JP6536630B2 - Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP6536630B2
JP6536630B2 JP2017118134A JP2017118134A JP6536630B2 JP 6536630 B2 JP6536630 B2 JP 6536630B2 JP 2017118134 A JP2017118134 A JP 2017118134A JP 2017118134 A JP2017118134 A JP 2017118134A JP 6536630 B2 JP6536630 B2 JP 6536630B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
negative electrode
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017118134A
Other languages
Japanese (ja)
Other versions
JP2017188473A (en
Inventor
秀介 土屋
秀介 土屋
崇 坂本
崇 坂本
健志 政吉
健志 政吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2017188473A publication Critical patent/JP2017188473A/en
Application granted granted Critical
Publication of JP6536630B2 publication Critical patent/JP6536630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for lithium ion secondary batteries, a method of manufacturing a negative electrode material for lithium ion secondary batteries, a negative electrode material slurry for lithium ion secondary batteries, a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery .

リチウムイオン二次電池は、他の二次電池であるニッケル・カドミウム電池、ニッケル・水素電池、鉛蓄電池に比べ、より高いエネルギー密度を有する。このため、ノートパソコン、携帯電話等の携帯電化製品用の電源として用いられている。   Lithium ion secondary batteries have higher energy density than other secondary batteries such as nickel cadmium batteries, nickel hydrogen batteries, and lead storage batteries. For this reason, it is used as a power source for portable electronic devices such as notebook computers and mobile phones.

リチウムイオン二次電池開発の最近のトレンドは、省資源化のための電池コンパクト化や低コスト化に加えて、電気自動車や蓄電用電源への用途拡大である。このため、負極の高密度化による高容量化、高入出力化及びコスト低減が求められている。高密度の負極を得るための材料として、人造黒鉛や鱗状天然黒鉛を球形化した球状天然黒鉛などの結晶化度の高い炭素材料が注目されている。   A recent trend in lithium ion secondary battery development is the expansion of applications to electric vehicles and storage power sources in addition to battery compactification and cost reduction for resource saving. Therefore, there is a demand for higher capacity, higher input / output and cost reduction by densifying the negative electrode. As a material for obtaining a high density negative electrode, a carbon material having high crystallinity such as artificial graphite and spherical natural graphite obtained by spheroidizing natural scaly natural graphite has attracted attention.

人造黒鉛においては、特開平10−158005号公報に示されるように、扁平状の1次粒子を複数、配向面が非平行となるように集合又は結合させてなる2次粒子構造を有する黒鉛粒子を負極活物質として用いることでサイクル特性及び急速充放電特性の改良を図っている。   In artificial graphite, as disclosed in Japanese Patent Application Laid-Open No. 10-158005, a graphite particle having a secondary particle structure in which a plurality of flat primary particles are aggregated or bound so that the orientation planes become nonparallel. By using these as a negative electrode active material, the cycle characteristics and the rapid charge / discharge characteristics are improved.

リチウムイオン二次電池は、上記のように負極密度を高くすることで体積あたりのエネルギー密度を大きくすることができる。しかし、負極密度を高くするために1.7g/cmを越えるような強いプレスを加えると、負極を構成する黒鉛が集電体から剥離したり、黒鉛結晶の異方性が大きくなって充放電特性が悪化したりする等の多くの課題がある。 The lithium ion secondary battery can increase the energy density per volume by increasing the negative electrode density as described above. However, when a strong press exceeding 1.7 g / cm 3 is applied to increase the density of the negative electrode, the graphite constituting the negative electrode peels off from the current collector, or the anisotropy of the graphite crystal becomes large, and There are many problems such as deterioration of discharge characteristics.

球状天然黒鉛は、剥離強度が強く電極を強い力でプレスしても集電体から剥れにくいという特長を有する。しかし、電解液との反応活性が高く浸透性も低いことから初回充放電効率や高速充放電効率に改善の余地がある。   Spherical natural graphite has a feature that it has high peel strength and is less likely to be peeled from the current collector even when the electrode is pressed with a strong force. However, since the reaction activity with the electrolytic solution is high and the permeability is low, there is room for improvement in the initial charge-discharge efficiency and the high-speed charge-discharge efficiency.

二次粒子構造を有する人造黒鉛を用いた負極材では、負極材を集電体の上に塗布した後に高密度化のため高圧でプレスする。その際に二次粒子を構成する一次粒子が集電体に対して平行に配向し、リチウムイオンの正極への移動が妨げられてサイクル特性が低下する原因となる場合がある。負極材自体の密度を上げる目的で球状天然黒鉛を混合することにより、塗布後のプレス圧を低減することができる。しかし、球状天然黒鉛の表面に存在する格子欠陥が電解液と反応しやすいという課題がある。   In a negative electrode material using artificial graphite having a secondary particle structure, the negative electrode material is applied on a current collector and then pressed at a high pressure for densification. At that time, the primary particles constituting the secondary particles may be oriented parallel to the current collector, and the movement of lithium ions to the positive electrode may be impeded, which may cause a decrease in cycle characteristics. By mixing spherical natural graphite for the purpose of increasing the density of the negative electrode material itself, the press pressure after coating can be reduced. However, there is a problem that lattice defects present on the surface of spherical natural graphite easily react with the electrolyte.

低結晶炭素等でコーティングした球状天然黒鉛は硬質化するために強いプレス圧が必要になり、目標密度に達しない場合がある。さらに、電極密度を調整する際のプレス処理でコーティング層が剥離したり欠陥が生じたりして、その欠陥が充放電特性、サイクル特性及び安全性を低下させる場合がある。   Spherical natural graphite coated with low crystalline carbon or the like requires a strong pressing pressure to harden it and may not reach the target density. Furthermore, the coating layer may peel off or a defect may occur in the press treatment for adjusting the electrode density, and the defect may lower the charge / discharge characteristics, the cycle characteristics and the safety.

本発明は上記に鑑み、高電極密度化処理を行っても高負荷特性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを目的とする。   In view of the above, the present invention is a negative electrode material for lithium ion secondary batteries and a negative electrode material for lithium ion secondary batteries capable of obtaining a lithium ion secondary battery excellent in high load characteristics even if high electrode density treatment is performed. An object of the present invention is to provide a manufacturing method, a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

本発明者らは鋭意検討を行なった結果、配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含み、ラマン測定のR値が0.03以上0.10以下であり、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下であるリチウムイオン二次電池用負極材を用いることにより上記課題を解決できることを見出し、本発明に達した。   As a result of intensive investigations, the inventors of the present invention have found that Raman measurement includes composite particles including a plurality of flat graphite particles and spherical graphite particles that are assembled or bonded such that the orientation planes are not parallel. The R value of is 0.03 or more and 0.10 or less, and the pore volume obtained by mercury porosimetry is 0.2 mL / g or more and 1.0 mL / g or less in the range of 0.1 μm or more and 8 μm or less By using the negative electrode material for lithium ion secondary batteries which is the following, it discovers that the said subject is solvable and arrived at this invention.

前記課題を解決するための具体的手段には以下の実施態様が含まれる。
<1>配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含み、ラマン測定のR値が0.03以上0.10以下であり、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下であるリチウムイオン二次電池用負極材。
Specific means for solving the above problems include the following embodiments.
<1> A composite particle including a plurality of flat graphite particles which are assembled or bonded such that the orientation planes are not parallel and a spherical graphite particle, and the R value of Raman measurement is 0.03 or more and 0 .10 or less, for a lithium ion secondary battery having a pore volume of 0.2 mL / g or more and 1.0 mL / g or less in the range of 0.1 μm to 8 μm obtained by mercury porosimetry Negative electrode material.

<2>BET法にて測定される比表面積が1.5m/g以上6.0m/g以下である<1>に記載のリチウムイオン二次電池用負極材。 <2> The specific surface area measured by BET method is less than 1.5 m 2 / g or more 6.0 m 2 / g negative electrode material for a lithium ion secondary battery according to <1>.

<3>飽和タップ密度が0.8g/cm以上1.2g/cm以下である<1>又は<2>に記載のリチウムイオン二次電池用負極材。 <3> saturated tapping density of 0.8 g / cm 3 or more 1.2 g / cm 3 or less <1> or negative electrode material for a lithium ion secondary battery according to <2>.

<4>CuKα線によるX線回折パターンにおける、六方晶構造の(101)面の回折ピーク(P)と菱面体晶構造の(101)面の回折ピーク(P)との強度比(P/P)が0.35以下である<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。 In the X-ray diffraction pattern by <4> CuKα ray, the intensity ratio (P 1 ) between the diffraction peak (P 1 ) of the (101) plane of the hexagonal structure and the diffraction peak (P 2 ) of the (101) plane of the rhombohedral structure 2 / P 1) is 0.35 or less <1> to <3> the negative electrode material for lithium ion secondary battery according to any one of.

<5>前記球状の黒鉛粒子の円形度が0.8以上である<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。 The negative electrode material for lithium ion secondary batteries of any one of <1>-<4> whose circularity of the <5> above-mentioned spherical graphite particle is 0.8 or more.

<6>(a)黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子を含む混合物を得る工程と、(b)前記混合物を焼成する工程と、を含む<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 <6> (a) obtaining a mixture containing graphitizable aggregate or graphite, a graphitizable binder, a graphitization catalyst and spherical graphite particles, and (b) calcining the mixture The manufacturing method of the negative electrode material for lithium ion secondary batteries of any one of <1>-<5>.

<7>前記工程(a)と前記工程(b)との間に、(c)前記混合物を成形する工程及び(d)前記混合物を熱処理する工程からなる群より選ばれる少なくとも一つを含む<6>に記載のリチウムイオン二次電池用負極材の製造方法。 <7> Between the step (a) and the step (b), at least one selected from the group consisting of (c) forming the mixture and (d) heat treating the mixture 6> The manufacturing method of the negative electrode material for lithium ion secondary batteries as described in 6>.

<8><1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材、又は<6>もしくは<7>に記載のリチウムイオン二次電池用負極材の製造方法により製造されたリチウムイオン二次電池用負極材と、有機結着材と、溶剤とを含むリチウムイオン二次電池用負極材スラリー。 By the manufacturing method of the negative electrode material for lithium ion secondary batteries as described in any one of <8> <1>-<5>, or the negative electrode material for lithium ion secondary batteries as described in <6> or <7> The negative electrode material slurry for lithium ion secondary batteries containing the manufactured negative electrode material for lithium ion secondary batteries, an organic binder, and a solvent.

<9>集電体と、集電体上に形成された<1>〜<5>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。 Lithium ion having a <9> current collector, and a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery according to any one of <1> to <5> formed on the current collector Negative electrode for secondary battery.

<10>正極と、電解質と、<9>に記載のリチウムイオン二次電池用負極とを有するリチウムイオン二次電池。 The lithium ion secondary battery which has a <10> positive electrode, electrolyte, and the negative electrode for lithium ion secondary batteries as described in <9>.

本発明によれば、高電極密度化処理を行っても高負荷特性に優れるリチウムイオン二次電池を得ることが可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することができる。   According to the present invention, it is possible to obtain a lithium ion secondary battery capable of obtaining a lithium ion secondary battery excellent in high load characteristics even if the electrode density treatment is performed, and manufacture of a negative electrode material for lithium ion secondary battery A method, a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery can be provided.

本発明のリチウムイオン二次電池用負極材に含まれる複合粒子の走査型電子顕微鏡(SEM)画像の一例である。It is an example of the scanning electron microscope (SEM) image of the composite particle contained in the negative electrode material for lithium ion secondary batteries of this invention.

以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。   Hereinafter, modes for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the constituent elements (including the element steps and the like) are not essential unless clearly indicated otherwise in principle, in the case where it is clearly indicated in principle. The same applies to numerical values and ranges thereof, and does not limit the present invention.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、本用語に含まれる。また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。また、本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。また、本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構成に加え、一部に形成されている形状の構成も包含される。「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。   In the present specification, the term "step" is included in the term if the purpose of the step is achieved, even if it can not be clearly distinguished from other steps, not only an independent step. Moreover, the numerical range shown using "-" in this specification shows the range which includes the numerical value described before and after "-" as minimum value and the maximum value, respectively. Further, in the present specification, when there are a plurality of substances corresponding to each component in the composition, the content of each component in the composition is the plurality of substances present in the composition unless otherwise specified. Means the total amount of Furthermore, in the present specification, the particle diameter of each component in the composition is the plurality of particles present in the composition unless a plurality of particles corresponding to each component are present in the composition. Mean the value for a mixture of Further, in the present specification, the term “layer” includes the configuration of a shape formed in part in addition to the configuration of the shape formed on the entire surface when observed as a plan view. The term "stacking" refers to stacking layers, two or more layers may be combined, and two or more layers may be removable.

<リチウムイオン二次電池用負極材>
本発明のリチウムイオン二次電池用負極材は配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含み、ラマン測定のR値が0.03以上0.10以下であり、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下である。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present invention contains composite particles including a plurality of flat graphite particles which are aggregated or bonded so that the orientation planes are not parallel to each other and a spherical graphite particle, and the Raman measurement is performed. The R value of is 0.03 or more and 0.10 or less, and the pore volume obtained by mercury porosimetry is 0.2 mL / g or more and 1.0 mL / g or less in the range of 0.1 μm or more and 8 μm or less It is below.

前記リチウムイオン二次電池用負極材を用いることにより、高電極密度化処理を行っても高負荷特性に優れるリチウムイオン二次電池を得ることができる。また、本発明のリチウムイオン二次電池用負極材を用いると、リチウムイオン二次電池用負極を高電極密度化処理した場合においても集電体から負極活物質が剥れ難く、かつ高密度化が容易である。さらに、高電極密度時においても容量、効率、吸液性、安全性、低温特性、充放電負荷特性、サイクル寿命に優れるリチウムイオン二次電池を得ることができる。   By using the negative electrode material for a lithium ion secondary battery, it is possible to obtain a lithium ion secondary battery which is excellent in high load characteristics even when the high electrode density treatment is performed. In addition, when the negative electrode material for lithium ion secondary batteries of the present invention is used, the negative electrode active material is hardly peeled from the current collector even when the negative electrode for lithium ion secondary batteries is subjected to a high electrode density treatment, and the density is increased Is easy. Furthermore, even at high electrode density, it is possible to obtain a lithium ion secondary battery excellent in capacity, efficiency, liquid absorption, safety, low temperature characteristics, charge / discharge load characteristics, and cycle life.

(複合粒子)
前記複合粒子は、配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含むものであれば特に限定されない。例えば、複数の扁平状の黒鉛粒子が、配向面が非平行となるように集合又は結合しており、かつ球状の黒鉛粒子の表面の少なくとも一部に結合していてもよい。より具体的には、前記扁平状の黒鉛粒子が前記球状の黒鉛粒子の表面の少なくとも一部にバインダーに由来する炭素質物を介して結合していてもよい。前記複合粒子が形成されているか否かは、例えば、走査型電子顕微鏡(SEM)による観察によって確認することができる。
(Composite particles)
The composite particles are not particularly limited as long as the composite particles include a plurality of flat graphite particles which are aggregated or bonded so that the orientation planes are not parallel to one another and spherical graphite particles. For example, a plurality of flat graphite particles may be assembled or bonded such that the orientation planes are nonparallel, and may be bonded to at least a part of the surface of the spherical graphite particles. More specifically, the flat graphite particles may be bonded to at least a part of the surface of the spherical graphite particles via a carbonaceous material derived from a binder. Whether or not the composite particles are formed can be confirmed, for example, by observation with a scanning electron microscope (SEM).

図1は本発明のリチウムイオン二次電池用負極材に含まれる複合粒子のSEM画像の一例である。図中の点線で示す部分が球状の黒鉛粒子である。球状の黒鉛粒子と、その周囲に存在する配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子とによって複合粒子(図中の実線で示す部分)が形成されている。   FIG. 1: is an example of the SEM image of the composite particle contained in the negative electrode material for lithium ion secondary batteries of this invention. Portions shown by dotted lines in the figure are spherical graphite particles. Composite particles (a portion shown by a solid line in the figure) are formed by spherical graphite particles and a plurality of flat graphite particles which are assembled or bonded such that the orientation planes present around them are nonparallel. There is.

前記リチウムイオン二次電池用負極材は、前記複合粒子のほかに複合粒子を形成していない扁平状の黒鉛粒子、球状の黒鉛粒子、又は前記扁平状の黒鉛粒子が複数集合又は結合して形成された塊状黒鉛粒子を含んでもよい。   The negative electrode material for a lithium ion secondary battery is formed by collecting or combining a plurality of flat graphite particles, spherical graphite particles, or the flat graphite particles which do not form composite particles in addition to the composite particles. It may also contain agglomerated graphite particles.

(平均粒径(メディアン径))
前記リチウムイオン二次電池用負極材の平均粒径(メディアン径)は特に制限されない。配向性への影響と電解液の浸透性の観点からは、10μm〜30μmであってもよく、15μm〜25μmであってもよい。前記平均粒径は、レーザー回折粒度分布装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。前記リチウムイオン二次電池用負極材の平均粒径は、複合粒子及び複合粒子を形成していない黒鉛粒子を含めた平均値である。
なお、平均粒径はレーザー回折粒度分布測定装置(SALD−3000J、株式会社島津製作所製)を用い、以下の条件で測定することができる。
吸光度:0.05〜0.20
ソニケーション:1〜3分
(Average particle size (median diameter))
The average particle diameter (median diameter) of the negative electrode material for the lithium ion secondary battery is not particularly limited. From the viewpoint of the influence on the orientation and the permeability of the electrolytic solution, it may be 10 μm to 30 μm, or 15 μm to 25 μm. The average particle size can be measured by a laser diffraction particle size distribution apparatus, and is a particle size (D50) at which integration from the small diameter side is 50% in the volume-based particle size distribution. The average particle diameter of the negative electrode material for a lithium ion secondary battery is an average value including composite particles and graphite particles not forming the composite particles.
In addition, an average particle diameter can be measured on condition of the following using a laser diffraction particle size distribution measuring apparatus (SALD-3000J, Shimadzu Corporation make).
Absorbance: 0.05 to 0.20
Sonication: 1 to 3 minutes

前記リチウムイオン二次電池用負極材を負極とした場合の平均粒径の測定方法としては、試料電極又は観察対象の電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡で観察する方法、及びイオンミリング装置(E−3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査型電子顕微鏡で観察する方法等が挙げられる。この場合の平均粒径は、複合粒子及び複合粒子を形成していない黒鉛粒子から任意に選択した100個の粒径の中央値である。
上記試料電極は、例えば、リチウムイオン二次電池用負極材98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物を固形分として、該混合物の25℃における粘度が1500〜2500mPa・sとなるように水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させることによって作製することができる。
When the negative electrode material for lithium ion secondary batteries is used as a negative electrode, the method for measuring the average particle diameter is as follows: after embedding a sample electrode or an electrode to be observed in an epoxy resin, mirror polishing is carried out to mirror the cross section of the electrode; And a method of producing an electrode cross section using an ion milling apparatus (E-3500, manufactured by Hitachi High-Technologies Corporation) and observing the cross section with a scanning electron microscope. The average particle size in this case is a median value of 100 particle sizes arbitrarily selected from composite particles and graphite particles not forming composite particles.
The sample electrode may be, for example, a mixture of 98 parts by mass of a negative electrode material for lithium ion secondary batteries, 1 part by mass of styrene butadiene resin as a binder, and 1 part by mass of carboxymethylcellulose as a thickener as a solid content. Water is added so that the viscosity at 25 ° C is 1,500 to 2,500 mPa · s to prepare a dispersion, and the dispersion is made to have a thickness of about 70 μm on copper foil having a thickness of 10 μm (during coating) It can be produced by drying for 1 hour at 120 ° C. after coating.

(扁平状の黒鉛粒子)
前記複合粒子は、配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子を含む。
(Flat-shaped graphite particles)
The composite particles include a plurality of flat graphite particles which are assembled or bonded such that the orientation planes are nonparallel.

前記扁平状の黒鉛粒子は、長軸と短軸を有する非球状の形状を有する。例えば鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。より具体的には、長軸方向の長さをA、短軸方向の長さをBとしたときにA/Bで表されるアスペクト比が1.2〜5であってもよく、1.3〜3であってもよい。前記アスペクト比は顕微鏡で黒鉛粒子を拡大し、任意に100個の黒鉛粒子を選択し、A/Bを測定し、その平均値をとったものである。   The flat graphite particles have a non-spherical shape having a major axis and a minor axis. For example, graphite particles having a scaly, scaly, or partially massive shape may be mentioned. More specifically, when the length in the major axis direction is A and the length in the minor axis direction is B, the aspect ratio represented by A / B may be 1.2 to 5; It may be three to three. The said aspect ratio expanded a graphite particle with a microscope, selected 100 graphite particles arbitrarily, measured A / B, and took the average value.

前記扁平状の黒鉛粒子の配向面が非平行であるとは、2以上の扁平状の黒鉛粒子の最も断面積の大きい面に平行な面(配向面)が互いに平行な位置関係にないことをいう。扁平状の黒鉛粒子の配向面が互いに非平行であるか否かは顕微鏡写真の観察により確認することができる。配向面が互いに非平行な状態で集合又は結合していることにより、粒子の電極上での配向性が高まることを抑制し、また、高い充放電容量が得られるという効果が得られる。   The orientation planes of the flat graphite particles being non-parallel means that planes parallel to the surface of the largest cross-sectional area of two or more flat graphite particles (alignment planes) are not in a mutually parallel positional relationship. Say. Whether or not the orientation planes of the flat graphite particles are not parallel to each other can be confirmed by observation of a photomicrograph. The aggregation or bonding of the orientation planes in a non-parallel state suppresses the increase in the orientation of the particles on the electrode, and achieves the effect of obtaining a high charge / discharge capacity.

前記扁平状の黒鉛粒子が集合又は結合している状態とは、2以上の扁平状の黒鉛粒子が炭素質物を介して化学的に集合又は結合している状態をいう。前記炭素質物は、例えばタール、ピッチ等のバインダーが焼成工程で炭素化した炭素質物であってよい。機械的な強度の面からは結合している状態であってもよい。前記扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。   The state in which the flat graphite particles are aggregated or bonded means the state in which two or more flat graphite particles are chemically aggregated or bonded via the carbonaceous material. The carbonaceous material may be, for example, a carbonaceous material obtained by carbonizing a binder such as tar or pitch in a firing process. It may be in a coupled state in terms of mechanical strength. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.

前記扁平状の黒鉛粒子が集合又は結合している数は、3個以上であってもよく、10個以上であってもよい。
扁平状の黒鉛粒子の個々の大きさとしては、集合又は結合のし易さの観点から、平均粒径D50が50μm以下であってもよく、25μm以下であってもよい。前記平均粒径D50は、1μm以上であってもよい。前記平均粒径D50は、レーザー回折粒度分布装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径である。
The number of aggregated or bonded flat graphite particles may be 3 or more, or 10 or more.
The individual particles of the flat graphite particles may have an average particle diameter D50 of 50 μm or less, or 25 μm or less, from the viewpoint of ease of aggregation or bonding. The average particle diameter D50 may be 1 μm or more. The average particle diameter D50 can be measured by a laser diffraction particle size distribution device, and is a particle diameter at which integration from the small diameter side is 50% in a volume-based particle size distribution.

前記扁平状の黒鉛粒子の原料は特に制限されず、人造黒鉛、天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるので、電極としたときの電極の高密度化がしやすくなる傾向にある。また、結晶度の高い黒鉛を使用するとリチウムイオン二次電池用負極材のR値が小さくなり、充放電初回効率が向上する傾向にある。   The raw material of the flat graphite particles is not particularly limited, and examples thereof include artificial graphite, natural graphite, coke, resin, tar, pitch and the like. Among them, graphite obtained from artificial graphite, natural graphite or coke has high crystallinity and becomes soft particles, so that the electrode tends to be easily densified when it is used as an electrode. In addition, when graphite having a high degree of crystallinity is used, the R value of the negative electrode material for lithium ion secondary batteries decreases, and the charge / discharge initial efficiency tends to be improved.

(球状の黒鉛粒子)
前記複合粒子は球状の黒鉛粒子を含む。高密度である球状の黒鉛粒子を含むことにより、前記扁平状の黒鉛粒子のみを含む場合よりも負極材の密度を高くすることができ、高密度化処理の際に加える圧力を低減することができる。その結果、前記扁平状の黒鉛粒子が集電体に平行な方向に配向してリチウムイオンの移動を妨げる現象を抑制することができる。
(Spherical graphite particles)
The composite particles include spherical graphite particles. By including spherical graphite particles having high density, the density of the negative electrode material can be made higher than in the case of including only the flat graphite particles, and the pressure applied in the densification treatment can be reduced. it can. As a result, it is possible to suppress the phenomenon that the flat graphite particles are oriented in a direction parallel to the current collector to prevent the movement of lithium ions.

前記球状の黒鉛粒子及びその原料としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極材として十分な飽和タップ密度を得る観点からは、前記球状の黒鉛粒子は高密度な黒鉛粒子であってもよい。具体的には、粒子球形化処理を施して高タップ密度化された球状天然黒鉛であってもよく、1500℃以上で焼成された球状の黒鉛粒子であってもよい。原料として使用する球状の黒鉛粒子を1500℃以上で焼成すると高結晶な球状の黒鉛粒子となり、前述の通りリチウムイオン二次電池用負極材のR値を小さくすることができる。   Examples of spherical graphite particles and raw materials thereof include spherical artificial graphite and spherical natural graphite. From the viewpoint of obtaining a sufficient saturated tap density as the negative electrode material, the spherical graphite particles may be high density graphite particles. Specifically, it may be spherical natural graphite which has been subjected to particle spheroidizing treatment to be highly tap-densed, or spherical graphite particles sintered at 1500 ° C. or higher. When spherical graphite particles used as a raw material are sintered at 1500 ° C. or higher, highly crystalline spherical graphite particles are formed, and the R value of the negative electrode material for lithium ion secondary batteries can be reduced as described above.

前記球状の黒鉛粒子の平均粒径は特に制限されず、5μm〜40μmであってもよく、8μm〜35μmであってもよく、10μm〜30μmであってもよい。前記平均粒径は、レーザー回折粒度分布装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒子径である。   The average particle diameter of the spherical graphite particles is not particularly limited, and may be 5 μm to 40 μm, 8 μm to 35 μm, or 10 μm to 30 μm. The average particle diameter can be measured by a laser diffraction particle size distribution apparatus, and is a particle diameter at which integration from the small diameter side is 50% in a volume-based particle size distribution.

(球状の黒鉛粒子の円形度)
前記球状の黒鉛粒子の円形度は0.80以上であってもよく、0.85以上であってもよい。前記球状の黒鉛粒子の中には前記リチウムイオン二次電池用負極材の製造過程で機械的力によって変形するものが存在する。しかし、前記リチウムイオン二次電池用負極材に含まれる球状の黒鉛粒子の全体としての円形度は高い方が負極材としての配向性が低くなり、電極としての特性が向上する。前記リチウムイオン二次電池用負極材に含まれる球状の黒鉛粒子の円形度を高くするための方法としては、円形度が高い球状の黒鉛粒子を原料として使用することが挙げられる。前記円形度は、前記複合粒子に含まれる球状の黒鉛粒子の部分について測定する。
(Roundness of spherical graphite particles)
The roundness of the spherical graphite particles may be 0.80 or more, and may be 0.85 or more. Some of the spherical graphite particles are deformed by mechanical force in the process of manufacturing the negative electrode material for a lithium ion secondary battery. However, the higher the degree of circularity of the spherical graphite particles contained in the negative electrode material for lithium ion secondary batteries, the lower the orientation as the negative electrode material and the better the characteristics as an electrode. As a method for increasing the circularity of the spherical graphite particles contained in the negative electrode material for lithium ion secondary batteries, it is possible to use spherical graphite particles having high circularity as a raw material. The degree of circularity is measured for the portion of spherical graphite particles contained in the composite particles.

前記球状の黒鉛粒子の円形度は、球状の黒鉛粒子の断面を写真撮影して下記式により求めることができる。
円形度=(相当円の周囲長)/(球状の黒鉛粒子の断面像の周囲長)
ここで「相当円」とは、球状の黒鉛粒子の断面像と同じ面積を持つ円である。球状の黒鉛粒子の断面像の周囲長とは、撮像した球状の黒鉛粒子の断面像の輪郭線の長さである。本発明における円形度は、走査型電子顕微鏡で球状の黒鉛粒子の断面を倍率1000倍に拡大し、任意に10個の球状の黒鉛粒子を選択し、上記方法にて個々の球状の黒鉛粒子の円形度を測定し、その平均をとった値である。
The degree of circularity of the spherical graphite particles can be determined by photographing the cross section of the spherical graphite particles according to the following equation.
Circularity = (perimeter of equivalent circle) / (perimeter of cross-sectional image of spherical graphite particle)
Here, "equivalent circle" is a circle having the same area as the cross-sectional image of the spherical graphite particles. The peripheral length of the cross-sectional image of the spherical graphite particles is the length of the outline of the cross-sectional image of the spherical graphite particles taken. In the present invention, the circularity of the present invention enlarges the cross section of the spherical graphite particles by a magnification of 1000 with a scanning electron microscope, and arbitrarily selects 10 spherical graphite particles, and the above method It is the value which measured the degree of circularity and took the average.

前記リチウムイオン二次電池用負極材を負極とした場合に球状の黒鉛粒子の円形度を測定する方法としては、試料電極又は観察対象の電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡で観察する方法、イオンミリング装置(E−3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製して走査型電子顕微鏡で観察する方法等が挙げられる。   When the negative electrode material for a lithium ion secondary battery is used as a negative electrode, as a method of measuring the degree of circularity of spherical graphite particles, a sample electrode or an electrode to be observed is embedded in an epoxy resin and then mirror polished The method of observing with a scanning electron microscope, the method of producing an electrode cross section using an ion milling apparatus (E-3500, manufactured by Hitachi High-Technologies Corporation) and observing it with a scanning electron microscope, etc. may be mentioned.

上記試料電極は、例えば、上述の平均粒径の測定に用いる試料電極と同様にして作製することができる。   The sample electrode can be produced, for example, in the same manner as the sample electrode used for the measurement of the above-mentioned average particle diameter.

(ラマン測定のR値)
前記リチウムイオン二次電池用負極材は、ラマン測定のR値が0.03以上0.10以下である。前記R値は0.04以上0.10以下であってもよく、0.05以上0.10以下であってもよい。R値が0.10を上回ると、電解液の分解反応量が増大することによるリチウムイオン二次電池のガス膨れが発生する場合や、初回効率が低下する場合がある。その結果、高密度対応電極への適用が実質的に困難になる場合がある。R値が0.03未満であると、リチウムイオンが挿入脱離するための黒鉛格子欠陥が少なすぎて充放電の負荷特性が低下する場合がある。
(R value of Raman measurement)
The negative electrode material for a lithium ion secondary battery has an R value of 0.03 or more and 0.10 or less in Raman measurement. The R value may be 0.04 or more and 0.10 or less, or may be 0.05 or more and 0.10 or less. When the R value exceeds 0.10, gas expansion of the lithium ion secondary battery may occur due to an increase in the amount of decomposition reaction of the electrolytic solution, or the initial efficiency may decrease. As a result, application to a high density counter electrode may be substantially difficult. If the R value is less than 0.03, there may be too few graphite lattice defects for insertion and desorption of lithium ions, and the load characteristics of charge and discharge may be degraded.

前記R値は、後述するラマン測定において得られたラマンスペクトルにおいて、1580cm−1付近の最大ピークの強度IAと、1360cm−1付近の最大ピークの強度IBの強度比(IB/IA)と定義する。 The R value in Raman spectrum obtained in Raman measurements to be described later, define the intensity IA of a maximum peak in the vicinity of 1580 cm -1, the intensity ratio of the intensity IB of a maximum peak around 1360 cm -1 and (IB / IA) .

ラマン測定は、ラマン分光器「レーザーラマン分光光度計(型番:NRS−1000、日本分光株式会社製」を用い、リチウムイオン二次電池用負極材又はリチウムイオン二次電池用負極材を集電体に塗布及び加圧して得た電極を平らになるようにセットした試料板にアルゴンレーザー光を照射して測定を行う。測定条件は以下の通りである。
アルゴンレーザー光の波長:532nm
波数分解能:2.56cm−1
測定範囲:1180cm−1〜1730cm−1
ピークリサーチ:バックグラウンド除去
For Raman measurement, a negative electrode material for a lithium ion secondary battery or a negative electrode material for a lithium ion secondary battery is collected using a Raman spectrometer “Laser Raman spectrophotometer (model number: NRS-1000, manufactured by JASCO Corporation)” The sample plate set to flatten the electrode obtained by applying and pressing is irradiated with argon laser light and measurement is performed under the following conditions.
Wavelength of argon laser light: 532 nm
Wavenumber resolution: 2.56 cm -1
Measurement range: 1180 cm -1 to 1730 cm -1
Peak research: background removal

ラマン測定のR値が0.03以上0.10以下であるリチウムイオン二次電池用負極材を得るための方法としては、前述のように球状の黒鉛粒子を焼成する方法が挙げられる。さらに、原料として使用するピッチ等のバインダー成分に由来する残留炭素分の比率をリチウムイオン二次電池用負極材全体の30質量%以下とすることが挙げられる。バインダー成分のような結晶性の低い成分は、前述の扁平状の黒鉛粒子を集合又は結合させて複合粒子を形成する為に必要であるが、黒鉛化による結晶性の発達は悪く残炭率も低い。これにより生産性の低下を招き、且つ、黒鉛化後の粒子が硬質となりやすい。その結果、粒度調整の為に行う粉砕や電極としたときの密度調整プレスをする際に黒鉛粒子の表面に負荷がかかり、格子欠陥を発生させてR値が上昇する場合がある。従って、バインダー成分の残留炭素分がリチウムイオン二次電池用負極材全体の30質量%以下となるように添加量を制限することが有効である。   As a method for obtaining a negative electrode material for a lithium ion secondary battery having an R value of Raman measurement of 0.03 or more and 0.10 or less, a method of firing spherical graphite particles as described above can be mentioned. Furthermore, setting the ratio of the residual carbon component derived from binder components, such as pitch, used as a raw material to 30 mass% or less of the whole negative electrode material for lithium ion secondary batteries is mentioned. The low crystallinity component such as the binder component is necessary to form the composite particles by aggregating or bonding the above-described flat graphite particles, but the crystallinity development by graphitization is slow and the residual carbon ratio is also Low. This causes a decrease in productivity, and the particles after graphitization tend to be hard. As a result, load may be applied to the surface of the graphite particles when performing pulverization for density adjustment and density adjustment pressing when forming an electrode, lattice defects may be generated, and the R value may increase. Therefore, it is effective to limit the addition amount so that the residual carbon content of the binder component is 30% by mass or less of the whole negative electrode material for lithium ion secondary batteries.

(細孔容積)
前記リチウムイオン二次電池用負極材は、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下である。前記細孔容積が0.2mL/g未満であると、リチウムイオン二次電池としたときにリチウムイオンの移動媒体となる電解液量が少なすぎて高速充放電特性が低下する傾向にある。また前記細孔容積が1.0mL/gmを上回ると、有機接着剤、増粘剤等の添加剤の吸油能が高まり、ペースト粘度の異状、集電体接着力不足等による生産性の低下が生じる傾向にある。
(Pore volume)
The negative electrode material for a lithium ion secondary battery has a pore diameter of 0.2 mL / g or more and 1.0 mL / g or less in a pore diameter range of 0.1 μm to 8 μm obtained by mercury porosimetry. If the pore volume is less than 0.2 mL / g, the amount of electrolyte serving as a lithium ion transfer medium in a lithium ion secondary battery is too small, and the high-speed charge / discharge characteristics tend to be degraded. When the pore volume exceeds 1.0 mL / gm, the oil absorption capacity of additives such as organic adhesives and thickeners is increased, and the productivity is lowered due to abnormal paste viscosity, lack of current collector adhesion, etc. It tends to occur.

前記水銀圧入法にて得られる0.1μm以上8μm以下の細孔容積は0.4mL/g以上0.8mL/g以下であってもよく、0.5mL/g以上0.7mL/g以下であってもよい。前記リチウムイオン二次電池用負極材の細孔容積は、例えば、球状の黒鉛粒子の配合比を適宜調整することにより上記範囲とすることができる。   The pore volume of 0.1 μm or more and 8 μm or less obtained by the mercury intrusion method may be 0.4 mL / g or more and 0.8 mL / g or less, and may be 0.5 mL / g or more and 0.7 mL / g or less It may be. The pore volume of the negative electrode material for lithium ion secondary batteries can be made into the above-mentioned range, for example, by appropriately adjusting the compounding ratio of the spherical graphite particles.

前記細孔容積は、次に示す水銀圧入法にて得られる。
水銀圧入法は「細孔分布測定装置 オートポア 9520型、株式会社島津製作所製」を用いる。水銀パラメータは、水銀接触角130.0°、水銀表面張力485.0mN/m(485.0dynes/cm)に設定する。試料(約0.3g)を標準用セルに採り、初期圧9kPa(約1.3psia、細孔直径約140μm相当)の条件で測定する。得られた細孔分布から0.1μm以上8μm以下の範囲における細孔体積の容量を算出する。
The pore volume is obtained by the mercury porosimetry shown below.
The mercury intrusion method uses “Pore distribution measuring apparatus Autopore 9520 type, manufactured by Shimadzu Corporation”. The mercury parameters are set to a mercury contact angle of 130.0 ° and a mercury surface tension of 485.0 mN / m (485.0 dynes / cm). A sample (about 0.3 g) is taken in a standard cell and measured under conditions of an initial pressure of 9 kPa (about 1.3 psia, equivalent to a pore diameter of about 140 μm). The volume of the pore volume in the range of 0.1 μm to 8 μm is calculated from the obtained pore distribution.

(比表面積)
前記リチウムイオン二次電池用負極材は、BET法にて測定される比表面積が1.5m/g以上6.0m/g以下であってもよく、2.5m/g以上5.0m/g以下であってもよい。
前記比表面積は電解液との界面の面積を示す指標である。すなわち、比表面積の値が6.0m/g以下であると、前記リチウムイオン二次電池用負極材と電解液との界面の面積が大きすぎず、電解液の分解反応の反応場の増加が抑制されてガス発生が抑制され、且つ、初回充放電効率が良好となる場合がある。また、比表面積の値が1.5m/g以上であると、単位面積あたりにかかる電流密度が急上昇せず、負荷が抑制されるため、充放電効率、充電受入性、急速充放電特性等が良好となる傾向にある。
(Specific surface area)
The negative electrode material for a lithium ion secondary battery may have a specific surface area measured by a BET method of 1.5 m 2 / g or more and 6.0 m 2 / g or less, and 2.5 m 2 / g or more. It may be 0 m 2 / g or less.
The said specific surface area is a parameter | index which shows the area of an interface with electrolyte solution. That is, when the value of the specific surface area is 6.0 m 2 / g or less, the area of the interface between the negative electrode material for lithium ion secondary battery and the electrolytic solution is not too large, and the reaction field of the decomposition reaction of the electrolytic solution is increased. May be suppressed to suppress gas generation, and the initial charge / discharge efficiency may be good. In addition, when the value of the specific surface area is 1.5 m 2 / g or more, the current density per unit area does not increase rapidly, and the load is suppressed. Therefore, charge / discharge efficiency, charge acceptance, rapid charge / discharge characteristics, etc. Tend to be good.

上記比表面積の測定は、BET法(窒素ガス吸着法)等の既知の方法で行うことができる。好ましくは、リチウムイオン二次電池用負極材又はリチウムイオン二次電池用負極材を集電体に塗布及び加圧して得た電極を測定セルに充填し、真空脱気しながら200℃で加熱前処理を行って得た試料に、ガス吸着装置(ASAP2010、株式会社島津製作所製)を用いて窒素ガスを吸着させる。得られた試料について5点法でBET解析を行い、比表面積を算出する。前記リチウムイオン二次電池用負極材の比表面積は、例えば、平均粒径を調整する(平均粒径を小さくすれば、比表面積が高まる傾向があり、平均粒径を大きくすると、比表面積が低くなる傾向がある)ことにより上記範囲とすることができる。   The measurement of the specific surface area can be performed by a known method such as BET method (nitrogen gas adsorption method). Preferably, an electrode obtained by applying and pressurizing a negative electrode material for lithium ion secondary batteries or a negative electrode material for lithium ion secondary batteries to a measurement cell is filled with a measurement cell, and heated before heating at 200 ° C. while vacuum degassing. Nitrogen gas is adsorbed to the sample obtained by the treatment using a gas adsorption apparatus (ASAP 2010, manufactured by Shimadzu Corporation). The obtained sample is subjected to BET analysis by the 5-point method to calculate the specific surface area. The specific surface area of the negative electrode material for lithium ion secondary batteries may be adjusted, for example, by adjusting the average particle size (if the average particle size is decreased, the specific surface area tends to increase, and if the average particle size is increased, the specific surface area is decreased. To the above range).

(飽和タップ密度)
前記リチウムイオン二次電池用負極材は、飽和タップ密度が0.8g/cm以上1.2g/cm以下であってもよく、0.9g/cm以上1.1g/cm以下であってもよい。
(Saturated tap density)
The negative electrode material for a lithium ion secondary battery may have a saturation tap density of 0.8 g / cm 3 or more and 1.2 g / cm 3 or less, and 0.9 g / cm 3 or more and 1.1 g / cm 3 or less It may be.

前記飽和タップ密度は、電極の高密度化の指標である。前記飽和タップ密度が1.2g/cm以下であると、集電体上にリチウムイオン二次電池用負極材を塗布して得た電極が高密度になり、電極密度調整のために加えられる圧力を軽減することができ、電極中の黒鉛粒子が本来の形状を維持しやすくなる。黒鉛粒子が本来の形状を維持することができると、極板の配向性が小さく、リチウムイオンの出入りが容易であり、サイクル特性が向上する等の利点がある。前記飽和タップ密度が高すぎると、前記細孔容積が低下し、電池としたときにリチウムイオンの移動媒体となる電解液量が少なくなって高速充放電特性が低下する場合がある。従って、飽和タップ密度は上記細孔容積が低くなりすぎないように調節することが好ましい。前記飽和タップ密度は、球状の黒鉛粒子の割合を適宜調整(球状の黒鉛粒子の割合を高くするとタップ密度が高くなる傾向があり、割合を低くするとタップ密度が低くなる傾向がある)することにより上記範囲とすることができる。 The saturation tap density is an indicator of electrode densification. The electrode obtained by apply | coating the negative electrode material for lithium ion secondary batteries on a collector as the said saturation tap density is 1.2 g / cm < 3 > or less becomes high density, and it is added for electrode density adjustment. The pressure can be reduced, and the graphite particles in the electrode can easily maintain its original shape. If the graphite particles can maintain their original shape, the orientation of the electrode plate is small, lithium ions can easily enter and leave, and the cycle characteristics can be improved. If the saturation tap density is too high, the pore volume may be reduced, and the amount of the electrolyte serving as a lithium ion transfer medium in the battery may be reduced to deteriorate the high-speed charge / discharge characteristics. Therefore, it is preferable to adjust the saturation tap density so that the pore volume is not too low. By adjusting the proportion of spherical graphite particles appropriately (by increasing the proportion of spherical graphite particles, the tap density tends to increase and when the proportion decreases, the tap density tends to decrease). It can be in the above range.

上記飽和タップ密度の測定は既知の方法で行うことができる。好ましくは、充填密度測定装置(KRS−406、株式会社蔵持科学器械製作所製)を用い、メスシリンダーにリチウムイオン二次電池用負極材を100ml入れ、密度が飽和するまでタップ(所定の高さからメスシリンダーを落下させる)して算出する。   The measurement of the saturated tap density can be performed by a known method. Preferably, 100 ml of a negative electrode material for a lithium ion secondary battery is placed in a measuring cylinder using a filling density measuring device (KRS-406, manufactured by Kuramochi Scientific Instruments Mfg. Co., Ltd.), and tap until the density is saturated (from a predetermined height Calculate by dropping the measuring cylinder).

(菱面体構造ピーク強度比)
前記リチウムイオン二次電池用負極材は、CuKα線によるX線回折パターンにおける、六方晶構造の(101)面の回折ピーク(P)と菱面体晶構造の(101)面の回折ピーク(P)との強度比(P/P)が0.35以下であってもよく、0.30以下であってもよい。前記ピーク強度比(P/P)が0.35以下であると、前記リチウムイオン二次電池用負極材の黒鉛化の程度がより高く、充放電容量が高くなる傾向がある。
(Rhohedral structural peak intensity ratio)
The negative electrode material for a lithium ion secondary battery has a diffraction peak (P 1 ) of a (101) plane of a hexagonal crystal structure and a diffraction peak (P1) of a (101) plane of a rhombohedral structure in an X-ray diffraction pattern by CuKα rays. 2) the intensity ratio (P 2 / P 1) is may be 0.35 or less, and may be 0.30 or less. When the peak intensity ratio (P 2 / P 1 ) is 0.35 or less, the degree of graphitization of the negative electrode material for a lithium ion secondary battery is higher, and the charge / discharge capacity tends to be high.

前記菱面体構造ピーク強度比は、CuKα線を用いたX線回折パターンにおける菱面体構造の回折線(P1:回折角43.2度)と六方晶構造の回折線(P2:回折角44.3度)の強度比から算出することができる。ここで、回折角は2θ(θはブラッグ角)で表されるが、回折角43.2度には菱面体構造の(101)面の回折線が現れ、回折角44.3度には六方晶構造の(101)面の回折線が現れる。
前記菱面体構造ピーク強度比は、黒鉛化度を調整(例えば、熱処理温度の調整)することにより上記範囲とすることができる。
The said rhombohedral structure peak intensity ratio is a diffraction line (P1: diffraction angle 43.2 degrees) of the rhombohedral structure and a diffraction line (P2: diffraction angle 44.3) of the hexagonal crystal structure in the X-ray diffraction pattern using CuK alpha rays. Can be calculated from the intensity ratio of Here, the diffraction angle is expressed by 2θ (θ is a Bragg angle), but the diffraction line of the (101) plane of the rhombohedral structure appears at the diffraction angle 43.2 degrees, and the diffraction angle is 6 A diffraction line of (101) plane of crystal structure appears.
The rhombohedral structure peak intensity ratio can be in the above range by adjusting the degree of graphitization (for example, adjusting the heat treatment temperature).

<リチウムイオン二次電池用負極材の製造方法>
前記リチウムイオン二次電池用負極材の製造方法は、(a)黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子を含む混合物を得る工程と、(b)前記混合物を焼成する工程と、を含む。
<Method of manufacturing negative electrode material for lithium ion secondary battery>
The method for producing a negative electrode material for a lithium ion secondary battery comprises: (a) obtaining a mixture comprising graphitizable aggregate or graphite, a graphitizable binder, a graphitization catalyst and spherical graphite particles (b B.) Firing the mixture.

上記方法によれば、配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含み、ラマン測定のR値が0.03以上0.1以下であり、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下であるリチウムイオン二次電池用負極材を製造することができる。   According to the above-mentioned method, the composite particle includes a plurality of flat graphite particles which are assembled or bonded such that the orientation planes are not parallel and the spherical graphite particles, and the R value of the Raman measurement is 0. Lithium ion 2 having a pore volume of 0.2 mL / g or more and 1.0 mL / g or less which is 03 or more and 0.1 or less, and a pore diameter obtained by mercury porosimetry is in a range of 0.1 μm or more and 8 μm or less A negative electrode material for a secondary battery can be manufactured.

さらに上記方法によれば、原料を焼成により黒鉛化する際に原料に含まれる重金属、磁性異物及び不純物は高熱により除去されるので、天然黒鉛等の球状の黒鉛粒子の酸処理・水洗等を行う必要がない。これにより、製造コストが削減でき、且つ、安全性の高いリチウムイオン二次電池用負極材を提供できる。さらに、原料の少なくとも一部として黒鉛化可能な骨材以外に既に黒鉛である球状の黒鉛粒子を用いることで、原料の黒鉛化に要する黒鉛化触媒の量の低減、黒鉛化のための焼成時間の短縮等により製造コストが削減できる。その結果、高価である人造黒鉛を用いつつもより安価なリチウムイオン二次電池用負極材を提供することができる。また、リチウムイオン二次電池用負極材の作製に使用するバインダ成分を減らすことができる。   Further, according to the above method, when the raw material is graphitized by firing, heavy metals, magnetic foreign substances and impurities contained in the raw material are removed by high heat, so acid treatment, washing with water and the like of spherical graphite particles such as natural graphite are performed. There is no need. Thereby, the manufacturing cost can be reduced, and a highly safe negative electrode material for a lithium ion secondary battery can be provided. Furthermore, by using spherical graphite particles which are already graphite in addition to the graphitizable aggregate as at least a part of the raw material, the amount of the graphitization catalyst required for the graphitization of the raw material is reduced, and the firing time for graphitization is Can reduce manufacturing costs. As a result, it is possible to provide a more inexpensive negative electrode material for a lithium ion secondary battery while using expensive artificial graphite. Moreover, the binder component used for preparation of the negative electrode material for lithium ion secondary batteries can be reduced.

上記方法では、球状の黒鉛粒子もその他の原料とともに焼成される。これにより、球状の黒鉛粒子をその他の原料を焼成して黒鉛化したものと混合した場合と比べてリチウムイオン二次電池用負極材のラマン測定のR値を低くすることができる。   In the above method, spherical graphite particles are also fired together with other raw materials. This makes it possible to lower the R value of Raman measurement of the negative electrode material for a lithium ion secondary battery, as compared to the case where spherical graphite particles are mixed with a material obtained by firing and graphitizing other raw materials.

工程(a)では、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子を混合し混合物を得る。
前記黒鉛化可能な骨材としては、フルードコークス、ニードルコークス、モザイクコークス等のコークスを挙げることができる。また、天然黒鉛、人造黒鉛等の既に黒鉛である骨材を使用してもよい。前記黒鉛化可能な骨材は粉末状であれば特に制限はない。中でも、ニードルコークス等の黒鉛化しやすいコークス粉末であってもよい。前記黒鉛は粉末であれば特に制限はない。前記黒鉛化可能な骨材又は黒鉛の粒径は、前記扁平状の黒鉛粒子の粒径より小さいことが好ましい。
前記球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛が挙げられる。
前記黒鉛化可能なバインダーとしては、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。
前記黒鉛化触媒としては、ケイ素、鉄、ニッケル、チタン、ホウ素等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、酸化物及び窒化物などが挙げられる。
In step (a), the graphitizable aggregate or graphite, the graphitizable binder, the graphitization catalyst and the spherical graphite particles are mixed to obtain a mixture.
Examples of the graphitizable aggregate include coke such as fluid coke, needle coke, mosaic coke and the like. In addition, aggregates that are already graphite such as natural graphite and artificial graphite may be used. The graphitizable aggregate is not particularly limited as long as it is powdery. Among them, coke powder which is easily graphitized such as needle coke may be used. The graphite is not particularly limited as long as it is a powder. The particle size of the graphitizable aggregate or graphite is preferably smaller than the particle size of the flat graphite particles.
Examples of the spherical graphite particles include spherical artificial graphite and spherical natural graphite.
Examples of the graphitizable binder include coal-based, petroleum-based, artificially-formed pitches and tars, thermoplastic resins, thermosetting resins and the like.
Examples of the graphitization catalyst include substances having graphitization catalysis such as silicon, iron, nickel, titanium, and boron, and carbides, oxides, and nitrides of these substances.

前記球状の黒鉛粒子の含有率は、前記黒鉛化可能な骨材又は黒鉛100質量部に対し、5質量%〜80質量%であってもよく、8質量%〜75質量%であってもよく、8質量%〜70質量%であってもよい。前記球状の黒鉛粒子の含有率が上記範囲であると、高い密度及び高い充放電容量が得られる傾向にある。   The content of the spherical graphite particles may be 5% by mass to 80% by mass, or 8% by mass to 75% by mass with respect to 100 parts by mass of the graphitizable aggregate or graphite. 8 mass%-70 mass% may be sufficient. When the content of the spherical graphite particles is in the above range, high density and high charge / discharge capacity tend to be obtained.

前記黒鉛化可能なバインダーの含有率は、前記黒鉛化可能な骨材又は黒鉛100質量部に対し、5質量%〜80質量%であってもよく、10質量%〜80質量%であってもよく、15質量%〜80質量%であってもよい。前記黒鉛化可能なバインダーの添加量を適切な量とすることで、製造される扁平状の黒鉛粒子のアスペクト比及び比表面積が大きくなりすぎることを抑制できる。さらには、前記黒鉛化可能なバインダーの量を焼成後のバインダーに由来する残留炭素分がリチウムイオン二次電池用負極材全体の30質量%以下となるように抑制することで、ラマン測定のR値が大きくなりすぎることを抑制できる。   The content of the graphitizable binder may be 5% by mass to 80% by mass, or 10% by mass to 80% by mass with respect to 100 parts by mass of the graphitizable aggregate or graphite. 15 mass%-80 mass% may be sufficient. By setting the addition amount of the graphitizable binder to an appropriate amount, it is possible to suppress that the aspect ratio and the specific surface area of the flat graphite particles to be produced become too large. Furthermore, the amount of the graphitizable binder is suppressed so that the residual carbon content derived from the binder after firing is 30% by mass or less of the entire negative electrode material for lithium ion secondary batteries, thereby achieving R in Raman measurement. It can be suppressed that the value becomes too large.

前記黒鉛化触媒は、前記黒鉛化可能な骨材又は黒鉛と前記黒鉛化可能なバインダーとの合計量100質量部に対して1質量部〜50質量部添加してもよい。前記黒鉛化触媒の量が1質量部以上であると、黒鉛質粒子の結晶の発達が良好であり、充放電容量が良好となる傾向にある。一方、前記黒鉛化触媒の量が50質量部以下であると、黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子の混合をより均一に行うことができ、作業性が良好となる傾向がある。前記黒鉛化触媒の混合方法に特に制限はなく、少なくとも黒鉛化のための焼成前に黒鉛化触媒が前記混合物中の粒子内部又は粒子表面に存在するような混合方法であればよい。   The graphitization catalyst may be added in an amount of 1 part by mass to 50 parts by mass with respect to 100 parts by mass in total of the graphitizable aggregate or graphite and the graphitizable binder. When the amount of the graphitization catalyst is 1 part by mass or more, the development of crystals of the graphitic particles is good, and the charge / discharge capacity tends to be good. On the other hand, when the amount of the graphitization catalyst is 50 parts by mass or less, mixing of the graphitizable aggregate or graphite, the graphitizable binder, the graphitization catalyst and the spherical graphite particles can be performed more uniformly. Workability tends to be good. There is no particular limitation on the method of mixing the graphitization catalyst, and any mixing method may be used as long as the graphitization catalyst is present inside or on the surface of the particles in the mixture at least before calcination for graphitization.

前記黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子の混合方法には特に制限はない。例えば、ニーダー等を用いて行うことができる。前記混合はバインダーの軟化点以上の温度で行ってもよい。具体的には、前記黒鉛化可能なバインダーがピッチ、タール等である場合には50℃〜300℃であってもよく、熱硬化性樹脂である場合には20℃〜100℃であってもよい。   There are no particular limitations on the method of mixing the graphitizable aggregate or graphite, the graphitizable binder, the graphitization catalyst, and the spherical graphite particles. For example, a kneader or the like can be used. The mixing may be performed at a temperature above the softening point of the binder. Specifically, if the graphitizable binder is pitch, tar or the like, it may be 50 ° C to 300 ° C, and if it is a thermosetting resin, it may be 20 ° C to 100 ° C. Good.

工程(b)では、前記工程(a)で得た混合物を焼成する。これにより、前記混合物中の黒鉛化可能な成分が黒鉛化される。前記焼成は、前記混合物が酸化し難い雰囲気で行うことが好ましく、例えば、窒素雰囲気中、アルゴンガス中、又は真空中で焼成する方法が挙げられる。焼成温度は、前記黒鉛化可能な成分を黒鉛化できる温度であれば特に制限されない。例えば1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。焼成温度は、3200℃以下であってもよい。前記焼成温度が1500℃以上であると結晶の変化が生じる。前記焼成温度が2000℃以上であると黒鉛の結晶の発達が良好となり、作製した黒鉛質粒子に残存する黒鉛化触媒の量が少なくなる傾向にある(灰分量の増加が抑制される)。いずれの場合も充放電容量及び電池のサイクル特性が良好となる傾向にある。一方、焼成温度が3200℃以下であると、黒鉛の一部が昇華するのを抑制できる。   In the step (b), the mixture obtained in the step (a) is fired. Thereby, the graphitizable component in the mixture is graphitized. The firing is preferably performed in an atmosphere in which the mixture is difficult to oxidize, and examples thereof include a method of firing in a nitrogen atmosphere, argon gas, or vacuum. The firing temperature is not particularly limited as long as it is a temperature at which the graphitizable component can be graphitized. For example, the temperature may be 1500 ° C. or higher, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher. The firing temperature may be 3200 ° C. or less. When the firing temperature is 1500 ° C. or more, change in crystals occurs. When the calcination temperature is 2000 ° C. or more, the development of graphite crystals becomes favorable, and the amount of the graphitization catalyst remaining in the produced graphitic particles tends to decrease (an increase in the amount of ash is suppressed). In any case, the charge / discharge capacity and the cycle characteristics of the battery tend to be good. On the other hand, it can suppress that a part of graphite sublimes that a calcination temperature is 3200 degrees C or less.

前記リチウムイオン二次電池用負極材の製造方法は、前記工程(a)と前記工程(b)との間に、(c)前記混合物を成形する工程及び(d)前記混合物を熱処理する工程からなる群より選ばれる少なくとも一つを含んでもよい。具体的には、工程(a)の後に工程(b)のみを行っても、工程(a)の後に工程(c)のみを行っても、工程(a)の後に工程(b)及び工程(c)をこの順に行っても、工程(a)の後に工程(c)及び工程(b)をこの順に行ってもよい。   In the method of manufacturing the negative electrode material for a lithium ion secondary battery, from the step of (c) molding the mixture and the step of (d) heat-treating the mixture between the step (a) and the step (b) And at least one selected from the group consisting of Specifically, even if only the step (b) is performed after the step (a), or whether only the step (c) is performed after the step (a), the step (b) and the step (b) after the step (a) Even if c) is carried out in this order, the step (c) and the step (b) may be carried out in this order after the step (a).

前記混合物を成形する工程(c)における成形は、例えば前記混合物を粉砕し、これを金型等の容器に入れて行うことができる。   The molding in the step (c) of molding the mixture can be performed, for example, by crushing the mixture and placing it in a container such as a mold.

前記混合物を熱処理する工程(d)において前記混合物を熱処理することは、黒鉛化を進行させる観点から好ましい。前記熱処理を行う場合は、工程(c)において前記混合物を成形した後に行うことがより好ましい。前記熱処理は1500℃以上で行なってもよく、2500℃以上で行なってもよい。   Heat treating the mixture in the step (d) of heat treating the mixture is preferable from the viewpoint of promoting graphitization. When performing the said heat processing, it is more preferable to carry out after shape | molding the said mixture in process (c). The heat treatment may be performed at 1500 ° C. or higher, and may be performed at 2500 ° C. or higher.

焼成前に前記混合物を成形及び粉砕して粒径を調整していない場合、焼成後に得られた黒鉛化物を粉砕処理して、所望の平均粒子径としてもよい。あるいは焼成前に前記混合物を成形及び粉砕して粒径を調整し、焼成後にさらに得られた黒鉛化物を粉砕処理してもよい。前記黒鉛化物の粉砕方法に特に制限はない。例えば、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕後の平均粒子径(メディアン径)は100μm以下であってもよく、10μm〜50μmであってもよい。   If the mixture is not shaped and pulverized to adjust the particle size before firing, the graphitized product obtained after firing may be pulverized to obtain a desired average particle size. Alternatively, the mixture may be shaped and crushed to adjust the particle size before firing, and the resulting graphitized may be further crushed after firing. There is no particular limitation on the method of grinding the graphitized material. For example, it can be carried out by a known method using a jet mill, a vibration mill, a pin mill, a hammer mill or the like. The average particle diameter (median diameter) after grinding may be 100 μm or less, and may be 10 μm to 50 μm.

焼成及び粉砕後の前記黒鉛化物に対し、等方性加圧処理を行ってもよい。前記等方性加圧処理の方法としては、例えば、焼成及び粉砕後の黒鉛化物をゴム製等の容器に充填し、密封したのちに前記容器をプレス機で等方性加圧処理する方法が挙げられる。等方性加圧処理された黒鉛化物は、カッターミル等で解砕し、篩等で整粒することが好ましい。   The graphitized material after firing and crushing may be subjected to isotropic pressure treatment. As a method of the isotropic pressure treatment, for example, a method of filling a container made of rubber or the like after firing and crushing into a container made of rubber or the like, sealing the container, and subjecting the container to isotropic pressure treatment with a press It can be mentioned. It is preferable that the isotropic pressure-treated graphitized material be crushed by a cutter mill or the like and sized by a sieve or the like.

上記に述べた方法は、リチウムイオン二次電池用負極材の製造方法の一例である。上記以外の方法によってリチウムイオン二次電池用負極材を製造してもよい。上記以外の方法としては、複数の扁平状の黒鉛粒子を配向面が非平行となるように集合又は結合させてなる黒鉛粒子(塊状黒鉛粒子)を作製した後に、球状の黒鉛粒子を混合して複合粒子を形成する方法が挙げられる。塊状黒鉛粒子の製造方法については、特許第3285520号公報、特許第3325021号公報等の記載を参照することができる。   The method mentioned above is an example of the manufacturing method of the negative electrode material for lithium ion secondary batteries. You may manufacture the negative electrode material for lithium ion secondary batteries by methods other than the above. As a method other than the above, after preparing a graphite particle (aggregated graphite particle) formed by aggregating or bonding a plurality of flat graphite particles such that the orientation plane is not parallel, the spherical graphite particles are mixed Methods of forming composite particles can be mentioned. With respect to the method for producing massive graphite particles, the description of Japanese Patent No. 3285520, Japanese Patent No. 3325021, etc. can be referred to.

(リチウムイオン二次電池用負極活物質)
本発明のリチウムイオン二次電池用負極活物質は、前記リチウムイオン二次電池用負極に含まれる黒鉛粒子とは形状又は物性の少なくとも一方が異なる炭素質粒子又は吸蔵金属粒子を含む。前記リチウムイオン二次電池用負極活物質は、好ましくは天然黒鉛、人造黒鉛、非晶質被覆黒鉛、樹脂被覆黒鉛、非晶質炭素、及び吸蔵金属粒子よりからなる群から選ばれる何れか1つ以上のリチウムイオン吸蔵性構造物を更に含有する。
(Anode active material for lithium ion secondary battery)
The negative electrode active material for a lithium ion secondary battery of the present invention contains carbonaceous particles or storage metal particles having at least one of the shape or the physical properties different from that of the graphite particles contained in the negative electrode for a lithium ion secondary battery. The negative electrode active material for a lithium ion secondary battery is preferably any one selected from the group consisting of natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, amorphous carbon, and storage metal particles. It further contains the above lithium ion storage structure.

(リチウムイオン二次電池用負極材スラリー)
本発明のリチウムイオン二次電池用負極材スラリーは、前記リチウムイオン二次電池用負極材、又は前記リチウムイオン二次電池用負極材の製造方法により製造されたリチウムイオン二次電池用負極材と、有機結着材と、溶剤とを含む。
(Slurry for negative electrode material for lithium ion secondary battery)
The negative electrode material slurry for a lithium ion secondary battery of the present invention is a negative electrode material for a lithium ion secondary battery, or a negative electrode material for a lithium ion secondary battery produced by the method for producing a negative electrode material for a lithium ion secondary battery And an organic binder and a solvent.

前記有機結着剤に特に制限はない。例えば、スチレン−ブタジエンゴム、エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等)、及びエチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)に由来する(メタ)アクリル共重合体、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。   There is no particular limitation on the organic binder. For example, styrene-butadiene rubber, ethylenic unsaturated carboxylic acid ester (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate etc.), and ethylenic (Meth) acrylic copolymers derived from unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid etc.), polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, poly Polymer compounds such as acrylonitrile, polyimide, polyamide imide and the like can be mentioned.

前記溶剤に特に制限はない。例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等の有機溶剤が用いられる。   The solvent is not particularly limited. For example, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, γ-butyrolactone and the like are used.

前記リチウムイオン二次電池用負極材スラリーは、必要に応じて、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。   The said negative electrode material slurry for lithium ion secondary batteries may also contain the thickener for adjusting a viscosity as needed. Examples of the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, casein and the like.

前記リチウムイオン二次電池用負極材スラリーは、必要に応じて、導電助剤を混合してもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。   The said negative electrode material slurry for lithium ion secondary batteries may mix a conductive support agent as needed. Examples of the conductive aid include carbon black, graphite, acetylene black, oxides exhibiting conductivity, nitrides exhibiting conductivity, and the like.

(リチウムイオン二次電池用負極)
本発明のリチウムイオン二次電池用負極は集電体と、集電体上に形成された前記リチウムイオン二次電池用負極材を含む負極材層と、を有する。
(Anode for lithium ion secondary battery)
The negative electrode for a lithium ion secondary battery of the present invention has a current collector, and a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery formed on the current collector.

前記集電体の材質及び形状は特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。   The material and shape of the current collector are not particularly limited. For example, materials such as strip-shaped foil, strip-shaped piercing foil, and strip-shaped mesh made of metal or alloy such as aluminum, copper, nickel, titanium and stainless steel can be used. In addition, porous materials such as porous metal (foam metal) and carbon paper can also be used.

リチウムイオン二次電池用負極材を含む負極材層を集電体上に形成する方法は特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により行うことができる。上記負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。   The method of forming the negative electrode material layer containing the negative electrode material for lithium ion secondary batteries on a collector is not specifically limited. For example, it can carry out by well-known methods, such as a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method. When integrating the said negative electrode material layer and a collector, it can carry out by well-known methods, such as a roll, a press, and these combination.

前記負極材層を集電体上に形成して得られたリチウムイオン二次電池用負極は、用いた有機結着剤の種類に応じて熱処理してもよい。熱処理することにより溶媒が除去され、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行なってもよい。   The negative electrode for a lithium ion secondary battery obtained by forming the negative electrode layer on the current collector may be heat-treated according to the type of the organic binder used. By heat treatment, the solvent is removed, the hardening of the binder progresses, and the adhesion between particles and between the particles and the current collector can be improved. The heat treatment may be performed in an inert atmosphere such as helium, argon or nitrogen or in a vacuum atmosphere to prevent oxidation of the current collector during processing.

上記熱処理を行う前に、前記リチウムイオン二次電池用負極をプレス(加圧処理)してもよい。加圧処理することにより電極密度を調整することができる。前記電極密度は1.5g/cm〜1.9g/cmであってもよく、1.6g/cm〜1.8g/cmであってもよい。電極密度が高いほど体積容量が向上し、集電体への負極材層の密着性が向上し、サイクル特性も向上する傾向がある。 The negative electrode for a lithium ion secondary battery may be pressed (pressure treatment) before the heat treatment is performed. The electrode density can be adjusted by pressure treatment. The electrode density may be 1.5g / cm 3 ~1.9g / cm 3 , may be 1.6g / cm 3 ~1.8g / cm 3 . As the electrode density is higher, the volumetric capacity is improved, the adhesion of the negative electrode layer to the current collector is improved, and the cycle characteristics are also improved.

(リチウムイオン二次電池)
本発明のリチウムイオン二次電池は、正極と、電解質と、前記リチウムイオン二次電池用負極とを有する。前記リチウムイオン二次電池は、例えば、前記負極と前記正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention has a positive electrode, an electrolyte, and the above-described negative electrode for a lithium ion secondary battery. The lithium ion secondary battery may be, for example, configured to be disposed such that the negative electrode and the positive electrode face each other via a separator, and to which an electrolytic solution containing an electrolyte is injected.

前記正極は、前記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode. As the current collector, materials such as a strip-shaped foil made of metal or alloy such as aluminum, titanium and stainless steel, a strip-shaped piercing foil, and a strip-shaped mesh can be used.

前記正極層に用いる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2−xMn、0<x≦2)は、容量が高いために正極材料として好適である。 The positive electrode material used for the positive electrode layer is not particularly limited. For example, metal compounds capable of doping or intercalating lithium ions, metal oxides, metal sulfides, and conductive polymer materials can be mentioned. Furthermore, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their complex oxides (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x , 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe ), Conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene etc., porous carbon etc. alone or in combination of two or more Can be used in combination. Among them, lithium nickelate (LiNiO 2 ) and its complex oxide (LiCo x Ni y Mn z O 2 , x + y + z = 1, 0 <x, 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2 ) Is suitable as a positive electrode material because of its high capacity.

前記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。   Examples of the separator include nonwoven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, microporous films, and combinations thereof. When the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode are not in contact with each other, it is not necessary to use a separator.

前記電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3-Methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl Carbonate, butylethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-di It is possible to use a so-called organic electrolytic solution which is dissolved in a non-aqueous solvent such as oxolane, methyl acetate and ethyl acetate alone or in a mixture of two or more components. Among them, an electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable because the cycle characteristics are significantly improved.

本発明のリチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。前記リチウムイオン二次電池用負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。   The form of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, and a square type battery. The negative electrode material for a lithium ion secondary battery can be applied to general electrochemical devices such as a hybrid capacitor having charge and discharge mechanism in which lithium ions are inserted and released in addition to the lithium ion secondary battery. .

以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に制限するものではない。   Hereinafter, the present invention will be more specifically described by way of synthesis examples, examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1]
(1)平均粒径が10μmのコークス粉末50質量部、タールピッチ20質量部、炭化ケイ素20質量部、及び平均粒径が20μmの球状天然黒鉛(円形度0.92)10質量部を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物を25μmに粉砕し、得られた粉砕粉を金型に入れて直方体に成形した。得られた直方体を窒素雰囲気中で1000℃で熱処理した後、2800℃で焼成して黒鉛化可能な成分を黒鉛化した。得られた黒鉛成形体を粉砕し、黒鉛粉末(リチウムイオン二次電池用負極材)を得た。
上記で得られた黒鉛粉末の平均粒度、R値、細孔容積、比表面積、飽和タップ密度、及び菱面体構造ピーク強度比を測定した。結果を表1に示す。測定はそれぞれ前記した方法により行った。
Example 1
(1) 50 parts by mass of coke powder having an average particle size of 10 μm, 20 parts by mass of tar pitch, 20 parts by mass of silicon carbide, and 10 parts by mass of spherical natural graphite (circularity 0.92) having an average particle size of 20 μm The mixture was stirred at 100 ° C. for 1 hour to obtain a mixture. Next, this mixture was ground to 25 μm, and the obtained ground powder was placed in a mold and formed into a rectangular solid. The obtained rectangular solid was heat-treated at 1000 ° C. in a nitrogen atmosphere, and then fired at 2800 ° C. to graphitize a graphitizable component. The obtained graphite compact was pulverized to obtain a graphite powder (negative electrode material for lithium ion secondary battery).
The average particle size, R value, pore volume, specific surface area, saturated tap density, and rhombohedral structure peak intensity ratio of the graphite powder obtained above were measured. The results are shown in Table 1. Each measurement was performed by the method described above.

(2)上記で得られた黒鉛粉末98質量部、スチレンブタジエンゴム(BM−400B、日本ゼオン株式会社製)1質量部、及びカルボキシメチルセルロース(CMC2200、株式会社ダイセル製)1質量部を混練してスラリーを作製した。このスラリーを集電体(厚さ10μmの銅箔)に塗布し、110℃で1時間大気中で乾燥し、ロールプレスにて塗布物質(活物質)が電極密度1.80g/cmとなる条件で一体化してリチウムイオン二次電池用負極を作製した。 (2) 98 parts by mass of the graphite powder obtained above, 1 part by mass of styrene butadiene rubber (BM-400B, manufactured by Nippon Zeon Co., Ltd.), and 1 part by mass of carboxymethylcellulose (CMC 2200, manufactured by Daicel Co., Ltd.) A slurry was made. This slurry is applied to a current collector (copper foil with a thickness of 10 μm), dried in air at 110 ° C. for 1 hour, and the applied material (active material) has an electrode density of 1.80 g / cm 3 with a roll press. It integrated on conditions, and produced the negative electrode for lithium ion secondary batteries.

上記リチウムイオン二次電池用負極の配向性及び剥離強度をそれぞれ下記に示す方法で測定した。測定結果を表1に示す。   The orientation and peel strength of the negative electrode for a lithium ion secondary battery were each measured by the methods shown below. The measurement results are shown in Table 1.

<配向性>
CuKα線をX線源とするX線回折装置により、試料電極の表面を測定することにより求めた。具体的には、試料電極の表面のX線回折パターンを測定し、回折角2θ=26〜27度付近に検出される炭素(002)面回折ピークと、回折角2θ=70〜80度付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求めた。
(002)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
<Alignability>
It calculated | required by measuring the surface of a sample electrode with the X-ray-diffraction apparatus which uses a CuK alpha ray as X-ray source. Specifically, the X-ray diffraction pattern of the surface of the sample electrode is measured, and a carbon (002) surface diffraction peak detected near the diffraction angle 2θ = 26 to 27 degrees and around the diffraction angle 2θ = 70 to 80 degrees It calculated | required by following formula (1) from the intensity | strength with the carbon (110) surface diffraction peak detected.
(002) surface diffraction peak intensity / (110) surface diffraction peak intensity ..... Formula (1)

<剥離強度>
オートグラフ(株式会社島津製作所製)により、活物質表面に粘着テープを貼り付け、電極面に対し垂直に引くことにより、集電体(銅箔)と活物質界面の剥離強度を測定した。
<Peeling strength>
By using an autograph (manufactured by Shimadzu Corporation), a pressure-sensitive adhesive tape was attached to the surface of the active material, and the peel strength was measured at the interface between the current collector (copper foil) and the active material by pulling perpendicularly to the electrode surface.

(3)上記で得られた負極、正極として金属リチウム、電解液として1.0M LiPFを含むエチレンカーボネート/エチルメチルカーボネート(3/7体積比)とビニレンカーボネート(0.5質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとして厚さ230μmの銅板を用いて2016型コインセルを作製した。
上記リチウムイオン二次電池の充電容量、放電容量、効率、急速放電維持率及び低温充電維持率をそれぞれ下記に示す方法で測定した。測定結果を表1に示す。
(3) A mixture of ethylene carbonate / ethyl methyl carbonate (3/7 volume ratio) and vinylene carbonate (0.5 mass%) containing metal lithium as the positive electrode and positive electrode and 1.0 M LiPF 6 as the electrolytic solution (3) A 2016 type coin cell was manufactured using the liquid, a polyethylene microporous film with a thickness of 25 μm as a separator, and a copper plate with a thickness of 230 μm as a spacer.
The charge capacity, discharge capacity, efficiency, rapid discharge maintenance rate, and low temperature charge maintenance rate of the lithium ion secondary battery were measured by the methods described below. The measurement results are shown in Table 1.

<充電容量及び放電容量>
充放電容量(初回充放電容量)の測定は、試料重量:15.4mg、電極面積:1.54cm、測定温度:25℃、電極密度:1700kg/m、充電条件:定電流充電0.434mA、定電圧充電0V(Li/Li)、カット電流0.043mA、放電条件:定電流放電0.434mA、カット電圧1.5V(Li/Li)の条件で行った。
放電容量の測定は、上記充電条件及び放電条件により行った。
<Charge capacity and discharge capacity>
The measurement of charge and discharge capacity (initial charge and discharge capacity) is sample weight: 15.4 mg, electrode area: 1.54 cm 2 , measurement temperature: 25 ° C., electrode density: 1700 kg / m 3 , charge condition: constant current charge 0. The test was performed under the conditions of 434 mA, constant voltage charge 0 V (Li / Li + ), cut current 0.043 mA, discharge condition: constant current discharge 0.434 mA, cut voltage 1.5 V (Li / Li + ).
The measurement of the discharge capacity was performed according to the above-mentioned charge condition and discharge condition.

<効率>
効率は、測定された充電容量の値に対する放電容量の値の割合(%)とした。
<Efficiency>
The efficiency was the ratio (%) of the value of the discharge capacity to the value of the charge capacity measured.

<急速放電維持率>
上記で作製したコインセルを用い、25℃の恒温槽の中で下記(1)〜(5)の手順で急速放電維持率を測定した。
(1)0.434mAの定電流で0V(Vvs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.043mAになるまで充電し、30分休止し、充電容量を測定した。
(2)0.434mAの定電流で1.5V(Vvs.Li/Li)まで放電し、30分休止する1サイクル試験を行い、放電容量を測定した。
(3)2サイクル目は、(1)及び(2)の充電、放電を繰り返し行い、充電容量、放電容量を測定した。
(4)3サイクル目以後は、充電条件は(1)と同じ条件とし、放電条件は(2)の定電流値を4.34mA(3サイクル目) 、6.51mA(4サイクル目)、8.68mA(5サイクル目)、10.85mA(6サイクル目)、13.02mA(2.4C)(7サイクル目)で測定した。
(5)急速放電維持率の測定は3から7サイクルで測定された放電容量について、各放電容量を2サイクル目の放電容量で除して維持率(%)を算出した。
<Rapid discharge maintenance rate>
Using the coin cell produced above, the rapid discharge maintenance rate was measured in the following procedure (1) to (5) in a thermostat at 25 ° C.
(1) Charged to 0 V (V vs. Li / Li + ) at a constant current of 0.434 mA, then charged to a current of 0.043 mA at a constant voltage of 0 V, rested for 30 minutes, and measured the charge capacity .
(2) A discharge was performed to 1.5 V (V vs. Li / Li + ) at a constant current of 0.434 mA, and a 30-minute rest cycle test was performed to measure the discharge capacity.
(3) In the second cycle, the charge and discharge of (1) and (2) were repeated to measure the charge capacity and the discharge capacity.
(4) After the third cycle, the charge condition is the same as (1), and the discharge condition is the constant current value of (2) 4.34 mA (third cycle), 6.51 mA (fourth cycle), 8 It measured by .68 mA (5th cycle), 10.85 mA (6th cycle), and 13.02 mA (2.4C) (7th cycle).
(5) The measurement of the rapid discharge maintenance rate was obtained by dividing each discharge capacity by the discharge capacity of the second cycle and calculating the maintenance rate (%) for the discharge capacities measured in 3 to 7 cycles.

<低温充電維持率>
上記で作製したコインセルを用い、下記(6)〜(8)の手順で低温充電維持率を測定した。
(6)25℃の恒温槽の中で、上記の(1)(2)(3)の手順にて充放電を行い、充電容量を測定した。
(7)(6)の放電休止終了後、恒温槽内の温度が0℃になった後、0℃を維持して上記(1)で充電して、充電容量を測定した。
(8)低温充電維持率の測定は、(6)の0℃で0.434mAの定電流で0V(Vvs.Li/Li)に到達した時の充電容量について、(3)の25℃で0.434mAの定電流で0V(Vvs.Li/Li)に到達した時の充電容量で除して維持率(%)を算出した。
<Low temperature charge maintenance rate>
Using the coin cell produced above, the low-temperature charge retention rate was measured by the following procedures (6) to (8).
(6) In the thermostat at 25 ° C., charge and discharge were performed according to the procedure of (1) (2) (3) above, and the charge capacity was measured.
(7) After the termination of discharge in (6), after the temperature in the thermostatic chamber became 0 ° C., the charge capacity was measured by maintaining the temperature at 0 ° C. and charging in the above (1).
(8) The measurement of the low-temperature charge retention rate is the charge capacity when reaching 0 V (V vs. Li / Li + ) at a constant current of 0.434 mA at 0 ° C. of (6) at 25 ° C. of (3) The maintenance rate (%) was calculated by dividing by the charge capacity when reaching 0 V (V vs. Li / Li + ) at a constant current of 0.434 mA.

[実施例2]
実施例1で得られた黒鉛粉末をゴム製容器に充填し、密封したのち、前記ゴム製容器に対してプレス機で圧力9800N/cm(1000kgf/cm)で等方性加圧処理を行った。次いで黒鉛粉末をカッターミルで解砕して篩で製粒し、実施例2の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Example 2
The graphite powder obtained in Example 1 is filled in a rubber container and sealed, and then the isostatic pressing is performed on the rubber container with a pressure machine at a pressure of 9800 N / cm 2 (1000 kgf / cm 2 ). went. Then, the graphite powder was crushed by a cutter mill and granulated by a sieve to obtain a graphite powder of Example 2.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例3]
コークス粉末、タールピッチ及び炭化ケイ素を混合、撹拌及び粉砕し、粉砕粉を得た後に、球状天然黒鉛を前記粉砕粉と混合した以外は実施例2と同様にして、実施例3の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 3]
Graphite powder of Example 3 was prepared in the same manner as Example 2, except that coke powder, tar pitch and silicon carbide were mixed, stirred and pulverized to obtain pulverized powder, and then spherical natural graphite was mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例4]
コークス粉末、タールピッチ及び球状天然黒鉛を混合、攪拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素を前記粉砕粉と混合した以外は実施例2と同様にして、実施例4の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Example 4
Graphite powder of Example 4 was prepared in the same manner as Example 2, except that coke powder, tar pitch and spherical natural graphite were mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide was mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例5]
コークス粉末及びタールピッチを混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素及び球状天然黒鉛を前記粉砕粉と混合した以外は実施例2と同様にして、実施例5の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 5]
Graphite powder of Example 5 was prepared in the same manner as Example 2, except that coke powder and tar pitch were mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide and spherical natural graphite were mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例6]
コークス粉末、タールピッチ、炭化ケイ素及び球状天然黒鉛の量をそれぞれ43質量部、18.5質量部、18.5質量部及び20質量部に変更した以外は実施例2と同様にして、実施例6の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 6]
Example like Example 2 except having changed quantity of coke powder, tar pitch, silicon carbide, and spherical natural graphite into 43 mass parts, 18.5 mass parts, 18.5 mass parts, and 20 mass parts, respectively. Six graphite powders were obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例7]
コークス粉末、タールピッチ及び炭化ケイ素を混合、撹拌及び粉砕し、粉砕粉を得た後に、球状天然黒鉛を前記粉砕粉と混合した以外は実施例6と同様にして、実施例7の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 7]
The graphite powder of Example 7 was prepared in the same manner as Example 6, except that coke powder, tar pitch and silicon carbide were mixed, stirred and pulverized to obtain pulverized powder, and then spherical natural graphite was mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例8]
コークス粉末、タールピッチ及び球状天然黒鉛を混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素を前記粉砕粉と混合した以外は実施例6と同様にして、実施例8の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 8]
The graphite powder of Example 8 was prepared in the same manner as Example 6, except that coke powder, tar pitch and spherical natural graphite were mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide was mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例9]
コークス粉末及びタールピッチを混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素及び球状天然黒鉛を前記粉砕粉と混合した以外は実施例6と同様にして、実施例9の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 9]
Graphite powder of Example 9 is prepared in the same manner as Example 6, except that coke powder and tar pitch are mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide and spherical natural graphite are mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例10]
コークス粉末、タールピッチ、炭化ケイ素及び球状天然黒鉛の量をそれぞれ41質量部、16質量部、16質量部及び27質量部に変更した以外は実施例2と同様にして、実施例10の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 10]
Graphite powder of Example 10 in the same manner as Example 2 except that the amounts of coke powder, tar pitch, silicon carbide and spherical natural graphite were changed to 41 parts by mass, 16 parts by mass, 16 parts by mass and 27 parts by mass, respectively. I got
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例11]
コークス粉末、タールピッチ及び炭化ケイ素を混合、撹拌及び粉砕し、粉砕粉を得た後に、球状天然黒鉛を前記粉砕粉と混合した以外は実施例10と同様にして、実施例11の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 11]
A graphite powder of Example 11 is prepared in the same manner as Example 10 except that coke powder, tar pitch and silicon carbide are mixed, stirred and pulverized to obtain pulverized powder, and then spherical natural graphite is mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例12]
コークス粉末、タールピッチ及び球状天然黒鉛を混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素を前記粉砕粉と混合した以外は実施例10と同様にして、実施例12の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 12]
Graphite powder of Example 12 was prepared in the same manner as in Example 10 except that coke powder, tar pitch and spherical natural graphite were mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide was mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例13]
コークス粉末及びタールピッチを混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素及び球状天然黒鉛を前記粉砕粉と混合した以外は実施例10と同様にして、実施例13の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 13]
A graphite powder of Example 13 is prepared in the same manner as in Example 10 except that after mixing coke powder and tar pitch with stirring and pulverizing to obtain pulverized powder, silicon carbide and spherical natural graphite are mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例14]
コークス粉末、タールピッチ、炭化ケイ素及び球状天然黒鉛の量をそれぞれ29質量部、11質量部、5質量部及び55質量部に変更した以外は実施例2と同様にして、実施例14の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Example 14
Graphite powder of Example 14 in the same manner as in Example 2 except that the amounts of coke powder, tar pitch, silicon carbide and spherical natural graphite were changed to 29 parts by mass, 11 parts by mass, 5 parts by mass and 55 parts by mass, respectively. I got
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例15]
コークス粉末、タールピッチ及び炭化ケイ素を混合、撹拌及び粉砕し、粉砕粉を得た後に、球状天然黒鉛を前記粉砕粉と混合した以外は実施例14と同様にして、実施例15の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 15]
The graphite powder of Example 15 is obtained in the same manner as in Example 14, except that coke powder, tar pitch and silicon carbide are mixed, stirred and pulverized to obtain pulverized powder, and then spherical natural graphite is mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例16]
コークス粉末、タールピッチ及び球状天然黒鉛を混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素を前記粉砕粉と混合した以外は実施例14と同様にして、実施例16の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 16]
A graphite powder of Example 16 is prepared in the same manner as in Example 14 except that coke powder, tar pitch and spherical natural graphite are mixed, stirred and pulverized to obtain pulverized powder, and then silicon carbide is mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例17]
コークス粉末及びタールピッチを混合、撹拌及び粉砕し、粉砕粉を得た後に、炭化ケイ素及び球状天然黒鉛を前記粉砕粉と混合した以外は実施例14と同様にして、実施例17の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 17]
The graphite powder of Example 17 is prepared in the same manner as in Example 14 except that after mixing coke powder and tar pitch with stirring and pulverizing to obtain pulverized powder, silicon carbide and spherical natural graphite are mixed with the pulverized powder. Obtained.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例18]
実施例9で用いたコークス粉末の代わりにコークス粉末よりも結晶度の低いモザイクコークスを同量使用した以外は実施例9と同様にして、実施例18の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 18]
A graphite powder of Example 18 was obtained in the same manner as in Example 9, except that the same amount of mosaic coke having a lower degree of crystallinity than coke powder was used instead of the coke powder used in Example 9.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[比較例1]
コークス粉末100質量部、タールピッチ40質量部及び炭化ケイ素25質量部を、250℃で加熱混合し、得られた混合物を粉砕し、次いでペレット状に加圧成形し、これを窒素中で900℃で焼成し、黒鉛化炉を用いて3000℃で黒鉛化した。得られた黒鉛化物をハンマーミルを用いて粉砕し、篩分けして平均粒径21μmの黒鉛粉末を得た。
Comparative Example 1
C. 100 parts by mass of coke powder, 40 parts by mass of tar pitch and 25 parts by mass of silicon carbide are heated and mixed at 250.degree. C., the resulting mixture is crushed, and then pressed into pellets and pressed in nitrogen at 900.degree. And fired at 3000.degree. C. using a graphitizing furnace. The obtained graphitized material was crushed using a hammer mill and sieved to obtain a graphite powder having an average particle diameter of 21 μm.

[実施例19]
実施例9で用いた球状天然黒鉛の代わりに平均粒子径22μmの球状人造黒鉛(円形度0.78)を同量使用した以外は実施例9と同様にして、実施例19の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 19]
A graphite powder of Example 19 is obtained in the same manner as in Example 9 except that spherical artificial graphite having an average particle diameter of 22 μm (circularity of 0.78) is used instead of spherical natural graphite used in Example 9 in the same amount. The
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例20]
実施例9で用いた球状天然黒鉛の代わりに平均粒子径23μmの球状天然黒鉛(円形度0.95)を同量使用した以外は実施例9と同様にして、実施例20の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 20]
A graphite powder of Example 20 is obtained in the same manner as in Example 9 except that the same amount of spherical natural graphite having an average particle diameter of 23 μm (circularity of 0.95) is used instead of spherical natural graphite used in Example 9. The
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[実施例21]
実施例9で用いた球状天然黒鉛の代わりに平均粒子径10μmの球状天然黒鉛(円形度0.90)を同量使用した以外は実施例9と同様にして、実施例21の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
[Example 21]
A graphite powder of Example 21 is obtained in the same manner as in Example 9 except that the same amount of spherical natural graphite (circularity 0.90) having an average particle diameter of 10 μm is used instead of spherical natural graphite used in Example 9. The
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[比較例2]
実施例9に記載の球状天然黒鉛の代わりに平均粒径25μmの鱗片状天然黒鉛を同量使用した以外は実施例9と同様にして、比較例2の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Comparative Example 2
A graphite powder of Comparative Example 2 was obtained in the same manner as in Example 9 except that the same amount of scaly natural graphite having an average particle diameter of 25 μm was used instead of the spherical natural graphite described in Example 9.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[比較例3]
実施例9に記載の球状天然黒鉛の代わりに篩で20μmに調整した鱗片状天然黒鉛を同量使用した以外は実施例9と同様にして、比較例3の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Comparative Example 3
A graphite powder of Comparative Example 3 was obtained in the same manner as in Example 9 except that the same amount of scaly natural graphite adjusted to 20 μm with a sieve was used instead of the spherical natural graphite described in Example 9.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[比較例4]
実施例1で使用した球状天然黒鉛のみを黒鉛るつぼに充填し、窒素雰囲気下で2800℃で焼成して比較例4の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Comparative Example 4
Only spherical natural graphite used in Example 1 was filled in a graphite crucible and fired at 2800 ° C. in a nitrogen atmosphere to obtain a graphite powder of Comparative Example 4.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.

[比較例5]
実施例1においてコークス粉末を使用しなかった以外は実施例1と同様にして比較例5の黒鉛粉末を得た。
実施例1と同様にしてリチウムイオン二次電池用負極及びリチウムイオン二次電池を作製し、実施例1と同様にして測定を行った。結果を表1に示す。
Comparative Example 5
A graphite powder of Comparative Example 5 was obtained in the same manner as in Example 1 except that coke powder was not used in Example 1.
A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were produced in the same manner as in Example 1, and measurements were conducted in the same manner as in Example 1. The results are shown in Table 1.


実施例1〜21の黒鉛粉末は、いずれも配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含んでいた。
また、表1に示されるように、実施例で作製したリチウムイオン二次電池用負極材は比較例で作製したリチウムイオン二次電池用負極材より急速放電維持率(負荷特性)に優れていた。
The graphite powders of Examples 1 to 21 contained composite particles including a plurality of flat graphite particles and spherical graphite particles, all of which were assembled or bonded so that the orientation planes were not parallel to each other.
Moreover, as shown in Table 1, the negative electrode material for lithium ion secondary batteries produced in the example was superior to the negative electrode material for lithium ion secondary batteries produced in the comparative example in rapid discharge retention rate (load characteristics) .

日本国特許出願第2014−062431号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。   The disclosure of Japanese Patent Application No. 2014-062431 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are as specific and distinct as when individual documents, patent applications, and technical standards are incorporated by reference. Hereby incorporated by reference.

Claims (10)

配向面が非平行となるように集合又は結合している複数の扁平状の黒鉛粒子と、球状の黒鉛粒子とを含む複合粒子を含み、ラマン測定のR値が0.03以上0.10以下であり、水銀圧入法にて得られる細孔直径が0.1μm以上8μm以下の範囲における細孔容積が0.2mL/g以上1.0mL/g以下であり、平均粒径が10μm〜30μmである、リチウムイオン二次電池用負極材。 It includes composite particles including a plurality of flat graphite particles which are aggregated or bonded so that the orientation planes are nonparallel and a spherical graphite particle, and the R value of Raman measurement is 0.03 or more and 0.10 or less , and the pore volume of pores having a pore diameter obtained by the mercury porosimetry at 8μm below the range of 0.1μm is Ri der less 0.2 mL / g or more 1.0 mL / g, an average particle diameter of 10μm~30μm The negative electrode material for lithium ion secondary batteries. BET法にて測定される比表面積が1.5m/g以上6.0m/g以下である請求項1に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the specific surface area measured by BET method is 1.5 m 2 / g or more and 6.0 m 2 / g or less. 飽和タップ密度が0.8g/cm以上1.2g/cm以下である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。 Saturated tapping density of 0.8 g / cm 3 or more 1.2 g / cm 3 or less is claim 1 or negative electrode material for a lithium ion secondary battery according to claim 2. CuKα線によるX線回折パターンにおける、六方晶構造の(101)面の回折ピーク(P1)と菱面体晶構造の(101)面の回折ピーク(P2)との強度比(P2/P1)が0.35以下である請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。   The intensity ratio (P2 / P1) of the diffraction peak (P1) of the (101) plane of the hexagonal structure to the diffraction peak (P2) of the (101) plane of the rhombohedral structure in the X-ray diffraction pattern by CuKα ray is 0 It is .35 or less, The negative electrode material for lithium ion secondary batteries of any one of Claims 1-3. 前記球状の黒鉛粒子の円形度が0.8以上である請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the degree of circularity of the spherical graphite particles is 0.8 or more. (a)黒鉛化可能な骨材又は黒鉛、黒鉛化可能なバインダー、黒鉛化触媒及び球状の黒鉛粒子を含む混合物を得る工程と、(b)前記混合物を焼成する工程と、を含む請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 2. A method comprising: (a) obtaining a mixture comprising graphitizable aggregate or graphite, a graphitizable binder, a graphitization catalyst and spherical graphite particles, and (b) calcining the mixture. The manufacturing method of the negative electrode material for lithium ion secondary batteries of any one of-Claim 5. 前記工程(a)と前記工程(b)との間に、(c)前記混合物を成形する工程及び(d)前記混合物を熱処理する工程からなる群より選ばれる少なくとも一つを含む請求項6に記載のリチウムイオン二次電池用負極材の製造方法。   7. The method according to claim 6, further comprising, between the step (a) and the step (b), at least one selected from the group consisting of (c) shaping the mixture and (d) heat treating the mixture. The manufacturing method of the negative electrode material for lithium ion secondary batteries as described. 請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材、又は請求項6もしくは請求項7に記載のリチウムイオン二次電池用負極材の製造方法により製造されたリチウムイオン二次電池用負極材と、有機結着材と、溶剤とを含むリチウムイオン二次電池用負極材スラリー。   The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5 or the method for producing a negative electrode material for a lithium ion secondary battery according to claim 6 or 7 A negative electrode material slurry for a lithium ion secondary battery, comprising a negative electrode material for a lithium ion secondary battery, an organic binder, and a solvent. 集電体と、集電体上に形成された請求項1〜請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、を有するリチウムイオン二次電池用負極。   A lithium ion secondary battery comprising a current collector, and a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5 formed on the current collector. Negative electrode. 正極と、電解質と、請求項9に記載のリチウムイオン二次電池用負極とを有するリチウムイオン二次電池。   The lithium ion secondary battery which has a positive electrode, electrolyte, and the negative electrode for lithium ion secondary batteries of Claim 9.
JP2017118134A 2014-03-25 2017-06-15 Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP6536630B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014062431 2014-03-25
JP2014062431 2014-03-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016510399A Division JP6160770B2 (en) 2014-03-25 2015-03-24 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019106362A Division JP2019145529A (en) 2014-03-25 2019-06-06 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2017188473A JP2017188473A (en) 2017-10-12
JP6536630B2 true JP6536630B2 (en) 2019-07-03

Family

ID=54195524

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016510399A Active JP6160770B2 (en) 2014-03-25 2015-03-24 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017118134A Active JP6536630B2 (en) 2014-03-25 2017-06-15 Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019106362A Pending JP2019145529A (en) 2014-03-25 2019-06-06 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016510399A Active JP6160770B2 (en) 2014-03-25 2015-03-24 Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019106362A Pending JP2019145529A (en) 2014-03-25 2019-06-06 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (8)

Country Link
US (2) US10122018B2 (en)
EP (1) EP3131143B1 (en)
JP (3) JP6160770B2 (en)
KR (1) KR101836026B1 (en)
CN (2) CN108565463B (en)
CA (1) CA2943545C (en)
TW (2) TWI726841B (en)
WO (1) WO2015147012A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122018B2 (en) 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JPWO2017010476A1 (en) * 2015-07-16 2018-04-26 昭和電工株式会社 Method for producing graphite-containing carbon powder for secondary battery and carbon material for battery electrode
CA2990347A1 (en) * 2015-10-21 2017-04-27 Imerys Graphite & Carbon Switzerland Ltd. Carbonaceous composite materials with snowball-like morphology
JP6445956B2 (en) * 2015-11-17 2018-12-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
KR20180007618A (en) * 2016-07-13 2018-01-23 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR20190032549A (en) 2016-08-29 2019-03-27 가부시키가이샤 지에스 유아사 Power storage device and manufacturing method thereof
JP6583337B2 (en) * 2017-03-30 2019-10-02 トヨタ自動車株式会社 Electrode manufacturing method
WO2018207333A1 (en) * 2017-05-11 2018-11-15 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode material production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
KR102474533B1 (en) * 2017-05-15 2022-12-05 에스케이온 주식회사 Anode for lithium secondary battery and lithium secondary battery comprising the same
KR20190031174A (en) * 2017-09-15 2019-03-25 주식회사 엘지화학 Negative electrode for lithium secondary battery and lithium secondary battery comprising the same
KR102321261B1 (en) 2017-10-27 2021-11-03 주식회사 엘지에너지솔루션 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
KR102610410B1 (en) * 2017-12-22 2023-12-06 도까이 카본 가부시끼가이샤 Negative electrode material for lithium ion secondary battery and method of manufacturing negative electrode material for lithium ion secondary battery
WO2019186831A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery
US20210083288A1 (en) * 2018-03-28 2021-03-18 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7272350B2 (en) * 2018-03-28 2023-05-12 株式会社レゾナック Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2019186828A1 (en) * 2018-03-28 2019-10-03 日立化成株式会社 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN112292772A (en) * 2018-06-15 2021-01-29 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
US12100838B2 (en) 2018-09-11 2024-09-24 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
CN111354927B (en) * 2018-12-24 2021-09-03 上海杉杉科技有限公司 Composite graphite negative electrode material, lithium ion battery and preparation method and application thereof
KR102347000B1 (en) 2019-01-03 2022-01-05 주식회사 엘지에너지솔루션 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
WO2020141573A1 (en) * 2019-01-04 2020-07-09 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary batterυ
CN111668452B (en) * 2019-03-06 2021-06-04 宁德时代新能源科技股份有限公司 Negative electrode and lithium ion secondary battery thereof
KR20200137189A (en) * 2019-05-29 2020-12-09 주식회사 엘지화학 Negative electrode and secondary battery comprising the negative electrode
ES2969376T3 (en) 2019-07-31 2024-05-17 Resonac Corp Manufacturing Method of Negative Electrode Material for Secondary Lithium-ion Battery and Manufacturing Method of Secondary Lithium-ion Battery
CN114175311A (en) * 2019-07-31 2022-03-11 昭和电工材料株式会社 Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4007017B1 (en) 2019-07-31 2023-03-29 Resonac Corporation Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2021044482A1 (en) * 2019-09-02 2021-03-11 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20220115812A (en) 2020-01-02 2022-08-18 닝더 엠프렉스 테크놀로지 리미티드 Cathode and Electrochemical Device Containing Same
CN115023828A (en) 2020-01-30 2022-09-06 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, method for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
HUE065042T2 (en) * 2020-03-27 2024-04-28 Contemporary Amperex Technology Co Ltd Secondary battery and apparatus contained the secondary battery
JPWO2021256558A1 (en) * 2020-06-18 2021-12-23
US20240113296A1 (en) 2020-12-16 2024-04-04 Resonac Corporation Lithium-ion secondary-battery negative electrode material and method for manufacturing same, lithium-ion secondary-battery negative electrode, and lithium ion secondary battery
JP7296994B2 (en) * 2021-01-14 2023-06-23 プライムプラネットエナジー&ソリューションズ株式会社 Graphite-based negative electrode active material
WO2022162949A1 (en) * 2021-02-01 2022-08-04 昭和電工マテリアルズ株式会社 Method for manufacturing negative electrode material for lithium-ion secondary cell, and method for manufacturing lithium-ion secondary cell
WO2022162950A1 (en) 2021-02-01 2022-08-04 昭和電工マテリアルズ株式会社 Negative electrode material for lithium-ion secondary battery, method for evaluating negative electrode material, method for manufacturing same, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2022168170A1 (en) 2021-02-02 2022-08-11 昭和電工マテリアルズ株式会社 Negative electrode material for lithium ion secondary battery, negative electrode material composition for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20230006167A (en) * 2021-07-02 2023-01-10 에스케이온 주식회사 Electrode for battery, and secondary battery including same
KR102599686B1 (en) * 2022-11-29 2023-11-08 주식회사 엘 앤 에프 Precursor for Preparing Cathode Active Material
CN115881952A (en) * 2022-12-22 2023-03-31 开封瑞丰新材料有限公司 Negative electrode material and battery
CN115954472B (en) * 2023-03-10 2023-08-25 贝特瑞新材料集团股份有限公司 Negative electrode material and battery

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590575B2 (en) 1990-01-17 1997-03-12 東レ株式会社 Synthetic fiber treatment oil for industrial materials
JP3285520B2 (en) 1996-08-08 2002-05-27 日立化成工業株式会社 Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3213575B2 (en) * 1996-10-30 2001-10-02 日立化成工業株式会社 Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
US7829222B2 (en) * 2001-01-25 2010-11-09 Hitachi Chemical Company, Ltd. Artificial graphite particles and method for manufacturing same, nonaqueous electrolyte secondary cell, negative electrode and method for manufacturing same, and lithium secondary cell
JP2002222650A (en) * 2001-01-25 2002-08-09 Hitachi Chem Co Ltd Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
JP5081375B2 (en) * 2004-02-12 2012-11-28 三菱化学株式会社 Negative electrode material for lithium secondary battery, production method thereof, and negative electrode for lithium secondary battery and lithium secondary battery using the same
CN101208819B (en) 2005-06-27 2010-11-24 三菱化学株式会社 Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP5671772B2 (en) 2005-11-25 2015-02-18 三菱化学株式会社 Lithium ion secondary battery
JP4989114B2 (en) * 2006-06-02 2012-08-01 日本カーボン株式会社 Negative electrode and negative electrode active material for lithium secondary battery
CN101529624B (en) * 2006-11-10 2011-05-25 东海碳素株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
JP5731732B2 (en) 2007-10-17 2015-06-10 日立化成株式会社 Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5458689B2 (en) * 2008-06-25 2014-04-02 三菱化学株式会社 Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
EP2634847B1 (en) 2010-10-29 2018-12-12 Mitsubishi Chemical Corporation Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery
WO2012133700A1 (en) * 2011-03-30 2012-10-04 三菱化学株式会社 Carbon material and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
WO2012157590A1 (en) 2011-05-13 2012-11-22 三菱化学株式会社 Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP5991717B2 (en) * 2011-06-30 2016-09-14 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN105152166B (en) * 2011-10-21 2017-08-08 昭和电工株式会社 The manufacture method of graphite material and the manufacture method of electrode for lithium ion secondary battery
KR101325555B1 (en) * 2011-12-09 2013-11-05 주식회사 엘지화학 Lithium Secondary Battery Comprising Spherical Graphite as Anode Active Material
JP6251964B2 (en) * 2012-02-24 2017-12-27 三菱ケミカル株式会社 Multi-layer structure carbon material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
CN103311520B (en) * 2012-03-07 2016-09-14 宁波杉杉新材料科技有限公司 A kind of lithium ion battery composite graphite negative electrode material and preparation method thereof
JP6087648B2 (en) * 2012-05-14 2017-03-01 Jfeケミカル株式会社 Composite graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10122018B2 (en) * 2014-03-25 2018-11-06 Hitachi Chemical Company, Ltd. Negative electrode material for lithium-ion secondary battery,method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Also Published As

Publication number Publication date
CN106104871A (en) 2016-11-09
KR101836026B1 (en) 2018-03-07
EP3131143B1 (en) 2019-03-20
KR20160136320A (en) 2016-11-29
TWI726841B (en) 2021-05-11
TW201935742A (en) 2019-09-01
CA2943545C (en) 2018-09-11
JP2019145529A (en) 2019-08-29
JP6160770B2 (en) 2017-07-12
EP3131143A4 (en) 2017-11-29
US10601044B2 (en) 2020-03-24
JPWO2015147012A1 (en) 2017-04-13
CN106104871B (en) 2018-05-11
US20190058192A1 (en) 2019-02-21
TW201541694A (en) 2015-11-01
EP3131143A1 (en) 2017-02-15
US10122018B2 (en) 2018-11-06
US20170110729A1 (en) 2017-04-20
CN108565463B (en) 2021-07-16
JP2017188473A (en) 2017-10-12
CN108565463A (en) 2018-09-21
WO2015147012A1 (en) 2015-10-01
CA2943545A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6536630B2 (en) Negative electrode material for lithium ion secondary battery, method of manufacturing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555050B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022163867A1 (en) Negative electrode material for lithium-ion secondary battery, evaluation method therefor, manufacturing method therefor, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2022153633A (en) Method for manufacturing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JP7447907B2 (en) Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
WO2019026265A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
EP4007017B1 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226431B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7272350B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2022163014A1 (en) Method for manufacturing negative electrode material for lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP7238885B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350