JP6536176B2 - Polishing solution for sapphire, storage solution and polishing method - Google Patents

Polishing solution for sapphire, storage solution and polishing method Download PDF

Info

Publication number
JP6536176B2
JP6536176B2 JP2015107796A JP2015107796A JP6536176B2 JP 6536176 B2 JP6536176 B2 JP 6536176B2 JP 2015107796 A JP2015107796 A JP 2015107796A JP 2015107796 A JP2015107796 A JP 2015107796A JP 6536176 B2 JP6536176 B2 JP 6536176B2
Authority
JP
Japan
Prior art keywords
polishing
solution
mass
sapphire
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015107796A
Other languages
Japanese (ja)
Other versions
JP2016222762A (en
Inventor
郷 豊
豊 郷
井上 恵介
恵介 井上
本田 善彦
善彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2015107796A priority Critical patent/JP6536176B2/en
Publication of JP2016222762A publication Critical patent/JP2016222762A/en
Application granted granted Critical
Publication of JP6536176B2 publication Critical patent/JP6536176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、サファイアを研磨するために使用されるサファイア用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法に関する。   The present invention relates to a polishing solution for sapphire used to polish sapphire, a storage solution for obtaining the polishing solution, and a polishing method using these.

サファイアは、従来からLEDの基体用途に主に用いられてきたが、透明で高い硬度を有し、傷がつきにくいことから、近年、スマートフォンに代表される電子機器筐体等のフロントカバーガラスやカメラカバーガラス等にも用いられるようになり、年々その需要が増している。   Sapphire has conventionally been mainly used for LED substrate applications, but since it is transparent, has high hardness, and is not easily scratched, in recent years front cover glass for electronic device housings represented by smartphones, etc. It is used for camera cover glass etc., and the demand is increasing year by year.

サファイア基体の製造方法としては、まずベルヌーイ法やチョクラルスキー法、EFG(Edge−defined Film−fed Growth Method)法等でサファイアの塊を作り、次に基体状にくりぬき、薄くスライスして製造する方法が挙げられる。スライスするときには、ダイヤモンド粒が付着した細いワイヤー等(例えばマルチワイヤーソー)を使用して切り出すため、切り出した表面には細かい傷が存在する。   As a method of manufacturing a sapphire substrate, first, a mass of sapphire is formed by the Bernoulli method, Czochralski method, EFG (Edge-defined Film-fed Growth Method) method or the like, and then cut into a substrate and sliced thinly to manufacture The method is mentioned. At the time of slicing, fine scratches are present on the cut surface because the thin wire or the like (for example, a multi-wire saw) to which diamond grains are attached is used for cutting.

LED基体は、サファイア基体上にGaNを結晶成長させて製造されるため、その用途上、サファイア表面は非常に平滑であることが求められる。また、サファイア基体を電子機器筐体のカバーガラス等に用いる場合でも、サファイア表面に傷等があると意匠性が低下し、見た目にも美しくないことから、サファイア表面は、傷等が無く平滑であることが求められる。   Since the LED substrate is produced by crystal growth of GaN on a sapphire substrate, the sapphire surface is required to be very smooth in terms of its application. In addition, even when the sapphire substrate is used as a cover glass of an electronic device casing, if the sapphire surface has scratches or the like, the designability is reduced and the appearance is not beautiful, so the sapphire surface is smooth without scratches. It is required to be there.

このようなサファイア表面の傷等を除去し、平滑にするためにはCMP(Chemical Mechanical Polishing:化学的機械的研磨)が必要不可欠である。CMPは、研磨液によって化学的に被加工物の表面を研磨し易く変質させながら、研磨液に含まれる砥粒と研磨パッド(研磨布)とにより機械的に研磨する技術である。しかし、サファイアは、化学的及び熱的に非常に安定であり、硬度も高いため、CMPが難しく、加工時間が長くかかり、生産コストが高いという問題がある。   Chemical Mechanical Polishing (CMP) is essential for removing and smoothing such scratches on the sapphire surface. CMP is a technique of mechanically polishing with abrasive grains and a polishing pad (abrasive cloth) contained in a polishing solution while chemically modifying the surface of a workpiece to be polished easily by a polishing solution. However, sapphire is very stable chemically and thermally and has high hardness, so that CMP is difficult, processing time is long, and production cost is high.

その生産コストを下げるため、研磨工程でのサファイアの研磨速度を向上させ、研磨時間を短縮することが望まれている。研磨速度は研磨時の圧力を上げることで高めることができる。しかし、加工時間を短くするため、CMPの際に圧力を上げて研磨装置に負担がかかる条件で研磨しようとすると、研磨装置が振動を起こす不具合が生じることがある。この研磨装置の振動は「ビビリ」と呼ばれており、ビビリを起こしたまま長時間研磨を継続すると、装置が壊れる等の不具合が生ずる恐れがある。このため、研磨に用いられる研磨液を改善することで、研磨装置の振動を抑制し、研磨速度を向上させることが望まれている。   In order to reduce the production cost, it is desirable to improve the polishing rate of sapphire in the polishing process and shorten the polishing time. The polishing rate can be increased by increasing the pressure at the time of polishing. However, in order to shorten the processing time, if it is attempted to polish under the condition that the pressure on the polishing apparatus is increased at the time of CMP in order to shorten the processing time, the polishing apparatus may have a problem of causing vibration. The vibration of this polishing apparatus is called "bibili", and if the polishing is continued for a long time while being chattered, there is a possibility that problems such as breakage of the apparatus may occur. For this reason, it is desirable to suppress the vibration of the polishing apparatus and improve the polishing rate by improving the polishing liquid used for polishing.

サファイア用の研磨液はいくつか知られているが、その種類は豊富とは言えない。例えば、特許文献1には、高濃度のコロイダルシリカを含む研磨液によってサファイアを研磨することが記載されている。また、特許文献2には、サファイア用研磨液組成物が、必要に応じて、界面活性剤、清浄剤、防錆剤、表面改質剤、粘度調製剤、抗菌剤、分散剤等を含有してもよいことが記載されている。   Several polishing solutions for sapphire are known, but the types are not abundant. For example, Patent Document 1 describes that sapphire is polished with a polishing solution containing a high concentration of colloidal silica. Further, in Patent Document 2, the polishing liquid composition for sapphire contains, as necessary, a surfactant, a cleaning agent, a rust inhibitor, a surface modifier, a viscosity modifier, an antibacterial agent, a dispersant, and the like. It is stated that it may be.

特開2008−44078号公報JP 2008-44078 A 特許第5384037号公報Patent No. 5384037 gazette

しかしながら、上記特許文献1に記載された研磨液、又は、上記特許文献2に記載された研磨液組成物を用いてサファイアを研磨したとしても、研磨装置の振動を抑えることはできず、また、サファイアの研磨速度も充分とはいえない。   However, even if sapphire is polished using the polishing liquid described in Patent Document 1 or the polishing liquid composition described in Patent Document 2, the vibration of the polishing apparatus can not be suppressed, and The polishing rate of sapphire is also not sufficient.

本発明は、上記実情に鑑みてなされたものであり、CMP工程における研磨装置の振動の発生を抑制できると共に、サファイアを速い研磨速度で研磨できるサファイア用研磨液、その貯蔵液、及び、これらを用いた研磨方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can suppress the generation of vibration of the polishing apparatus in the CMP process, and can be used to polish sapphire at a high polishing rate, a polishing solution for the same, a storage solution thereof, An object of the present invention is to provide a polishing method used.

本発明の一態様は、ラクトン化合物と、シリカを含む砥粒と、液状媒体と、を含有し、ラクトン化合物の含有量が研磨液の全質量基準で0.02質量%以上であるサファイア用研磨液に関する。このような研磨液を用いることにより、CMP工程における研磨装置の振動の発生を抑制できると共に、サファイアを速い研磨速度で研磨することができる。さらに、前記研磨液を用いることにより、サファイアを速い研磨速度で平滑に研磨することもできる。   One aspect of the present invention is a polishing for sapphire, which comprises a lactone compound, abrasive grains containing silica, and a liquid medium, and the content of the lactone compound is 0.02% by mass or more based on the total mass of the polishing liquid. It relates to the liquid. By using such a polishing liquid, generation of vibration of the polishing apparatus in the CMP process can be suppressed, and sapphire can be polished at a high polishing rate. Furthermore, sapphire can be polished smoothly at a high polishing rate by using the above-mentioned polishing solution.

本発明の一態様では、上記研磨液のpHが7.0〜10.5であることが好ましい。この場合、CMP工程における研磨装置の振動の発生を更に抑制できると共に、サファイアを更に速い研磨速度で研磨することができる。   In one aspect of the present invention, the pH of the polishing fluid is preferably 7.0 to 10.5. In this case, the generation of vibration of the polishing apparatus in the CMP process can be further suppressed, and sapphire can be polished at a higher polishing rate.

本発明の一態様では、シリカがコロイダルシリカであり、砥粒の平均粒径が20〜160nmであることが好ましい。この場合、CMP工程における研磨装置の振動の発生を更に抑制できると共に、サファイアを更に速い研磨速度で研磨することができる。   In one aspect of the present invention, it is preferable that the silica be colloidal silica and the average particle diameter of the abrasive be 20 to 160 nm. In this case, the generation of vibration of the polishing apparatus in the CMP process can be further suppressed, and sapphire can be polished at a higher polishing rate.

本発明の一態様では、砥粒の含有量が研磨液の全質量基準で1〜40質量%であることが好ましい。この場合、CMP工程における研磨装置の振動の発生を更に抑制できると共に、サファイアを更に速い研磨速度で研磨することができる。   In one aspect of the present invention, the content of the abrasive grains is preferably 1 to 40% by mass based on the total mass of the polishing liquid. In this case, the generation of vibration of the polishing apparatus in the CMP process can be further suppressed, and sapphire can be polished at a higher polishing rate.

本発明の一態様は、上記研磨液を得るための貯蔵液であって、液状媒体で希釈することにより上記研磨液が得られる、貯蔵液に関する。このような貯蔵液によれば、研磨液の貯蔵・運搬等に係るコストを低減できる。   One aspect of the present invention relates to a storage solution for obtaining the polishing solution, wherein the polishing solution can be obtained by diluting with a liquid medium. Such a storage solution can reduce the cost of storing and transporting the polishing solution.

本発明の一態様は、上記研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える、研磨方法に関する。このような研磨方法によれば、CMP工程における研磨装置の振動の発生を抑制できると共に、サファイアを速い研磨速度で研磨することができる。   One aspect of the present invention relates to a polishing method comprising the step of polishing a surface to be polished containing sapphire using the above-mentioned polishing liquid. According to such a polishing method, generation of vibration of the polishing apparatus in the CMP process can be suppressed, and sapphire can be polished at a high polishing rate.

本発明の一態様は、上記貯蔵液を液状媒体で希釈することにより得られる研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える、研磨方法に関する。このような研磨方法によれば、CMP工程における研磨装置の振動の発生を抑制できると共に、サファイアを速い研磨速度で研磨することができる。また、研磨液の貯蔵・運搬・保管等に係るコストを抑制できるため、総合的な製造コストを低減することができる。   One aspect of the present invention relates to a polishing method comprising the step of polishing a surface to be polished containing sapphire using a polishing solution obtained by diluting the above-mentioned storage solution with a liquid medium. According to such a polishing method, generation of vibration of the polishing apparatus in the CMP process can be suppressed, and sapphire can be polished at a high polishing rate. In addition, since the cost relating to storage, transport, storage, and the like of the polishing liquid can be suppressed, the overall manufacturing cost can be reduced.

本発明によれば、CMP工程における研磨装置の振動の発生を抑制できると共に、サファイアを速い研磨速度で研磨できるサファイア用研磨液、その貯蔵液、及び、これらを用いた研磨方法を提供することができる。   According to the present invention, it is possible to suppress the generation of vibration of the polishing apparatus in the CMP process and provide a polishing liquid for sapphire, a storage solution thereof, and a polishing method using these, which can polish sapphire at a high polishing rate. it can.

以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.

<研磨液>
本実施形態に係る研磨液は、サファイア用研磨液であり、サファイアの研磨に用いられる。本実施形態に係る研磨液は、ラクトン化合物と、シリカを含む砥粒と、液状媒体と、を含有し、ラクトン化合物の含有量が研磨液の全質量基準で0.02質量%以上である。
<Abrasive fluid>
The polishing liquid according to the present embodiment is a polishing liquid for sapphire, and is used for polishing sapphire. The polishing liquid according to this embodiment contains a lactone compound, abrasive grains containing silica, and a liquid medium, and the content of the lactone compound is 0.02 mass% or more based on the total mass of the polishing liquid.

(ラクトン化合物)
ラクトン化合物は、分子内に少なくとも一つのラクトン構造を有する化合物である。ラクトン化合物としては、3員環ラクトン化合物(3員環ラクトン構造を有する化合物)、4員環ラクトン化合物(4員環ラクトン構造を有する化合物)、5員環ラクトン化合物(5員環ラクトン構造を有する化合物)、6員環ラクトン化合物(6員環ラクトン構造を有する化合物)等が挙げられる。3員環ラクトン化合物としては、α−アセトラクトン等が挙げられる。4員環ラクトン化合物としては、β−プロピオラクトン等が挙げられる。5員環ラクトン化合物としては、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン等が挙げられる。6員環ラクトン化合物としては、δ−バレロラクトン等が挙げられる。これらの中でも、CMP工程における研磨装置の振動の発生を更に抑制する観点、及び、サファイアを更に速い研磨速度で平滑に研磨する観点から、γ−ブチロラクトンが好ましい。ラクトン化合物は、1種類単独で又は2種類以上を組み合わせて使用できる。
(Lactone compound)
The lactone compound is a compound having at least one lactone structure in the molecule. As a lactone compound, a three-membered ring lactone compound (a compound having a three-membered ring lactone structure), a four-membered ring lactone compound (a compound having a four-membered ring lactone structure), a five-membered ring lactone compound (a five-membered ring lactone structure Compounds), 6-membered ring lactone compounds (compounds having a 6-membered ring lactone structure) and the like. As a 3-membered ring lactone compound, (alpha) -aceto lactone etc. are mentioned. As a 4-membered ring lactone compound, (beta) -propiolactone etc. are mentioned. Examples of the five-membered ring lactone compound include γ-butyrolactone and α-acetyl-γ-butyrolactone. Examples of 6-membered ring lactone compounds include δ-valerolactone. Among these, γ-butyrolactone is preferable from the viewpoint of further suppressing the generation of vibration of the polishing apparatus in the CMP process and the viewpoint of polishing sapphire smoothly at a higher polishing rate. The lactone compounds can be used singly or in combination of two or more.

研磨液におけるラクトン化合物の含有量は、研磨液の全質量基準で、0.02質量%以上である。ラクトン化合物の含有量が0.02質量%未満であると、研磨装置の振動を抑制する効果を得ることが困難になる。ラクトン化合物の含有量の下限は、研磨装置の振動の発生を更に抑制する観点から、0.05質量%以上が好ましく、0.1質量%以上がより好ましい。ラクトン化合物の含有量の上限は、40℃を超える高温雰囲気下におけるゲル化の発生を抑制する観点から、2.0質量%未満が好ましく、1.5質量%未満がより好ましく、1.0質量%未満が更に好ましい。   The content of the lactone compound in the polishing liquid is 0.02% by mass or more based on the total mass of the polishing liquid. When the content of the lactone compound is less than 0.02% by mass, it becomes difficult to obtain the effect of suppressing the vibration of the polishing apparatus. The lower limit of the content of the lactone compound is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more from the viewpoint of further suppressing the occurrence of vibration of the polishing apparatus. The upper limit of the content of the lactone compound is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, from the viewpoint of suppressing the occurrence of gelation in a high temperature atmosphere exceeding 40 ° C. Less than% is more preferred.

研磨液がラクトン化合物を0.02質量%以上含有することで、CMP工程における研磨装置の振動の発生を抑制する効果が得られる理由についての明確な知見は得られていないが、本発明者らは以下のように推定している。   Although the clear knowledge about the reason the effect which suppresses generation | occurrence | production of the vibration of the polishing apparatus in a CMP process is acquired is not obtained because polishing liquid contains a lactone compound 0.02% or more, the present inventors et al. Is estimated as follows.

サファイアのCMPにおける研磨装置の振動の発生は、サファイアを含む被研磨面と研磨パッドとの界面で発生する摩擦が大きくなり、この応力を、サファイアを含む被研磨面(例えば、研磨装置のヘッドに装着されている基体の被研磨面)と研磨パッド(例えば、研磨装置の定盤に装着され回転している研磨パッド)の表面とで逃がしきれなくなることで発生すると考えられる。このため、研磨装置の定盤の回転数が低いほど、また、ヘッドの圧力が高いほど、振動は発生し易くなる。   The generation of vibration of the polishing apparatus in the CMP of sapphire increases the friction generated at the interface between the surface to be polished including sapphire and the polishing pad, and this stress is applied to the surface to be polished including sapphire (for example, the head of the polishing apparatus It is considered that this problem occurs because the surface to be polished of the mounted substrate and the surface of the polishing pad (for example, the polishing pad mounted and rotated on the surface plate of the polishing apparatus) can not escape. For this reason, as the rotation speed of the surface plate of the polishing apparatus is lower and the pressure of the head is higher, vibration is more likely to occur.

ここで、研磨液中の砥粒は、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する役割を担っていると考えられる。そして、充分量のラクトン化合物は、研磨液中の砥粒等の、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する能力を好適に補う作用を奏すると考えられる。この機構については、砥粒を緩やかに結合させるように砥粒間に介在することや、砥粒存在下の被研磨面と研磨パッドとの摩擦を低減させる滑材のように作用すること等、及び、これらの組み合わせによって研磨装置の振動を低減する効果が発揮されると推定されるが、その真偽については、更なる研究を要する。   Here, the abrasive grains in the polishing solution are considered to play a role of alleviating the friction at the interface between the polishing surface including sapphire and the polishing pad. The sufficient amount of lactone compound is considered to suitably compensate for the ability to reduce the friction at the interface between the polishing surface including sapphire and the polishing pad, such as abrasive grains in the polishing liquid. With respect to this mechanism, it is possible to intervene between the abrasive grains so as to gently bond the abrasive grains, and act as a lubricant that reduces the friction between the surface to be polished and the polishing pad in the presence of the abrasive grains, etc. And although it is estimated that the combination of these demonstrates the effect which reduces the vibration of a grinding device, the further investigation is needed about the true / false.

(砥粒)
砥粒は、シリカを含む。砥粒の構成成分としては、従来から、シリカ、アルミナ、セリアがよく知られているが、この中でも、シリカを用いることにより、サファイアを含む被研磨面を優れた研磨速度で平滑に研磨することができる。砥粒としては、平均粒径、形状、構成材料等の異なる二種以上の砥粒を混合して使用することができる。
(Abrasive)
Abrasive grains contain silica. Conventionally, silica, alumina and ceria have been well known as constituents of abrasive grains, and among them, by using silica, to polish the surface to be polished containing sapphire smoothly at an excellent polishing rate Can. As the abrasive grains, two or more kinds of abrasive grains different in average particle diameter, shape, constituent material and the like can be mixed and used.

シリカとしては、コロイダルシリカ、フュームドシリカ等が挙げられる。シリカの中でも、サファイアを更に優れた研磨速度で平滑に研磨する観点から、コロイダルシリカが好ましい。シリカは、1種類単独で又は2種類以上を組み合わせて使用できる。   Examples of the silica include colloidal silica and fumed silica. Among the silicas, colloidal silica is preferable from the viewpoint of smooth polishing of sapphire at a further excellent polishing rate. Silica can be used singly or in combination of two or more.

砥粒におけるシリカの含有量は、砥粒の全質量を基準として、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。砥粒は、例えば、シリカ粒子(シリカからなる粒子)であってもよい。   The content of the silica in the abrasive grains is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more, based on the total mass of the abrasive grains. The abrasive may be, for example, silica particles (particles made of silica).

砥粒の平均粒径は、サファイアの研磨速度が更に向上する観点、研磨後のサファイアを含む被研磨面の平滑性が更に優れる観点、及び、研磨装置の振動の発生を更に抑制する観点から、20〜160nmが好ましく、30〜130nmがより好ましく、40〜80nmが更に好ましい。   From the viewpoint of further improving the polishing speed of sapphire, the viewpoint that the smoothness of the surface to be polished including sapphire after polishing is further excellent, and the viewpoint of further suppressing the generation of the vibration of the polishing apparatus, 20-160 nm is preferable, 30-130 nm is more preferable, and 40-80 nm is more preferable.

ここで、平均粒径は、動的光散乱方式粒度分布計で測定したD50の値(体積分布のメジアン径、累積中央値)を意味する。具体的には、例えば、適量の研磨液を、必要とする散乱光強度の範囲に入るように必要に応じて水で希釈して測定サンプルを調製し、この測定サンプルを、動的光散乱方式粒度分布計に投入して、D50として得られる値である。このような機能を有する動的光散乱方式の粒度分布計としては、例えばCOULTER Electronics社製の光回折散乱式粒度分布計(商品名COULTER N5型)が挙げられる。この動的光散乱方式粒度分布計で得られる平均粒径の値は、研磨液を適宜薄めてサンプルステージ上で乾燥させた後に走査型電子顕微鏡等で観察して測定される平均一次粒径に比べて大きく、概ね、平均一次粒径の2倍近くの値となる。   Here, the average particle diameter means the value of D50 (median diameter of volume distribution, cumulative median value) measured by a dynamic light scattering type particle size distribution analyzer. Specifically, for example, a measurement sample is prepared by diluting an appropriate amount of polishing liquid with water as necessary so as to fall within the required range of scattered light intensity, and this measurement sample is a dynamic light scattering method. It is a value obtained as D50 by charging the particle size distribution meter. As a particle size distribution analyzer of a dynamic light scattering system having such a function, for example, a light diffraction scattering particle size distribution analyzer (trade name: COULTER N5 type) manufactured by COULTER Electronics can be mentioned. The value of the average particle size obtained by this dynamic light scattering type particle size distribution analyzer is the average primary particle size measured by observing the surface with a scanning electron microscope after appropriately diluting the polishing liquid and drying it on the sample stage. The value is larger than that of the average primary particle size, which is almost twice as large as the average primary particle size.

研磨液における砥粒の含有量は、サファイアの研磨速度が更に向上する観点、及び、研磨装置の振動の発生を更に抑制する観点から、研磨液の全質量基準で、1質量%以上が好ましく、2質量%以上がより好ましく、4質量%以上が更に好ましい。砥粒の含有量は、研磨液内で砥粒が凝集しにくくなる等により貯蔵安定性が向上する観点から、研磨液の全質量基準で、40質量%以下が好ましく、40質量%未満がより好ましく、30質量%以下が更に好ましく、20質量%以下が特に好ましい。砥粒の含有量は、研磨液のコストに直接影響する因子であるため、砥粒の含有量が少ないほどコストを低減することができる。   The content of the abrasive grains in the polishing liquid is preferably 1% by mass or more on the basis of the total mass of the polishing liquid, from the viewpoint of further improving the polishing rate of sapphire and from the viewpoint of suppressing generation of vibration of the polishing apparatus. 2 mass% or more is more preferable, and 4 mass% or more is still more preferable. The content of the abrasive grains is preferably 40% by mass or less, more preferably less than 40% by mass, based on the total mass of the polishing liquid, from the viewpoint that storage stability is improved due to the abrasive grains being less likely to aggregate in the polishing liquid. Preferably, 30% by mass or less is more preferable, and 20% by mass or less is particularly preferable. The content of the abrasive grains is a factor directly affecting the cost of the polishing liquid, so the cost can be reduced as the content of the abrasive grains is smaller.

CMP工程における研磨装置の振動は、砥粒の平均粒径が小さいほど、また、研磨液における砥粒の含有量が少ないほど発生し易くなる傾向がある。この理由についての明確な知見は得られていないが、本発明者らは以下のように推定している。すなわち、砥粒の平均粒径が小さいほど、また、研磨液における砥粒の含有量が少ないほど、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する能力が足りなくなるため、研磨装置の振動が発生し易くなる傾向があると考えられる。   The vibration of the polishing apparatus in the CMP process tends to occur as the average particle diameter of the abrasive grains decreases and as the content of the abrasive grains in the polishing liquid decreases. Although clear knowledge about this reason is not obtained, the present inventors estimate as follows. That is, as the average particle diameter of the abrasive grains is smaller and the content of the abrasive grains in the polishing liquid is smaller, the ability to reduce the friction at the interface between the surface to be polished and the polishing pad is insufficient. It is considered that the vibration of the device tends to occur easily.

(副添加剤)
本実施形態に係る研磨液は、必要に応じて、本発明の効果(CMP工程における研磨装置の振動の発生を抑制すると共に、サファイアを含む被研磨面を速い研磨速度で研磨すること)を阻害しない範囲で、pH調整剤、界面活性剤、清浄剤、防錆剤、表面改質剤、粘度調製剤、抗菌剤、分散剤等の副添加剤を含有してもよい。
(Additives)
The polishing liquid according to the present embodiment inhibits the effect of the present invention (while suppressing the generation of vibration of the polishing apparatus in the CMP step, and polishing the surface to be polished including sapphire at a high polishing rate) as necessary. To the extent that it does not occur, auxiliary additives such as pH adjusters, surfactants, detergents, rust inhibitors, surface modifiers, viscosity modifiers, antibacterial agents, dispersants and the like may be contained.

[pH調整剤]
pH調整剤としては、硫酸、塩酸、硝酸、リン酸等の無機酸;酢酸、シュウ酸、リンゴ酸、マロン酸、ピコリン酸等の有機酸;アンモニア、水酸化ナトリウム、水酸化カリウム、TMAH(水酸化テトラメチルアンモニウム)、イミダゾール等のアルカリ成分などが挙げられる。これらのpH調整剤によって研磨液のpHを調整することができる。また、pHを安定化させるため、研磨液は緩衝液を含有してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。
[PH adjuster]
As pH adjusters, inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid; organic acids such as acetic acid, oxalic acid, malic acid, malonic acid and picolinic acid; ammonia, sodium hydroxide, potassium hydroxide, TMAH (water And alkali components such as tetramethylammonium oxide) and imidazole. The pH of the polishing liquid can be adjusted by these pH adjusters. In addition, the polishing solution may contain a buffer solution in order to stabilize the pH. Examples of such buffer include acetate buffer, phthalate buffer and the like.

(液状媒体)
本実施形態に係る研磨液は、液状媒体を含有する。液状媒体は、砥粒の分散媒として作用する。液状媒体としては、水等が挙げられる。水としては、より具体的には、脱イオン水、イオン交換水、超純水等が好ましい。
(Liquid medium)
The polishing liquid according to the present embodiment contains a liquid medium. The liquid medium acts as a dispersion medium for the abrasive grains. Examples of the liquid medium include water and the like. As water, more specifically, deionized water, ion-exchanged water, ultrapure water and the like are preferable.

(pH)
本実施形態に係る研磨液のpHは、サファイアの研磨速度が向上し易い観点、及び、研磨液の貯蔵安定性に優れる観点から、7.0〜10.5が好ましく、7.3〜10.2がより好ましく、7.5〜10.0が更に好ましく、8.0〜9.8が特に好ましい。pHは、液温25℃におけるpHと定義する。
(PH)
The pH of the polishing liquid according to the present embodiment is preferably 7.0 to 10.5, from the viewpoint that the polishing rate of sapphire is easily improved and the storage stability of the polishing liquid is excellent, and 7.3 to 10. 2 is more preferable, 7.5 to 10.0 is further preferable, and 8.0 to 9.8 is particularly preferable. The pH is defined as the pH at a liquid temperature of 25 ° C.

研磨液のpHは、pHメーター(例えば、株式会社堀場製作所製、型番:pH METE F−50)で測定することができる。pHの測定値としては、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))を用いて、3点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値を採用する。   The pH of the polishing liquid can be measured with a pH meter (for example, manufactured by HORIBA, Ltd., model number: pH METE F-50). As a measured value of pH, standard buffer (phthalate pH buffer pH: 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), borate pH buffer After calibrating at 3 points using liquid pH: 9.18 (25 ° C), put the electrode in the polishing liquid, and use the value after stabilization for 2 minutes or more.

<貯蔵液>
本実施形態に係る研磨液は、使用時に水等の液状媒体で希釈されて使用される貯蔵液として保管することができる。すなわち、本実施形態に係る貯蔵液は、上述の研磨液を得るための貯蔵液であり、液状媒体で希釈する(例えば、質量基準で2倍以上に希釈する)ことにより研磨液が得られる。研磨液を貯蔵液として保管することにより、貯蔵・運搬・保管等に係るコストを抑制できる。貯蔵液は、研磨の直前に液状媒体で希釈して研磨液としてもよいし、研磨定盤上に貯蔵液と液状媒体とを供給し、研磨定盤上で研磨液を調製するようにしてもよい。
<Reserved liquid>
The polishing liquid according to the present embodiment can be stored as a storage liquid to be used after being diluted with a liquid medium such as water at the time of use. That is, the storage solution according to the present embodiment is a storage solution for obtaining the above-mentioned polishing solution, and the polishing solution can be obtained by diluting with a liquid medium (for example, diluting by 2 times or more based on mass). By storing the polishing liquid as a storage liquid, it is possible to suppress the cost of storage, transportation, storage, and the like. The storage liquid may be diluted with a liquid medium immediately before polishing to form a polishing liquid, or the storage liquid and the liquid medium may be supplied onto a polishing platen to prepare the polishing liquid on the polishing platen. Good.

貯蔵液の希釈倍率が高いほど貯蔵・運搬・保管等に係るコストの抑制効果が高いため、貯蔵液の希釈倍率の下限は、質量基準で、2倍以上が好ましく、3倍以上がより好ましい。また、貯蔵液の希釈倍率の上限は、特に制限はないが、質量基準で、10倍以下が好ましく、7倍以下がより好ましく、5倍以下が更に好ましい。希釈倍率がこれらの上限値以下である場合、貯蔵液に含まれる砥粒の含有量が高くなり過ぎることを抑制し、保管中の貯蔵液の安定性を維持し易い傾向がある。なお、希釈倍率をdとするとき、貯蔵液中の砥粒及びラクトン化合物の各含有量は、研磨液中の砥粒及びラクトン化合物の各含有量のd倍である。   The higher the dilution ratio of the storage solution is, the higher the effect of suppressing costs relating to storage, transportation, storage and the like. Therefore, the lower limit of the dilution ratio of the storage solution is preferably 2 times or more, more preferably 3 times or more on a mass basis. The upper limit of the dilution ratio of the storage solution is not particularly limited, but is preferably 10 times or less, more preferably 7 times or less, and still more preferably 5 times or less on a mass basis. When the dilution ratio is below these upper limit values, the content of the abrasive grains contained in the storage solution tends to be prevented from becoming too high, and the stability of the storage solution during storage tends to be easily maintained. When the dilution ratio is d, the content of each of the abrasive grains and the lactone compound in the storage solution is d times the content of each of the abrasive grains and the lactone compound in the polishing liquid.

<研磨方法>
本実施形態に係る研磨方法(サファイアの研磨方法)は、上述した研磨液を用いて、サファイアを含む被研磨面を研磨する研磨工程を備える。研磨工程は、上述した貯蔵液を液状媒体で希釈することにより得られる研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える工程であってもよい。
<Polishing method>
A polishing method (a method of polishing sapphire) according to the present embodiment includes a polishing step of polishing a surface to be polished including sapphire using the above-described polishing liquid. The polishing step may be a step including the step of polishing a surface to be polished including sapphire using a polishing solution obtained by diluting the above-described storage solution with a liquid medium.

本実施形態に係る研磨方法では、公知の研磨装置を広く用いることができる。例えば、サファイアを含む被研磨面を有する基体(サファイア基体)を研磨する場合、使用できる研磨装置としては、ヘッドにサファイア基体を保持するためのホルダーと、回転数が変更可能なモータ等と接続され且つ研磨パッドを貼り付けた定盤と、を有する一般的な研磨装置を使用できる。   In the polishing method according to the present embodiment, a known polishing apparatus can be widely used. For example, in the case of polishing a substrate having a surface to be polished (sapphire substrate) having sapphire, the polishing apparatus that can be used is connected to a holder for holding the sapphire substrate on the head and a motor etc. In addition, a general polishing apparatus having a platen attached with a polishing pad can be used.

研磨パッドとしては、特に限定されないが、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が挙げられる。基体の研磨条件に制限はないが、基体の飛び出しを防止し易い観点から、定盤の回転数は200min−1以下であることが好ましい。研磨後の基体表面における傷の発生を抑制し易い観点から、研磨荷重は700gf/cm以下であることが好ましい。 Although it does not specifically limit as a polishing pad, A common nonwoven fabric, a foaming polyurethane, a porous fluororesin etc. are mentioned. There is no limitation on the polishing conditions of the substrate, but from the viewpoint of easily preventing the substrate from coming out, it is preferable that the rotation number of the platen be 200 min −1 or less. The polishing load is preferably 700 gf / cm 2 or less, from the viewpoint of easily suppressing the occurrence of flaws on the surface of the substrate after polishing.

本実施形態に係る研磨方法では、例えば、定盤に貼り付けられた研磨パッドに、サファイア基体を押圧した状態で、研磨液を被研磨面と研磨パッドとの間にポンプ等により供給しながら、基体と定盤とを相対的に動かす。これらの操作により、サファイアを含む被研磨面を研磨する。研磨液を研磨装置に供給する方法は、研磨の間、研磨液を研磨パッドに連続的に供給できる方法であれば、特に限定されない。研磨液の供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。貯蔵液と水等の液状媒体とを被研磨面と研磨パッドとの間に供給し、研磨定盤上で貯蔵液を希釈(例えば、質量基準で2倍以上に希釈)しながら研磨を行ってもよい。また、供給した研磨液を回収して再度研磨パッドに供給し、循環して使用してもよい。   In the polishing method according to the present embodiment, for example, the polishing liquid is supplied between the surface to be polished and the polishing pad by a pump or the like in a state where the sapphire substrate is pressed to the polishing pad attached to the surface plate. Relatively move the base and the platen. By these operations, the surface to be polished including sapphire is polished. The method for supplying the polishing liquid to the polishing apparatus is not particularly limited as long as the polishing liquid can be continuously supplied to the polishing pad during polishing. Although there is no limitation on the supply amount of the polishing liquid, it is preferable that the surface of the polishing pad is always covered with the polishing liquid. Supply the storage solution and a liquid medium such as water between the surface to be polished and the polishing pad, and perform polishing while diluting the storage solution on the polishing platen (for example, by 2 times or more based on mass) It is also good. In addition, the supplied polishing liquid may be recovered, supplied again to the polishing pad, and circulated.

研磨終了後の基体は、水、エタノール、イソプロピルアルコールや、その他洗浄剤等で洗浄後、スピンドライヤ等を用いて、基体上に付着した水滴を払い落としてから乾燥させることが好ましい。   After the completion of polishing, the substrate is preferably washed with water, ethanol, isopropyl alcohol, other cleaning agents and the like, and then dried using a spin dryer or the like to remove water droplets adhering to the substrate and then dried.

以下、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples as long as the technical idea of the present invention is not deviated.

<砥粒の平均粒径>
実施例及び比較例に使用する砥粒(シリカA及びシリカB)の平均粒径をCOULTER Electronics社製の光回折散乱式粒度分布計(商品名COULTER N5型)で測定した。シリカAの平均粒径は68nmであり、シリカBの平均粒径は44nmであった。なお、シリカA及び水から構成される分散液としてカタロイドSI−45P(「カタロイド」は登録商標、以下同じ。日揮触媒化成株式会社製、平均一次粒径45nm、コロイダルシリカの含有量40質量%)を使用し、シリカB及び水から構成される分散液としてカタロイドSI−50(日揮触媒化成株式会社製、平均一次粒径25nm、コロイダルシリカの含有量48質量%)を使用した。
<Average particle diameter of abrasive grains>
The average particle diameter of the abrasive grains (Silica A and Silica B) used in Examples and Comparative Examples was measured with a light diffraction / scattering particle size distribution analyzer (trade name: COULTER N5 type) manufactured by COULTER Electronics. The average particle size of silica A was 68 nm, and the average particle size of silica B was 44 nm. In addition, Cataloid SI-45P ("Cataloid" is a registered trademark, made by JGC Catalysts Chemical Industries, Ltd., average primary particle diameter 45 nm, content 40% by mass of colloidal silica) as a dispersion liquid composed of silica A and water. And Cataloid SI-50 (manufactured by JGC Catalysts and Chemicals, Inc., average primary particle size 25 nm, content of colloidal silica 48 mass%) was used as a dispersion liquid composed of silica B and water.

<実施例1>
(貯蔵液1)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、γ−ブチロラクトン1.0質量部と、脱イオン水2.62質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.06質量部とを溶解混合し貯蔵液1を作製した。
Example 1
(Reserved liquid 1)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 1.0 parts by weight of γ-butyrolactone, 2.62 parts by weight of deionized water, 0.32 of 1,2,4-triazole A stock solution 1 was prepared by dissolving and mixing parts by mass and 0.06 parts by mass of malic acid.

(研磨液1)
1質量部の貯蔵液1と3質量部の脱イオン水とを混合することにより貯蔵液1を4倍に希釈して研磨液1を調製した。研磨液1におけるシリカAの含有量は9.600質量%であり、γ−ブチロラクトンの含有量は0.250質量%であった。なお、「含有量」とは研磨液の全質量基準の含有量である(以下同じ)。
(Abrasive fluid 1)
By mixing 1 part by mass of the storage solution 1 and 3 parts by mass of deionized water, the storage solution 1 was diluted fourfold to prepare a polishing solution 1. The content of silica A in polishing liquid 1 was 9.600% by mass, and the content of γ-butyrolactone was 0.250% by mass. Here, the "content" is the content based on the total mass of the polishing liquid (the same applies to the following).

<実施例2>
(貯蔵液2)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、γ−ブチロラクトン0.1質量部と、脱イオン水3.50質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液2を作製した。
Example 2
(Stock solution 2)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 0.1 parts by weight of γ-butyrolactone, 3.50 parts by weight of deionized water, 0.32, 1, 2, 4- triazole A stock solution 2 was prepared by dissolving and mixing parts by mass and 0.08 parts by mass of malic acid.

(研磨液2)
1質量部の貯蔵液2と3質量部の脱イオン水とを混合することにより貯蔵液2を4倍に希釈して研磨液2を調製した。研磨液2におけるシリカAの含有量は9.600質量%であり、γ−ブチロラクトンの含有量は0.025質量%であった。
(Abrasive fluid 2)
The stock solution 2 was diluted 4 times by mixing 1 part by weight of the stock solution 2 with 3 parts by weight of deionized water to prepare a polishing solution 2. The content of silica A in polishing solution 2 was 9.600% by mass, and the content of γ-butyrolactone was 0.025% by mass.

<実施例3>
(貯蔵液3)
貯蔵液1と同様の貯蔵液3を作製した。
Example 3
(Reserved liquid 3)
A stock solution 3 similar to stock solution 1 was prepared.

(研磨液3)
1質量部の貯蔵液3と5質量部の脱イオン水とを混合することにより貯蔵液3を6倍に希釈して研磨液3を調製した。研磨液3におけるシリカAの含有量は6.400質量%であり、γ−ブチロラクトンの含有量は0.167質量%であった。
(Abrasive fluid 3)
The stock solution 3 was diluted 6 times by mixing 1 part by weight of the stock solution 3 and 5 parts by weight of deionized water to prepare a polishing liquid 3. The content of silica A in the polishing liquid 3 was 6.400% by mass, and the content of γ-butyrolactone was 0.167% by mass.

<実施例4>
(貯蔵液4)
シリカB及び水から構成される分散液としてカタロイドSI−50 80質量部と、γ−ブチロラクトン1.0質量部と、脱イオン水18.62質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.06質量部とを溶解混合し貯蔵液4を作製した。
Example 4
(Stock liquid 4)
80 parts by weight of Cataloid SI-50 as a dispersion composed of silica B and water, 1.0 parts by weight of γ-butyrolactone, 18.62 parts by weight of deionized water, 0.32, 1, 2, 4- triazole A stock solution 4 was prepared by dissolving and mixing parts by mass and 0.06 parts by mass of malic acid.

(研磨液4)
1質量部の貯蔵液4と3質量部の脱イオン水とを混合することにより貯蔵液4を4倍に希釈して研磨液4を調製した。研磨液4におけるシリカBの含有量は9.600質量%であり、γ−ブチロラクトンの含有量は0.250質量%であった。
(Abrasive fluid 4)
The stock solution 4 was diluted 4-fold by mixing 1 part by weight of the stock solution 4 with 3 parts by weight of deionized water to prepare a polishing solution 4. The content of silica B in the polishing liquid 4 was 9.600% by mass, and the content of γ-butyrolactone was 0.250% by mass.

<比較例1>
(貯蔵液X1)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、脱イオン水3.60質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X1を作製した。
Comparative Example 1
(Stock liquid X1)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 3.60 parts by weight of deionized water, 0.32 parts by weight of 1,2,4-triazole, 0.08 parts of malic acid The resulting solution was dissolved and mixed to prepare a stock solution X1.

(研磨液X1)
1質量部の貯蔵液X1と3質量部の脱イオン水とを混合することにより貯蔵液X1を4倍に希釈して研磨液X1を調製した。研磨液X1におけるシリカAの含有量は9.600質量%であった。
(Polishing liquid X1)
The stock solution X1 was diluted 4-fold by mixing 1 part by weight of the stock solution X1 and 3 parts by weight of deionized water to prepare a polishing solution X1. The content of silica A in polishing solution X1 was 9.600% by mass.

<比較例2>
(貯蔵液X2)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、γ−ブチロラクトン0.072質量部と、脱イオン水3.528質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X2を作製した。
Comparative Example 2
(Stock solution X2)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 0.072 parts by weight of γ-butyrolactone, 3.528 parts by weight of deionized water, 0.32 parts of 1,2,4-triazole A stock solution X2 was prepared by dissolving and mixing parts by weight and 0.08 parts by weight of malic acid.

(研磨液X2)
1質量部の貯蔵液X2と3質量部の脱イオン水とを混合することにより貯蔵液X2を4倍に希釈して研磨液X2を調製した。研磨液X2におけるシリカAの含有量は9.600質量%であり、γ−ブチロラクトンの含有量は0.018質量%であった。
(Polishing liquid X2)
The stock solution X2 was diluted 4-fold by mixing 1 part by weight of the stock solution X2 with 3 parts by weight of deionized water to prepare a polishing solution X2. The content of silica A in the polishing liquid X2 was 9.600% by mass, and the content of γ-butyrolactone was 0.018% by mass.

<比較例3>
(貯蔵液X3)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、ジエチレングリコール1.0質量部と、脱イオン水2.60質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X3を作製した。
Comparative Example 3
(Stock solution X3)
A dispersion composed of silica A and water 96 parts by weight of Cataloid SI-45P, 1.0 parts by weight of diethylene glycol, 2.60 parts by weight of deionized water, 0.32 parts by weight of 1,2,4-triazole And 0.08 parts by mass of malic acid were dissolved and mixed to prepare a storage solution X3.

(研磨液X3)
1質量部の貯蔵液X3と3質量部の脱イオン水とを混合することにより貯蔵液X3を4倍に希釈して研磨液X3を調製した。研磨液X3におけるシリカAの含有量は9.600質量%であり、ジエチレングリコールの含有量は0.250質量%であった。
(Polishing liquid X3)
The stock solution X3 was diluted 4-fold by mixing 1 part by weight of the stock solution X3 with 3 parts by weight of deionized water to prepare a polishing solution X3. The content of silica A in the polishing liquid X3 was 9.600% by mass, and the content of diethylene glycol was 0.250% by mass.

<比較例4>
(貯蔵液X4)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、1,3−ブタンジオール1.0質量部と、脱イオン水2.60質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X4を作製した。
Comparative Example 4
(Stock solution X4)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 1.0 parts by weight of 1,3-butanediol, 2.60 parts by weight of deionized water, 1,2,4-triazole 0.32 parts by mass and 0.08 parts by mass of malic acid were dissolved and mixed to prepare a storage solution X4.

(研磨液X4)
1質量部の貯蔵液X4と3質量部の脱イオン水とを混合することにより貯蔵液X4を4倍に希釈して研磨液X4を調製した。研磨液X4におけるシリカAの含有量は9.600質量%であり、1,3−ブタンジオールの含有量は0.250質量%であった。
(Abrasive fluid X4)
The stock solution X4 was diluted 4-fold by mixing 1 part by weight of the stock solution X4 with 3 parts by weight of deionized water to prepare a polishing solution X4. The content of silica A in the polishing liquid X4 was 9.600% by mass, and the content of 1,3-butanediol was 0.250% by mass.

<比較例5>
(貯蔵液X5)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、ポリオキシエチレンソルビタンモノラウラート0.016質量部と、脱イオン水3.584質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X5を作製した。
Comparative Example 5
(Stock solution X5)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, 0.016 parts by weight of polyoxyethylene sorbitan monolaurate, 3.584 parts by weight of deionized water, 1,2,4-4 0.32 parts by mass of triazole and 0.08 parts by mass of malic acid were dissolved and mixed to prepare a storage solution X5.

(研磨液X5)
1質量部の貯蔵液X5と3質量部の脱イオン水とを混合することにより貯蔵液X5を4倍に希釈して研磨液X5を調製した。研磨液X5におけるシリカAの含有量は9.600質量%であり、ポリオキシエチレンソルビタンモノラウラートの含有量は0.004質量%であった。
(Polishing liquid X5)
The stock solution X5 was diluted 4-fold by mixing 1 part by weight of the stock solution X5 with 3 parts by weight of deionized water to prepare a polishing solution X5. The content of silica A in the polishing slurry X5 was 9.600% by mass, and the content of polyoxyethylene sorbitan monolaurate was 0.004% by mass.

<比較例6>
(貯蔵液X6)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、ポリアクリル酸としてジュリマーAC−10LP(「ジュリマー」は登録商標、日本純薬株式会社製)0.4質量部と、脱イオン水3.20質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X6を作製した。
Comparative Example 6
(Stock solution X6)
96 parts by weight of Cataloid SI-45P as a dispersion composed of silica A and water, and 0.4 parts by weight of JULYMER AC-10LP ("Julimer" is a registered trademark, manufactured by Nippon Junyaku Co., Ltd.) as polyacrylic acid A stock solution X6 was prepared by dissolving and mixing 3.20 parts by mass of deionized water, 0.32 parts by mass of 1,2,4-triazole, and 0.08 parts by mass of malic acid.

(研磨液X6)
1質量部の貯蔵液X6と3質量部の脱イオン水とを混合することにより貯蔵液X6を4倍に希釈して研磨液X6を調製した。研磨液X6におけるシリカAの含有量は9.600質量%であり、ポリアクリル酸の含有量は0.100質量%であった。
(Polishing liquid X6)
The stock solution X6 was diluted 4-fold by mixing 1 part by weight of the stock solution X6 with 3 parts by weight of deionized water to prepare a polishing solution X6. The content of silica A in polishing solution X6 was 9.600% by mass, and the content of polyacrylic acid was 0.100% by mass.

<比較例7>
(貯蔵液X7)
シリカA及び水から構成される分散液としてカタロイドSI−45P 96質量部と、ポリグリセリンとしてPGL X(「PGL X」は商品名、株式会社ダイセル製、20量体)0.4質量部と、脱イオン水3.20質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X7を作製した。
Comparative Example 7
(Stock solution X7)
96 parts by weight of Cataloid SI-45P as a dispersion liquid composed of silica A and water, and 0.4 parts by weight of PGL X (“PGL X” is a trade name, made by Daicel Co., Ltd., 20-mer) as polyglycerin, A stock solution X7 was prepared by dissolving and mixing 3.20 parts by mass of deionized water, 0.32 parts by mass of 1,2,4-triazole, and 0.08 parts by mass of malic acid.

(研磨液X7)
1質量部の貯蔵液X7と3質量部の脱イオン水とを混合することにより貯蔵液X7を4倍に希釈して研磨液X7を調製した。研磨液X7におけるシリカAの含有量は9.600質量%であり、ポリグリセリンの含有量は0.100質量%であった。
(Polishing liquid X7)
The stock solution X7 was diluted 4-fold by mixing 1 part by weight of the stock solution X7 and 3 parts by weight of deionized water to prepare a polishing solution X7. The content of silica A in polishing solution X7 was 9.600% by mass, and the content of polyglycerin was 0.100% by mass.

<比較例8>
(貯蔵液X8)
貯蔵液X1と同様の貯蔵液X8を作製した。
Comparative Example 8
(Stock solution X8)
A stock solution X8 similar to stock solution X1 was prepared.

(研磨液X8)
1質量部の貯蔵液X8と5質量部の脱イオン水とを混合することにより貯蔵液X8を6倍に希釈して研磨液X8を調製した。研磨液X8におけるシリカAの含有量は6.400質量%であった。
(Polishing liquid X 8)
The stock solution X8 was diluted 6 times by mixing 1 part by weight of the stock solution X8 with 5 parts by weight of deionized water to prepare a polishing solution X8. The content of silica A in polishing solution X8 was 6.400% by mass.

<比較例9>
(貯蔵液X9)
シリカB及び水から構成される分散液としてカタロイドSI−50 80質量部と、脱イオン水19.60質量部と、1,2,4−トリアゾール0.32質量部と、リンゴ酸0.08質量部とを溶解混合し貯蔵液X9を作製した。
Comparative Example 9
(Stock solution X 9)
80 parts by weight of Cataloid SI-50 as a dispersion composed of silica B and water, 19.60 parts by weight of deionized water, 0.32 parts by weight of 1,2,4-triazole, 0.08 parts of malic acid The resulting solution was dissolved and mixed to prepare a stock solution X9.

(研磨液X9)
1質量部の貯蔵液X9と3質量部の脱イオン水とを混合することにより貯蔵液X9を4倍に希釈して研磨液X9を調製した。研磨液X9におけるシリカBの含有量は9.600質量%であった。
(Polishing liquid X 9)
The stock solution X9 was diluted 4-fold by mixing 1 part by weight of the stock solution X9 with 3 parts by weight of deionized water to prepare a polishing solution X9. The content of silica B in polishing liquid X9 was 9.600% by mass.

<研磨液のpH測定及びpH調整>
実施例及び比較例の研磨液の25℃におけるpHを株式会社堀場製作所製のpH測定器「pH METE F−50」を用いて測定した。研磨液のpHが9.2〜9.3である場合は、そのまま研磨液として使用し、9.3を超えて高かった場合は、20質量%リンゴ酸水溶液をpH調整液として若干量加えることでpHを9.2〜9.3に調整した。実施例及び比較例においてpHが9.2を下回ることはなかった。20質量%リンゴ酸水溶液は、リンゴ酸20質量部を脱イオン水80質量部に室温で溶解することで作製した。なお、pH調整液を加えた研磨液におけるリンゴ酸の量は、pH調整液を加える前の研磨液におけるリンゴ酸の量と同等であった。
<PH measurement and pH adjustment of polishing liquid>
The pH at 25 ° C. of the polishing liquids of Examples and Comparative Examples was measured using a pH meter “pH METE F-50” manufactured by Horiba, Ltd. If the pH of the polishing solution is 9.2 to 9.3, use it as the polishing solution as it is, and if it is higher than 9.3, add a slight amount of 20% by mass malic acid aqueous solution as a pH adjusting solution The pH was adjusted to 9.2-9.3. The pH did not fall below 9.2 in the examples and comparative examples. The 20% by mass malic acid aqueous solution was prepared by dissolving 20 parts by mass of malic acid in 80 parts by mass of deionized water at room temperature. The amount of malic acid in the polishing solution to which the pH adjusting solution was added was equal to the amount of malic acid in the polishing solution before adding the pH adjusting solution.

<CMP評価に用いるサファイア基体>
CMP評価では、サファイア基体として、直径50.8mm(2インチ)、厚さ0.43mmの面方位C面サファイアウエハを使用した。研磨前の平均表面粗さ(Ra)は0.2nmであった。平均表面粗さ(Ra)は、走査型プローブ顕微鏡(セイコーインスツルメンツ株式会社製「SPI3800N/SPA500」を用い、測定領域1ミクロンで測定した。
<Sapphire base used for CMP evaluation>
In the CMP evaluation, a plane-oriented C-plane sapphire wafer having a diameter of 50.8 mm (2 inches) and a thickness of 0.43 mm was used as a sapphire substrate. The average surface roughness (Ra) before polishing was 0.2 nm. The average surface roughness (Ra) was measured using a scanning probe microscope (“SPI3800N / SPA500” manufactured by Seiko Instruments Inc.) in a measurement area of 1 micron.

<CMP工程における研磨装置の振動評価>
上記で得た研磨液1〜4及び研磨液X1〜X9を、定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件(研磨条件1及び研磨条件2)でCMP処理を行い、研磨装置の振動評価を行った。なお、研磨条件2における、研磨定盤の回転速度以外の研磨条件は、研磨条件1と同様とした。振動が発生しなかった場合を「○」と評価し、振動が発生した場合を「×」と評価した。評価結果を表1及び表2に示す。振動評価は、研磨条件1において「○」である場合を良好であると評価した。
<Evaluation of vibration of polishing apparatus in CMP process>
While dropping the polishing liquids 1 to 4 and the polishing liquids X1 to X9 obtained above onto the pad attached to the surface plate, the CMP processing is performed under the polishing conditions (polishing conditions 1 and 2) shown below, and polishing is performed. The device was evaluated for vibration. The polishing conditions other than the rotation speed of the polishing platen under the polishing condition 2 were the same as the polishing condition 1. The case where vibration did not occur was evaluated as "o", and the case where vibration occurred was evaluated as "x". The evaluation results are shown in Tables 1 and 2. Vibration evaluation evaluated that the case where it is "(circle)" in the grinding | polishing conditions 1 was favorable.

(研磨条件1)
研磨装置:不二越機械工業株式会社製、RDP−500
研磨パッド:ローム・アンド・ハース社製、IC1000XY−Groove
研磨圧力:600gf/cm
研磨液の流量:500ml/min(研磨液1000mlを循環させた。)
研磨時間:1分
サファイア基体:5枚
研磨定盤の回転速度:40min−1
(研磨条件2)
研磨定盤の回転速度:30min−1
(Polishing condition 1)
Polishing device: RDP-500, manufactured by Fujikoshi Machine Industry Co.
Polishing pad: manufactured by Rohm and Haas, IC 1000 XY-Groove
Polishing pressure: 600 gf / cm 2
Flow rate of polishing liquid: 500 ml / min (1000 ml of polishing liquid was circulated)
Polishing time: 1 minute Sapphire base: 5 pieces Rotation speed of polishing plate: 40 min -1
(Polishing condition 2)
Rotation speed of polishing table: 30 min -1

<CMPによるサファイア研磨速度の評価>
上記で得た研磨液1〜4及び研磨液X1〜X9を、定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件3でCMP処理を行い、研磨速度及び平均表面粗さ(Ra)の評価を行った。評価結果を表1及び表2に示す。
<Evaluation of sapphire polishing rate by CMP>
While dropping the polishing liquids 1 to 4 and the polishing liquids X1 to X9 obtained above onto the pad attached to the surface plate, the CMP treatment is performed under the polishing condition 3 shown below, and the polishing rate and the average surface roughness (Ra The evaluation of. The evaluation results are shown in Tables 1 and 2.

(研磨条件3)
研磨装置:株式会社ナノファクター製、FACT−200
研磨パッド:ローム・アンド・ハース社製、IC1000K−Groove
研磨圧力:300gf/cm
研磨液の流量:100ml/min(研磨液125mlを循環させた。)
研磨時間:30分
サファイア基体:5枚
研磨定盤の回転速度:90min−1
(Polishing condition 3)
Polishing device: Nanoactor Co., Ltd., FACT-200
Polishing pad: manufactured by Rohm and Haas, IC 1000 K-Groove
Polishing pressure: 300 gf / cm 2
Flow rate of polishing liquid: 100 ml / min (125 ml of polishing liquid was circulated.)
Polishing time: 30 minutes Sapphire base: 5 pieces Rotation speed of polishing plate: 90 min -1

(研磨速度)
研磨速度は、CMP処理前後の基体の質量を測定することで、研磨されたサファイアの質量を求め、そこから基体の被研磨面の面積とサファイアの密度3.97g/cmとを用いて膜厚に換算し、減少した膜厚と研磨時間との関係から算出した。研磨速度は、1.0μm/h以上を良好であると評価した。
(Polishing rate)
The polishing rate is obtained by measuring the mass of the substrate before and after the CMP treatment to determine the mass of the polished sapphire, and from that, using the area of the surface to be polished of the substrate and the density of sapphire of 3.97 g / cm 3 It was converted to thickness and calculated from the relationship between the reduced film thickness and the polishing time. The polishing rate was evaluated as 1.0 μm / h or more as good.

(平均表面粗さ(Ra))
上記<CMP評価に用いるサファイア基体>に記載した方法と同様の方法で平均表面粗さ(Ra)を測定した。平均表面粗さ(Ra)は、0.3nm未満を良好であると評価した。
(Average surface roughness (Ra))
The average surface roughness (Ra) was measured in the same manner as the method described in <Sapphire base used for CMP evaluation>. Average surface roughness (Ra) evaluated that less than 0.3 nm was good.

Figure 0006536176
Figure 0006536176

Figure 0006536176
Figure 0006536176

実施例の結果から明らかなように、研磨液がラクトン化合物を0.02質量%以上含有すると、CMP工程で研磨装置の振動の発生が抑制されると共に、サファイアを含む被研磨面を速い研磨速度で平滑に研磨できた。   As apparent from the results of the examples, when the polishing solution contains 0.02 mass% or more of a lactone compound, generation of vibration of the polishing apparatus is suppressed in the CMP step, and the polishing speed of the surface to be polished including sapphire is high. Could be polished smoothly.

比較例1及び2の結果から明らかなように、ラクトン化合物の含有量が0.02質量%未満では、CMP工程で研磨装置の振動の発生を抑えることができなかった。比較例3及び4の結果から明らかなように、ラクトン化合物以外の有機溶媒を用いても、CMP工程で研磨装置の振動の発生を抑えることができなかった。比較例5〜7の結果から明らかなように、ラクトン化合物に代えて界面活性剤を用いても、CMP工程で研磨装置の振動の発生を抑えることができなかった。   As apparent from the results of Comparative Examples 1 and 2, when the content of the lactone compound is less than 0.02% by mass, generation of vibration of the polishing apparatus could not be suppressed in the CMP step. As apparent from the results of Comparative Examples 3 and 4, even when an organic solvent other than the lactone compound was used, the generation of vibration of the polishing apparatus could not be suppressed in the CMP step. As apparent from the results of Comparative Examples 5 to 7, even when a surfactant was used in place of the lactone compound, the occurrence of vibration of the polishing apparatus could not be suppressed in the CMP step.

実施例3及び比較例8の結果から明らかなように、砥粒の含有量を9.600質量%よりも少ない6.400質量%とした場合であっても、研磨液がラクトン化合物を0.02質量%以上含有することにより、CMP工程で研磨装置の振動の発生が抑制されると共に、サファイアを含む被研磨面を速い研磨速度で平滑に研磨できた。   As apparent from the results of Example 3 and Comparative Example 8, even when the content of the abrasive grains is 6.400% by mass, which is smaller than 9.600% by mass, the amount of the lactone compound is 0.2%. By containing 02% by mass or more, generation of vibration of the polishing apparatus in the CMP step is suppressed, and the surface to be polished including sapphire can be polished smoothly at a high polishing rate.

実施例4及び比較例9の結果から明らかなように、砥粒の平均粒径を68nmより小さい44nmとした場合であっても、研磨液がラクトン化合物を0.02質量%以上含有することにより、CMP工程で研磨装置の振動の発生が抑制されると共に、サファイアを含む被研磨面を速い研磨速度で平滑に研磨できた。   As apparent from the results of Example 4 and Comparative Example 9, even when the average particle diameter of the abrasive grains is 44 nm, which is smaller than 68 nm, the polishing liquid contains 0.02 mass% or more of the lactone compound. The generation of vibration of the polishing apparatus was suppressed in the CMP process, and the surface to be polished including sapphire was able to be polished smoothly at a high polishing rate.

本発明に係るサファイア用研磨液(CMP用研磨液)、貯蔵液、及び、これらを用いた研磨方法は、サファイアを含む被研磨面のCMPに好適であり、LED基体、スマートフォン等の電子機器表示部カバーに用いられるサファイア基体(サファイアを含む被研磨面を有する基体)のCMPに好適である。   The polishing liquid for sapphire (CMP polishing liquid), storage liquid, and polishing method using these according to the present invention are suitable for CMP of a surface to be polished containing sapphire, and display of electronic devices such as LED substrates, smart phones, etc. It is suitable for CMP of a sapphire base (a base having a polished surface including sapphire) used for a part cover.

Claims (7)

ラクトン化合物と、シリカを含む砥粒と、液状媒体と、を含有し、
前記ラクトン化合物の含有量が研磨液の全質量基準で0.02質量%以上であり、
前記ラクトン化合物が、α−アセトラクトン、β−プロピオラクトン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトン及びδ−バレロラクトンからなる群より選択される少なくとも一種である、サファイア用研磨液。
A lactone compound, an abrasive containing silica, and a liquid medium,
Ri Der content above 0.02 wt% based on the total mass of the polishing liquid of the lactone compound,
The polishing liquid for sapphire , wherein the lactone compound is at least one selected from the group consisting of α-acetolactone, β-propiolactone, γ-butyrolactone, α-acetyl-γ-butyrolactone and δ-valerolactone .
pHが7.0〜10.5である、請求項1に記載の研磨液。   The polishing liquid according to claim 1, wherein the pH is 7.0 to 10.5. 前記シリカがコロイダルシリカであり、
前記砥粒の平均粒径が20〜160nmである、請求項1又は2に記載の研磨液。
The silica is colloidal silica,
The polishing liquid according to claim 1, wherein an average particle diameter of the abrasive grains is 20 to 160 nm.
前記砥粒の含有量が研磨液の全質量基準で1〜40質量%である、請求項1〜3のいずれか一項に記載の研磨液。   The polishing liquid according to any one of claims 1 to 3, wherein the content of the abrasive grains is 1 to 40% by mass based on the total mass of the polishing liquid. 請求項1〜4のいずれか一項に記載の研磨液を得るための貯蔵液であって、
液状媒体で希釈することにより前記研磨液が得られる、貯蔵液。
A storage solution for obtaining a polishing solution according to any one of claims 1 to 4,
A stock solution, wherein the polishing liquid is obtained by diluting with a liquid medium.
請求項1〜4のいずれか一項に記載の研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える、研磨方法。   A polishing method comprising the step of polishing a surface to be polished containing sapphire using the polishing liquid according to any one of claims 1 to 4. 請求項5に記載の貯蔵液を液状媒体で希釈することにより得られる研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える、研磨方法。   A polishing method comprising the step of polishing a surface to be polished containing sapphire using a polishing solution obtained by diluting the storage solution according to claim 5 with a liquid medium.
JP2015107796A 2015-05-27 2015-05-27 Polishing solution for sapphire, storage solution and polishing method Active JP6536176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015107796A JP6536176B2 (en) 2015-05-27 2015-05-27 Polishing solution for sapphire, storage solution and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015107796A JP6536176B2 (en) 2015-05-27 2015-05-27 Polishing solution for sapphire, storage solution and polishing method

Publications (2)

Publication Number Publication Date
JP2016222762A JP2016222762A (en) 2016-12-28
JP6536176B2 true JP6536176B2 (en) 2019-07-03

Family

ID=57745466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015107796A Active JP6536176B2 (en) 2015-05-27 2015-05-27 Polishing solution for sapphire, storage solution and polishing method

Country Status (1)

Country Link
JP (1) JP6536176B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196849A1 (en) * 2005-03-04 2006-09-07 Kevin Moeggenborg Composition and method for polishing a sapphire surface
SG10201506220PA (en) * 2010-09-08 2015-09-29 Basf Se Aqueous polishing composition and process for chemically mechanically polishing substrate materials for electrical, mechanical and optical devices

Also Published As

Publication number Publication date
JP2016222762A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP6193959B2 (en) Rinsing composition and rinsing method
EP2365042B1 (en) Polishing composition and polishing method using the same
JP5413456B2 (en) Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
KR20070089610A (en) Composition for grinding
TW201730299A (en) Polishing composition and method for polishing silicon substrate
JP6901497B2 (en) Polishing composition and silicon wafer polishing method
WO2016075880A1 (en) Polishing composition and manufacturing method of substrate using same
JP4346712B2 (en) Wafer edge polishing method
JP6536176B2 (en) Polishing solution for sapphire, storage solution and polishing method
JP6524799B2 (en) Polishing solution for sapphire, storage solution and polishing method
JP2017197670A (en) Polishing liquid for sapphire, stock solution, and polishing method
JP6561680B2 (en) Polishing liquid for sapphire, storage liquid, and polishing method
JPWO2019043890A1 (en) Method for manufacturing semiconductor wafer
JP2016011379A (en) Polishing liquid, storage liquid for polishing liquid and polishing method
TWI739945B (en) Polishing composition and silicon wafer polishing method
JP2017222739A (en) Sapphire polishing liquid, storage liquid and polishing method
JP6582601B2 (en) Polishing liquid, storage liquid and polishing method
JP2017039883A (en) Polishing liquid for sapphire, storage liquid and polishing method
JP6582600B2 (en) Polishing liquid, storage liquid and polishing method
JP2017197671A (en) Polishing liquid, stock solution, and polishing method using these
JP6515702B2 (en) Polishing solution, storage solution and polishing method
JP6536208B2 (en) Polishing solution, storage solution and polishing method
TW202214815A (en) Polishing composition and polishing method
JPWO2018055985A1 (en) Polishing composition, and polishing method and semiconductor substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350