured. The present invention relates to an uneven part depth measuring device suitable for measuring with high precision the depth of an uneven part of several microns such as a provided groove, a so-called trench, etc.

〔従来の技術〕[Conventional technology]

従来より被測定物に設けた゛数ミクロン程度の凹凸部の
深さを高精度に測定する為の測定装置が種々と提案され
ている。
2. Description of the Related Art Various measuring devices have been proposed for measuring with high accuracy the depth of irregularities of several microns in size provided on an object to be measured.

特に最近は半導体製造においてIC回路の高集積化に伴
いシリコン基板上に数ミクロン程度の溝を掘りコンデン
サーを形成する所謂トレンチキャパシタが有望視されて
いる。そしてこのときのトレンチの深さを高精度に測定
する測定装置が要望されている。トレンチの深さ測定装
置としては被測定物を割り、その断面を走査型電子顕微
鏡(SEM。
In recent years, in particular, as IC circuits have become highly integrated in semiconductor manufacturing, so-called trench capacitors, in which a capacitor is formed by digging a trench of several microns on a silicon substrate, have become promising. There is a need for a measuring device that can measure the depth of the trench at this time with high precision. A scanning electron microscope (SEM) is used to measure the depth of a trench by cutting the object to be measured and measuring its cross section.

Scanning electron m1crosc
opy )で測定したり、被測定物に光束を入射させ、
該被測定物からの反射光による干渉を利用して測定する
装置がある。
Scanning electron m1crosc
opy ), or by making a beam of light incident on the object to be measured.
There is an apparatus that performs measurement using interference caused by reflected light from the object to be measured.

第6図A、 Bはこのうちの凹凸部からの反射光による
干渉を利用した従来の測定装置の概略図である。
FIGS. 6A and 6B are schematic diagrams of a conventional measuring device that utilizes interference caused by reflected light from uneven portions.

同図では、白色光源62からの光束はコンデンサーレン
ズ63、ハーフミラ−65、対物レンズ64を介して被
測定物61に照射される。被測定物lからの反射光は、
対物レンズ64、ハーフミラ−65、結像レンズ66を
介して、ピンホール67へ導光される。ここでピンホー
ル67と被測定物61は共役となっており、ピンホール
径をφ11.測定領域をφS、被測定物61からピンホ
ール67面への結像倍率をβとするとφS=φP/βと
なっている。
In the figure, a light beam from a white light source 62 is irradiated onto an object to be measured 61 via a condenser lens 63, a half mirror 65, and an objective lens 64. The reflected light from the object to be measured l is
The light is guided to a pinhole 67 via an objective lens 64, a half mirror 65, and an imaging lens 66. Here, the pinhole 67 and the object to be measured 61 are conjugate, and the pinhole diameter is φ11. When the measurement area is φS and the imaging magnification from the object to be measured 61 to the surface of the pinhole 67 is β, φS=φP/β.

さらにピンホール67を通過した光束は、分光器68に
より分光される。今、被測定物61の凹凸部の構造が第
3図に示す様な形状のトレンチ36の上面部分に多層膜
(単層膜も含む)等のいわゆるマスク剤のついたもので
ある時、このトレンチの掘られた被測定面に光束が入射
すると、マスク剤の層数をN、トレンチの深さをDT、
屈折率をnT。
Further, the light beam passing through the pinhole 67 is separated into spectra by a spectroscope 68. Now, when the uneven structure of the object to be measured 61 has a so-called masking agent such as a multilayer film (including a single layer film) on the top surface of the trench 36 having a shape as shown in FIG. When the light beam is incident on the surface to be measured where a trench has been dug, the number of layers of masking agent is N, the depth of the trench is DT,
The refractive index is nT.

マスク剤の第1層目の膜厚をD Mi 、屈折率をn 
Miとし、マスク剤のみの面の振幅反射率をρe i 
d M(これは一般に多重反射の式になる)、またトレ
ンチ底面の振幅反射率をρ、eIIITとし、さらに測
定領域φS内にトレンチの占める面積比(開口率)をA
1トレンチ開口内での光線の効率をKとすると、マスク
面の反射光32とトレンチ底面の反射光31によりトレ
ンチ深さに応じた干渉が生じ、第6図における分光器8
により分光検出される分光反射特性(分光反射率R(λ
))は下式の様に表わされる。
The film thickness of the first layer of the masking agent is D Mi , and the refractive index is n
Let Mi be the amplitude reflectance of the surface containing only the masking agent as ρe i
dM (this is generally a formula for multiple reflections), and the amplitude reflectance of the bottom of the trench is ρ, eIIIT, and the area ratio (aperture ratio) occupied by the trench within the measurement area φS is A.
If the efficiency of the light beam within one trench opening is K, interference occurs depending on the trench depth between the reflected light 32 from the mask surface and the reflected light 31 from the trench bottom, and the spectrometer 8 in FIG.
Spectral reflection characteristics (spectral reflectance R(λ
)) is expressed as the following formula.

λを波長として、さらにθは入射角、 R(λ)、= (1−A)・ρy” +A”K・ρt′
+2JワEへ1−A)−K・ρ8・ρ□・COS (φ
8−φ□−δ)・・・・・・・・・・・・・・・・・=
−(1)上式はρ9=ρT、φM=φTとおけば、マス
ク剤のないトレンチのみの反射率となる。ここでφM。
λ is the wavelength, and θ is the incident angle, R(λ), = (1-A)・ρy” +A”K・ρt′
+2Jwa to E1-A) -K・ρ8・ρ□・COS (φ
8-φ□-δ)・・・・・・・・・・・・・・・・・・・=
-(1) In the above equation, if ρ9=ρT and φM=φT, the reflectance will be only for the trench without the masking agent. Here φM.

φ丁が波長λに関して変化が少ないとすると、(1)式
は第3項から振幅が2 FT(1=−K・gM・DTの
周期関数であり、その周期はトレンチ深さdTにより決
まる。また、第1項は、マスク剤の膜厚。
Assuming that φ changes little with respect to wavelength λ, equation (1) is a periodic function whose amplitude is 2 FT (1=−K·gM·DT) from the third term, and its period is determined by the trench depth dT. Moreover, the first term is the film thickness of the masking agent.

屈折率で決まるマスク剤の特性を表わし、単層膜では、
その膜厚に比例した周期関数となり、多層膜では、より
複雑な特性となる。これらの特性の和としてR(λ)は
例えば第4図の41の様な形状となる。通常トレンチ深
さを示す特性((1)式中の第3項)は、マスク剤の特
性((1)式中の第1項)よりも、その周波数は高いの
で、分光器8で検出された特性はA/D変換器69によ
り量子化された後にディジタルバイパスフィルター70
に入力し、その出力としてノイズ即ち低周波成分である
(1)式の第1. 2項を除去し、トレンチの深さを示
す第3項の高周波成分のみをとり出す。
It represents the characteristics of a masking agent determined by its refractive index, and for a single layer film,
It becomes a periodic function proportional to the film thickness, and multilayer films have more complex characteristics. As the sum of these characteristics, R(λ) has a shape such as 41 in FIG. 4, for example. Normally, the characteristic indicating the trench depth (the third term in equation (1)) has a higher frequency than the characteristic of the masking agent (the first term in equation (1)), so it is not detected by the spectrometer 8. The characteristics are quantized by an A/D converter 69 and then passed through a digital bypass filter 70.
, and its output is noise, that is, low frequency components. The second term is removed and only the high frequency component of the third term, which indicates the depth of the trench, is extracted.

その後、開ロ率A、効率Kが小さくなり、トレンチ深さ
を示す信号が微弱な場合で対応可能な様にその振幅を一
定値まで、振幅拡大部71により引きのばし、次に第4
図42に示した極大値(1/λ1)極小値(2/λ2)
を求める。ここでマスク剤のない簡単な場合は、 極大値では 2nrdT−CO8θ=mλ1 (mは整
数)極小値では 2nTdT−CO5θ=(m  !’
6)A2であるから θは既知であるから、ピーク検出部72により得られた
λ1.λ2から、トレンチ深さdTを求めることができ
る。マスク剤のある場合でも、マスク剤の影響を補正す
る係数を同様の算出式(2)に促すことにより、トレン
チ深さdlを求めることができる。
Thereafter, the amplitude is extended to a certain value by the amplitude expansion unit 71 in order to cope with the case where the opening ratio A and the efficiency K become small and the signal indicating the trench depth is weak.
Maximum value (1/λ1) and minimum value (2/λ2) shown in Figure 42
seek. Here, in a simple case without a masking agent, at the maximum value 2nrdT-CO8θ=mλ1 (m is an integer) at the minimum value 2nTdT-CO5θ=(m!'
6) Since θ is known since it is A2, λ1 . The trench depth dT can be determined from λ2. Even when there is a masking agent, the trench depth dl can be determined by applying a coefficient for correcting the influence of the masking agent to the same calculation formula (2).

また、第6図Bに示すようにA/D変換部69により量
子化された後、データを周波数領域に変換するためにF
FT部75により変換され、処理されたデータからトレ
ンチ深さ計算76を行い、トレンチ深さを求めることも
可能である。
Further, as shown in FIG. 6B, after the data is quantized by the A/D converter 69, F
It is also possible to perform trench depth calculation 76 from the data converted and processed by the FT unit 75 to determine the trench depth.

〔発明が解決しようとしている問題点〕しかしながら、
第6図に示した測定方法では、以下の様な問題点があっ
た。
[Problem that the invention is trying to solve] However,
The measurement method shown in FIG. 6 had the following problems.

1)マスク剤のある試料の時は、トレンチの開口率(A
)及び効率(K)が小さくなり、トレンチ深さを示す信
号が微弱になると、バイパスフィルターによりマスク剤
の特性を除いても、前記周期の整数倍の周期の微弱な信
号、即ちここでは、マスク剤上面の反射光とマスク剤の
上下面間で多重反射した光との干渉等による高周波の信
号は残り、これらがノイズとなってトレンチ深さを示す
周期と混同し、抽出可能となる。
1) When using a sample with a masking agent, the trench aperture ratio (A
) and efficiency (K) become small, and the signal indicating the trench depth becomes weak. High frequency signals remain due to interference between the light reflected from the upper surface of the masking agent and the light multiplexed between the upper and lower surfaces of the masking agent, and these signals become noise and are confused with the period indicating the trench depth, making it possible to extract them.

2)マスク剤の光路長とトレンチ深さの光路長が近い時
は、バイパスフィルターでトレンチ深さを示す信号のみ
を得るのが困難で、前記の各特性が混合するか、或は各
特性とも消してしまう結果となり、トレンチ深さを示す
特性のみを抽出することができない。
2) When the optical path length of the mask agent and the optical path length of the trench depth are close to each other, it is difficult to obtain only a signal indicating the trench depth using a bypass filter, and the above characteristics may be mixed, or each characteristic may be different from each other. As a result, only the characteristics indicating the trench depth cannot be extracted.

3)得られた出力を周波数領域に変換後に、すなわちフ
ーリエ変換で周波数成分ごとに分解してトレンチ深さの
信号を見つける方法では、特に該信号が微弱になった時
、マスク剤の特性の周期の整数倍信号と混合し、注出す
ることができない。
3) In the method of finding the signal of the trench depth by converting the obtained output into the frequency domain, that is, decomposing it into each frequency component using Fourier transform, especially when the signal becomes weak, it is difficult to find the period of the characteristic of the masking agent. It cannot be mixed and extracted with an integer multiple of the signal.

本発明は上記した様な問題点を有していた場合でも、よ
り正確にトレンチ深さを示す信号のみを抽出することを
可能にし、従来、測定不可能であった試料を測定可能に
し、さらに測定の不安定であったものをより高精度に測
定することを可能にしたトレンチ深さ測定の際、好適な
凹凸部深さ測定装置の提供を目的とする。
Even when the present invention has the above-mentioned problems, it is possible to more accurately extract only the signal indicating the trench depth, and it is possible to measure samples that were previously impossible to measure. The purpose of the present invention is to provide a suitable irregularity depth measuring device for trench depth measurement, which makes it possible to measure the depth of irregularities with higher accuracy even though the measurement was unstable.

〔問題点を解決するための手段及び作用〕本発明によれ
ば、被測定物の分光反射特性を測定し、該被測定物の凹
凸部のある部分と凹凸部のない部分の各分光反射特性を
測定し、該多分光反射特性を用いて信号処理を行い、凹
凸部の深さを示す特性のみを注出することである。
[Means and effects for solving the problem] According to the present invention, the spectral reflection characteristics of an object to be measured are measured, and the spectral reflection characteristics of a portion of the object to be measured with an uneven portion and a portion without an uneven portion are determined. is measured, and signal processing is performed using the multi-spectral reflection characteristics to extract only the characteristics indicating the depth of the uneven portion.

〔実施例〕〔Example〕

第1図は、本発明の一実施例の光学系概略図及び処理過
程のブロック図である。lはトレンチが掘られしかも、
トレンチ面にはマスク剤のついた被測定物、2は白色光
源、3はコンデンサーレンズ、4は対物レンズ、5はハ
ーフミラ−16は結像レンズ、7はピンホール、8は分
光器、9はA/D変換器、10はゲート、11. 12
は分光特性を記憶するメモリー、13は11. 12の
データの差分計算する演算処理部、14はトレンチ深さ
の信号特性のみを透過するバンドパスフィルター、15
はトレンチ深さの信号のコントラストを拡大する振幅拡
大部であり、13〜15においてトレンチ深さの信号の
みを注出する信号処理部が構成されている。さらに、1
6はトレンチ深さの特性の極大、極小ピークの検出部、
17はトレンチ深さ計算部で、16. 17により計算
部が構成されている。18は出力部である。100は被
測定物を保持するステージ、19はステージを駆動する
ステージ駆動部である。
FIG. 1 is a schematic diagram of an optical system and a block diagram of a processing process according to an embodiment of the present invention. l may have a trench dug,
The object to be measured has a masking agent on the trench surface, 2 is a white light source, 3 is a condenser lens, 4 is an objective lens, 5 is a half mirror, 16 is an imaging lens, 7 is a pinhole, 8 is a spectrometer, and 9 is a spectrometer. A/D converter, 10 is a gate, 11. 12
13 is a memory for storing spectral characteristics, 11. 12 is an arithmetic processing unit that calculates the difference between data; 14 is a bandpass filter that transmits only the signal characteristics of the trench depth; 15 is a bandpass filter that transmits only the signal characteristics of the trench depth;
1 is an amplitude expansion section that expands the contrast of the trench depth signal, and 13 to 15 constitute a signal processing section that extracts only the trench depth signal. Furthermore, 1
6 is a detection unit for maximum and minimum peaks of trench depth characteristics;
17 is a trench depth calculation section; 16. 17 constitutes a calculation section. 18 is an output section. 100 is a stage that holds the object to be measured, and 19 is a stage drive unit that drives the stage.

白色光源2の光束は、コンデンサーレンズ3、ハーフミ
ラ−5及び対物レンズ4を介して、被測定物lに照射さ
れる。被測定物1からの反射光は対物レンズ4、ハーフ
ミラ−5、結像レンズ6を介して、その1部がピンホー
ル7を通過し、分光器により、測定に必要な波長範囲に
おいて分光される。ここで被測定物lとピンホール7と
は共役関係にあり、ピンホール径をφP被測定物lから
ピンホール7面への倍率をβとすると、測定領域φSは
、φS=φP/β となる。
The light beam from the white light source 2 is irradiated onto the object to be measured 1 via a condenser lens 3, a half mirror 5, and an objective lens 4. The reflected light from the object to be measured 1 passes through an objective lens 4, a half mirror 5, and an imaging lens 6, and a part of it passes through a pinhole 7, and is separated by a spectrometer in the wavelength range necessary for measurement. . Here, the object to be measured l and the pinhole 7 are in a conjugate relationship, and if the pinhole diameter is φP and the magnification from the object to be measured l to the surface of the pinhole 7 is β, the measurement area φS is φS=φP/β. Become.

つまり、φS内の反射光のみが測定される。In other words, only the reflected light within φS is measured.

測定前に、ステージ駆動部19により、被測定物1が移
動し、測定領域φSがトレンチのある部分になるようセ
ットされる。前述した過程で反射光の分光特性が検出さ
れた後に、A/D変換器9に入力し、量子化され、ゲー
ト10により、まずトレンチのある部分の分光特性とし
て、メモリ11に記憶される。次にステージ駆動部19
により被測定物1はトレンチのない部分にセットされ、
同様の過程で、分光特性が測定され、ゲート10に達す
る。ここで、ゲート10を切り換え、メモリ12にトレ
ンチのない部分の分光特性として記憶される。
Before measurement, the object to be measured 1 is moved by the stage drive unit 19 and set so that the measurement region φS is located in a portion of the trench. After the spectral characteristics of the reflected light are detected in the process described above, they are input to the A/D converter 9, quantized, and first stored in the memory 11 by the gate 10 as the spectral characteristics of a certain portion of the trench. Next, the stage drive section 19
The object to be measured 1 is set in a part without a trench,
In a similar process, the spectral characteristics are measured and reach the gate 10. Here, the gate 10 is switched and the spectral characteristics of the portion without the trench are stored in the memory 12.

メモリ11.メモリ12の各分光反射特性をRTM(λ
)、RM(λ)とすると、差分演算部13により、ΔR
(λ)=RrM(λ)−K(λ)・RM(λ) ・・・
・・・・・(3)の演算が行われる。ここではK(λ)
は、第4図に示す様に、メモリ11.12の各分光反射
特性RTM(λ)、RM(λ)の絶対、値の差を合わせ
るための補正係数であり、本来は波長依存の関数となる
が、使用波長範囲で特に値が大きく変化しなければ波長
に依存しない定数でもかまわない。また、該補正係数K
(λ)は、オペレーターがマニュアルで入力しても、計
算処理でオートに算出してもかまわない。後者の計算処
理による方法としては、例えば、第4図の特性を例にと
ると(41はRTM(λ)。
Memory 11. Each spectral reflection characteristic of the memory 12 is expressed as RTM (λ
), RM(λ), the difference calculation unit 13 calculates ΔR
(λ)=RrM(λ)−K(λ)・RM(λ)...
...The calculation in (3) is performed. Here K(λ)
As shown in Fig. 4, is a correction coefficient for adjusting the difference in the absolute values of the spectral reflection characteristics RTM (λ) and RM (λ) of the memories 11 and 12, and is originally a wavelength-dependent function. However, a constant that does not depend on wavelength may be used as long as the value does not change significantly within the wavelength range used. In addition, the correction coefficient K
(λ) may be manually input by the operator or automatically calculated by calculation. As for the latter method using calculation processing, for example, taking the characteristics shown in FIG. 4 as an example (41 is RTM (λ).

42はRM(λ)に相当する)(マスク剤の特性)、R
TM(λ)、RM(λ)にディジタルローパスフィルタ
を用いてRM(λ)42に見られる周期のみを第5図の
様に注出する。RTM(λ)41の出力をHTMLO(
λ)51.RM(λ)42の出力をRMLO(λ)52
とすると、波長による分散も考慮したK(λ) = R
TMLO(λ) / RMLO(λ)・・・・・・・・
・・・・・・・・・・・・・・・・・(4)又は、波長
によらない係数として、 K(λ) = Awe (HTMLO(λ) / RM
LO(λ))・・・・・・・・・・・・・・・(5)(
Ave()は各波長毎の係数の平均値を示す)が考えら
れる。
42 corresponds to RM (λ)) (characteristics of masking agent), R
Using digital low-pass filters for TM(λ) and RM(λ), only the period seen in RM(λ) 42 is extracted as shown in FIG. The output of RTM(λ)41 is converted to HTMLO(
λ)51. The output of RM(λ)42 is converted to RMLO(λ)52
Then, K(λ) = R considering dispersion due to wavelength
TMLO(λ) / RMLO(λ)・・・・・・・・・
・・・・・・・・・・・・・・・・・・(4) Or, as a coefficient independent of wavelength, K(λ) = Awe (HTMLO(λ) / RM
LO(λ))・・・・・・・・・・・・・・・(5)(
Ave() indicates the average value of the coefficients for each wavelength).

(4)式は、トレンチ深さの光路長とマスク剤の光路長
に差があり、特にトレンチ深さの信号が微弱になった時
に有効である。また(5)式はトレンチ深さの光路長と
マスク剤の光路長が近接してトレンチ深さの信号が強い
時有効である。また、(3)式のかわりにΔR’ (λ
) =RtM(λ)/ (K (λ)・RM(λ))の
演算処理を用いてもよい。
Equation (4) is particularly effective when the trench depth signal becomes weak because there is a difference between the optical path length of the trench depth and the optical path length of the masking agent. Further, equation (5) is effective when the optical path length of the trench depth and the optical path length of the masking agent are close to each other and the trench depth signal is strong. Also, instead of formula (3), ΔR' (λ
)=RtM(λ)/(K(λ)·RM(λ)) may be used.

前述したRTM(λ)とRM(λ)の測定順は逆でも構
わない。
The measurement order of RTM (λ) and RM (λ) described above may be reversed.

13により演算された式(3)により表わされるΔR(
λ)は、トレンチ深さを示す特性のみを透過するディジ
タルバンドパスフィルター14により、差分演算13で
とりきれなかったマスク剤の特性、さらには、ノイズを
除去し、振幅拡大部15により、トレンチ深さ信号のコ
ントラストが拡大され、極値の検出を容易にする。ピー
ク検出部16で測定波長域内の全ての極値が検出される
。ここで、差分演算13及びディジタルバンドパスフィ
ルター14のどちらか一方の処理だけでもかまわない。
ΔR(
λ) is filtered by a digital bandpass filter 14 that transmits only the characteristics indicating the trench depth, which removes the characteristics of the masking agent that could not be removed by the difference calculation 13, as well as noise. The contrast of the signal is magnified, making it easier to detect extreme values. The peak detector 16 detects all extreme values within the measurement wavelength range. Here, only one of the difference calculation 13 and the digital bandpass filter 14 may be processed.

式(1)のトレンチ深さを示す特性(第3項)をR1・
(λ)とお(、つまり、 R・r (λ) =2 F[(1−A) K・Opa・
or−cos (φ’M−φT−δ)である。   ・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・−・・・・・・・・・ (6)(6)
式は、 φM−φ丁−δ=2mπ(mは整数)で極大。
The characteristic (third term) indicating the trench depth in equation (1) is expressed as R1・
(λ) and (that is, R・r (λ) = 2 F[(1−A) K・Opa・
or-cos (φ'M-φT-δ).・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・-・・・・・・・・・ (6)(6)
The formula is maximum at φM-φd-δ=2mπ (m is an integer).

φM−φ丁−6= (2m−1)π(mは整数)で極小
値をとる。
It takes the minimum value at φM-φd-6=(2m-1)π (m is an integer).

つまり、第4図から、λ1.λ2を検出すれば、=2m
π ・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
(7)(7)(8)式よりトレンチ深さdvは、と表わ
される。
That is, from FIG. 4, λ1. If λ2 is detected, = 2m
π ・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
From equations (7), (7), and (8), the trench depth dv is expressed as follows.

ここで、φM(λ1)、  φM(λ2)、  φT(
λI)。
Here, φM(λ1), φM(λ2), φT(
λI).

φ丁(λ2)は、極値波長λ1.λ2が検出され、マス
ク剤の構成(膜厚、屈折率)がわかっていれば、計算に
より算出可能なフレネル係数で、さらにnT、  θは
既知であるので、トレンチ深さを求めることができる。
φd (λ2) is the extreme wavelength λ1. If λ2 is detected and the composition of the mask agent (film thickness, refractive index) is known, the trench depth can be determined using Fresnel coefficients that can be calculated, and since nT and θ are known.

実際には、全ての隣り合う極値から(9)式により、多
数のトレンチ深さを得、平均化することにより安定性を
高めている。
In reality, stability is improved by obtaining a large number of trench depths from all adjacent extreme values using equation (9) and averaging them.

さらに(9)式において、特に多層膜の場合にはφ9(
8)は、波長により複雑に変化する。従って、各極値間
隔は、理論的には等間隔でない。この様な信号に対して
は、FFT等の周波数領域に変換する従来技術の1例の
方法では、検出ピークはなまり、安定性を大幅に欠くこ
とになり、安定した測定は不可能である。
Furthermore, in equation (9), especially in the case of a multilayer film, φ9(
8) changes in a complicated manner depending on the wavelength. Therefore, each extreme value interval is theoretically not equally spaced. For such a signal, if a conventional method such as FFT is used to convert the signal into a frequency domain, the detected peak will be rounded and the stability will be significantly lacking, making stable measurement impossible.

また、トレンチ底面の形状がくずれた試料では、効率K
が減少し、(6)式の振幅は減衰する。この振幅の大き
さ、又は振幅拡大部での拡大率を検出することによりト
レンチ底面の形状判定方法への応用も可能である。
In addition, in a sample where the shape of the trench bottom is distorted, the efficiency K
decreases, and the amplitude of equation (6) attenuates. By detecting the magnitude of this amplitude or the enlargement rate at the amplitude enlargement section, it is also possible to apply this method to a method for determining the shape of the bottom surface of a trench.

第2図に本発明の第2の実施例の光学配置図及び処理過
程のブロック図を示す。
FIG. 2 shows an optical layout diagram and a block diagram of a processing process in a second embodiment of the present invention.

21は白色光源、22はコンデンサーレンズ、23はハ
ーフミラ−124は対物レンズ、25は結像レンズ、2
6はピンホール、27は分光器である。多は第1図と共
通である。
21 is a white light source, 22 is a condenser lens, 23 is a half mirror, 124 is an objective lens, 25 is an imaging lens, 2
6 is a pinhole, and 27 is a spectrometer. The number is the same as in Figure 1.

本実施例では、トレンチのある部分とトレンチのない部
分の分光反射特性を測定する手段を各々別個に持ってい
る。2〜9からなる構成により、トレンチのない部分の
分光反射特性を測定し、21〜28からなる同一の構成
により、トレンチのある部分の分光反射特性を測定し、
以下同様に信号処理されトレンチ深さを求めている。2
チヤンネルの測定手段により、同時測定を可能にし、測
定時間が短縮される。さらに、A/D変換器9,28を
除き、アナログ量として、差分演算を行い、ディジタル
バンドパスフィルターのかわりに、アナログバンドパス
フィルターを用いてもよい。又、マスク剤の無い部分や
、トレンチ深さの信号が大きい場合は、差分を取らずに
、凹凸部の分光反射特性の信号を直接バンドパスフィル
ターに入れて、信号処理して深さ計算を行うように、切
換えができる様にしてもよい。バンドパスフィルターを
通すだけでも膜厚によるうねり等の低周波成分、膜上下
面間で複数反射した光によるうねり等のより高周波な成
分を除去する効果がある。
In this embodiment, means for measuring the spectral reflection characteristics of a portion with a trench and a portion without a trench are provided separately. With the configuration consisting of 2 to 9, the spectral reflection characteristics of the part without the trench are measured, and with the same configuration consisting of 21 to 28, the spectral reflection characteristics of the part with the trench are measured,
Thereafter, the signals are processed in the same way to determine the trench depth. 2
Channel measurement means allow simultaneous measurements and reduce measurement time. Furthermore, the A/D converters 9 and 28 may be removed and differential calculations may be performed as analog quantities, and an analog band pass filter may be used instead of the digital band pass filter. In addition, if there is no masking agent or the trench depth signal is large, the signal of the spectral reflection characteristics of the uneven part is directly input to the bandpass filter without taking the difference, and the signal is processed to calculate the depth. It may also be possible to switch as shown in FIG. Simply passing through a bandpass filter has the effect of removing low frequency components such as waviness due to film thickness and higher frequency components such as waviness due to multiple reflections of light between the upper and lower surfaces of the film.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、凹凸部のある部分と凹凸部のない部分
の各分光反射特性を測定し、各分光反射特性に、特定の
信号処理を促すことにより、凹凸部の深さを示す特性以
外の信号は除去し、凹凸部の深さを示す信号のみをとり
出すことを可能とし、従来技術では、測定不可能もしく
は、測定の不安定だった被測定物についても、安定した
測定が可能となった。
As mentioned above, by measuring each spectral reflection characteristic of a part with an uneven part and a part without an uneven part, and by prompting a specific signal processing for each spectral reflection characteristic, it is possible to measure the spectral reflection characteristics of a part with an uneven part and a part without an uneven part. This makes it possible to remove the signal indicating the depth of the uneven part and extract only the signal indicating the depth of the uneven part, making it possible to perform stable measurements even on objects to be measured that were impossible or unstable to measure with conventional technology. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施したトレンチ測定用光学配置図と
処理過程のブロック図、 第2図は本発明の第2の実施例のトレンチ測定用光学配
置図と処理過程のブロック図、 第3図はトレンチ試料の断面図、 第4図はトレンチのある面とマスク剤のみの面の分光反
射特性を示す図、 第5図は第4図にローパスフィルタを促した特性図、第
6図A、  Bは従来技術の概略図、である。 図中、
FIG. 1 is a block diagram of an optical layout for trench measurement and a block diagram of a processing process according to the present invention; FIG. 2 is a block diagram of an optical layout for trench measurement and a block diagram of a processing process according to a second embodiment of the present invention; The figure is a cross-sectional view of the trench sample, Figure 4 is a diagram showing the spectral reflection characteristics of the surface with the trench and the surface with only the masking agent, Figure 5 is a characteristic diagram with a low-pass filter applied to Figure 4, and Figure 6A , B is a schematic diagram of the prior art. In the figure,

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物の凹部の深さを求める装置において、被
測定物を保持する手段と、前記保持手段に保持された被
測定物を照明する手段と、前記照明手段に照明された被
測定物からの光を受光して分光反射特性を測定する1つ
ないし複数の測定手段と、を有し、前記測定手段によっ
て、前記凹部を含む部分の分光反射特性と、前記凹部を
含まない部分の分光反射特性とを得、両特性によってノ
イズ成分を補正して前記凹部の深さ測定を行う事を特徴
とする測定装置。
(1) A device for determining the depth of a concave portion of an object to be measured, including means for holding the object to be measured, means for illuminating the object to be measured held by the holding means, and a device to be measured illuminated by the illuminating means. one or more measuring means for measuring spectral reflection characteristics by receiving light from an object, and the measuring means measures the spectral reflection characteristics of a portion including the recess and a portion not including the recess. A measuring device characterized in that the depth of the recess is measured by obtaining spectral reflection characteristics and correcting noise components using both characteristics.
(2)該凹部のない部分を測定する手段と該凹部のある
部分を測定する手段は同一の手段であり、該被測定物の
分光反射特性の測定領域を移動させる手段を設けたこと
を特徴とする特許請求の範囲第1項記載の測定装置。
(2) The means for measuring the part without the recess and the means for measuring the part with the recess are the same means, and a means for moving the measurement area of the spectral reflection characteristics of the object to be measured is provided. A measuring device according to claim 1.
JP30407987A 1987-12-01 1987-12-01 Measuring apparatus Pending JPH01145508A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30407987A JPH01145508A (en) 1987-12-01 1987-12-01 Measuring apparatus
US07/593,253 US5087121A (en) 1987-12-01 1990-10-01 Depth/height measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30407987A JPH01145508A (en) 1987-12-01 1987-12-01 Measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01145508A true JPH01145508A (en) 1989-06-07

Family

ID=17928775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30407987A Pending JPH01145508A (en) 1987-12-01 1987-12-01 Measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01145508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118825A (en) * 1991-04-30 1993-05-14 Internatl Business Mach Corp <Ibm> Method and device for monitoring site and on-line of trench forming process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035519A (en) * 1983-08-08 1985-02-23 Hitachi Micro Comput Eng Ltd Film thickness monitoring device
JPS61235708A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Measuring instrument for step

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035519A (en) * 1983-08-08 1985-02-23 Hitachi Micro Comput Eng Ltd Film thickness monitoring device
JPS61235708A (en) * 1985-04-12 1986-10-21 Hitachi Ltd Measuring instrument for step

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05118825A (en) * 1991-04-30 1993-05-14 Internatl Business Mach Corp <Ibm> Method and device for monitoring site and on-line of trench forming process

Similar Documents

Publication Publication Date Title
US5398113A (en) Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
US6753972B1 (en) Thin film thickness measuring method and apparatus, and method and apparatus for manufacturing a thin film device using the same
US8319975B2 (en) Methods and apparatus for wavefront manipulations and improved 3-D measurements
US5087121A (en) Depth/height measuring device
EP0718595B1 (en) Automatic rejection of diffraction effects in thin film metrology
US20100007894A1 (en) Multilayer Structure Measuring Method and Multilayer Structure Measuring Apparatus
JP4270614B2 (en) Apparatus for detecting physical quantity of observation object and detection method using the same
TW201728869A (en) Device and method for measuring height in the presence of thin layers
KR100916618B1 (en) Method for measuring thickness profile of thin-film layers by dispersive white-light interferometry based on spectroscopic reflectometry
US6900900B2 (en) Apparatus and method for enabling high resolution film thickness and thickness-uniformity measurements
WO1994000733A1 (en) Method of an apparatus for interferometrically inspecting a surface of an object
US6741356B1 (en) Method for detecting physical amount of object and optical apparatus using the same
US20010019635A1 (en) Fringe analysis method using fourier transform
JPH01145508A (en) Measuring apparatus
JPH01145507A (en) Measurement
JPS59105508A (en) Measurement of whith interference film thickness
JPS6385305A (en) Apparatus for measuring depth of fine groove
JPS6271804A (en) Film thickness measuring instrument
JPH01145504A (en) Optically measuring apparatus
JP2001159736A (en) Method for detecting physical quantity of observation object and detector using the same
JPH01320409A (en) Film thickness measuring method
JP3040140B2 (en) Chromatic aberration measurement method and measurement device
JPH04177105A (en) Film thickness measuring apparatus
JP2003065709A (en) Method for analyzing interference fringe of transparent parallel flat plate
JPH09236404A (en) Determination of optical path difference by measuring color variation of white interference fringe