JP6540568B2 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
JP6540568B2
JP6540568B2 JP2016058918A JP2016058918A JP6540568B2 JP 6540568 B2 JP6540568 B2 JP 6540568B2 JP 2016058918 A JP2016058918 A JP 2016058918A JP 2016058918 A JP2016058918 A JP 2016058918A JP 6540568 B2 JP6540568 B2 JP 6540568B2
Authority
JP
Japan
Prior art keywords
value
motor
torque ripple
drive current
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058918A
Other languages
English (en)
Other versions
JP2017175775A (ja
Inventor
隆大 稗島
隆大 稗島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016058918A priority Critical patent/JP6540568B2/ja
Publication of JP2017175775A publication Critical patent/JP2017175775A/ja
Application granted granted Critical
Publication of JP6540568B2 publication Critical patent/JP6540568B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/01Monitoring wear or stress of gearing elements, e.g. for triggering maintenance

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Direct Current Motors (AREA)

Description

本発明は、出力ギアと噛み合って回転するモータギアを有するモータを制御する電子制御装置に関する。
従来、特許文献1に記載のように、モータを制御する制御ユニット(電子制御装置)が知られている。制御ユニットは、マイコンと、ドライバ及びインバータ回路と、回転検出器と、を備えている。マイコンは、ドライバ及びインバータ回路を介して、モータに流れる電流を制御している。回転検出器は、モータの回転を検出し、マイコンにパルス信号を出力している。
マイコンは、パルス信号に基づきモータが回転しているか否かを判定する。また、マイコンは、モータの電極の電圧レベルを検出する。そして、マイコンは、モータの回転が停止している場合の電圧レベルに基づき、モータにおける短絡等の異常を検出している。
特開2010−158131号公報
モータのモータギアが、出力ギアと噛み合って回転する構成が考えられる。この構成では、モータギア及び出力ギアの少なくとも一方において歯が破損する等の異常が生じることがある。しかしながら、モータギア及び出力ギアの少なくとも一方に異常が生じた場合であっても、モータの回転が停止している場合の電圧レベルは変化し難い。そのため、上記構成では、モータギア及び出力ギアの異常を判定できない虞がある。
本発明はこのような課題に鑑みてなされたものであり、モータギア及び出力ギアの異常を判定することができる電子制御装置を提供することを目的とする。
本発明は、上記目的を達成するために以下の技術的手段を採用する。なお、括弧内の符号は、ひとつの態様として下記の実施形態における具体的手段との対応関係を示すものであって、技術的範囲を限定するものではない。
本発明のひとつは、出力ギア(220,230,240,250)と噛み合って回転するモータギア(214)を有するモータ(210)を制御する電子制御装置であって、
モータに駆動電流を流し、モータギア及び出力ギアを回転させる回転制御部(10,20)と、
駆動電流を検出し、検出信号を出力する電流検出部(30)と、
駆動電流においてモータのトルク変動に伴って生じるトルクリップルを検出信号に基づき検出するリップル検出部(S12)と、
リップル検出部により検出されたトルクリップルの値と閾値とを比較し、トルクリップルの値が閾値を超える場合に、出力ギア及びモータギアの少なくとも一方に異常が生じていると判定する異常判定部(S14,S16)と、
を備え
異常判定部には、出力ギアの回転角度を検出する回転センサからセンサ信号が入力され、
異常判定部は、センサ信号に基づき、トルクリップルの値及び閾値の比較を同じ回転角度で複数回行い、同じ回転角度でトルクリップルの値が閾値を複数回超える場合にのみ、異常が生じていると判定する
モータギア及び出力ギアの少なくとも一方に異常が生じた場合、モータのトルクが変動する。このトルク変動に応じて、駆動電流で生じるトルクリップルの値が大きくなる。よって、モータギア及び出力ギアの少なくとも一方に異常が生じた場合、トルクリップルの値が大きくなる。これに対し上記構成では、異常判定部が、トルクリップルの値に基づき、モータギア及び出力ギアの異常を判定している。したがって、電子制御装置では、モータギア及び出力ギアの異常を判定することができる。
第1実施形態に係る電子制御装置、アクチュエータ、及び、ウェイストゲートバルブの概略構成を示す図である。 電子制御装置の概略構成を示すブロック図である。 回転角度に対する駆動電流の値を示す図である。 異常判定処理の処理手順を示すフローチャートである。 トルクリップルの波形について説明するための図である。 トルクリップルの波形について説明するための図である。 トルクリップルの波形について説明するための図である。 トルクリップルの波形について説明するための図である。 ギアに異常が生じた場合におけるトルクリップルのピーク値を示す図である。 ギアに異常が生じた場合におけるトルクリップルのピーク値を示す図である。 ギアに異常が生じた場合におけるトルクリップルのピーク値を示す図である。
図面を参照して説明する。なお、複数の実施形態において、共通乃至関連する要素には同一の符号を付与するものとする。
(第1実施形態)
先ず、図1及び図2に基づき、電子制御装置100の概略構成について説明する。
本実施形態において、電子制御装置100は、車両用のECUである。図1に示すように、電子制御装置100は、アクチュエータ200を制御する。アクチュエータ200の駆動により、ウェイストゲートバルブ300が開閉動作を行う。ウェイストゲートバルブ300は、ウエストゲートバルブ、又は、WGVとも称することができる。
また、本実施形態において、電子制御装置100は、アクチュエータ200に加えて、エンジンも制御している。例えば、電子制御装置100は、スロットルバルブの開度を調整するスロットルアクチュエータを制御する。また、電子制御装置100は、燃料噴射量を調整するインジェクタ、及び、点火プラグに高電圧を印加する点火装置を制御する。
アクチュエータ200は、モータ210と、平ギア220と、ウォーム230と、ヘリカルギア240と、アーム250と、を有している。モータ210は、出力軸212と、出力軸212に設けられたモータギア214と、を有している。モータギア214には、平ギア220が噛み合っている。平ギア220の軸部にはウォーム230が連結されている。また、ウォーム230は、ヘリカルギア240と噛み合っている。
ヘリカルギア240は、軸部242を中心に回転する。軸部242には、ヘリカルギア240と一体回転するアーム250が設けられている。アーム250の一端は、ロッド310を介してウェイストゲートバルブ300が連結されている。以下、平ギア220、ウォーム230、ヘリカルギア240、及び、アーム250をまとめて、出力ギアとも称する。出力ギアは、モータギア214の回転力及び回転方向を変換して、ロッド310に伝達するものである。また、モータギア214、平ギア220、ウォーム230、ヘリカルギア240、及び、アーム250をまとめて、ギアとも称する。ギアは、ギヤとも称することができる。本実施形態において、ギアの少なくとも1つは、樹脂材料を用いて形成されている。
アクチュエータ200には、回転センサ400が配置されている。回転センサ400は、ヘリカルギア240の回転角度を検出し、検出した回転角度に基づくセンサ信号を電子制御装置100へ出力する。以下、ヘリカルギア240の回転角度を、単に回転角度とも称する。回転角度は、ウェイストゲートバルブ300の開度と対応している。よって、回転センサ400は、開度センサと称することもできる。
アクチュエータ200では、モータ210の通電によりモータギア214が回転する。モータギア214の回転は、平ギア220及びウォーム230を介してヘリカルギア240に伝達される。そして、ヘリカルギア240の回転に伴いロッド310が移動する。これにより、ウェイストゲートバルブ300が開閉動作を行う。
図2に示すように、電子制御装置100は、駆動回路10と、マイコン20と、電流検出回路30と、第1ADC40と、第2ADC50と、を備えている。また、電子制御装置100は、端子として、電源端子100a、第1モータ端子100b、第2モータ端子100c、センサ端子100d、及び、グランド端子100eを有している。
駆動回路10は、マイコン20からの制御信号に応じて、モータ210に駆動電流を流すものである。詳しく言うと、駆動回路10は、モータ210のアーマチャコイル等に駆動電流を流すものである。本実施形態において、モータ210は直流モータである。そのため、駆動回路10は、モータ210に直流電流を流すように構成されている。
駆動回路10は、4個のFET12〜18を有し、Hブリッジ回路を構成している。本実施形態において、FET12〜18は、Nチャネル型とされている。FET12,14のドレインは、電源端子100aを介して、電源500と電気的に接続されている。電源500は、例えば、12Vを出力する車両用のバッテリである。
FET12,16のソースは、第1モータ端子100bを介して、モータ210と電気的に接続されている。FET14のソース及びFET18のドレインは、第2モータ端子100cを介してモータ210と電気的に接続されている。FET16のドレイン及びFET18のソースは、グランド端子100eを介して、グランド600と電気的に接続されている。
各FET12〜18のゲートは、マイコン20と電気的に接続されている。マイコン20は、各FET12〜18に制御信号を出力している。マイコン20は、制御信号により、FET12〜18のオンオフ状態を制御している。マイコン20は、FET12,18をオンにするとともにFET14,16をオフにすることで、モータ210を正転させる。一方、マイコン20は、FET12,18をオフにするとともにFET14,16をオンにすることで、モータ210を逆転させる。駆動回路10及びマイコン20は、特許請求の範囲に記載の回転制御部に相当する。
電流検出回路30は、駆動電流を検出するものである。本実施形態において、電流検出回路30は、抵抗32とオペアンプ34とを有している。抵抗32の一端は、FET14のソース及びFET18のドレインの接続点と電気的に接続されている。抵抗32の他端は、第2モータ端子100cと電気的に接続されている。よって、抵抗32は、FET14のソース及びFET18のドレインと、第2モータ端子100cと、を電気的に中継している。これにより、抵抗32には、駆動電流が流れる。
オペアンプ34は、抵抗32に流れる駆動電流を電圧に変換して出力する。オペアンプ34の入力端子は、抵抗32の両端に接続されている。オペアンプ34の出力端子は、第1ADC40と電気的に接続されている。なお、電流検出回路30は、特許請求の範囲に記載の電流検出部に相当する。
第1ADC40は、オペアンプ34が出力するアナログ信号をデジタル信号に変換するものである。第1ADC40は、マイコン20と電気的に接続されている。第1ADC40は、変換したデジタル信号をマイコン20に出力する。以下、第1ADC40がマイコン20へ出力する信号を電流信号と示す。電流信号は、駆動電流の値を示すデジタル信号である。電流信号、及び、オペアンプの出力するアナログ信号は、特許請求の範囲に記載の検出信号に相当する。
マイコン20は、電流信号に基づき、駆動電流が所定値となるように制御信号を生成している。すなわち、マイコン20は、駆動電流が所定値となるように、モータ210を電流フィードバック制御している。
第2ADC50は、アナログ信号であるセンサ信号をデジタル信号に変換するものである。第2ADC50は、センサ端子100dを介して回転センサ400と電気的に接続されている。また、第2ADC50は、マイコン20とも電気的に接続されている。第2ADC50は、デジタル信号に変換したセンサ信号をマイコン20に出力する。
マイコン20は、ギアの少なくとも1つに異常が生じているか否かを判定する。すなわち、マイコン20は、アクチュエータ200に異常が生じているか否かを判定する。言い換えると、マイコン20は、ギアの異常、すなわちアクチュエータ200の異常を検出する。以下、ギアの異常についてマイコン20が判定する処理を、異常判定処理と示す。異常判定処理は、異常検出処理とも言い換えることができる。マイコン20は、ギアの異常として、例えば、少なくとも1つのギアにおける歯の破損、ロッド310がアーム250から外れること、及び、アーム250がヘリカルギア240から外れることを検出する。
ところで、モータ210では、回転角度に応じた磁気抵抗の変化によりコギングが生じる。詳しく言うと、コギングとは、モータ210の回転角度に応じた磁気抵抗の変化により、モータ210のトルクが変動することである。このコギング等により、駆動電流の値は、モータ210の回転角度に応じて変動する。図3に示すように、駆動電流の値は、ヘリカルギア240の回転角度に応じて変動する。
この駆動電流の変動は、トルクリップルと称することができる。すなわち、トルクリップルは、モータ210のトルク変動に伴って生じる駆動電流の値の変動である。なお、図3では、駆動電流が一定値となるようにマイコン20が駆動回路10に制御信号を出力している場合において、モータ210に流れる駆動電流の値を示している。駆動電流においてトルクリップルは、モータ210が所定角度回転する度に生じている。
図3に示す例では、所定の回転角度域でギアに異常が生じている。以下、ギアの異常によりモータ210のトルクが変動している回転角度域を、異常角度域と示す。ギアが正常な場合におけるトルクリップルの値に較べて、異常角度域におけるトルクリップルの値は大きくなっている。
マイコン20は、駆動電流で生じるトルクリップルの値に基づき、異常判定処理を行う。また、マイコン20は、駆動電流に加えて、センサ信号を用いて異常判定処理を行う。詳しく言うと、マイコン20は、第1ADC40からの電流信号、及び、第2ADC50の出力信号に基づき、異常判定処理を行う。
なお、駆動電流にノイズが生じる場合もある。ノイズとしては、電子制御装置100内の回路で生じるものや、外部の電磁波が電子制御装置100に入力されることで生じるものが想定される。
次に、図3〜図11に基づき、マイコン20における異常判定処理の処理手順について説明する。
マイコン20は、例えば、電子制御装置100に電源が入力された場合に、異常判定処理を開始する。図4に示すように、異常判定処理においてマイコン20は、先ず、検出条件が成立しているか否かを判定する(S10)。検出条件とは、マイコン20がトルクリップルの検出を行うか否かを判定するための前提条件である。
検出条件としては、車両が停車していることを採用することができる。詳しく言うと、本実施形態では、検出条件として、イグニッションスイッチがオンからオフに切り替えられたことを採用する。
マイコン20は、S10において検出条件が成立しないと判定すると、異常判定処理を終了する。マイコン20は、異常判定処理を終了すると、異常判定処理を再度開始する。すなわち、電子制御装置100に電源が入力されている間には、マイコン20が異常判定処理を繰り返し行う。本実施形態においてマイコン20は、イグニッションスイッチがオンからオフに切り替えられる度に、S10において検出条件が成立したと判定する。
マイコン20は、S10において検出条件が成立すると判定すると、駆動電流におけるトルクリップルの波形を解析する(S12)。詳しく言うと、マイコン20は、駆動電流で生じるトルクリップルを検出し、検出したトルクリップルの値、及び、トルクリップルが生じた回転角度域を記憶する。マイコン20におけるS12の処理を行う機能は、特許請求の範囲に記載のリップル検出部に相当する。
マイコン20は、所定期間において、出力ギアが回転可能な回転角度の全域の各値をとるように、モータ210及びギアを回転させる。すなわち、マイコン20は、ウェイストゲートバルブ300が移動可能な全ての開度をとるように、モータ210及びギアを回転させる。例えば、ヘリカルギア240の回転可能な回転角度が0°〜180°の場合、マイコン20は、先ず、回転角度を0°とする。そしてマイコン20は、回転角度が大きくなるようにモータ210を回転させ、回転角度を180°とする。
電流検出回路30は、マイコン20がモータ210を回転させている期間において、駆動電流を検出し続ける。すなわち、電流検出回路30は、出力ギアが回転可能な回転角度の全域において、駆動電流の検出を行う。よって、マイコン20は、出力ギアが回転可能な回転角度の全域における駆動電流に対して、トルクリップルの検出を行う。
マイコン20が、出力ギアの回転可能な回転角度の全域の各値をとるようにモータ210及びギアを回転させ、トルクリップルを検出することを、駆動電流をスキャンすると言い換えることもできる。本実施形態においてマイコン20は、検出条件が成立する度に、駆動電流を1回スキャンする。なお、マイコン20は、検出条件が成立する度に、駆動電流を複数回スキャンしてもよい。
停車していることが検出条件とされているため、電流検出回路30は、停車している場合の駆動電流を検出している。また、マイコン20は、停車している場合の駆動電流に対して、トルクリップルの検出を行っている。
図5〜図8では、トルクリップル及びノイズが生じた場合における駆動電流の波形を示している。図5〜図8の黒丸は、マイコン20が第1ADC40から電流信号を取得するタイミングを示している。よって、図5〜図8の黒丸の値は、マイコン20に入力される電流信号の値に対応している。
駆動電流では、所定角度域でのみトルクリップルが生じる。以下、トルクリップル及びノイズが生じていない場合における駆動電流の状態を定常状態と示す。定常状態における駆動電流の値は、トルクリップル及びノイズが生じている場合に対して、変動し難い。以下、定常状態における駆動電流の値を定常値と示す。なお、図5〜図8では、定常値が一定値となるようにマイコン20が駆動回路10に制御信号を出力している場合において、モータ210に流れる駆動電流の値を示している。
以下、駆動電流において生じるトルクリップルの波形の例として、図5〜図8における4つの例について説明する。なお、図5に示すトルクリップルの波形は、図3に示すトルクリップルの波形と同じである。
図5に示す例では、モータ210が一方向に回転し、時間t1、時間t2、時間t3、時間t4、時間t5、時間t19、時間t20、時間t21の順に時間が経過している。駆動電流では、時間t2から時間t5の間でトルクリップルが生じ、時間t19から時間t21の間でノイズが生じている。
時間t1から時間t2の間において、駆動電流は定常状態とされている。例えば、時間t1から時間t2の間における駆動電流の平均値が定常値である。時間t2から時間t3の間では、時間が経過するほど、駆動電流の値が大きくなる。そして、時間t3を過ぎると、駆動電流の値が下降する。時間t3のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最大値である。以下、時間t3における駆動電流の値から定常値を減じた値を、第1ピーク値と示す。
時間t3から時間t4の間では、時間が経過するほど、駆動電流の値が小さくなる。そして、時間t4を過ぎると、駆動電流の値が上昇する。時間t4のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最小値である。なお、時間t4における駆動電流の値は、定常値よりも小さい。以下、定常値から時間t4における駆動電流の値を減じた値を、第2ピーク値と示す。時間t4から時間t5の間では、時間が経過するほど、駆動電流の値が大きくなる。時間t5のとき、駆動電流は、ほぼ定常値とされている。以上のように、図5に示すトルクリップルでは、駆動電流の値が上昇した後に下降し、再び上昇している。
図5に示す駆動電流では、時間経過に伴って、時間t1から時間t5までの間の波形を繰り返す。以下、駆動電流においてトルクリップルが生じる時間をリップル時間と示す。図5に示す例において、リップル時間は、時間t2から時間t5までの時間である。
時間t19のとき、駆動電流は、ほぼ定常値とされている。時間t19から時間t20の間では、時間が経過するほど、駆動電流の値が大きくなる。そして、時間t20を過ぎると、駆動電流の値が下降する。すなわち、時間t20のときにおける駆動電流の値は、駆動電流においてノイズが生じている状態での最大値である。
時間t20から時間t21の間では、時間が経過するほど、駆動電流の値が小さくなる。時間t21のとき、駆動電流は、ほぼ定常値とされている。以上のように、ノイズでは、駆動電流の値が定常値から上昇した後に下降し、定常値に戻っている。以下、駆動電流にノイズが生じてい時間をノイズ時間と示す。詳しく言うと、ノイズ時間は、時間t19から時間t21までの時間である。
図6に示す例において、トルクリップルでは、駆動電流の値が下降した後に上昇し、再び下降している。この例では、モータ210が、図5に示す例と反対方向に回転している。そして、時間t6、時間t7、時間t8、時間t9、時間t10、時間t19、時間t20、時間t21の順に時間が経過している。駆動電流は、時間t6から時間t7までの間において定常状態である。駆動電流では、時間t7から時間t10の間でトルクリップルが生じている。
時間t7から時間t8の間では、時間が経過するほど、駆動電流の値が小さくなる。時間t8のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最小値である。以下、定常値から時間t8における駆動電流の値を減じた値を、第3ピーク値と示す。
そして、時間t8から時間t9の間では、時間が経過するほど、駆動電流の値が大きくなる。時間t9のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最大値である。なお、時間t9における駆動電流の値は、定常値よりも大きい。以下、時間t9における駆動電流の値から定常値を減じた値を、第4ピーク値と示す。
時間t9から時間t10の間では、時間が経過するほど、駆動電流の値が小さくなる。時間t10のとき、駆動電流は、ほぼ定常値とされている。図6に示す駆動電流では、時間経過に伴って、時間t6から時間t10までの間の波形を繰り返す。この例において、リップル時間は、時間t7から時間t10までの時間である。
図7に示す例において、トルクリップルでは、駆動電流の値が上昇した後に下降している。この例では、モータ210が、図5に示す例と同じ方向に回転している。そして、時間t11、時間t12、時間t13、時間t14、時間t19、時間t20、時間t21の順に時間が経過している。駆動電流は、時間t11から時間t12までの間において定常状態である。駆動電流では、時間t12から時間t14の間でトルクリップルが生じている。
時間t12から時間t13の間では、時間が経過するほど、駆動電流の値が大きくなる。時間t13のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最大値である。以下、時間t13における駆動電流の値から定常値を減じた値を、第5ピーク値と示す。
そして、時間t13から時間t14の間では、時間が経過するほど、駆動電流の値が小さくなる。時間t14のとき、駆動電流は、ほぼ定常値とされている。図7に示す駆動電流では、時間経過に伴って、時間t11から時間t14までの間の波形を繰り返す。この例において、リップル時間は、時間t12から時間t14までの時間である。
図8に示す例において、トルクリップルでは、駆動電流の値が下昇した後に上昇している。この例では、モータ210が、図7に示す例と反対方向に回転している。そして、時間t15、時間t16、時間t17、時間t18、時間t19、時間t20、時間t21の順に時間が経過している。駆動電流は、時間t15から時間t16までの間において定常状態である。駆動電流では、時間t16から時間t18の間でトルクリップルが生じている。
時間t16から時間t17の間では、時間が経過するほど、駆動電流の値が小さくなる。時間t17のときにおける駆動電流の値は、駆動電流においてトルクリップルが生じている状態での最小値である。以下、定常値から時間t17における駆動電流の値を減じた値を、第6ピーク値と示す。
そして、時間t17から時間t18の間では、時間が経過するほど、駆動電流の値が大きくなる。時間t18のとき、駆動電流は、ほぼ定常値とされている。図8に示す駆動電流では、時間経過に伴って、時間t15から時間t18までの間の波形を繰り返す。この例において、リップル時間は、時間t16から時間t18までの時間である。
S12においてマイコン20は、駆動電流に対してパターンマッチングを行うことで、駆動電流にトルクリップルが生じているか否かを判定する。言い換えると、マイコン20は、上記した4つの例のどれかと同じ挙動で駆動電流が変動しているか否かに基づき、駆動電流にトルクリップルが生じているか否かを判定する。マイコン20は、例えば、駆動電流の値の上昇又は下降のタイミング、駆動電流の値の変動におけるピーク値の大きさ、及び、変動する時間の長さに基づき、パターンマッチングを行う。
このとき、マイコン20は、駆動電流の値の変動が、トルクリップルによるものか、ノイズよるものか、を判定する。一般的に、リップル時間は、ノイズ時間よりも長い。そのため、マイコン20は、駆動電流の値の変動に掛かる時間が所定時間よりも長い場合に、ノイズではなくトルクリップルが駆動電流に生じていると判定する。そして、マイコン20は、駆動電流にトルクリップルが生じていると判定すると、トルクリップルの値、及び、トルクリップルが生じている回転角度域を算出して記憶する。本実施形態においてマイコン20は、トルクリップルの値として、トルクリップルのピーク値を記憶する。
図5に示すトルクリップルが駆動電流に生じている場合、マイコン20は、ピーク値として、例えば、第1ピーク値、第2ピーク値、又は、第1ピーク値及び第2ピーク値の平均値を記憶する。図6に示すトルクリップルが駆動電流に生じる場合、マイコン20は、ピーク値として、例えば、第3ピーク値、第4ピーク値、又は、第3ピーク値及び第4ピーク値の平均値を記憶する。図7に示すトルクリップルが駆動電流に生じる場合、マイコン20は、ピーク値として第5ピーク値を記憶する。図8に示すトルクリップルが駆動電流に生じる場合、マイコン20は、ピーク値として第6ピーク値を記憶する。
次に、マイコン20は、トルクリップルの値が閾値を超えるか否かを判定する(S14)。図9〜図11に示すように、マイコン20は、各トルクリップルのピーク値とピーク閾値とを比較し、ピーク値がピーク閾値より大きいか否かを判定する。ピーク閾値とは、トルクリップルのピーク値に対する閾値である。なお、図9〜図11では、マイコン20が検出したトルクリップルのピーク値を黒丸で示し、ピーク閾値を一点鎖線で示している。S14においてマイコン20は、少なくとも1つのピーク値がピーク閾値よりも大きいか否かを判定する。
一般的に、駆動電流の定常値が大きいほど、トルクリップルのピーク値が大きい。これに対し、マイコン20は、定常値が大きいほど閾値を大きくする。詳しく言うと、マイコン20は、定常値が大きいほどピーク閾値を大きくする。以上によればマイコン20は、定常値に応じて決定される閾値と、トルクリップルの値と、を比較してS14の判定を行う。
また、マイコン20は、判定を行うトルクリップルの前に検出されたトルクリップルの値に基づき、閾値を算出する。本実施形態においてマイコン20は、判定を行うトルクリップルの前に検出された複数のトルクリップルの平均値に基づき、閾値を算出する。
図9に示すようにマイコン20は、1回の異常判定処理において、トルクリップルが生じた回転角度毎にピーク閾値を変化させる。この例において異常判定処理が開始されると、マイコン20は、複数のトルクリップルを検出するとともに、検出した複数のトルクリップルのピーク値を算出する。次にマイコン20は、算出した複数のピーク値の平均値に対して所定値を加えた値をピーク閾値として算出する。なおマイコン20は、算出した複数のピーク値の平均値に対して所定値を乗算した値をピーク閾値として算出してもよい。
そしてマイコン20は、次に検出するトルクリップルのピーク値と、算出したピーク閾値と、を比較してS14の判定を行う。これによりマイコン20は、判定を行うピーク値毎にピーク閾値を算出する。
また、図10に示すようにマイコン20は、1回の異常判定処理において、ピーク閾値を一定値としてもよい。例えば、マイコン20は、駆動電流を2回スキャンする。なおマイコン20は、この2回のスキャンを、1回の異常判定処理で行ってもよく、2回の異常判定処理で1回ずつ行ってもよい。
そしてマイコン20は、1回目のスキャンで検出した全てのトルクリップルのピーク値を算出する。マイコン20は、算出した全てのピーク値の平均値に基づき、ピーク閾値を算出する。次に、マイコン20は、2回目のスキャンで検出するトルクリップルに対して、1回目のスキャンにより算出したピーク閾値を用いてS14の判定を行う。これにより、マイコン20は、S14において、判定を行う全てのピーク値を、一定値であるピーク閾値と比較して判定を行う。
ギアの少なくとも1つにおいて歯が破損した場合には、特定の回転角度域でのみモータ210が軽負荷状態となる。すなわち、出力ギアが回転可能な回転角度の全域のうちの特定の回転角度域のみが、異常角度域となる。この場合には、図9及び図10に示すように、特定の回転角度域でのみ、ピーク値がピーク閾値よりも大きくなる。
また、ロッド310がアーム250から外れた場合や、アーム250がヘリカルギア240から外れた場合には、出力ギアが回転可能な回転角度の全域で、モータ210が軽負荷状態となる。すなわち、出力ギアが回転可能な回転角度の全域が、異常角度域となる。この場合には、図11に示すように、出力ギアが回転可能な回転角度の全域で、ピーク値がピーク閾値よりも大きくなる。なお、マイコン20による電流フィードバック制御により、ギアに異常が生じた場合であっても、定常値は、ほぼ一定値とされる。
マイコン20は、S14においてトルクリップルの値が閾値を超えた判定すると、閾値を超えたトルクリップルの生じている回転角度域が異常角度域である判定する。そして、マイコン20は、この異常角度域を記憶する。
マイコン20は、S14においてトルクリップルの値が閾値を超えた判定すると、同じ回転角度でトルクリップルの値が閾値を複数回超えているか否かを判定する(S16)。言い換えると、マイコン20は、S14において異常角度域である判定した回転角度域において、トルクリップルの値が閾値を複数回超えているか否かを判定する。本実施形態において、マイコン20は、同じ回転角度でピーク値がピーク閾値よりも複数回大きくなっているか否かを判定する。
S16においてマイコン20は、同じ回転角度でトルクリップルの値が閾値を超えた回数が、回数閾値以上か否かを判定する。回数閾値とは、マイコン20がS16の判定に用いる閾値である。回数閾値は、2回でもよく、3回以上であってもよい。なお、マイコン20におけるS14及びS16の処理を行う機能は、特許請求の範囲に記載の異常判定部に相当する。
マイコン20は、S16において同じ回転角度でトルクリップルの値が閾値を複数回超えたと判定すると、通知処理及びフェールセーフ処理を行う(S18)。通知処理とは、ギアに異常が生じていることを外部に通知する処理である。詳しく言うと、マイコン20は、通知処理として、車両に設けられた警告灯を点灯させる。これにより、マイコン20は、ユーザに対して、ギアに異常が生じていることを通知する。
例えば、マイコン20は、フェールセーフ処理として、エンジンに流れる空気量を抑制する。また、マイコン20は、フェールセーフ処理として、異常角度域を通らないようにモータ210を制御してもよい。さらに、マイコン20は、フェールセーフ処理として、ウェイストゲートバルブ300がほぼ完全に閉まるようにモータ210を回転させてもよい。マイコン20におけるS18の処理を行う機能は、特許請求の範囲に記載のセーフ処理部に相当する。マイコン20は、S18の処理を行った後、異常判定処理を終了する。
マイコン20は、S14においてトルクリップルの値が閾値を超えていないと判定すると、異常判定処理を終了する。詳しく言うと、S14においてマイコン20は、検出した全てのトルクリップルのピーク値がピーク閾値以下の場合に、異常判定処理を終了する。
また、マイコン20は、S16において同じ回転角度でトルクリップルの値が閾値を複数回超えていないと判定すると、異常判定処理を終了する。詳しく言うと、マイコン20は、S16において同じ回転角度でピーク値がピーク閾値よりも複数回大きくされていないと判定すると、異常判定処理を終了する。
次に、上記した電子制御装置100の効果について説明する。
ギアの少なくとも1つに異常が生じた場合、モータ210のトルクが変動する。このトルク変動により、駆動電流で生じるトルクリップルの値が大きくなる。よって、ギアの少なくとも1つに異常が生じた場合、トルクリップルの値が大きくなる。これに対し本実施形態では、マイコン20が、トルクリップルの値に基づき、ギアの異常を判定している。したがって、電子制御装置100では、ギアの異常を判定することができる。
上記したように、ギアの歯が破損した場合には、特定の回転角度域でのみ、トルクリップルの値が大きくなる。一方、駆動電流のノイズは、回転角度の値にかかわらず生じる。これに対し、本実施形態においてマイコン20は、駆動電流のスキャンを複数回行い、同じ回転角度でトルクリップルの値が閾値を複数回超える場合にのみ、ギアに異常が生じていると判定する。これによれば、マイコン20が1回のスキャンのみでギアの異常を判定する構成に較べて、ノイズに基づきギアが異常と判定してしまうことを効果的に抑制することができる。したがって、ギアにおける歯の破損に対して、判定精度を向上することができる。
本実施形態において、マイコン20は、出力ギアが回転可能な回転角度の全域の各値をとるようにギアを回転させるとともに、回転角度の全域でトルクリップルの検出を行っている。これによれば、出力ギアが回転可能な回転角度の全域において、ギアの異常を検出することができる。
車両が走行している場合、ウェイストゲートバルブ300には、エンジンの排気圧等により応力が作用する。そのため、車両が走行している場合には、モータ210のトルクが変動し易い。言い換えると、車両が停車している場合には、走行している場合に較べて、モータ210のトルクが変動し難い。よって、車両が停車している場合には、駆動電流の値が変動し難い。
本実施形態においてマイコン20は、車両が停車している場合の駆動電流に対してトルクリップルを検出している。これによれば、マイコン20は、車両が走行している場合の駆動電流に対して検出を行う構成に較べて、検出精度を向上することができる。したがって、マイコン20は、ギアの異常を判定する判定精度を向上することができる。
一般的に、樹脂材料は、金属材料に較べて軽い。しかしながら、樹脂材料は、金属材料よりも破損し易い。そのため、樹脂材料を用いて形成されたギアは、金属材料を用いて形成されたギアに較べて異常が生じ易い。これに対して本実施形態では、ギアの異常を判定することができる。そのため、ギアの構成材料として樹脂材料採用し易く、ギアを軽量化することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記実施形態において、マイコン20は、トルクリップルのピーク値と、ピーク閾値と、を比較してS14の判定を行う例を示したが、これに限定するものではない。マイコン20が、トルクリップルにおけるピーク値以外の値と、この値に対応する閾値と、を比較してS14の判定を行う例を採用することもできる。例えば、マイコン20は、ピーク値を2で割った値と、閾値と、を比較してS14の判定を行ってもよい。また、マイコン20は、駆動電流にトルクリップルが生じている回転角度のうちの最も小さい回転角度からモータ210が所定角度回転したときのトルクリップルの値と、閾値と、を比較してS14の判定を行ってもよい。
上記実施形態において、マイコン20は、S14の処理を行った後にS16の処理を行う例を示したが、これに限定するものではない。異常判定処理においてマイコン20が、S16の処理を行わない例を採用することもできる。この例においてマイコン20は、S14においてトルクリップルの値が閾値を超えたと判定すると、S18の処理を行う。
上記実施形態において、モータ210は直流モータである例を示したが、これに限定するものではない。モータ210は、交流モータである例を採用することもできる。例えば、モータ210が三相交流モータの場合、モータ210における1つの相に流れる駆動電流を電流検出回路30が検出する。そして、マイコン20は、交流電流である駆動電流において生じるトルクリップルの値に基づき、異常判定処理を行う。なお、この例では、駆動回路10がモータ210に交流を流すように構成される。
上記実施形態において、マイコン20は、S18において通知処理及びフェールセーフ処理の両方を行う例を示したが、これに限定するものではない。マイコン20は、通知処理及びフェールセーフ処理の一方のみを行ってもよい。
上記実施形態において、駆動回路10は、4個のFET12〜18を有し、Hブリッジ回路を構成する例を示した。しかしながら、これに限定するものではない。駆動回路10は、マイコン20からの制御信号に応じてモータ210に駆動電流を流す構成であればよい。Nチャネル型のFET12〜18とは異なるスイッチング素子を駆動回路10が有していてもよい。
上記実施形態において、抵抗32は、FET14のソース及びFET18のドレインと、第2モータ端子100cと、の間に配置された例を示したが、これに限定するものではない。抵抗32は、駆動電流が流れる箇所に配置されていればよい。また、電流検出回路30は抵抗32とオペアンプ34とを有する例を示したが、これに限定するものではない。電流検出回路30は駆動電流を検出するものであればよい。
上記実施形態において、車両が停車しているときにのみ、マイコン20が、トルクリップルの検出を行う例を示した。しかしながら、これに限定するものではない。マイコン20は、車両が走行しているときに、トルクリップルの検出を行ってもよい。すなわち、電子制御装置100は、車両が走行しているときに、ギアの異常を検出してもよい。
上記実施形態において、電子制御装置100は、出力ギアを回転させることで車両のウェイストゲートバルブ300の開閉を制御する例を示したが、これに限定するものではない。出力ギアと噛み合って回転するモータギア214をモータ210が有し、電子制御装置100がモータ210を制御する構成であればよい。
上記実施形態において、判定を行うトルクリップルの前に検出された複数のトルクリップルの平均値に基づき、マイコン20が閾値を算出する例を示したが、これに限定するものではない。例えば、マイコン20は、判定を行うトルクリップルの1つ前に検出したトルクリップルの値のみに基づき、閾値を算出してもよい。また、マイコン20は、定常値のみに基づき、閾値を算出してもよい。
10…駆動回路、12…FET、14…FET、16…FET、18…FET、20…マイコン、30…電流検出回路、32…抵抗、34…オペアンプ、40…第1ADC、50…第2ADC、100…電子制御装置、100a…電源端子、100b…第1モータ端子、100c…第2モータ端子、100d…センサ端子、100e…グランド端子、200…アクチュエータ、210…モータ、212…出力軸、214…モータギア、220…平ギア、230…ウォーム、240…ヘリカルギア、242…軸部、250…アーム、300…ウェイストゲートバルブ、310…ロッド、400…回転センサ、500…電源、600…グランド

Claims (9)

  1. 出力ギア(220,230,240,250)と噛み合って回転するモータギア(214)を有するモータ(210)を制御する電子制御装置であって、
    前記モータに駆動電流を流し、前記モータギア及び前記出力ギアを回転させる回転制御部(10,20)と、
    前記駆動電流を検出し、検出信号を出力する電流検出部(30)と、
    前記検出信号に基づき、前記モータのトルク変動に伴って生じるトルクリップルを検出するリップル検出部(S12)と、
    前記リップル検出部により検出された前記トルクリップルの値と閾値とを比較し、前記トルクリップルの値が前記閾値を超える場合に、前記出力ギア及び前記モータギアの少なくとも一方に異常が生じていると判定する異常判定部(S14,S16)と、
    を備え
    前記異常判定部には、前記出力ギアの回転角度を検出する回転センサからセンサ信号が入力され、
    前記異常判定部は、前記センサ信号に基づき、前記トルクリップルの値及び前記閾値の比較を同じ前記回転角度で複数回行い、同じ前記回転角度で前記トルクリップルの値が前記閾値を複数回超える場合にのみ、異常が生じていると判定する電子制御装置。
  2. 出力ギア(220,230,240,250)と噛み合って回転するモータギア(214)を有するモータ(210)を制御する電子制御装置であって、
    前記モータに駆動電流を流し、前記モータギア及び前記出力ギアを回転させる回転制御部(10,20)と、
    前記駆動電流を検出し、検出信号を出力する電流検出部(30)と、
    前記検出信号に基づき、前記モータのトルク変動に伴って生じるトルクリップルを検出するリップル検出部(S12)と、
    前記リップル検出部により検出された前記トルクリップルの値と閾値とを比較し、前記トルクリップルの値が前記閾値を超える場合に、前記出力ギア及び前記モータギアの少なくとも一方に異常が生じていると判定する異常判定部(S14,S16)と、
    を備え
    前記回転制御部は、車両が停車している場合に、前記モータギア及び前記出力ギアを回転させることで、前記車両のウェイストゲートバルブ(300)の開閉を制御し、
    前記電流検出部は、前記車両が停車している場合の前記駆動電流を検出し、
    前記リップル検出部は、前記車両が停車している場合の前記駆動電流に対して、前記トルクリップルの検出を行う電子制御装置。
  3. 前記異常判定部には、前記出力ギアの回転角度を検出する回転センサからセンサ信号が入力され、
    前記異常判定部は、前記センサ信号に基づき、前記トルクリップルの値及び前記閾値の比較を同じ前記回転角度で複数回行い、同じ前記回転角度で前記トルクリップルの値が前記閾値を複数回超える場合にのみ、異常が生じていると判定する請求項2に記載の電子制御装置。
  4. 前記異常判定部は、前記トルクリップルのピーク値と、前記閾値としてのピーク閾値と、を比較し、前記ピーク値が前記ピーク閾値よりも大きい場合に異常が生じていると判定する請求項1〜3のいずれか1項に記載の電子制御装置。
  5. 前記回転制御部は、所定期間において、前記出力ギアが回転可能な回転角度の全域の各値をとるように、前記出力ギアを回転させ、
    前記電流検出部は、前記出力ギアが回転する回転角度の全域において、前記駆動電流の検出を行い、
    前記リップル検出部は、前記出力ギアが回転する回転角度の全域における前記駆動電流に対して、前記トルクリップルの検出を行う請求項1〜4のいずれか1項に記載の電子制御装置。
  6. 前記異常判定部は、判定を行う前記トルクリップルの前に検出された前記トルクリップルの値に基づき、前記閾値を算出する請求項1〜5のいずれか1項に記載の電子制御装置。
  7. 前記異常判定部により異常が生じていると判定されると、異常が生じていることを外部に通知する通知処理、及び、フェールセーフ処理の少なくとも一方を行うセーフ処理部(S18)をさらに備える請求項1〜6のいずれか1項に記載の電子制御装置。
  8. 前記モータは直流モータである請求項1〜7のいずれか1項に記載の電子制御装置。
  9. 前記モータギア及び前記出力ギアの少なくとも一方は、樹脂材料を用いて形成されている請求項1〜8のいずれか1項に記載の電子制御装置。
JP2016058918A 2016-03-23 2016-03-23 電子制御装置 Active JP6540568B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058918A JP6540568B2 (ja) 2016-03-23 2016-03-23 電子制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058918A JP6540568B2 (ja) 2016-03-23 2016-03-23 電子制御装置

Publications (2)

Publication Number Publication Date
JP2017175775A JP2017175775A (ja) 2017-09-28
JP6540568B2 true JP6540568B2 (ja) 2019-07-10

Family

ID=59973985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058918A Active JP6540568B2 (ja) 2016-03-23 2016-03-23 電子制御装置

Country Status (1)

Country Link
JP (1) JP6540568B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148649A (ja) * 2020-03-19 2021-09-27 いすゞ自動車株式会社 異常検知装置及び異常検知方法
JPWO2023119686A1 (ja) * 2021-12-24 2023-06-29

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332539A (ja) * 1997-05-28 1998-12-18 Nippon Steel Corp 歯車の劣化診断方法
JP2005033559A (ja) * 2003-07-14 2005-02-03 Fuji Xerox Co Ltd 故障診断装置
JP4229823B2 (ja) * 2003-12-16 2009-02-25 パナソニック株式会社 歯車破損検出装置および歯車破損検出方法
JP2006281421A (ja) * 2005-04-05 2006-10-19 Yaskawa Electric Corp ロボットおよびロボットの異常検出方法
JP5657425B2 (ja) * 2011-02-25 2015-01-21 Ntn株式会社 電気自動車
JP2013210506A (ja) * 2012-03-30 2013-10-10 Ricoh Co Ltd 駆動装置および画像形成装置
JP6064594B2 (ja) * 2012-12-27 2017-01-25 株式会社デンソー 回転駆動装置
JP6410477B2 (ja) * 2014-05-28 2018-10-24 ファナック株式会社 歯車伝動装置及び歯車伝動装置の使用度を測定する使用度測定装置

Also Published As

Publication number Publication date
JP2017175775A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
CN107867320B (zh) 转向系统的实时稳定性监测
JP6540568B2 (ja) 電子制御装置
AU2002368382B2 (en) Controller of AC generator for vehicle
JP6236341B2 (ja) モータ駆動装置
JP6409682B2 (ja) 電子制御装置
JP2006304504A (ja) 車両用発電機の制御装置
JP4582466B2 (ja) モータ制御装置
JP2006304502A (ja) 車両用発電機の制御装置
US20170149365A1 (en) Method of operating an electric motor
US10280834B2 (en) Valve control device and valve system
JP5326907B2 (ja) 電磁弁駆動装置
JP2010220294A (ja) モータ制御装置、およびモータ装置
JP5941718B2 (ja) 信号処理回路、車載用電子制御装置、および信号処理回路の車載用電子制御装置への実装方法
JP5756501B2 (ja) モータ駆動装置
JP5653975B2 (ja) モータ制御装置
US7429846B2 (en) Stepping motor control apparatus
JP6536447B2 (ja) 電子制御装置
JP6589712B2 (ja) 電子制御装置
JP6665742B2 (ja) 負荷駆動装置
JP6583017B2 (ja) 電子制御装置
KR102462269B1 (ko) 피크 앤드 홀드 인젝터 드라이버의 과전류 진단 장치 및 방법
JP2015046710A (ja) 負荷駆動回路
JP2007017360A (ja) 指示計器
JP3820998B2 (ja) 回転検出装置
JP2004185543A (ja) フィードバック制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R151 Written notification of patent or utility model registration

Ref document number: 6540568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250