JP2017197670A - Polishing liquid for sapphire, stock solution, and polishing method - Google Patents

Polishing liquid for sapphire, stock solution, and polishing method Download PDF

Info

Publication number
JP2017197670A
JP2017197670A JP2016090282A JP2016090282A JP2017197670A JP 2017197670 A JP2017197670 A JP 2017197670A JP 2016090282 A JP2016090282 A JP 2016090282A JP 2016090282 A JP2016090282 A JP 2016090282A JP 2017197670 A JP2017197670 A JP 2017197670A
Authority
JP
Japan
Prior art keywords
polishing
liquid
mass
polishing liquid
sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016090282A
Other languages
Japanese (ja)
Inventor
郷 豊
Yutaka Go
豊 郷
井上 恵介
Keisuke Inoue
恵介 井上
春仙 玉田
Haruhisa Tamada
春仙 玉田
山下 貴司
Takashi Yamashita
貴司 山下
野村 理行
Michiyuki Nomura
理行 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016090282A priority Critical patent/JP2017197670A/en
Publication of JP2017197670A publication Critical patent/JP2017197670A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing liquid for sapphire capable of suppressing generation of a chatter vibration of a polishing device in a CMP process of a sapphire substrate, suppressing evaporation of a polishing liquid and agglomeration of an abrasive grain, performing polishing at a high polishing rate for a long time, and polishing a sapphire substrate surface lubricously.SOLUTION: The polishing liquid of the present invention includes: a polar aprotic organic compound having a specific permittivity of not less than 30; an abrasive grain containing colloidal silica; an organic acid; and a liquid medium containing not less than 80 mass% of water, and the polishing liquid has a pH of 8.0-11.0. Further, the content of the polar aprotic organic compound having a specific permittivity of not less than 30 is preferably in a range of 0.05-1.0 in terms of a total mass of the polishing liquid.SELECTED DRAWING: None

Description

本発明は、サファイアを研磨するために使用されるサファイア用研磨液、当該研磨液を得るための貯蔵液、及び、これらを使用した研磨方法に関する。   The present invention relates to a polishing liquid for sapphire used for polishing sapphire, a storage liquid for obtaining the polishing liquid, and a polishing method using these.

サファイアは、従来からLEDの基体用途に主に用いられてきたが、透明で高い硬度を有し、傷がつきにくいことから、近年、スマートフォンに代表される電子機器筐体等のフロントカバーガラスやカメラカバーガラス等にも用いられるようになり、年々その需要が増している。   Sapphire has been used mainly for LED substrates, but it is transparent, has high hardness, and is not easily damaged. It has also been used for camera cover glass and the like, and its demand is increasing year by year.

サファイア基体の製造方法としては、例えば、まずベルヌーイ法、チョクラルスキー法、EFG(Edge−defined Film−fed Growth Method)法等でサファイアの塊を作り、次に基体状にくりぬき、薄くスライスして製造する方法が挙げられる。スライスするときには、ダイヤモンド粒が付着した細いワイヤー等(例えばマルチワイヤーソー)を使用して切り出すため、切り出した表面には細かい傷が存在する。   As a method for manufacturing a sapphire substrate, for example, first, a sapphire lump is formed by the Bernoulli method, the Czochralski method, the EFG (Edge-defined Film-fed Growth Method) method, etc., and then the substrate is hollowed out and sliced thinly. The method of manufacturing is mentioned. When slicing, since a thin wire or the like (for example, a multi-wire saw) to which diamond particles are attached is cut out, there are fine scratches on the cut surface.

LED基体は、サファイア基体上にGaNを結晶成長させて製造されるため、その用途上、サファイア表面は非常に平滑であることが求められる。また、サファイア基体を電子機器筐体のカバーガラス等に用いる場合でも、サファイア表面に傷等があると意匠性が低下し、見た目にも美しくないことから、サファイア表面は、傷等が無く平滑であることが求められる。   Since the LED base is manufactured by crystal growth of GaN on the sapphire base, the surface of the sapphire is required to be very smooth for its use. In addition, even when the sapphire substrate is used for a cover glass of an electronic device housing, if the surface of the sapphire has scratches or the like, the design is deteriorated and the appearance is not beautiful. It is required to be.

このようなサファイア表面の傷等を除去し、平滑にするためにはCMP(Chemical Mechanical Polishing:化学的機械的研磨)が必要不可欠である。CMPは、研磨液によって化学的に被加工物の表面を研磨し易く変質させながら、研磨液に含まれる砥粒と研磨パッド(研磨布)とにより機械的に研磨する技術である。しかし、サファイアは、化学的及び熱的に非常に安定であり、硬度も高いため、CMPが難しく、加工時間が長くかかり、生産コストが高いという問題がある。   CMP (Chemical Mechanical Polishing) is indispensable for removing such scratches on the sapphire surface and smoothing it. CMP is a technique for mechanically polishing with abrasive grains and a polishing pad (polishing cloth) contained in the polishing liquid while chemically modifying the surface of the workpiece easily with a polishing liquid. However, since sapphire is very stable chemically and thermally and has a high hardness, it is difficult to perform CMP, takes a long processing time, and has a high production cost.

その生産コストを下げるため、研磨工程でのサファイアの研磨速度を向上させ、研磨時間を短縮することが望まれている。研磨速度は研磨時の圧力を上げることで高めることができる。しかし、加工時間を短くするため、CMPの際に圧力を上げて研磨装置に負担がかかる条件で研磨しようとすると、研磨装置が振動を起こす不具合が生じることがある。この研磨装置の振動は「ビビリ振動」と呼ばれており、ビビリ振動を起こしたまま長時間研磨を継続すると、装置が壊れる等の不具合が生ずる恐れがある。このビビリ振動は、研磨液で満たされた研磨パッドとサファイア基体との間に発生する摩擦が大きくなることで発生すると考えられる。摩擦が大きくなると、研磨パッドとサファイア基体の間で生じる摩擦熱により研磨装置の定盤およびヘッドおよび研磨液の温度が高くなり、研磨液の蒸発量が増えると同時に研磨砥粒の凝集も多くなり、著しく研磨速度が低下し研磨液の可使時間が短くなる恐れがある。このため、研磨に用いられる研磨液の改善により、研磨中研磨パッドとサファイア基体の間で生じる摩擦を低減することで研磨装置のビビリ振動を抑制し、研磨液の蒸発および砥粒の凝集を抑え、高い研磨速度を長時間維持させることが望まれている。   In order to reduce the production cost, it is desired to improve the polishing rate of sapphire in the polishing process and shorten the polishing time. The polishing rate can be increased by increasing the pressure during polishing. However, in order to shorten the processing time, if the pressure is increased during CMP and polishing is performed under a condition that places a burden on the polishing apparatus, there may be a problem that the polishing apparatus vibrates. This vibration of the polishing apparatus is referred to as “chatter vibration”, and if polishing is continued for a long time while chatter vibration is generated, there is a possibility that problems such as breakage of the apparatus may occur. This chatter vibration is considered to occur due to an increase in friction generated between the polishing pad filled with the polishing liquid and the sapphire substrate. When the friction increases, the temperature of the surface plate and head of the polishing apparatus and the polishing liquid rises due to the frictional heat generated between the polishing pad and the sapphire substrate, and the amount of polishing liquid evaporation increases and at the same time the abrasive grains agglomerate. As a result, the polishing rate is significantly reduced, and the usable time of the polishing liquid may be shortened. For this reason, by improving the polishing liquid used for polishing, the friction generated between the polishing pad and the sapphire substrate during polishing is reduced to suppress chatter vibration of the polishing apparatus, and to suppress evaporation of the polishing liquid and aggregation of abrasive grains. It is desired to maintain a high polishing rate for a long time.

サファイア用の研磨液はいくつか知られているが、その種類は豊富とは言えない。例えば、特許文献1には、高濃度のコロイダルシリカを含む研磨液によってサファイアを研磨することが記載されている。また、特許文献2には、サファイア用研磨液組成物が、必要に応じて、界面活性剤、清浄剤、防錆剤、表面改質剤、粘度調製剤、抗菌剤、分散剤等を含有してもよいことが記載されている。   Several polishing liquids for sapphire are known, but the types are not abundant. For example, Patent Document 1 describes polishing sapphire with a polishing liquid containing a high concentration of colloidal silica. In Patent Document 2, the sapphire polishing composition contains a surfactant, a detergent, a rust inhibitor, a surface modifier, a viscosity modifier, an antibacterial agent, a dispersant, and the like as necessary. It is described that it may be.

特開2008−44078号公報JP 2008-44078 A 特許第5384037号公報Japanese Patent No. 5384037

しかしながら、上記特許文献1に記載された研磨液、又は、上記特許文献2に記載された研磨液組成物を用いてサファイアを研磨したとしても、研磨装置のビビリ振動を抑えることはできず、また、サファイアの研磨速度も充分とはいえない。   However, even if sapphire is polished using the polishing liquid described in Patent Document 1 or the polishing liquid composition described in Patent Document 2, chatter vibration of the polishing apparatus cannot be suppressed. The polishing rate of sapphire is not sufficient.

本発明は、上記実情に鑑みてなされたものであり、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑にできるサファイア用研磨液、その貯蔵液、及び、これらを用いた研磨方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can suppress the occurrence of chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate, suppress evaporation of the polishing liquid and agglomeration of abrasive grains, and increase the speed at a high polishing rate. An object of the present invention is to provide a polishing liquid for sapphire that can be polished for a long time and can smooth the surface of the sapphire substrate, a storage liquid thereof, and a polishing method using them.

本発明の一態様は、比誘電率が30以上の極性非プロトン性を有する有機化合物と、コロイダルシリカを含む砥粒と、有機酸と、水を80質量%以上含む液状媒体と、を含有し、pHが8.0〜11.0である、サファイア用研磨液に関する。また、上記比誘電率が30以上の極性非プロトン性を有する有機化合物の含有量が前記研磨液の全質量基準で0.05〜1.0質量%の範囲であることが好ましい。このような研磨液を用いることにより、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる。   One embodiment of the present invention contains a polar aprotic organic compound having a relative dielectric constant of 30 or more, abrasive grains containing colloidal silica, an organic acid, and a liquid medium containing 80% by mass or more of water. The present invention relates to a polishing liquid for sapphire having a pH of 8.0 to 11.0. The content of the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more is preferably in the range of 0.05 to 1.0% by mass based on the total mass of the polishing liquid. By using such a polishing liquid, it is possible to suppress the occurrence of chatter vibration of the polishing apparatus in the CMP process of the sapphire substrate, and to suppress the evaporation of the polishing liquid and agglomeration of abrasive grains and to polish for a long time at a high polishing rate. And the surface of the sapphire substrate can be polished smoothly.

本発明の一態様では、上記比誘電率が30以上の極性非プロトン性を有する有機化合物がグリセリン及びジメチルスルホキシドの少なくともどちらかであることが好ましい。この場合、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を更に効果的に抑制できると共に、研磨液の蒸発および砥粒の凝集を更に効果的に抑え、速い研磨速度で更に長時間研磨することができる。   In one embodiment of the present invention, the polar aprotic organic compound having a relative dielectric constant of 30 or more is preferably at least one of glycerin and dimethyl sulfoxide. In this case, generation of chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate can be further effectively suppressed, and evaporation of the polishing liquid and aggregation of the abrasive grains are further effectively suppressed, and polishing is continued for a longer time at a high polishing rate. be able to.

本発明の一態様では、上記コロイダルシリカを含む砥粒が、平均一次粒径60〜150nmの第1の粒子と、平均一次粒径10〜50nmの第2の粒子と、を混合して得られ、前記第2の粒子の配合量に対する前記第1の粒子の配合量の比率が質量基準で1を超えることが好ましい。この場合、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を更に効果的に抑制できると共に、研磨液の蒸発および砥粒の凝集を更に効果的に抑え、速い研磨速度で更に長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる。   In one embodiment of the present invention, the abrasive grains containing colloidal silica are obtained by mixing first particles having an average primary particle size of 60 to 150 nm and second particles having an average primary particle size of 10 to 50 nm. The ratio of the blending amount of the first particles to the blending amount of the second particles preferably exceeds 1 on a mass basis. In this case, generation of chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate can be further effectively suppressed, and evaporation of the polishing liquid and aggregation of the abrasive grains are further effectively suppressed, and polishing is continued for a longer time at a high polishing rate. And the surface of the sapphire substrate can be polished smoothly.

本発明の一態様では、上記コロイダルシリカを含む砥粒の含有量が研磨液の全質量基準で6〜50質量%であることが好ましい。この場合、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を更に効果的に抑制できると共に、研磨液の蒸発および砥粒の凝集を更に効果的に抑え、速い研磨速度で更に長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる。   In one embodiment of the present invention, the content of abrasive grains containing the colloidal silica is preferably 6 to 50% by mass based on the total mass of the polishing liquid. In this case, generation of chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate can be further effectively suppressed, and evaporation of the polishing liquid and aggregation of the abrasive grains are further effectively suppressed, and polishing is continued for a longer time at a high polishing rate. And the surface of the sapphire substrate can be polished smoothly.

本発明の一態様は、上記研磨液を調製するときに使用する貯蔵液であって、水を80質量%以上含む液状媒体の含有量が前記研磨液よりも少なく、前記液状媒体を除く各成分は前記研磨液と同じ配合比率で含まれる貯蔵液に関する。このような貯蔵液によれば、研磨液の貯蔵・運搬等に係るコストを低減できる。   One aspect of the present invention is a storage liquid used when preparing the polishing liquid, wherein the content of the liquid medium containing 80% by mass or more of water is less than that of the polishing liquid, and each component excluding the liquid medium Relates to a storage liquid contained in the same blending ratio as the polishing liquid. According to such a storage liquid, it is possible to reduce the cost related to the storage and transportation of the polishing liquid.

本発明の一態様は、上記研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える、研磨方法に関する。このような研磨方法によれば、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を更に効果的に抑制できると共に、研磨液の蒸発および砥粒の凝集を更に効果的に抑え、速い研磨速度で更に長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる。   One embodiment of the present invention relates to a polishing method including a step of polishing a surface to be polished containing sapphire using the polishing liquid. According to such a polishing method, generation of chatter vibration of the polishing apparatus in the CMP process of the sapphire substrate can be further effectively suppressed, evaporation of the polishing liquid and aggregation of the abrasive grains can be further effectively suppressed, and a high polishing rate can be achieved. Can be polished for a longer time and the surface of the sapphire substrate can be polished smoothly.

本発明の一態様は、上記貯蔵液を、水を80質量%以上含む液状媒体で希釈することにより前記研磨液を調製する工程と、前記研磨液を用いて、サファイアを含む被研磨面を研磨する工程と、を備える、研磨方法に関する。このような研磨方法によれば、サファイアを速い研磨速度で平滑に研磨することができる。また、研磨液の貯蔵・運搬・保管等に係るコストを抑制できるため、総合的な製造コストを低減することができる。   One embodiment of the present invention is a process of preparing the polishing liquid by diluting the storage liquid with a liquid medium containing 80% by mass or more of water, and polishing a surface to be polished containing sapphire using the polishing liquid. And a polishing step. According to such a polishing method, sapphire can be polished smoothly at a high polishing rate. In addition, since the costs related to the storage, transportation, storage, etc. of the polishing liquid can be suppressed, the overall production cost can be reduced.

本発明によれば、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できるサファイア用研磨液、その貯蔵液、及び、これらを用いた研磨方法を提供することができる。   According to the present invention, it is possible to suppress the occurrence of chatter vibration of the polishing apparatus in the CMP process of the sapphire substrate, suppress evaporation of the polishing liquid and aggregation of abrasive grains, and polish at a high polishing rate for a long time, and It is possible to provide a polishing liquid for sapphire that can smoothly polish the surface of a sapphire substrate, a storage liquid thereof, and a polishing method using these.

以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiment.

<研磨液>
本実施形態に係る研磨液は、比誘電率が30以上の極性非プロトン性を有する有機化合物と、コロイダルシリカを含む砥粒と、有機酸と、水を80質量%以上含む液状媒体と、を含有し、pHが8.0〜11.0であるり、さらに、前記比誘電率が30以上の極性非プロトン性有機化合物の含有量が研磨液の全質量基準で0.05〜1.0質量%の範囲であることが実用的である。
<Polishing liquid>
The polishing liquid according to the present embodiment includes a polar aprotic organic compound having a relative dielectric constant of 30 or more, abrasive grains containing colloidal silica, an organic acid, and a liquid medium containing 80% by mass or more of water. And the pH is 8.0 to 11.0, and the content of the polar aprotic organic compound having a relative dielectric constant of 30 or more is 0.05 to 1.0 on the basis of the total mass of the polishing liquid. It is practical to be in the mass% range.

(極性非プロトン性を有する有機化合物)
極性非プロトン性を有する有機化合物は、アミド(完全に置換、結合水素原子を欠く窒素を有する)、尿素(完全に置換、窒素に接合した水素原子を有しない)、エーテル、環状エーテル、ニトリル、ケトン、スルホン、スルホキシド、完全に置換されたリン塩、ホスホン酸エステル、ホスホルアミド、ニトロ化合物からなる群から選ばれるものである。例えば、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、アセトニトリル、アセトン、テトラヒドロフラン、N−メチルー2−ピロジノン(NMP)、2−ピロリジノン、1,3−ジメチル−2−イミダソリゾン(DMI)、ジオキサン、テトラメチレンスルホン(スルホラン)、ヘキサメチルホスホルアミド(HMPA)、ニトロメタン、1,2−プロピレングリコールカーボネートなどの化合物が挙げられる。また、多価アルコールであるグリセリンも使用することができる。グリセリンはO−Hのプロトン供与性の基を含んでいるが、一般的にプロトン供与として機能することがなく、本発明においては極性非プロトン性を有する有機化合物として取り扱う。
(Organic compounds having polar aprotic properties)
Organic compounds with polar aprotic properties include amides (fully substituted, with nitrogen lacking bonded hydrogen atoms), urea (fully substituted, without hydrogen atoms attached to nitrogen), ethers, cyclic ethers, nitriles, It is selected from the group consisting of ketones, sulfones, sulfoxides, fully substituted phosphorus salts, phosphonic acid esters, phosphoramides, and nitro compounds. For example, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), acetonitrile, acetone, tetrahydrofuran, N-methyl-2-pyrodinone (NMP), 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidone (DMI) , Dioxane, tetramethylene sulfone (sulfolane), hexamethylphosphoramide (HMPA), nitromethane, 1,2-propylene glycol carbonate, and the like. Moreover, glycerin which is a polyhydric alcohol can also be used. Glycerin contains an OH proton donating group, but generally does not function as proton donation and is treated as an organic compound having polar aproticity in the present invention.

(比誘電率)
比誘電率とは媒質の誘電率と真空の誘電率の比ε/ε=εのことである。比誘電率は無次元量であり、用いる単位系によらず、その物質固有の一定の値をとる。上記極性非プロトン性を有する有機化合物の中で、比誘電率が30以上である有機化合物としては、グリセリン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、アセトニトリル、などの化合物が挙げられる。
(Relative permittivity)
The relative dielectric constant is the ratio ε / ε 0 = ε r between the dielectric constant of the medium and the dielectric constant of the vacuum. The relative permittivity is a dimensionless quantity and takes a certain value specific to the substance regardless of the unit system used. Among the organic compounds having polar aprotic properties, examples of the organic compound having a relative dielectric constant of 30 or more include compounds such as glycerin, dimethyl sulfoxide, N, N-dimethylformamide, and acetonitrile.

極性非プロトン性を有する有機化合物を含有することで、CMP工程における研磨装置のビビリ振動の発生を抑制する効果が得られる理由についての明確な知見は得られていないが、本発明者らは以下のように推定している。   Although the clear knowledge about the reason why the effect of suppressing the chatter vibration of the polishing apparatus in the CMP process is obtained by containing an organic compound having a polar aprotic property has not been obtained, the present inventors It is estimated as follows.

サファイアのCMPにおける研磨装置のビビリ振動は、サファイアを含む被研磨面と研磨パッドとの界面で発生する摩擦が大きくなり、この応力を、サファイアを含む被研磨面(例えば、研磨装置のヘッドに装着されている基体の被研磨面)と研磨パッド(例えば、研磨装置の定盤に装着され回転している研磨パッド)の表面とで逃がしきれなくなることで発生すると考えられる。このため、研磨装置の定盤の回転数が低いほど、また、ヘッドの圧力が高いほど、振動は発生し易くなる。   The chatter vibration of the polishing apparatus in sapphire CMP increases the friction generated at the interface between the surface to be polished containing sapphire and the polishing pad, and this stress is applied to the surface to be polished including sapphire (for example, attached to the head of the polishing apparatus). It is thought that this is caused by the fact that it is impossible to escape from the surface of the substrate to be polished) and the surface of the polishing pad (for example, the polishing pad mounted on the surface plate of the polishing apparatus and rotating). For this reason, the lower the number of rotations of the surface plate of the polishing apparatus and the higher the pressure of the head, the easier the vibration is generated.

ここで、研磨液中の砥粒は、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する役割を担っていると考えられる。そして、充分量の極性非プロトン性を有する有機化合物は、研磨液中の砥粒等の、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する能力を好適に補う作用を奏すると考えられる。この機構については、砥粒の結合を緩やかにさせるように砥粒間に介在することや、砥粒存在下の被研磨面と研磨パッドとの摩擦を低減させる滑材のように作用すること等、及び、これらの組み合わせによって研磨装置のビビリ振動を低減する効果が発揮されると推定されるが、その真偽については、更なる研究を要する。   Here, it is considered that the abrasive grains in the polishing liquid play a role of relaxing friction at the interface between the surface to be polished containing sapphire and the polishing pad. And a sufficient amount of the polar aprotic organic compound has the effect of suitably supplementing the ability to relieve friction at the interface between the polishing surface containing sapphire and the polishing pad, such as abrasive grains in the polishing liquid. Conceivable. About this mechanism, it intervenes between abrasive grains so as to loosen the bonding of abrasive grains, acts as a lubricant to reduce friction between the surface to be polished and the polishing pad in the presence of abrasive grains, etc. It is presumed that the effect of reducing chatter vibration of the polishing apparatus is exerted by the combination thereof, but further research is required for its true / false.

極性非プロトン性を有する有機化合物を含有することで、CMP工程において研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる理由については、上述のように、極性非プロトン性を有する有機化合物が、研磨液中の砥粒等の、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和する能力を好適に補う作用を奏することにより、研磨パッドとサファイア基体の間で生じる摩擦熱が低減され、研磨装置の定盤およびヘッドおよび研磨液の温度は低く保たれる。それにより、研磨液の蒸発量を低減すると同時に研磨砥粒の凝集が抑えられ、著しく研磨速度が低下し研磨液の可使時間が短くなることを回避できていると考えている。   By containing an organic compound having a polar aprotic property, it is possible to polish the surface of the sapphire substrate smoothly by suppressing evaporation of the polishing liquid and agglomeration of abrasive grains in the CMP process, and polishing at a high polishing rate for a long time. As described above, as described above, the polar aprotic organic compound preferably has the ability to relieve friction at the interface between the polishing target surface containing sapphire and the polishing pad, such as abrasive grains in the polishing liquid. By exerting a compensating effect, frictional heat generated between the polishing pad and the sapphire substrate is reduced, and the temperature of the surface plate and head of the polishing apparatus and the polishing liquid are kept low. Accordingly, it is considered that the evaporation amount of the polishing liquid is reduced, and at the same time, the aggregation of the polishing abrasive grains is suppressed, and it is possible to avoid that the polishing speed is remarkably lowered and the usable time of the polishing liquid is shortened.

以上のように、極性非プロトン性を有する有機化合物を含有し、研磨液中の砥粒等の、サファイアを含む被研磨面と研磨パッドとの界面の摩擦を緩和することで、研磨装置のビビリ振動の発生を抑制し、摩擦熱が低減されることを説明したが、次に、摩擦が緩和されても研磨速度が低下せず、速く維持される理由について、本発明者らの推定を説明する。   As described above, the polishing apparatus can be vibrated by reducing the friction at the interface between the polishing surface and the polishing pad containing an organic compound having a polar aprotic property, such as abrasive grains in the polishing liquid. Although it has been explained that the generation of vibration is suppressed and the frictional heat is reduced, the following explanation is given by the present inventors regarding the reason why the polishing rate does not decrease even if the friction is relaxed and is maintained fast. To do.

サファイアのCMPは、以下のように進行すると考えられる。シリカを含む砥粒が研磨パッド上でサファイアに押圧された際に、サファイアの水酸基とシリカの水酸基とが水素結合を形成し、当該結合部位が反応してアルミノシリケートが生成される。アルミノシリケートは軟質であるため、研磨パッド及びサファイア基体を相互に回転させると、アルミノシリケートが機械的に除去される。   It is thought that CMP of sapphire proceeds as follows. When abrasive grains containing silica are pressed against sapphire on the polishing pad, the hydroxyl group of sapphire and the hydroxyl group of silica form a hydrogen bond, and the bonding site reacts to generate an aluminosilicate. Since the aluminosilicate is soft, the aluminosilicate is mechanically removed when the polishing pad and the sapphire substrate are rotated relative to each other.

ここで、極性非プロトン性を有する有機化合物は、サファイア表面の水酸基に直結した、サファイアのアルミニウム原子又はシリカのケイ素原子に作用し、水酸基上の電子密度を高める作用を有すると考えられる。そして、この作用により水素結合が形成され易くなることにより、続くアルミノシリケートの生成反応が速まり、研磨速度が向上すると考えられる。この研磨速度を向上する効果が、摩擦が緩和されて研磨速度が低下する作用を打ち消すように働くことにより、摩擦が緩和されても研磨速度を速く維持できると考えている。   Here, the polar aprotic organic compound is considered to act on the aluminum atom of sapphire or the silicon atom of silica directly bonded to the hydroxyl group on the surface of sapphire to increase the electron density on the hydroxyl group. It is considered that this action facilitates the formation of hydrogen bonds, which accelerates the subsequent aluminosilicate production reaction and improves the polishing rate. It is believed that the effect of improving the polishing rate works so as to counteract the action of reducing the polishing rate by reducing the friction, so that the polishing rate can be maintained fast even if the friction is reduced.

本発明者らは、鋭意研究の結果、前記極性非プロトン性を有する有機化合物の中でも比誘電率が30以上の有機化合物が、摩擦が緩和されても研磨速度を速く維持できる効果に優れることを発見するに至った。この詳細なメカニズムについては、更なる研究を要するところではあるが、比誘電率が30以上であると、上述の、サファイア表面の水酸基に直結した、サファイアのアルミニウム原子又はシリカのケイ素原子に作用し、水酸基上の電子密度を高める作用に優れ、好適にアルミノシリケートの生成反応が速まり、研磨速度が向上するためであると考えている。   As a result of diligent research, the present inventors have found that among the organic compounds having polar aprotic properties, organic compounds having a relative dielectric constant of 30 or more are excellent in the effect of maintaining a high polishing rate even when friction is relaxed. It came to discover. Although this detailed mechanism requires further research, when the relative dielectric constant is 30 or more, it acts on the aluminum atom of sapphire or the silicon atom of silica directly connected to the hydroxyl group on the sapphire surface described above. It is considered that this is because it is excellent in the action of increasing the electron density on the hydroxyl group, preferably the aluminosilicate formation reaction is accelerated, and the polishing rate is improved.

また、摩擦が緩和されても研磨速度を速く維持できるという効果の発現には、サファイア用研磨液に用いられる液状媒体として水を80質量%以上含むことが必須とされる。この詳細なメカニズムについても、明らかにできていないが、研磨剤として使用する極性プロトン性溶媒の中でも水は、比誘電率がエタノールなどの有機溶媒に比べて大きいことが影響しているのはないかと考えている。水の比誘電率は80であり、エタノールの比誘電率は24である。 In addition, in order to achieve the effect that the polishing rate can be maintained fast even if the friction is relaxed, it is essential that water is contained in an amount of 80% by mass or more as a liquid medium used in the sapphire polishing liquid. Although this detailed mechanism has not been clarified, among polar polar protic solvents used as abrasives, water has no influence on the fact that the relative dielectric constant is larger than that of organic solvents such as ethanol. I think. The relative permittivity of water is 80, and the relative permittivity of ethanol is 24.

極性非プロトン性を有する有機化合物の比誘電率は、摩擦が緩和されても研磨速度を速く維持できる効果を好適に発現する観点から、35以上がより好ましく、40以上が更に好ましい。また、極性非プロトン性を有する有機化合物の比誘電率の上限については、現時点では研究が不足しているところではあるが、概ね水の比誘電率に相当する約80以下の領域であることが好ましいことがわかっている。   The relative dielectric constant of the organic compound having a polar aprotic property is more preferably 35 or more, and still more preferably 40 or more, from the viewpoint of suitably expressing the effect of maintaining a high polishing rate even when friction is relaxed. In addition, the upper limit of the relative dielectric constant of an organic compound having polar aprotic properties is currently in a range of about 80 or less, which corresponds to the relative dielectric constant of water, although research is insufficient at present. It turns out to be preferable.

この観点から、比誘電率が40以上の極性非プロトン性を有する有機化合物の中でも、比誘電率がいずれも約47のグリセリンとジメチルスルホキシドは、摩擦が緩和されても研磨速度を速く維持できる効果に優れることがわかり、本発明となるサファイア用研磨液に更に好ましく用いられる。   From this point of view, among organic compounds having polar aproticity with a relative dielectric constant of 40 or more, glycerin and dimethyl sulfoxide, both of which have a relative dielectric constant of about 47, are capable of maintaining a high polishing rate even when friction is relaxed. Therefore, it is more preferably used in the sapphire polishing liquid of the present invention.

研磨液における比誘電率が30以上の極性非プロトン性を有する有機化合物の含有量は、摩擦が緩和されても研磨速度を速く維持できる効果を好適に発現する観点から、0.05〜2.0質量%の範囲が実用的である。0.05質量%未満であると摩擦を緩和し、研磨装置のビビリ振動の発生を抑制する効果を得ることができず、2.0質量%を超えると摩擦を緩和する効果が強すぎて研磨速度が著しく低下し、サファイア用研磨液としての機能が不十分である。   The content of the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more in the polishing liquid is from 0.05 to 2 in terms of suitably expressing the effect of maintaining the polishing rate fast even when the friction is relaxed. A range of 0% by mass is practical. If the amount is less than 0.05% by mass, the friction can be reduced and the effect of suppressing the occurrence of chatter vibration of the polishing apparatus cannot be obtained. If the amount exceeds 2.0% by mass, the effect of reducing the friction is too strong and polishing is performed. The speed is remarkably lowered and the function as a polishing liquid for sapphire is insufficient.

この観点から、研磨液における比誘電率が30以上の極性非プロトン性を有する有機化合物の含有量は、0.10〜1.0質量%あることが好ましく、0.15〜0.50質量%であることがより好ましく、0.17〜0.40質量%であることが更に好ましく、0.18〜0.30質量%であることが特に好ましい。   In this respect, the content of the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more in the polishing liquid is preferably 0.10 to 1.0% by mass, and 0.15 to 0.50% by mass. It is more preferable that it is 0.17-0.40 mass%, and it is especially preferable that it is 0.18-0.30 mass%.

研磨パッドとサファイア基体の間で生じる摩擦熱が低減されることで、研磨液の蒸発量を低減可能なことは容易に理解できることであるが、これと同時に研磨液中の研磨砥粒の凝集が抑えられることについては、単に研磨液の温度上昇による効果だけでは説明できない現象である。   It can be easily understood that the amount of evaporation of the polishing liquid can be reduced by reducing the frictional heat generated between the polishing pad and the sapphire substrate, but at the same time, the aggregation of abrasive grains in the polishing liquid is reduced. The fact that it can be suppressed is a phenomenon that cannot be explained only by the effect of the temperature rise of the polishing liquid.

研磨液中の研磨砥粒の凝集は、砥粒の種類によって、凝集が発生する条件が変わってくる。本発明においては、サファイア基体を好適に研磨可能であるコロイダルシリカを選択して、コロイダルシリカを必須成分として、この凝集を抑制できる条件を研究した結果、比誘電率が30以上の極性非プロトン性を有する有機化合物は、単に摩擦熱を低減できるのみならず、サファイア用研磨液を意図的に加温した条件下においても、コロイダルシリカの凝集を抑制することを発見するに至った。更に、この比誘電率が30以上の極性非プロトン性を有する有機化合物を0.05〜2.0質量%の範囲で含有した研磨液は、pHが8.0〜11.0の範囲で、好適に速い研磨速度が得られることと、研磨中のコロイダルシリカの凝集が抑制可能であることを発見した。また同時に、このpHを8.0〜11.0の範囲に調製するpH調整剤としては、無機酸では研磨中のコロイダルシリカの凝集は大きく、有機酸が好適に研磨中のコロイダルシリカの凝集が抑制可能であることを発見した。   Aggregation of abrasive grains in the polishing liquid varies depending on the type of abrasive grains. In the present invention, as a result of selecting colloidal silica capable of suitably polishing a sapphire substrate and studying conditions for suppressing this aggregation using colloidal silica as an essential component, polar aprotic properties having a relative dielectric constant of 30 or more are studied. It has been found that an organic compound having a sapphire not only can reduce frictional heat but also suppresses aggregation of colloidal silica even under conditions where the polishing liquid for sapphire is intentionally heated. Furthermore, the polishing liquid containing the polar aprotic organic compound having a relative dielectric constant of 30 or more in the range of 0.05 to 2.0% by mass has a pH in the range of 8.0 to 11.0. It has been discovered that a suitably high polishing rate can be obtained and that aggregation of colloidal silica during polishing can be suppressed. At the same time, as the pH adjuster for adjusting the pH to the range of 8.0 to 11.0, the inorganic acid has a large aggregation of colloidal silica during polishing, and the organic acid preferably has an aggregation of colloidal silica during polishing. It was discovered that it can be suppressed.

すなわち本発明は、比誘電率が30以上の極性非プロトン性を有する有機化合物と、コロイダルシリカを含む砥粒と、有機酸と、水を80質量%以上含む液状媒体とを必須成分とし、pHが8.0〜11.0であることの全ての要項を必須の構成とし、さらに、前記比誘電率が30以上の極性非プロトン性を有する有機化合物の含有量を研磨液の全質量基準で0.05〜2.0質量%の範囲に規定してなるものである。このような研磨液を用いることにより、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できる。   That is, the present invention has as essential components a polar aprotic organic compound having a relative dielectric constant of 30 or more, abrasive grains containing colloidal silica, an organic acid, and a liquid medium containing 80% by mass or more of water, pH Are essential components, and the content of the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more is based on the total mass of the polishing liquid. It is defined in the range of 0.05 to 2.0% by mass. By using such a polishing liquid, it is possible to suppress the occurrence of chatter vibration of the polishing apparatus in the CMP process of the sapphire substrate, and to suppress the evaporation of the polishing liquid and agglomeration of abrasive grains and to polish for a long time at a high polishing rate. And the surface of the sapphire substrate can be polished smoothly.

(砥粒)
本発明に用いられる砥粒は、コロイダルシリカを含む。その他、砥粒の構成成分としては、本発明の効果(サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できること)を阻害しない範囲で、従来からよく知られているフュームシリカ、アルミナ、セリアが挙げられる。砥粒としては、平均粒径、形状、構成材料等の異なる1種類単独で又は2種類以上を組み合わせて使用することができる。
(Abrasive grains)
The abrasive used in the present invention contains colloidal silica. As other constituents of the abrasive grains, the effects of the present invention (the generation of chatter vibrations in the polishing apparatus in the CMP process of the sapphire substrate can be suppressed, evaporation of the polishing liquid and aggregation of the abrasive grains can be suppressed, and the polishing speed can be increased. Fume silica, alumina, and ceria that are well known in the art can be used as long as they can be polished for a long time and the surface of the sapphire substrate can be polished smoothly). As an abrasive grain, it can be used individually by 1 type from which an average particle diameter, a shape, a constituent material, etc. differ, or in combination of 2 or more types.

前記コロイダルシリカを含む砥粒は、サファイアを更に優れた研磨速度で平滑に研磨する観点から、平均一次粒径60〜150nmの第1の粒子(コロイダルシリカ等が含まれる大きな粒子。)と、平均一次粒径10〜50nmの第2の粒子(コロイダルシリカ等が含まれる小さな粒子。)とを含有し、第2の粒子の含有量に対する第1の粒子の含有量の比率(第1の粒子の含有量/第2の粒子の含有量)が質量基準で1を超えることが好ましい。すなわち、前記砥粒は、平均一次粒径が60〜150nmである少なくとも一種の大きな粒子と、平均一次粒径が10〜50nmである少なくとも一種の小さな粒子とを含有し、大きな粒子の含有量を小さな粒子の含有量で除した値が1を超過する値であることが好ましい。第1の粒子及び第2の粒子の含有量のそれぞれは、該当する粒子が複数存在する場合には、各粒子の含有量の合計量である。第1の粒子及び第2の粒子の含有量は、第1の粒子及び第2の粒子の配合量で調整することができる。前記砥粒は、前記第1の粒子と前記第2の粒子とを混合して得られ、前記第2の粒子の配合量に対する前記第1の粒子の配合量の比率が質量基準で1を超える態様であることが好ましい。   From the viewpoint of smoothly polishing sapphire at a further excellent polishing rate, the abrasive grains containing the colloidal silica have an average primary particle diameter of 60 to 150 nm (large particles containing colloidal silica and the like) and an average. Second particles having a primary particle size of 10 to 50 nm (small particles containing colloidal silica or the like), and the ratio of the content of the first particles to the content of the second particles (of the first particles It is preferable that (content / content of second particle) exceeds 1 on a mass basis. That is, the abrasive contains at least one kind of large particles having an average primary particle diameter of 60 to 150 nm and at least one kind of small particles having an average primary particle diameter of 10 to 50 nm, and the content of the large particles is increased. It is preferable that the value divided by the content of small particles exceeds 1. Each of the contents of the first particles and the second particles is the total amount of the contents of each particle when there are a plurality of corresponding particles. Content of 1st particle | grains and 2nd particle | grains can be adjusted with the compounding quantity of 1st particle | grains and 2nd particle | grains. The abrasive is obtained by mixing the first particles and the second particles, and the ratio of the blend amount of the first particles to the blend amount of the second particles exceeds 1 on a mass basis. It is preferable that it is an aspect.

平均一次粒径の測定方法としては、特に制限されるものではないが、BET法により測定した比表面積から換算する方法を用いることができる。例えば、JIS Z 8830に準じてBET法により測定した比表面積及びシリカ密度を用い、粒子が真球状であること及び細孔を有しないものであることを仮定して下記式(1)より算出した値を、粒子の平均一次粒径としてもよい。
平均一次粒径(nm)=6000/(比表面積(m/g)×シリカ密度(g/cm)) ・・・式(1)
A method for measuring the average primary particle size is not particularly limited, and a method of converting from the specific surface area measured by the BET method can be used. For example, using the specific surface area and silica density measured by the BET method according to JIS Z 8830, it was calculated from the following formula (1) on the assumption that the particles are spherical and have no pores. The value may be the average primary particle size of the particles.
Average primary particle size (nm) = 6000 / (specific surface area (m 2 / g) × silica density (g / cm 3 )) Formula (1)

大きな第1の粒子と小さな第2の粒子とを上記特定量含有することで研磨速度が向上する理由は定かではないが、本発明者らは以下のように推定している。   The reason why the polishing rate is improved by containing the specific amount of the large first particles and the small second particles is not clear, but the present inventors presume as follows.

上述のとおり、サファイアのCMPは、研磨時にサファイアとコロイダルシリカとが固相反応し、サファイアより比較的脆弱なアルミノシリケートが形成され、これが除去されることにより、研磨が進行すると考えられる。   As described above, in sapphire CMP, sapphire and colloidal silica undergo a solid-phase reaction during polishing to form an aluminosilicate that is relatively more fragile than sapphire.

ここで、大きな第1の粒子のみが存在する場合には、小さな第2の粒子のみが存在する場合と比較して、粒子同士の隙間が大きくなることから、サファイアと粒子の接触面積が小さくなると考えられる。一方で、小さな第2の粒子のみが存在する場合には、大きな第1の粒子のみが存在する場合と比較して、サファイアと粒子の接触面積は大きくなるが、研磨パッドから粒子に伝わる荷重が小さくなると考えられる。   Here, when only the large first particles are present, the gap between the particles is larger than when only the small second particles are present, so that the contact area between the sapphire and the particles is small. Conceivable. On the other hand, when only small second particles are present, the contact area between the sapphire and the particles is larger than when only large first particles are present, but the load transmitted from the polishing pad to the particles is large. It will be smaller.

これらに対し、研磨液が大きな第1の粒子と小さな第2の粒子とを上記特定量含有する場合には、大きな粒子間の隙間に小さな粒子が入り込むことでサファイアと粒子の接触面積が大きくなると共に、大きな粒子が隣接した小さな粒子に荷重を伝えることにより、小さな粒子であってもサファイアに対する荷重が大きくなるため、研磨速度が向上すると考えられる。   On the other hand, when the polishing liquid contains a large amount of the first particles and the small second particles, the contact area between the sapphire and the particles increases because the small particles enter the gaps between the large particles. At the same time, when the large particles transmit the load to the adjacent small particles, the load on the sapphire increases even for the small particles, which is considered to improve the polishing rate.

第2の粒子の含有量に対する第1の粒子の含有量の前記比率は、サファイアの研磨速度が更に向上する観点から、1.01〜2.00であることが好ましく、1.03〜1.50であることがより好ましく、1.04〜1.20であることが更に好ましい。すなわち、第2の粒子の配合量に対する第1の粒子の配合量の前記比率は、1.01〜2.00であることが好ましく、1.03〜1.50であることがより好ましく、1.04〜1.20であることが更に好ましい。   The ratio of the content of the first particles to the content of the second particles is preferably 1.01 to 2.00 from the viewpoint of further improving the polishing rate of sapphire, and 1.03 to 1. More preferably, it is 50, and it is still more preferable that it is 1.04-1.20. That is, the ratio of the blending amount of the first particles to the blending amount of the second particles is preferably 1.01 to 2.00, more preferably 1.03 to 1.50. More preferably, it is 0.04 to 1.20.

第1の粒子の平均一次粒径は、65〜140nmであることが好ましく、70〜130nmであることがより好ましく、75〜120nmであることが更に好ましい。   The average primary particle size of the first particles is preferably 65 to 140 nm, more preferably 70 to 130 nm, and even more preferably 75 to 120 nm.

第2の粒子の平均一次粒径は、10〜40nmであることが好ましく、10〜30nmであることがより好ましく、10〜25nmであることが更に好ましい。   The average primary particle size of the second particles is preferably 10 to 40 nm, more preferably 10 to 30 nm, and still more preferably 10 to 25 nm.

研磨液におけるコロイダルシリカを含む砥粒の含有量は、サファイアの研磨速度が更に向上する観点と研磨中に砥粒が凝集しにくくなる観点から、研磨液の全質量基準で、8〜40質量%が好ましく、10〜30質量%がより好ましく、12〜20質量%が更に好ましい。コロイダルシリカを含む砥粒の含有量は、研磨液のコストに直接影響する因子であるため、砥粒の含有量が少ないほどコストを低減することができる。   The content of the abrasive grains containing colloidal silica in the polishing liquid is 8 to 40% by mass based on the total mass of the polishing liquid from the viewpoint of further improving the polishing rate of sapphire and making the abrasive grains less likely to aggregate during polishing. Is preferable, 10-30 mass% is more preferable, and 12-20 mass% is still more preferable. Since the content of abrasive grains containing colloidal silica is a factor that directly affects the cost of the polishing liquid, the lower the abrasive content, the lower the cost.

(副添加剤)
本実施形態に係る研磨液は、必要に応じて、本発明の効果(サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できること)を阻害しない範囲で、界面活性剤、清浄剤、防錆剤、表面改質剤、粘度調製剤、抗菌剤、分散剤等の副添加剤を含有してもよい。
(Sub-additive)
The polishing liquid according to the present embodiment, if necessary, is effective to suppress the effects of the present invention (the generation of chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate, and the evaporation of the polishing liquid and the aggregation of the abrasive grains are fast. Surfactant, detergent, rust inhibitor, surface modifier, viscosity modifier, antibacterial agent as long as it can be polished at a polishing rate for a long time and the surface of the sapphire substrate can be polished smoothly) , And may contain a secondary additive such as a dispersant.

(pH)
本実施形態に係る研磨液のpHは、研磨中のコロイダルシリカの凝集が抑制される観点から、8.0〜11.0とされる。またこの観点から、8.2〜10.5が好ましく、8.4〜10.2がより好ましく、8.6〜10.0が更に好ましく、8.8〜9.8が特に好ましい。pHは、液温25℃におけるpHと定義する。
(PH)
The pH of the polishing liquid according to this embodiment is set to 8.0 to 11.0 from the viewpoint of suppressing aggregation of colloidal silica during polishing. Moreover, from this viewpoint, 8.2-10.5 are preferable, 8.4-10.2 are more preferable, 8.6-10.0 are still more preferable, 8.8-9.8 are especially preferable. The pH is defined as the pH at a liquid temperature of 25 ° C.

研磨液のpHは、pHメーター(例えば、株式会社堀場製作所製、型番:pH METE F−50)で測定することができる。pHの測定値としては、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))を用いて、3点校正した後、電極を研磨液に入れて、2分以上経過して安定した後の値を採用する。   The pH of the polishing liquid can be measured with a pH meter (for example, manufactured by HORIBA, Ltd., model number: pH MATE F-50). As pH measurement values, standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), borate pH buffer solution After calibrating three points using the liquid pH: 9.18 (25 ° C.), the electrode is placed in the polishing liquid, and the value after 2 minutes or more has elapsed is adopted.

(pH調整剤)
本実施形態に係る研磨液のpH調整剤は、研磨中のコロイダルシリカの凝集が抑制される観点から、有機酸が用いられる。有機酸としては、リンゴ酸、マロン酸、酢酸、シュウ酸、ピコリン酸等が挙げられ、1種類単独で又は2種類以上を組み合わせて使用することができる。これらの中でもリンゴ酸とマロン酸は、研磨中のコロイダルシリカの凝集が抑制される観点から好ましく用いられる。一方で、硫酸、塩酸、硝酸、リン酸等の無機酸では研磨中のコロイダルシリカの凝集は大きく、本実施形態に係る研磨液のpH調整剤として好ましくない。
(PH adjuster)
As the pH adjuster of the polishing liquid according to this embodiment, an organic acid is used from the viewpoint of suppressing aggregation of colloidal silica during polishing. Examples of the organic acid include malic acid, malonic acid, acetic acid, oxalic acid, picolinic acid and the like, and these can be used alone or in combination of two or more. Among these, malic acid and malonic acid are preferably used from the viewpoint of suppressing aggregation of colloidal silica during polishing. On the other hand, in the case of inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, the aggregation of colloidal silica during polishing is large, which is not preferable as a pH adjuster for the polishing liquid according to this embodiment.

アルカリ性に調製するpH調整剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム、TMAH(水酸化テトラメチルアンモニウム)、イミダゾール等のアルカリ成分などが挙げられる。これらのpH調整剤によって研磨液のpHを調整することができる。また、pHを安定化させるため、研磨液は緩衝液を含有してもよい。このような緩衝液としては、例えば、酢酸塩緩衝液、フタル酸塩緩衝液等が挙げられる。   Examples of the pH adjuster prepared to be alkaline include alkali components such as ammonia, sodium hydroxide, potassium hydroxide, TMAH (tetramethylammonium hydroxide), and imidazole. The pH of the polishing liquid can be adjusted with these pH adjusters. In order to stabilize the pH, the polishing liquid may contain a buffer solution. Examples of such a buffer include acetate buffer and phthalate buffer.

これらのアルカリ成分やは緩衝液は、研磨中のコロイダルシリカの凝集を助長してしまうものも多いため、その添加量は、本発明の効果(サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できること)を阻害しない範囲で、使用することが必要とされる。   Since many of these alkali components and buffer solutions promote the aggregation of colloidal silica during polishing, the amount of addition thereof is the effect of the present invention (the occurrence of chatter vibration of the polishing apparatus in the CMP process of the sapphire substrate). Can be used as long as the evaporation of the polishing liquid and the aggregation of the abrasive grains are suppressed, the polishing can be performed for a long time at a high polishing rate, and the surface of the sapphire substrate can be polished smoothly). Needed.

(液状媒体)
本実施形態に係る研磨液は、水を80質量%以上含む液状媒体を含有する。液状媒体は、砥粒の分散媒として作用する。水としては、より具体的には、脱イオン水、イオン交換水、超純水等が好ましい。液状媒体としては、例えば、水、及び、水と水溶性の有機溶媒との混合溶媒が挙げられる。水溶性の有機溶媒としては、例えば、アルコール類が挙げられる。アルコール類としては、例えば、エチルアルコール及びエチレングリコールが挙げられる。
(Liquid medium)
The polishing liquid according to this embodiment contains a liquid medium containing 80% by mass or more of water. The liquid medium acts as a dispersion medium for abrasive grains. More specifically, water is preferably deionized water, ion exchange water, ultrapure water, or the like. Examples of the liquid medium include water and a mixed solvent of water and a water-soluble organic solvent. Examples of the water-soluble organic solvent include alcohols. Examples of alcohols include ethyl alcohol and ethylene glycol.

液状媒体が混合溶媒である場合、摩擦が緩和されても研磨速度を速く維持できる観点から、水以外の液状媒体の含有量は、液状媒体の総質量に対して、20質量%未満が必須要件とされる。またこの観点から、水以外の液状媒体の含有量は、液状媒体の総質量に対して、10質量%未満が好ましく、5質量%未満がより好ましく、2質量%未満が更に好ましく、全て水であることが特に好ましい。   When the liquid medium is a mixed solvent, the content of the liquid medium other than water is essential to be less than 20% by mass with respect to the total mass of the liquid medium from the viewpoint that the polishing rate can be maintained fast even if friction is eased. It is said. From this viewpoint, the content of the liquid medium other than water is preferably less than 10% by mass, more preferably less than 5% by mass, still more preferably less than 2% by mass with respect to the total mass of the liquid medium. It is particularly preferred.

<貯蔵液>
本実施形態に係る研磨液は、使用時に水を80質量%以上含む液状媒体で希釈されて使用される貯蔵液として保管することができる。すなわち、本実施形態に係る貯蔵液は、上述の研磨液を調製するときに使用する貯蔵液であって、水を80質量%以上含む液状媒体の含有量が前記研磨液よりも少なく、前記液状媒体を除く各成分は前記研磨液と同じ配合比率で含まれるものである。本実施形態において、貯蔵液と研磨液との違いは液状媒体の含有量だけであり、前記液状媒体を除く各成分の配合比率については同一である。この貯蔵液を用いて、水を80質量%以上含む液状媒体で希釈する(例えば、質量基準で2倍以上に希釈する)ことにより研磨液が得られる。研磨液を貯蔵液として保管することにより、貯蔵・運搬・保管等に係るコストを抑制できる。貯蔵液は、研磨の直前に水を80質量%以上含む液状媒体で希釈して研磨液としてもよいし、研磨定盤上に貯蔵液と水を80質量%以上含む液状媒体とを供給し、研磨定盤上で研磨液を調製するようにしてもよい。
<Storage solution>
The polishing liquid according to this embodiment can be stored as a storage liquid that is diluted with a liquid medium containing 80% by mass or more of water during use. That is, the storage liquid according to this embodiment is a storage liquid used when preparing the above-described polishing liquid, and the content of the liquid medium containing 80% by mass or more of water is less than that of the polishing liquid, and the liquid state Each component excluding the medium is included in the same blending ratio as the polishing liquid. In the present embodiment, the difference between the storage liquid and the polishing liquid is only the content of the liquid medium, and the blending ratio of each component excluding the liquid medium is the same. Using this stock solution, a polishing liquid is obtained by diluting with a liquid medium containing 80% by mass or more of water (for example, diluting twice or more on a mass basis). By storing the polishing liquid as a stock solution, costs associated with storage, transportation, storage, etc. can be suppressed. The storage liquid may be diluted with a liquid medium containing 80% by mass or more of water immediately before polishing to form a polishing liquid, or a storage medium and a liquid medium containing 80% by mass or more of water are supplied on a polishing platen, A polishing liquid may be prepared on a polishing surface plate.

貯蔵液の希釈倍率が高いほど少量の貯蔵液で多量の研磨液を調製できるため、貯蔵液の貯蔵・運搬・保管等に係るコストの抑制を図ることができる。そのため、貯蔵液の希釈倍率の下限は、質量基準で、2倍以上が好ましく、3倍以上がより好ましい。また、貯蔵液の希釈倍率の上限は特に制限されないが、質量基準で、10倍以下が好ましく、7倍以下がより好ましく、5倍以下が更に好ましい。希釈倍率がこれらの上限値以下である場合、貯蔵液に含まれる砥粒の含有量が高くなり過ぎることを抑制し、保管中の貯蔵液の安定性を維持し易い傾向がある。なお、希釈倍率をdとするとき、貯蔵液中の砥粒及び比誘電率が30以上の極性非プロトン性有機化合物を有する化合物の各含有量は、研磨液中の砥粒及び比誘電率が30以上の極性非プロトン性有機化合物を有する化合物の各含有量のd倍である。   As the dilution ratio of the storage liquid is higher, a larger amount of the polishing liquid can be prepared with a smaller amount of the storage liquid. Therefore, it is possible to reduce costs related to storage, transportation, storage, and the like of the storage liquid. Therefore, the lower limit of the dilution ratio of the stock solution is preferably 2 times or more and more preferably 3 times or more on a mass basis. The upper limit of the dilution ratio of the stock solution is not particularly limited, but is preferably 10 times or less, more preferably 7 times or less, and still more preferably 5 times or less on a mass basis. When the dilution ratio is less than or equal to these upper limit values, the content of abrasive grains contained in the stock solution is prevented from becoming too high, and the stability of the stock solution during storage tends to be easily maintained. When the dilution ratio is d, each content of the abrasive grains in the storage liquid and the compound having a polar aprotic organic compound having a relative dielectric constant of 30 or more is determined by the abrasive grains and the relative dielectric constant in the polishing liquid. It is d times of each content of the compound which has 30 or more polar aprotic organic compounds.

<研磨方法>
本実施形態に係る研磨方法(サファイアの研磨方法)は、上述した研磨液を用いて、サファイアを含む被研磨面を研磨する研磨工程を備える。研磨工程は、上述した貯蔵液を水を80質量%以上含む液状媒体で希釈することにより得られる研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える工程であってもよい。
<Polishing method>
The polishing method (sapphire polishing method) according to the present embodiment includes a polishing step of polishing a surface to be polished containing sapphire using the above-described polishing liquid. The polishing step may be a step including a step of polishing a surface to be polished containing sapphire using a polishing liquid obtained by diluting the above-described storage liquid with a liquid medium containing 80% by mass or more of water.

本実施形態に係る研磨方法では、公知の研磨装置を広く用いることができる。例えば、サファイアを含む被研磨面を有する基体(サファイア基体)を研磨する場合、使用できる研磨装置としては、ヘッドにサファイア基体を保持するためのホルダーと、回転数が変更可能なモータ等と接続され且つ研磨パッドを貼り付けた定盤と、を有する一般的な研磨装置を使用できる。   In the polishing method according to this embodiment, a known polishing apparatus can be widely used. For example, when polishing a substrate having a surface to be polished (sapphire substrate) containing sapphire, a polishing apparatus that can be used is connected to a holder for holding the sapphire substrate on the head, a motor whose rotation speed can be changed, and the like. A general polishing apparatus having a surface plate with a polishing pad attached thereto can be used.

研磨パッドとしては、特に限定されないが、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が挙げられる。基体の研磨条件に制限はないが、基体の飛び出しを防止し易くするため、定盤の回転数は200min−1以下であることが好ましい。また、研磨後の基体表面における傷の発生を抑制し易くするため、研磨圧力は700gf/cm以下であることが好ましい。 Although it does not specifically limit as a polishing pad, A general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. are mentioned. The polishing conditions for the substrate are not limited, but the rotation speed of the surface plate is preferably 200 min −1 or less in order to easily prevent the substrate from popping out. Further, the polishing pressure is preferably 700 gf / cm 2 or less in order to easily suppress the generation of scratches on the substrate surface after polishing.

本実施形態に係る研磨方法では、例えば、定盤に貼り付けられた研磨パッドに、サファイア基体を押圧した状態で、研磨液を被研磨面と研磨パッドとの間にポンプ等により供給しながら、基体と定盤とを相対的に動かす。これらの操作により、サファイアを含む被研磨面を研磨する。研磨液を研磨装置に供給する方法は、研磨の間、研磨液を研磨パッドに連続的に供給できる方法であれば、特に限定されない。研磨液の供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。貯蔵液と水等の液状媒体とを被研磨面と研磨パッドとの間に供給し、研磨定盤上で貯蔵液を希釈(例えば、質量基準で2倍以上に希釈)しながら研磨を行ってもよい。また、供給した研磨液を回収して再度研磨パッドに供給し、循環して使用してもよい。   In the polishing method according to the present embodiment, for example, while supplying the polishing liquid between the surface to be polished and the polishing pad with a pump or the like in a state where the sapphire substrate is pressed against the polishing pad attached to the surface plate, Move the base and the surface plate relatively. By these operations, the surface to be polished containing sapphire is polished. The method for supplying the polishing liquid to the polishing apparatus is not particularly limited as long as the polishing liquid can be continuously supplied to the polishing pad during polishing. The supply amount of the polishing liquid is not limited, but it is preferable that the surface of the polishing pad is always covered with the polishing liquid. Supply the storage liquid and a liquid medium such as water between the surface to be polished and the polishing pad, and perform polishing while diluting the storage liquid on the polishing surface plate (for example, diluting it twice or more on a mass basis). Also good. Further, the supplied polishing liquid may be collected and supplied to the polishing pad again, and used after circulation.

研磨終了後の基体は、水、エタノール、イソプロピルアルコール、その他洗浄剤等で洗浄後、スピンドライヤ等を用いて、基体上に付着した水滴を払い落としてから乾燥させることが好ましい。   The substrate after polishing is preferably washed with water, ethanol, isopropyl alcohol, other cleaning agents, etc., and then dried after removing water droplets adhering to the substrate using a spin dryer or the like.

以下、実施例により本発明を更に詳しく説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited to these Examples, unless it deviates from the technical idea of this invention.

<砥粒>
<砥粒の平均粒径>
実施例及び比較例に使用するコロイダルシリカを含む砥粒のうち、コロイダルシリカを含む平均一次粒径60〜150nmの大きな第1の粒子としてカタロイドSI−80P(「カタロイド」は登録商標、以下同じ。日揮触媒化成株式会社製、平均一次粒径80nm、コロイダルシリカ砥粒(真球状)の含有量40質量%)を使用し、コロイダルシリカを含む平均一次粒径10〜50nmの小さな第2の粒子としてカタロイドSI−40(「カタロイド」は登録商標、以下同じ。日揮触媒化成株式会社製、平均一次粒径18nm、コロイダルシリカ砥粒(真球状)の含有量40質量%)を使用した。
<Abrasive>
<Average particle size of abrasive grains>
Among the abrasive grains containing colloidal silica used in Examples and Comparative Examples, cataloid SI-80P (“Cataloid” is a registered trademark, the same applies hereinafter) as large first particles having an average primary particle diameter of 60 to 150 nm containing colloidal silica. As a small second particle having an average primary particle size of 10 to 50 nm containing colloidal silica using JGC Catalysts & Chemicals Co., Ltd., an average primary particle size of 80 nm and a colloidal silica abrasive particle content of 40% by mass. Cataloid SI-40 (“Cataloid” is a registered trademark, the same applies hereinafter. JGC Catalysts & Chemicals, Inc., average primary particle size 18 nm, colloidal silica abrasive (true spherical) content 40% by mass) was used.

<実施例1>
(貯蔵液1)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、グリセリン(比誘電率47、極性非プロトン性を有する有機化合物(以下同じ))0.2質量部と、リンゴ酸 0.02質量部と、脱イオン水3.78質量部とを溶解混合し貯蔵液1を作製した。
<Example 1>
(Storage solution 1)
Cataloid SI-80P 49 parts by mass, cataloid SI-40 47 parts by mass, glycerin (relative dielectric constant 47, organic compound having polar aproticity (hereinafter the same)) 0.2 parts by mass, malic acid 0.02 A stock solution 1 was prepared by dissolving and mixing parts by mass and 3.78 parts by mass of deionized water.

(研磨液1)
1質量部の貯蔵液1と2質量部の脱イオン水とを混合することにより貯蔵液1を3倍に希釈して研磨液1を調製した。研磨液1におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、グリセリンの含有量は0.067質量%であり、リンゴ酸の含有量は0.0067質量%であった。なお、「含有量」とは研磨液の全質量基準の含有量である(以下同じ)。
(Polishing liquid 1)
By mixing 1 part by mass of the stock solution 1 and 2 parts by mass of deionized water, the stock solution 1 was diluted 3 times to prepare a polishing liquid 1. The pH in the polishing liquid 1 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The glycerin content was 0.067% by mass and the malic acid content was 0.0067% by mass. The “content” is the content based on the total mass of the polishing liquid (the same applies hereinafter).

<実施例2>
(貯蔵液2)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、グリセリン 0.8質量部と、リンゴ酸 0.02質量部と、脱イオン水3.18質量部とを溶解混合し貯蔵液2を作製した。
<Example 2>
(Stock solution 2)
49 parts by mass of Cataloid SI-80P, 47 parts by mass of Catalloid SI-40, 0.8 parts by mass of glycerin, 0.02 parts by mass of malic acid, and 3.18 parts by mass of deionized water were dissolved and mixed. 2 was produced.

(研磨液2)
1質量部の貯蔵液2と2質量部の脱イオン水とを混合することにより貯蔵液2を3倍に希釈して研磨液2を調製した。研磨液2におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、グリセリンの含有量は0.267質量%であり、リンゴ酸の含有量は0.0067質量%であった。
(Polishing liquid 2)
By mixing 1 part by mass of the storage liquid 2 and 2 parts by mass of deionized water, the storage liquid 2 was diluted 3 times to prepare a polishing liquid 2. The pH in the polishing liquid 2 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The glycerin content was 0.267% by mass and the malic acid content was 0.0067% by mass.

<実施例3>
(貯蔵液3)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、グリセリン 2.0質量部と、リンゴ酸 0.02質量部と、脱イオン水1.98質量部とを溶解混合し貯蔵液3を作製した。
<Example 3>
(Stock solution 3)
49 parts by mass of Cataloid SI-80P, 47 parts by mass of Catalloid SI-40, 2.0 parts by mass of glycerin, 0.02 parts by mass of malic acid, and 1.98 parts by mass of deionized water were dissolved and mixed. 3 was produced.

(研磨液3)
1質量部の貯蔵液3と2質量部の脱イオン水とを混合することにより貯蔵液3を3倍に希釈して研磨液3を調製した。研磨液3におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、グリセリンの含有量は0.667質量%であり、リンゴ酸の含有量は0.0067質量%であった。
(Polishing liquid 3)
By mixing 1 part by mass of the storage liquid 3 and 2 parts by mass of deionized water, the storage liquid 3 was diluted 3 times to prepare a polishing liquid 3. The pH in the polishing liquid 3 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The glycerin content was 0.667% by mass and the malic acid content was 0.0067% by mass.

<実施例4>
(貯蔵液4)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、ジメチルスルホキシド(比誘電率47、極性非プロトン性を有する有機化合物(以下同じ))0.8質量部と、リンゴ酸 0.03質量部と、脱イオン水3.17質量部とを溶解混合し貯蔵液4を作製した。
<Example 4>
(Stock solution 4)
Cataloid SI-80P 49 parts by mass, cataloid SI-40 47 parts by mass, dimethyl sulfoxide (relative permittivity 47, organic compound having polar aproticity (hereinafter the same)) 0.8 parts by mass, malic acid 0. A stock solution 4 was prepared by dissolving and mixing 03 parts by mass and 3.17 parts by mass of deionized water.

(研磨液4)
1質量部の貯蔵液4と2質量部の脱イオン水とを混合することにより貯蔵液4を3倍に希釈して研磨液4を調製した。研磨液4におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、ジメチルスルホキシドの含有量は0.267質量%であり、リンゴ酸の含有量は0.010質量%であった。
(Polishing liquid 4)
By mixing 1 part by mass of the storage liquid 4 and 2 parts by mass of deionized water, the storage liquid 4 was diluted 3 times to prepare a polishing liquid 4. The pH in the polishing liquid 4 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The content of dimethyl sulfoxide was 0.267% by mass, and the content of malic acid was 0.010% by mass.

<比較例1>
(貯蔵液X1)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、リンゴ酸0.02質量部と、脱イオン水3.98質量部とを溶解混合し貯蔵液X1を作製した。
<Comparative Example 1>
(Storage solution X1)
49 parts by mass of catalloid SI-80P, 47 parts by mass of cataloid SI-40, 0.02 parts by mass of malic acid, and 3.98 parts by mass of deionized water were dissolved and mixed to prepare a stock solution X1.

(研磨液X1)
1質量部の貯蔵液X1と2質量部の脱イオン水とを混合することにより貯蔵液X1を3倍に希釈して研磨液X1を調製した。研磨液X1におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、リンゴ酸の含有量は0.0067質量%であった。
(Polishing liquid X1)
By mixing 1 part by mass of the storage liquid X1 and 2 parts by mass of deionized water, the storage liquid X1 was diluted 3 times to prepare a polishing liquid X1. The pH in the polishing liquid X1 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The content of malic acid was 0.0067% by mass.

<比較例2>
(貯蔵液X2)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、テトラヒドロフラン(比誘電率8、極性非プロトン性を有する有機化合物(以下同じ)) 0.8質量部と、リンゴ酸 0.01質量部と、脱イオン水3.19質量部とを溶解混合し貯蔵液X2を作製した。
<Comparative example 2>
(Storage solution X2)
Cataloid SI-80P 49 parts by mass, cataloid SI-40 47 parts by mass, tetrahydrofuran (an organic compound having a relative dielectric constant of 8, polar aproticity (hereinafter the same)) 0.8 part by mass, and malic acid 0.01 A stock solution X2 was prepared by dissolving and mixing parts by mass and 3.19 parts by mass of deionized water.

(研磨液X2)
1質量部の貯蔵液X2と2質量部の脱イオン水とを混合することにより貯蔵液X2を3倍に希釈して研磨液X2を調製した。研磨液X2におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、テトラヒドロフランの含有量は0.267質量%であり、リンゴ酸の含有量は0.0033質量%であった。
(Polishing liquid X2)
By mixing 1 part by mass of the storage liquid X2 and 2 parts by mass of deionized water, the storage liquid X2 was diluted 3 times to prepare a polishing liquid X2. The pH in the polishing liquid X2 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The tetrahydrofuran content was 0.267% by mass, and the malic acid content was 0.0033% by mass.

<比較例3>
(貯蔵液X3)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、ギ酸(比誘電率58、極性プロトン性を有する有機化合物(以下同じ))0.4質量部と、脱イオン水3.60質量部とを溶解混合し貯蔵液X3を作製した。
<Comparative Example 3>
(Storage solution X3)
Cataloid SI-80P 49 parts by mass, cataloid SI-40 47 parts by mass, formic acid (relative dielectric constant 58, organic compound having polar proticity (hereinafter the same)) 0.4 parts by mass, deionized water 3.60 A mass part was dissolved and mixed to prepare a stock solution X3.

(研磨液X3)
1質量部の貯蔵液X3と2質量部の脱イオン水とを混合することにより貯蔵液X3を3倍に希釈して研磨液X3を調製した。研磨液X3におけるpHは8.8であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、ギ酸の含有量は0.133質量%であった。
(Polishing liquid X3)
By mixing 1 part by mass of the storage liquid X3 and 2 parts by mass of deionized water, the storage liquid X3 was diluted 3 times to prepare a polishing liquid X3. The pH in the polishing liquid X3 is 8.8, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The formic acid content was 0.133% by mass.

<比較例4>
(貯蔵液X4)
カタロイドSI−80P 49質量部と、カタロイドSI−40 47質量部と、メタノール(比誘電率33、極性プロトン性有機化合物(以下同じ)) 0.8質量部と、リンゴ酸 0.02質量部と、脱イオン水3.18質量部とを溶解混合し貯蔵液X4を作製した。
<Comparative Example 4>
(Storage solution X4)
Cataloid SI-80P 49 parts by mass, cataloid SI-40 47 parts by mass, methanol (relative dielectric constant 33, polar protic organic compound (hereinafter the same)) 0.8 parts by mass, malic acid 0.02 parts by mass Then, 3.18 parts by mass of deionized water was dissolved and mixed to prepare a stock solution X4.

(研磨液X4)
1質量部の貯蔵液X4と2質量部の脱イオン水とを混合することにより貯蔵液X4を3倍に希釈して研磨液X4を調製した。研磨液X4におけるpHは9.2であり、コロイダルシリカの含有量は12.8質量%であり、小さい第2の粒子の配合量に対する大きい第1の粒子の配合量の比率は、1.04であり、メタノールの含有量は0.267質量%であり、リンゴ酸の含有量は0.0067質量%であった。
(Polishing liquid X4)
By mixing 1 part by mass of the storage liquid X4 and 2 parts by mass of deionized water, the storage liquid X4 was diluted 3 times to prepare a polishing liquid X4. The pH in the polishing liquid X4 is 9.2, the content of colloidal silica is 12.8% by mass, and the ratio of the amount of large first particles to the amount of small second particles is 1.04. The methanol content was 0.267% by mass, and the malic acid content was 0.0067% by mass.

<研磨液のpH測定>
実施例及び比較例の研磨液の25℃におけるpHを、株式会社堀場製作所製のpHメーター「pH METE F−50」を用いて測定した。具体的には、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、ホウ酸塩pH緩衝液 pH:9.18(25℃))で3点校正した後、電極を研磨液に入れ、2分以上経過して安定した後の値を測定した。評価結果を下記の表1に示す。
<Measurement of pH of polishing liquid>
The pH at 25 ° C. of the polishing liquids of Examples and Comparative Examples was measured using a pH meter “pH MATE F-50” manufactured by Horiba, Ltd. Specifically, standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C), neutral phosphate pH buffer solution pH: 6.86 (25 ° C), borate pH buffer solution pH : 9.18 (25 ° C.)), three points were calibrated, and then the electrode was put into the polishing liquid, and the value after 2 minutes or more had been stabilized was measured. The evaluation results are shown in Table 1 below.

<CMP評価に用いるサファイア基体>
CMP評価では、面方位A面のサファイア基体として、直径101.6mm(4インチ)、厚さ0.65mmのサファイアウエハを研磨条件1に、直径50.8mm(2インチ)、厚さ0.50mmのサファイアウエハを研磨条件2と研磨条件3に使用した。研磨前の平均表面粗さ(Ra)はいずれのサファイアウエハも0.2nmであった。平均表面粗さ(Ra)は、走査型プローブ顕微鏡(セイコーインスツルメンツ株式会社製「SPI3800N/SPA500」を用い、測定領域1ミクロンで測定した。
<Sapphire substrate used for CMP evaluation>
In the CMP evaluation, a sapphire wafer having a diameter of 101.6 mm (4 inches) and a thickness of 0.65 mm is used as the sapphire substrate having a surface orientation A plane, the polishing condition is 1, the diameter is 50.8 mm (2 inches), and the thickness is 0.50 mm. The sapphire wafer was used for polishing conditions 2 and 3. The average surface roughness (Ra) before polishing was 0.2 nm for all sapphire wafers. The average surface roughness (Ra) was measured using a scanning probe microscope (“SPI3800N / SPA500” manufactured by Seiko Instruments Inc.) in a measurement region of 1 micron.

<CMPによるサファイア研磨評価>
上記で得た研磨液1〜4、X1〜X4を、定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件1、研磨条件2および研磨条件3でCMP処理を行った。研磨条件1では、ビビリ振動の有無、摩擦係数の最大値、研磨速度〔10分〕及び平平均表面粗さ〔Ra〕の評価を、研磨条件2では、砥粒の凝集量、研磨液の蒸発量の評価を、研磨条件3では、研磨速度〔360分〕の評価を行った。評価結果を下記の表1に示す。
<Sapphire polishing evaluation by CMP>
While the polishing liquids 1 to 4 and X1 to X4 obtained above were dropped onto a pad attached to a surface plate, CMP treatment was performed under the following polishing conditions 1, 2 and 3. In polishing condition 1, the presence or absence of chatter vibration, the maximum value of the friction coefficient, the polishing rate [10 minutes] and the average average surface roughness [Ra] are evaluated. In polishing condition 2, the amount of abrasive grains aggregated and the evaporation of the polishing liquid are evaluated. With respect to the evaluation of the amount, in the polishing condition 3, the polishing rate [360 minutes] was evaluated. The evaluation results are shown in Table 1 below.

(研磨条件1)
研磨装置:不二越機械工業株式会社製、RDP−500
研磨パッド:ニッタ・ハース株式会社製、SUBA800 Pad20″DPJ;XA04
研磨圧力:500gf/cm
研磨液の流量:500ml/min(研磨液1000gを循環させた。)
研磨時間:10分
サファイア基体:1枚
研磨定盤の回転速度(回転数):70min−1
研磨液加温:なし(室温約25℃)
(Polishing condition 1)
Polishing apparatus: RDP-500, manufactured by Fujikoshi Machinery Co., Ltd.
Polishing pad: Nitta Haas Co., Ltd., SUBA800 Pad20 ″ DPJ; XA04
Polishing pressure: 500 gf / cm 2
Flow rate of polishing liquid: 500 ml / min (1000 g of polishing liquid was circulated)
Polishing time: 10 minutes Sapphire substrate: 1 sheet Rotating speed (rotation speed) of polishing surface plate: 70 min −1
Polishing fluid heating: None (room temperature approx. 25 ° C)

(研磨条件2,研磨条件3)
研磨装置:株式会社ナノファクター製、FACT−200
研磨パッド:ニッタ・ハース株式会社製、SUBA800 Pad20″DPJ;XA04
研磨圧力:300gf/cm
研磨液の流量:100ml/min(研磨液500gを循環させた。)
研磨時間:120分(研磨条件2)、360分(研磨条件3)
サファイア基体:1枚
研磨定盤の回転速度:184min−1
研磨液加温:ウォーターバス40℃
(Polishing condition 2, polishing condition 3)
Polishing device: FACT-200, manufactured by Nano Factor Co., Ltd.
Polishing pad: Nitta Haas Co., Ltd., SUBA800 Pad20 ″ DPJ; XA04
Polishing pressure: 300 gf / cm 2
Flow rate of polishing liquid: 100 ml / min (500 g of polishing liquid was circulated)
Polishing time: 120 minutes (polishing condition 2), 360 minutes (polishing condition 3)
Sapphire substrate: 1 sheet Polishing surface plate rotation speed: 184 min −1
Polishing liquid heating: 40 ° C water bath

(ビビリ振動の有無)
ビビリ振動の有無は、上記に示した研磨条件1でCMP処理中の研磨装置のビビリ振動の発生の有無を耳で聞いて判定した。結果を下記の表1に示す。
(With or without chatter vibration)
The presence / absence of chatter vibration was determined by listening to the presence / absence of chatter vibration of the polishing apparatus during the CMP process under the polishing condition 1 described above. The results are shown in Table 1 below.

(摩擦係数の最大値)
上述のようにビビリ振動は、研磨液で満たされた研磨パッドとサファイア基体との間に発生する摩擦が大きくなることで発生すると考えられる。CMP処理中の摩擦係数を評価することで、研磨液が持っているビビリ振動の起こり易さの指標とすることとした。研磨装置RDP-500にはCMP処理中の被研磨体にかかるX軸方向の力とZ軸方向の力を測定できるように,X軸用ロードセルとZ軸用ロードセルが装備されている。摩擦係数は、このX軸方向の力をZ軸方向の力で除した値であり、RDP-500で自動的に計算/記録される。摩擦係数の最大値は、上記に示した研磨条件1でCMP処理中に記録された摩擦係数の最大の値とした。結果を下記の表1に示す。摩擦係数の最大値は0.70未満を良好であるとした。
(Maximum friction coefficient)
As described above, chatter vibration is considered to occur due to increased friction generated between the polishing pad filled with the polishing liquid and the sapphire substrate. By evaluating the coefficient of friction during the CMP process, it was determined as an index of the ease of chatter vibrations that the polishing liquid has. The polishing apparatus RDP-500 is equipped with an X-axis load cell and a Z-axis load cell so that the X-axis direction force and the Z-axis direction force applied to the object to be polished can be measured. The friction coefficient is a value obtained by dividing the force in the X-axis direction by the force in the Z-axis direction, and is automatically calculated / recorded by the RDP-500. The maximum value of the friction coefficient was set to the maximum value of the friction coefficient recorded during the CMP process under the polishing condition 1 described above. The results are shown in Table 1 below. The maximum value of the friction coefficient was considered to be good when it was less than 0.70.

(研磨速度)
研磨速度は、CMP処理前後のサファイア基体の質量を測定することで、研磨されたサファイアの質量を求め、そこから基体の被研磨面の面積とサファイアの密度3.97g/cmとを用いて膜厚に換算し、減少した膜厚と研磨時間(研磨条件1は10分、研磨条件3は360分)との関係から算出した。結果を、それぞれ研磨速度〔10分〕及び研磨速度〔360分〕で表し、下記の表1に示す。条件1の研磨速度〔10分〕は1.7μm/h以上を良好であるとし、研磨条件3の研磨速度〔360分〕は1.0μm/h以上を良好であるとした。
(Polishing speed)
The polishing rate is determined by measuring the mass of the polished sapphire substrate before and after the CMP treatment, and using the surface area of the substrate to be polished and the sapphire density of 3.97 g / cm 3. The film thickness was calculated from the relationship between the reduced film thickness and the polishing time (10 minutes for polishing condition 1 and 360 minutes for polishing condition 3). The results are represented by a polishing rate [10 minutes] and a polishing rate [360 minutes], respectively, and are shown in Table 1 below. The polishing rate of condition 1 [10 minutes] was assumed to be 1.7 μm / h or higher, and the polishing rate of polishing condition 3 [360 minutes] was determined to be 1.0 μm / h or higher.

(平均表面粗さ〔Ra〕)
上記<CMP評価に用いるサファイア基体>に記載した方法と同様の方法で、CMP処理後のサファイア基体における研磨した面の平均表面粗さ(Ra)を測定した。結果を下記の表1に示す。平均表面粗さ〔Ra〕は0.3nm未満を良好であるとした。
(Average surface roughness [Ra])
The average surface roughness (Ra) of the polished surface of the sapphire substrate after the CMP treatment was measured by the same method as described in <Sapphire substrate used for CMP evaluation>. The results are shown in Table 1 below. An average surface roughness [Ra] of less than 0.3 nm was considered good.

(砥粒の凝集量)
砥粒の凝集量は、上記に示した研磨条件2でCMP処理後に、研磨液が流れた経路の全て、すなわち研磨装置および研磨液の配管、サービスタンクに発生した砥粒の凝集物を、あらかじめ質量を測定しておいた三菱レーヨン株式会社製、人絹羽二重(約50μmメッシュ)で濾し取り、乾燥後、濾し取った砥粒の凝集物ごと人絹羽二重の質量を測定し、濾し取る前後の質量の差から、砥粒の凝集量を求めた。結果を下記の表1に示す。砥粒の凝集量は0.8g未満を良好であるとした。
(Agglomeration amount of abrasive grains)
The amount of agglomeration of the abrasive grains is determined by preliminarily measuring all the paths through which the polishing liquid flows, that is, the polishing apparatus and the piping of the polishing liquid, and the abrasive agglomerates generated in the service tank after the CMP treatment under the polishing condition 2 described above. Made by Mitsubishi Rayon Co., Ltd., which had been measured for mass, filtered with human silk feather double (approx. 50 μm mesh), dried and then measured for the mass of human silk feather double together with the aggregate of the filtered abrasive grains. The agglomeration amount of the abrasive grains was determined from the difference in mass before and after filtration. The results are shown in Table 1 below. The amount of abrasive grains aggregated was less than 0.8 g.

(研磨液の蒸発量)
砥粒の凝集量は、上記に示した研磨条件2でCMP処理後に、研磨液が流れた経路の全て、すなわち研磨装置および研磨液の配管、サービスタンクに残存した研磨液を回収して、その質量を測定し、はじめに投入した研磨液の500gとの差から、蒸発した研磨液の質量を求めた。研磨液の蒸発量は、蒸発した研磨液の質量をはじめに投入した研磨液の500gで除した値を質量%で表した。結果を下記の表1に示す。研磨液の蒸発量は40質量%未満を良好であるとした。
(Evaporation amount of polishing liquid)
The amount of abrasive agglomeration is determined by collecting the polishing liquid remaining in the polishing apparatus, the polishing liquid piping, and the service tank after the CMP treatment under the polishing condition 2 shown above, that is, the polishing apparatus, the polishing liquid piping, and the service tank. The mass was measured, and the mass of the evaporated polishing liquid was determined from the difference from 500 g of the polishing liquid charged first. The amount of evaporation of the polishing liquid was expressed by mass% obtained by dividing the mass of the evaporated polishing liquid by 500 g of the polishing liquid first charged. The results are shown in Table 1 below. The amount of evaporation of the polishing liquid was considered to be less than 40% by mass.

Figure 2017197670
Figure 2017197670

表1の結果から、実施例1〜4の研磨液は、サファイア基体のCMP工程における研磨装置のビビリ振動の発生を抑制できると共に、研磨液の蒸発および砥粒の凝集を抑え、速い研磨速度で長時間研磨することができ、且つ、サファイア基体表面を平滑に研磨できることがわかる。表1にはグリセリン及びジメチルスルホキドをそれぞれ単独で使用する実施例1〜4を示しているが、実施例2及び実施例4はほぼ同じような評価結果となっていることから、本発明においては両者の有機化合物を同時に含む場合でも同じ効果が得られることが容易に推察できる。   From the results in Table 1, the polishing liquids of Examples 1 to 4 can suppress chatter vibrations of the polishing apparatus in the CMP process of the sapphire substrate, suppress evaporation of the polishing liquid and aggregation of abrasive grains, and at a high polishing rate. It can be seen that polishing can be performed for a long time and the surface of the sapphire substrate can be polished smoothly. Table 1 shows Examples 1 to 4 in which glycerin and dimethyl sulfoxide are used singly, but Example 2 and Example 4 have almost the same evaluation results. It can be easily assumed that the same effect can be obtained even when both organic compounds are contained simultaneously.

それに対して、比較例1〜4の研磨液は、いずれも摩擦係数の最大値が0.07を超えており、若干のビビリ振動の発生があった。また、研磨速度の評価結果において、研磨条件1の10分の研磨速度は特に添加剤を配合していない比較例1と、ギ酸を配合した比較例3では良好であったものの、研磨条件3の360分の研磨では研磨速度の低下が大きく良好な結果が得られなかった。この傾向はギ酸を配合した比較例3で顕著であったが、ギ酸を配合した比較例3は、研磨条件2の評価結果に示されるように砥粒の凝集量および研磨液の蒸発量が多かったことが一因であると考えられる。   On the other hand, the polishing liquids of Comparative Examples 1 to 4 all had a maximum friction coefficient exceeding 0.07, and some chatter vibrations were generated. Further, in the evaluation results of the polishing rate, the polishing rate of 10 minutes under the polishing condition 1 was particularly good in Comparative Example 1 in which no additive was blended and in Comparative Example 3 in which formic acid was blended. In the polishing for 360 minutes, the decrease in the polishing rate was large, and good results were not obtained. This tendency was conspicuous in Comparative Example 3 in which formic acid was blended. In Comparative Example 3 in which formic acid was blended, as shown in the evaluation results of polishing condition 2, the amount of abrasive grains aggregated and the amount of evaporation of the polishing liquid were large. This is thought to be part of the reason.

本発明に係るサファイア用研磨液(CMP用研磨液)、貯蔵液、及び、これらを用いた研磨方法は、サファイアを含む被研磨面のCMPに好適であり、LED基体、スマートフォン等の電子機器表示部カバーに用いられるサファイア基体(サファイアを含む被研磨面を有する基体)のCMPに好適であることから、その有用性が極めて高い。   A sapphire polishing liquid (CMP polishing liquid), a storage liquid, and a polishing method using these are suitable for CMP of a surface to be polished containing sapphire, and display an electronic device such as an LED base or a smartphone. Since it is suitable for CMP of a sapphire substrate (substrate having a polished surface containing sapphire) used for a part cover, its usefulness is extremely high.

Claims (8)

比誘電率が30以上の極性非プロトン性を有する有機化合物と、コロイダルシリカを含む砥粒と、有機酸と、水を80質量%以上含む液状媒体と、を含有し、pHが8.0〜11.0であるサファイア用研磨液。   It contains a polar aprotic organic compound having a relative dielectric constant of 30 or more, abrasive grains containing colloidal silica, an organic acid, and a liquid medium containing 80% by mass or more of water, and has a pH of 8.0 to 8.0. A polishing liquid for sapphire which is 11.0. 前記比誘電率が30以上の極性非プロトン性を有する有機化合物が、前記研磨液の全質量基準で0.05〜1.0質量%の範囲である請求項1に記載のサファイア用研磨液。   2. The polishing liquid for sapphire according to claim 1, wherein the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more is in a range of 0.05 to 1.0 mass% based on the total mass of the polishing liquid. 前記比誘電率が30以上の極性非プロトン性を有する有機化合物が、グリセリン及びジメチルスルホキシドの少なくともどちらかである請求項1又は2に記載の研磨液。   The polishing liquid according to claim 1 or 2, wherein the organic compound having a polar aprotic property having a relative dielectric constant of 30 or more is at least one of glycerin and dimethyl sulfoxide. 前記コロイダルシリカを含む砥粒が、平均一次粒径60〜150nmの第1の粒子と、平均一次粒径10〜50nmの第2の粒子と、を混合して得られ、前記第2の粒子の配合量に対する前記第1の粒子の配合量の比率が質量基準で1を超える、請求項1〜3のいずれか一項に記載の研磨液。   The abrasive grains containing the colloidal silica are obtained by mixing first particles having an average primary particle size of 60 to 150 nm and second particles having an average primary particle size of 10 to 50 nm. The polishing liquid according to any one of claims 1 to 3, wherein a ratio of a blending amount of the first particles to a blending amount exceeds 1 on a mass basis. 前記コロイダルシリカを含む砥粒の含有量が研磨液の全質量基準で6〜50質量%である、請求項1〜4のいずれか一項に記載の研磨液。   The polishing liquid according to any one of claims 1 to 4, wherein the content of abrasive grains containing the colloidal silica is 6 to 50 mass% based on the total mass of the polishing liquid. 請求項1〜5のいずれか一項に記載の研磨液を調製するときに使用する貯蔵液であって、水を80質量%以上含む液状媒体の含有量が前記研磨液よりも少なく、前記液状媒体を除く各成分は前記研磨液と同じ配合比率で含まれる貯蔵液。   A storage liquid used when preparing the polishing liquid according to any one of claims 1 to 5, wherein the liquid medium containing water in an amount of 80% by mass or more is less than the polishing liquid, and the liquid Each component except for the medium is a storage solution containing the same blending ratio as the polishing solution. 請求項1〜5のいずれか一項に記載の研磨液を用いて、サファイアを含む被研磨面を研磨する工程を備える研磨方法。   A grinding | polishing method provided with the process of grind | polishing the to-be-polished surface containing sapphire using the polishing liquid as described in any one of Claims 1-5. 請求項6に記載の貯蔵液を、水を80質量%以上含む液状媒体で希釈することにより前記研磨液を調製する工程と、前記研磨液を用いて、サファイアを含む被研磨面を研磨する工程と、を備える研磨方法。   A step of preparing the polishing liquid by diluting the stock solution according to claim 6 with a liquid medium containing 80% by mass or more of water, and a step of polishing a surface to be polished containing sapphire using the polishing liquid. A polishing method comprising:
JP2016090282A 2016-04-28 2016-04-28 Polishing liquid for sapphire, stock solution, and polishing method Pending JP2017197670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090282A JP2017197670A (en) 2016-04-28 2016-04-28 Polishing liquid for sapphire, stock solution, and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090282A JP2017197670A (en) 2016-04-28 2016-04-28 Polishing liquid for sapphire, stock solution, and polishing method

Publications (1)

Publication Number Publication Date
JP2017197670A true JP2017197670A (en) 2017-11-02

Family

ID=60237414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090282A Pending JP2017197670A (en) 2016-04-28 2016-04-28 Polishing liquid for sapphire, stock solution, and polishing method

Country Status (1)

Country Link
JP (1) JP2017197670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109746771A (en) * 2019-02-14 2019-05-14 南京航空航天大学 A kind of CsPbX3The polishing method of inorganic perovskite crystalline material
JP2020041007A (en) * 2018-09-06 2020-03-19 日東電工株式会社 Adhesive sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337084A (en) * 2011-07-25 2012-02-01 郑州磨料磨具磨削研究所 Grinding fluid for processing LED (light-emitting diode) substrate and preparation method thereof
WO2013069623A1 (en) * 2011-11-08 2013-05-16 株式会社 フジミインコーポレーテッド Polishing composition
JP2014216369A (en) * 2013-04-23 2014-11-17 旭硝子株式会社 Abrasive and polishing method
CN104592898A (en) * 2015-01-04 2015-05-06 江苏中晶科技有限公司 High-performance sapphire grinding fluid and preparation method thereof
JP2016135840A (en) * 2015-01-14 2016-07-28 三洋化成工業株式会社 Lapping liquid for rigid material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337084A (en) * 2011-07-25 2012-02-01 郑州磨料磨具磨削研究所 Grinding fluid for processing LED (light-emitting diode) substrate and preparation method thereof
WO2013069623A1 (en) * 2011-11-08 2013-05-16 株式会社 フジミインコーポレーテッド Polishing composition
JP2014216369A (en) * 2013-04-23 2014-11-17 旭硝子株式会社 Abrasive and polishing method
CN104592898A (en) * 2015-01-04 2015-05-06 江苏中晶科技有限公司 High-performance sapphire grinding fluid and preparation method thereof
JP2016135840A (en) * 2015-01-14 2016-07-28 三洋化成工業株式会社 Lapping liquid for rigid material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041007A (en) * 2018-09-06 2020-03-19 日東電工株式会社 Adhesive sheet
JP7224818B2 (en) 2018-09-06 2023-02-20 日東電工株式会社 Adhesive sheet
CN109746771A (en) * 2019-02-14 2019-05-14 南京航空航天大学 A kind of CsPbX3The polishing method of inorganic perovskite crystalline material
CN109746771B (en) * 2019-02-14 2020-11-20 南京航空航天大学 CsPbX3Polishing method of inorganic perovskite crystal material

Similar Documents

Publication Publication Date Title
JP4614981B2 (en) Chemical mechanical polishing aqueous dispersion and semiconductor device chemical mechanical polishing method
JP5413456B2 (en) Polishing liquid for semiconductor substrate and method for polishing semiconductor substrate
KR101389151B1 (en) Polishing solution for cmp and polishing method using the polishing solution
JP5430924B2 (en) Semiconductor wafer polishing composition
KR20130114635A (en) Polishing agent and polishing method
KR20200021519A (en) Polishing liquid, polishing liquid set and polishing method
JP2016056292A (en) Polishing composition and production process therefor, polishing method, and substrate and production process therefor
WO2014129328A1 (en) Polishing composition
JP2016094510A (en) Polishing composition and method for producing substrate using the same
WO2016031485A1 (en) Polishing composition and method for producing polishing composition
JP2017197670A (en) Polishing liquid for sapphire, stock solution, and polishing method
JP6051679B2 (en) Polishing composition and compound semiconductor substrate manufacturing method
JP4346712B2 (en) Wafer edge polishing method
WO2017169154A1 (en) Set of compositions for polishing, pre-polishing composition, and method of polishing silicon wafer
JP6561680B2 (en) Polishing liquid for sapphire, storage liquid, and polishing method
JP2013038211A (en) Polishing liquid for cmp and polishing method using the same
JP2016011379A (en) Polishing liquid, storage liquid for polishing liquid and polishing method
JP6524799B2 (en) Polishing solution for sapphire, storage solution and polishing method
JP6536176B2 (en) Polishing solution for sapphire, storage solution and polishing method
JP6901297B2 (en) Polishing composition
JP2010024119A (en) Method for producing confetti-like silica sol
JP2017039883A (en) Polishing liquid for sapphire, storage liquid and polishing method
JP6582600B2 (en) Polishing liquid, storage liquid and polishing method
JP6582601B2 (en) Polishing liquid, storage liquid and polishing method
JP2017222739A (en) Sapphire polishing liquid, storage liquid and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201001