JP6529833B2 - Non pneumatic tire - Google Patents

Non pneumatic tire Download PDF

Info

Publication number
JP6529833B2
JP6529833B2 JP2015121338A JP2015121338A JP6529833B2 JP 6529833 B2 JP6529833 B2 JP 6529833B2 JP 2015121338 A JP2015121338 A JP 2015121338A JP 2015121338 A JP2015121338 A JP 2015121338A JP 6529833 B2 JP6529833 B2 JP 6529833B2
Authority
JP
Japan
Prior art keywords
tire
annular portion
pneumatic tire
hole
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015121338A
Other languages
Japanese (ja)
Other versions
JP2017007363A (en
Inventor
健史 宮本
健史 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2015121338A priority Critical patent/JP6529833B2/en
Publication of JP2017007363A publication Critical patent/JP2017007363A/en
Application granted granted Critical
Publication of JP6529833B2 publication Critical patent/JP6529833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤに関するものである。   The present invention relates to a non-pneumatic tire comprising a support structure supporting a load from a vehicle as a tire structural member, preferably a non-pneumatic tire that can be used as a substitute for a pneumatic tire. It relates to the tire.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   Pneumatic tires have the ability to support loads, absorb shock from the ground, and transmit power such as power (acceleration, stop, change of direction), which makes them suitable for many vehicles, especially bicycles, motorcycles, automobiles, It is adopted in the track.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities have greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorption capacity of the pneumatic tire is also useful in carts for transporting medical devices and electronic devices, and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires and the like, but they do not have the excellent performance of pneumatic tires. For example, while solid tires and cushion tires support load by compression of the ground contact portion, such tires are heavy, stiff and do not have the shock absorbing capability as pneumatic tires do. In addition, in the non-pneumatic tire, although it is possible to enhance the elasticity to improve the cushioning property, there is a problem that the load supporting ability or the durability which the pneumatic tire has is deteriorated.

そこで、本発明者は、耐久性を向上させつつ、接地圧分散を小さくできる非空気圧タイヤとして、下記特許文献1及び2に記載の非空気圧タイヤを提案してきた。特許文献1及び2の非空気圧タイヤは、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備え、前記複数の連結部は、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される長尺板状の第1連結部と、前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される長尺板状の第2連結部とがタイヤ周方向に沿って交互に配列されて構成されている。   Therefore, the present inventor has proposed the non-pneumatic tires described in the following Patent Documents 1 and 2 as non-pneumatic tires capable of reducing the contact pressure dispersion while improving the durability. The non-pneumatic tires of Patent Documents 1 and 2 connect an inner annular portion, an outer annular portion concentrically provided on the outer side of the inner annular portion, the inner annular portion and the outer annular portion, And a plurality of connecting portions provided independently in the direction, and the plurality of connecting portions extend from one tire width direction side of the inner annular portion toward the other tire width direction side of the outer annular portion And an elongated plate-shaped second extending from the other side in the tire width direction of the inner annular portion toward the one tire width direction side of the outer annular portion. The connecting portions are alternately arranged along the tire circumferential direction.

しかしながら、特許文献1及び2の非空気圧タイヤは、走行時に連結部が撓むことで温度と歪が大きくなり故障に至るおそれがあることが分かり、さらなる耐久性の向上が望まれる。   However, it is known that the non-pneumatic tires of Patent Documents 1 and 2 have a possibility that the temperature and strain become large due to bending of the connecting part during traveling, leading to failure, and further improvement of durability is desired.

特開2015−39986号公報JP, 2015-39986, A 特開2014−100933号公報JP, 2014-100933, A

そこで、本発明の目的は、耐久性を向上させた非空気圧タイヤを提供することにある。   Then, the objective of this invention is providing the non-pneumatic tire which improved durability.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備え、
前記複数の連結部は、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される長尺板状の第1連結部と、前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される長尺板状の第2連結部とがタイヤ周方向に沿って交互に配列されて構成されており、
前記第1連結部又は第2連結部には、タイヤ周方向に貫通する貫通孔が形成されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire according to the present invention is a non-pneumatic tire comprising a support structure for supporting a load from a vehicle,
The support structure connects the inner annular portion, the outer annular portion concentrically provided on the outer side of the inner annular portion, the inner annular portion and the outer annular portion, and is independent in the circumferential direction of the tire. And a plurality of connection parts provided
The plurality of connecting portions are long plate-shaped first connecting portions that extend from one tire width direction side of the inner annular portion toward the other tire width direction side of the outer annular portion, and the inner annular portion And an elongated plate-shaped second connecting portion extending from the other side in the tire width direction toward the one side in the tire width direction of the outer annular portion is alternately arranged along the tire circumferential direction. Yes,
The first connecting portion or the second connecting portion is characterized in that a through hole penetrating in the circumferential direction of the tire is formed.

この構成による本発明の作用効果を説明する。タイヤ転動時、内側環状部と外側環状部の間の空間には、相対的に略タイヤ周方向に沿って流れる空気流が発生する。第1連結部又は第2連結部にタイヤ周方向に貫通する貫通孔を形成することで、貫通孔内を流れる空気流によって第1連結部又は第2連結部を内部から冷却することができる。これにより、第1連結部及び第2連結部の温度を低減でき、非空気圧タイヤの耐久性を向上できる。   The operation and effect of the present invention according to this configuration will be described. At the time of tire rolling, an air flow relatively flowing along the tire circumferential direction is generated in the space between the inner annular portion and the outer annular portion. By forming the through holes penetrating in the tire circumferential direction in the first connection portion or the second connection portion, the air flow flowing in the through holes can cool the first connection portion or the second connection portion from the inside. Thereby, the temperatures of the first connecting portion and the second connecting portion can be reduced, and the durability of the non-pneumatic tire can be improved.

本発明に係る非空気圧タイヤにおいて、前記貫通孔の内周面には、前記貫通孔の周方向に延びる突出部が形成されていることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that a protrusion extending in the circumferential direction of the through hole is formed on the inner peripheral surface of the through hole.

貫通孔の内周面に突出部を形成することで、貫通孔内を流れる空気流が突出部によって乱流となって内周面を流れ、貫通孔の内周面との熱交換を促進させるため、第1連結部又は第2連結部を効果的に冷却することができる。   By forming the projecting portion on the inner peripheral surface of the through hole, the air flow flowing in the through hole is turbulently flowed by the projecting portion and flows on the inner peripheral surface to promote heat exchange with the inner peripheral surface of the through hole. Therefore, the first connection portion or the second connection portion can be effectively cooled.

本発明に係る非空気圧タイヤにおいて、前記突出部は、前記貫通孔の軸方向に間隔を空けて複数形成されていることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that a plurality of the projecting portions are formed at intervals in the axial direction of the through hole.

この構成によれば、貫通孔内を流れる空気流が突出部に複数回衝突して乱流となるため、第1連結部又は第2連結部の冷却効果を高めることができる。   According to this configuration, since the air flow flowing in the through hole collides with the protrusion a plurality of times and becomes turbulent, the cooling effect of the first connection portion or the second connection portion can be enhanced.

本発明に係る非空気圧タイヤにおいて、前記突出部は、前記貫通孔の周方向に間隔を空けて複数形成されていることが好ましい。   In the non-pneumatic tire according to the present invention, it is preferable that a plurality of the protruding portions are formed at intervals in the circumferential direction of the through hole.

この構成によれば、貫通孔内を流れる空気流が突出部に複数箇所で衝突して乱流となるため、第1連結部又は第2連結部の冷却効果を高めることができる。さらに、隣り合う突出部の間に隙間を設けることで、空気流の流速が向上するため、第1連結部及び第2連結部の冷却効果を高めることができる。   According to this configuration, since the air flow flowing in the through hole collides with the projecting portion at a plurality of locations and forms a turbulent flow, the cooling effect of the first connection portion or the second connection portion can be enhanced. Furthermore, by providing a gap between the adjacent protrusions, the flow velocity of the air flow is improved, so that the cooling effect of the first connection portion and the second connection portion can be enhanced.

本発明の非空気圧タイヤの一例を示す正面図Front view showing an example of the non-pneumatic tire of the present invention 図1の非空気圧タイヤのA−A断面図AA cross section of the non-pneumatic tire of FIG. 1 図1の非空気圧タイヤの一部を示す斜視図A perspective view showing a part of the non-pneumatic tire of FIG. 1 図1の非空気圧タイヤの部分拡大図A partial enlarged view of the non-pneumatic tire of FIG. 1 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridional section view of a non-pneumatic tire according to another embodiment 他の実施形態に係る非空気圧タイヤのタイヤ子午線断面図Tire meridional section view of a non-pneumatic tire according to another embodiment 第1連結部を延設方向に対する直交方向で切断した断面図Sectional drawing which cut | disconnected the 1st connection part in the orthogonal direction with respect to the extending direction 他の実施形態に係る貫通孔を軸方向から見た図A view of a through hole according to another embodiment viewed from the axial direction 他の実施形態に係る非空気圧タイヤの一部を示す斜視図The perspective view which shows a part of non-pneumatic tire which concerns on other embodiment 他の実施形態に係る非空気圧タイヤの第1連結部の断面図Cross-sectional view of a first connecting portion of a non-pneumatic tire according to another embodiment

以下、本発明の実施の形態について、図面を参照しながら説明する。初めに、本発明の非空気圧タイヤTの構成を説明する。図1は、非空気圧タイヤTの一例を示す正面図である。図2Aは、図1のA−A断面図であり、図2Bは、非空気圧タイヤTの一部を示す斜視図である。図3は、図1の一部を拡大して示す図である。ここで、Oは軸芯を、Hはタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the non-pneumatic tire T of the present invention will be described. FIG. 1 is a front view showing an example of the non-pneumatic tire T. As shown in FIG. 2A is a cross-sectional view taken along the line A-A of FIG. 1, and FIG. 2B is a perspective view showing a part of the non-pneumatic tire T. As shown in FIG. FIG. 3 is a diagram showing a part of FIG. 1 in an enlarged manner. Here, O indicates the axis and H indicates the tire cross sectional height.

非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSを備えるものである。本発明の非空気圧タイヤTは、このような支持構造体SSを備えるものであればよく、その支持構造体SSの外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T includes a support structure SS that supports the load from the vehicle. The non-pneumatic tire T of the present invention only needs to have such a support structure SS, and a member corresponding to the tread on the outer side (outer peripheral side) or the inner side (inner peripheral side) of the support structure SS. It may have a reinforcing layer, an axle or a fitting member with a rim, and the like.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた外側環状部2と、内側環状部1と外側環状部2とを連結し、タイヤ周方向CDに各々独立して設けられた複数の連結部3とを備えている。   In the non-pneumatic tire T of this embodiment, as shown in the front view of FIG. 1, the support structure SS includes an inner annular portion 1, an outer annular portion 2 concentrically provided on the outer side thereof, and an inner annular portion A plurality of connecting portions 3 are provided, which connect 1 and the outer annular portion 2 and are provided independently in the tire circumferential direction CD.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   From the viewpoint of improving uniformity, the inner annular portion 1 preferably has a cylindrical shape having a constant thickness. Moreover, it is preferable to provide the unevenness | corrugation etc. for maintaining fitting property for the mounting | wearing with an axle and a rim | limb on the inner peripheral surface of the inner side cyclic | annular part 1. FIG.

内側環状部1の厚みは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7% of the tire cross-sectional height H, more preferably 3 to 6%, from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the connecting portion 3 preferable.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定される。ただし、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner diameter of the inner annular portion 1 is appropriately determined in accordance with the dimensions of the rim or axle on which the non-pneumatic tire T is mounted. However, when substitution of a common pneumatic tire is assumed, 250-500 mm is preferable and 330-440 mm is more preferable.

内側環状部1のタイヤ幅方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width of the inner annular portion 1 in the tire width direction is appropriately determined in accordance with the application, the length of the axle, etc. However, assuming replacement of a general pneumatic tire, it is preferably 100 to 300 mm, 130 to 250 mm. More preferable.

内側環状部1の引張モジュラスは、連結部3に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, and more preferably 7 to 50000 MPa from the viewpoint of achieving weight reduction, improvement in durability, and mounting properties while sufficiently transmitting force to the connecting portion 3. The tensile modulus in the present invention is a value calculated from the tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、外側環状部2、及び連結部3は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material, but when manufacturing the support structure SS, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 can be integrally formed. It is preferable to use basically the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜50MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material which is subjected to a tensile test according to JIS K7312 and has a tensile modulus of 100 MPa or less calculated from a tensile stress at 10% elongation. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 50 MPa, from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. As an elastic material used as a base material, thermoplastic elastomer, crosslinked rubber, and other resins may be mentioned.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of thermoplastic elastomers include polyester elastomers, polyolefin elastomers, polyamide elastomers, polystyrene elastomers, polyvinyl chloride elastomers, polyurethane elastomers and the like. In addition to natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR) as a rubber material constituting a crosslinked rubber material Examples thereof include synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluororubber, silicone rubber, acrylic rubber and urethane rubber. These rubber materials may be used in combination of two or more as needed.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Other resins include thermoplastic resins or thermosetting resins. The thermoplastic resin may, for example, be a polyethylene resin, a polystyrene resin, or a polyvinyl chloride resin, and the thermosetting resin may, for example, be an epoxy resin, a phenol resin, a polyurethane resin, a silicone resin, a polyimide resin or a melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたものも使用可能である。   Among the above-mentioned elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / processability and cost. In addition, as an elastic material, you may use a foaming material and can use the thing which made said thermoplastic elastomer, crosslinked rubber, and other resin foam.

弾性材料で一体成形された支持構造体SSは、内側環状部1、外側環状部2、及び連結部3が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the outer annular portion 2, and the connecting portion 3 are preferably reinforced by reinforcing fibers.

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ幅方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics and non-woven fabrics, but in the form using long fibers, fibers arranged in the tire width direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, steel cords, and the like.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属製リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using a reinforcing fiber, it is possible to perform reinforcement with a particulate filler or reinforcement with a metal ring or the like. Examples of the particulate filler include carbon black, ceramics such as silica and alumina, and other inorganic fillers.

外側環状部2の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部2の厚みは、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さHの2〜7%が好ましく、2〜5%がより好ましい。   The shape of the outer annular portion 2 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving the uniformity. The thickness of the outer annular portion 2 is preferably 2 to 7% of the tire cross-sectional height H, and 2 to 5%, from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the connecting portion 3 More preferable.

外側環状部2の内径は、その用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   Although the internal diameter of the outer side annular part 2 is suitably determined according to the use etc., when substitution of a common pneumatic tire is assumed, 420-750 mm is preferable and 480-680 mm is more preferable.

外側環状部2のタイヤ幅方向の幅は、その用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The width in the tire width direction of the outer annular portion 2 is appropriately determined in accordance with the application etc., but when substituting for a general pneumatic tire is assumed, 100 to 300 mm is preferable, and 130 to 250 mm is more preferable.

外側環状部2の引張モジュラスは、図1に示すように外側環状部2の外周に補強層8が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層8を設けない場合には、連結部3からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 2 can be set to the same degree as that of the inner annular portion 1 when the reinforcing layer 8 is provided on the outer periphery of the outer annular portion 2 as shown in FIG. When such a reinforcing layer 8 is not provided, it is preferably 5 to 180000 MPa, and more preferably 7 to 50000 MPa, from the viewpoint of achieving weight reduction and improvement in durability while sufficiently transmitting the force from the connecting portion 3.

外側環状部2の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。外側環状部2を補強繊維により補強することで、外側環状部2とベルト層などとの接着も十分となる。   In order to increase the tensile modulus of the outer annular portion 2, a fiber reinforced material in which an elastic material is reinforced with fibers or the like is preferable. By reinforcing the outer annular portion 2 with reinforcing fibers, adhesion between the outer annular portion 2 and the belt layer or the like is also sufficient.

連結部3は、内側環状部1と外側環状部2とを連結するものであり、両者の間に適当な間隔を空けるなどして、タイヤ周方向CDに各々が独立するように複数設けられる。   The connecting portions 3 connect the inner annular portion 1 and the outer annular portion 2, and a plurality of connecting portions 3 are provided so as to be independent in the tire circumferential direction CD by, for example, leaving an appropriate gap therebetween.

複数の連結部3は、第1連結部31と第2連結部32とがタイヤ周方向CDに沿って配列されて構成されている。この際、第1連結部31と第2連結部32は、タイヤ周方向CDに沿って交互に配列されていることが好ましい。これにより、タイヤ転動時の接地圧分散をより小さくできる。   The plurality of connecting portions 3 are configured by arranging the first connecting portions 31 and the second connecting portions 32 along the tire circumferential direction CD. Under the present circumstances, it is preferable that the 1st connection part 31 and the 2nd connection part 32 are arranged by turns along tire peripheral direction CD. Thereby, the contact pressure distribution at the time of tire rolling can be made smaller.

また、第1連結部31と第2連結部32との間のタイヤ周方向CDのピッチpは、ユニフォミティを向上させる観点から、一定とするのが好ましい。ピッチpは、0〜10mmが好ましく、0〜5mmがより好ましい。ピッチpが10mmよりも大きいと、接地圧が不均一となり、ノイズが増大する要因となり得る。   Moreover, it is preferable to make constant the pitch p of the tire circumferential direction CD between the 1st connection part 31 and the 2nd connection part 32 from a viewpoint of improving uniformity. 0-10 mm is preferable and, as for the pitch p, 0-5 mm is more preferable. If the pitch p is larger than 10 mm, the ground pressure may become non-uniform, which may cause noise to increase.

第1連結部31は、内側環状部1のタイヤ幅方向一方側WD1から外側環状部2のタイヤ幅方向他方側WD2へ向かって延設されている。一方、第2連結部32は、内側環状部1のタイヤ幅方向他方側WD2から外側環状部2のタイヤ幅方向一方側WD1へ向かって延設されている。すなわち、隣り合う第1連結部31と第2連結部32は、タイヤ周方向CDから見ると、略X字状に配置されている。   The first connecting portion 31 is extended from one tire width direction WD1 of the inner annular portion 1 toward the other tire width direction WD2 of the outer annular portion 2. On the other hand, the second connecting portion 32 is extended from the tire width direction other side WD2 of the inner annular portion 1 toward the tire width direction one side WD1 of the outer annular portion 2. That is, the 1st connection part 31 and the 2nd connection part 32 which adjoin are arrange | positioned in substantially X shape, when it sees from tire circumferential direction CD.

タイヤ周方向CDから見た第1連結部31と第2連結部32は、図2Aに示すように、タイヤ赤道面Cに対して対称な形状であることが好ましい。そのため、以下では、主として第1連結部31について説明する。   It is preferable that the 1st connection part 31 and the 2nd connection part 32 which were seen from tire peripheral direction CD are a symmetrical shape with respect to the tire equatorial plane C, as shown to FIG. 2A. Therefore, the first connecting portion 31 will be mainly described below.

第1連結部31は、内側環状部1から外側環状部2へと延びる長尺板状をしている。第1連結部31は、板厚tが板幅wよりも小さく、板厚方向PTがタイヤ周方向CDを向いている。すなわち、第1連結部31は、タイヤ径方向及びタイヤ幅方向に延びる板状である。第1連結部31及び第2連結部32をこのような長尺板状とすることにより、仮に板厚tを薄くしても、板幅wを広く設定することで、第1連結部31及び第2連結部32は所望の剛性を得ることができるため、耐久性を向上できる。また、板厚tを薄くしつつ第1連結部31及び第2連結部32の数を増やすことで、タイヤ全体の剛性を維持しつつ、タイヤ周方向CDに隣り合う連結部同士の隙間を小さくすることができるため、タイヤ転動時の接地圧分散を小さくできる。   The first connecting portion 31 has a long plate shape extending from the inner annular portion 1 to the outer annular portion 2. The plate thickness t of the first connecting portion 31 is smaller than the plate width w, and the plate thickness direction PT faces the tire circumferential direction CD. That is, the first connection portion 31 has a plate shape extending in the tire radial direction and the tire width direction. By setting the first connecting portion 31 and the second connecting portion 32 in such a long plate shape, even if the plate thickness t is made thin temporarily, the first connecting portion 31 and the second connecting portion 31 can be made wide by setting the plate width w wide. Since the second connection portion 32 can obtain a desired rigidity, the durability can be improved. In addition, by increasing the number of the first connecting portions 31 and the second connecting portions 32 while reducing the plate thickness t, the gap between the connecting portions adjacent to each other in the tire circumferential direction CD is reduced while maintaining the rigidity of the entire tire. As a result, the contact pressure distribution at the time of tire rolling can be reduced.

第1連結部31の板厚tは、延設方向PLに沿って一定としてもよいが、図3のように、第1連結部31の板厚tは、内側環状部1から外側環状部2へ向かって漸増していることが好ましい。この場合、第1連結部31のタイヤ径方向外側端31aでの板厚tが板幅wよりも小さくなるように設定される。   Although the plate thickness t of the first connecting portion 31 may be constant along the extending direction PL, as shown in FIG. 3, the plate thickness t of the first connecting portion 31 is from the inner annular portion 1 to the outer annular portion 2. It is preferable that it is gradually increasing. In this case, the plate thickness t at the tire radial direction outer end 31 a of the first connecting portion 31 is set to be smaller than the plate width w.

板厚tは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、8〜30mmが好ましく、10〜20mmがより好ましい。   The plate thickness t is preferably 8 to 30 mm, and more preferably 10 to 20 mm, from the viewpoint of achieving weight reduction and improvement in durability while sufficiently transmitting the forces from the inner annular portion 1 and the outer annular portion 2.

図2Aでは、板幅wは、第1連結部31の中央部において、延設方向PLに沿って一定となっているが、これに限定されない。図4Aや図4Bに示すように、板幅wは、延設方向PLに沿って変化させてもよい。この場合、第1連結部31のタイヤ径方向高さをhとすると、第1連結部31のタイヤ径方向高さ中心31cからタイヤ径方向へ向かってhの±25%を範囲とし、その範囲内で最も狭い部分での板幅wが板厚tよりも大きくなるように設定される。なお、タイヤ径方向内側を+側、タイヤ径方向外側を−側とする。また、第1連結部31の板幅wは、幅方向両側端の間の最短距離で測定される。   In FIG. 2A, the plate width w is constant along the extending direction PL at the central portion of the first connection portion 31, but is not limited thereto. As shown in FIGS. 4A and 4B, the plate width w may be changed along the extending direction PL. In this case, assuming that the tire radial direction height of the first connection portion 31 is h, the range of ± 25% of h from the tire radial direction height center 31c of the first connection portion 31 in the tire radial direction is defined as the range The board width w at the narrowest part of the inside is set to be larger than the board thickness t. In addition, let the tire radial inside be + side, and let the tire radial outside be-side. Moreover, the board width w of the 1st connection part 31 is measured by the shortest distance between the width direction both ends.

板幅wは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜25mmが好ましく、10〜20mmがより好ましい。また、板幅wは、耐久性を向上させつつ接地圧分散を小さくする観点から、板厚tの110%以上が好ましく、115%以上がより好ましい。   The plate width w is preferably 5 to 25 mm, more preferably 10 to 20 mm, from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. The plate width w is preferably 110% or more of the plate thickness t, and more preferably 115% or more, from the viewpoint of reducing the contact pressure dispersion while improving the durability.

第1連結部31は、内側環状部1との結合部付近及び外側環状部2との結合部付近において、内側環状部1又は外側環状部2へ向かって徐々に板幅を大きくした補強部311を有することが好ましい。これにより、第1連結部31の耐久性をさらに向上させることができる。補強部311を設ける範囲は、第1連結部31のタイヤ径方向高さ中心31cからhの±25%の範囲外とするのが好ましい。   The first connecting portion 31 is a reinforcing portion 311 in which the plate width is gradually increased toward the inner annular portion 1 or the outer annular portion 2 near the coupling portion with the inner annular portion 1 and in the vicinity of the coupling portion with the outer annular portion 2. It is preferable to have Thereby, the durability of the first connection portion 31 can be further improved. The range in which the reinforcing portion 311 is provided is preferably outside the range of ± 25% of h from the tire radial direction height center 31 c of the first connecting portion 31.

タイヤ周方向CDから見た第1連結部31は、タイヤ径方向に湾曲する湾曲部が少なくとも1つ形成されていることが好ましく、タイヤ径方向に湾曲する湾曲部が延設方向PLに沿って複数形成されていることがより好ましい。湾曲部が複数形成される場合、タイヤ径方向内側へ凸となる湾曲部とタイヤ径方向外側へ凸となる湾曲部が交互に形成される。湾曲部の数は、1〜15個が好ましく、3〜10個がより好ましい。湾曲部は、第1連結部31のうち応力が高くなるトレッド側に少なくとも1つ形成されることで、第1連結部31の応力を効果的に分散することができる。湾曲部の曲率半径は、5〜200mmが好ましく、20〜150mmがより好ましい。   It is preferable that at least one curved portion curved in the tire radial direction is formed in the first connecting portion 31 viewed from the tire circumferential direction CD, and the curved portion curved in the tire radial direction extends along the extending direction PL It is more preferable that a plurality be formed. When a plurality of curved portions are formed, curved portions that are convex inward in the tire radial direction and curved portions that are convex outward in the radial direction of the tire are alternately formed. 1-15 are preferable and, as for the number of curved parts, 3-10 are more preferable. By forming at least one curved portion on the tread side where the stress in the first connection portion 31 is increased, the stress of the first connection portion 31 can be effectively dispersed. 5-200 mm is preferable and, as for the curvature radius of a curved part, 20-150 mm is more preferable.

連結部3の数としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、80〜300個が好ましく、100〜200個がより好ましい。図1には、第1連結部31を50個、第2連結部32を50個設けた例を示す。   The number of connecting portions 3 is preferably 80 to 300, and more preferably 100 to 200 from the viewpoint of weight reduction, improvement of power transmission, and improvement of durability while sufficiently supporting a load from a vehicle. FIG. 1 shows an example in which 50 first connecting portions 31 and 50 second connecting portions 32 are provided.

連結部3の引張モジュラスは、内側環状部1および外側環状部2からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。連結部3の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   The tensile modulus of the connecting portion 3 is preferably 5 to 180000 MPa from the viewpoint of reducing weight and improving durability and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1 and the outer annular portion 2. -50000MPa is more preferred. In the case of increasing the tensile modulus of the connection portion 3, a fiber reinforced material in which an elastic material is reinforced with a fiber or the like is preferable.

図5は、図2Aに示す第1連結部31を延設方向PLに対する直交方向で切断した断面図(V−V断面図)である。第1連結部31又は第2連結部32には、タイヤ周方向CDに貫通する貫通孔4が形成されている。本実施形態では、3つの貫通孔4が第1連結部31及び第2連結部32にそれぞれ形成されているが、貫通孔4の数は第1連結部31及び第2連結部32のサイズ等によって適宜設定可能である。   FIG. 5 is a cross-sectional view (V-V cross-sectional view) obtained by cutting the first connection portion 31 shown in FIG. 2A in a direction orthogonal to the extending direction PL. In the first connecting portion 31 or the second connecting portion 32, a through hole 4 penetrating in the tire circumferential direction CD is formed. In the present embodiment, the three through holes 4 are respectively formed in the first connecting portion 31 and the second connecting portion 32, but the number of the through holes 4 is the size of the first connecting portion 31, the second connecting portion 32, etc. Can be set as appropriate.

本実施形態における貫通孔4の軸方向は、タイヤ周方向CDに一致している。貫通孔4の軸方向に垂直な面による断面積は、軸方向に一定である。貫通孔4の両方の開口端は何れも円形となっており、すなわち貫通孔4は円孔である。貫通孔4の直径は、例えば板幅wに対して20%である。なお、貫通孔4の開口端は円形に限らず、三角形、四角形等の多角形、楕円形などでもよい。   The axial direction of the through hole 4 in the present embodiment coincides with the tire circumferential direction CD. The cross-sectional area of a plane perpendicular to the axial direction of the through hole 4 is constant in the axial direction. Both open ends of the through hole 4 are circular, that is, the through hole 4 is a circular hole. The diameter of the through hole 4 is, for example, 20% of the plate width w. The open end of the through hole 4 is not limited to a circle, and may be a triangle, a polygon such as a quadrangle, an ellipse, or the like.

貫通孔4の内周面4cには、貫通孔4の周方向に延びる突出部5が形成されている。突出部5は、タイヤ回転方向前方に位置する前壁面5aと、タイヤ回転方向に対して前壁面5aの後方に位置する後壁面5bと、内周面4cから最も突出する上面5cとを有している。本実施形態において、貫通孔4の軸方向に見たとき、前壁面5a及び後壁面5bは略矩形状をしており、突出部5は全体として矩形板状をしている。突出部5の断面形状は、略矩形状をしているが、これに限定されず、台形状、三角形状などでもよい。突出部5の内周面4cからの最大高さは、内周面4cの半径に対して5〜80%が好ましく、10〜50%がより好ましい。   On the inner circumferential surface 4 c of the through hole 4, a protrusion 5 extending in the circumferential direction of the through hole 4 is formed. The protrusion 5 has a front wall 5a located forward in the tire rotation direction, a rear wall 5b located rearward of the front wall 5a with respect to the tire rotation, and an upper surface 5c most projecting from the inner circumferential surface 4c. ing. In the present embodiment, when viewed in the axial direction of the through hole 4, the front wall surface 5a and the rear wall surface 5b have a substantially rectangular shape, and the projecting portion 5 has a rectangular plate shape as a whole. Although the cross-sectional shape of the protrusion part 5 is carrying out substantially rectangular shape, it is not limited to this, A trapezoidal shape, triangle shape, etc. may be sufficient. 5-80% is preferable with respect to the radius of the internal peripheral surface 4c from the internal peripheral surface 4c of the protrusion part 5, 10-50% is more preferable.

突出部5は、貫通孔4の軸方向に間隔を空けて複数形成されていることが好ましい。図5に示す例では、貫通孔4の軸方向に沿って4個の突出部5が並べて形成されている。なお、本実施形態では突出部5を4個設けているが、突出部5は1〜3個でもよく、5個以上でもよい。   It is preferable that a plurality of protrusions 5 be formed at intervals in the axial direction of the through hole 4. In the example shown in FIG. 5, four protrusions 5 are formed side by side along the axial direction of the through hole 4. In addition, although four protrusion parts 5 are provided in this embodiment, one to three protrusion parts 5 may be sufficient, and five or more may be sufficient.

本実施形態では、図1に示すように、支持構造体SSの外側環状部2の外側に、その外側環状部2の曲げ変形を補強する補強層8が設けられている例を示す。また、本実施形態では、図1に示すように、補強層8の更に外側にトレッド9が設けられている例を示す。補強層8、トレッド9としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。なお、トレッド9は、樹脂で形成してもよい。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In the present embodiment, as shown in FIG. 1, an example in which a reinforcing layer 8 for reinforcing the bending deformation of the outer annular portion 2 is provided outside the outer annular portion 2 of the support structure SS is shown. Moreover, in this embodiment, as shown in FIG. 1, the example in which the tread 9 is provided in the further outer side of the reinforcement layer 8 is shown. As the reinforcing layer 8 and the tread 9, it is possible to provide the same as the belt layer of the conventional pneumatic tire. The tread 9 may be made of resin. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

本発明において、連結部3のタイヤ径方向外側端とトレッド9の間には、タイヤ幅方向の剛性を高める幅方向補強層をさらに配置することが好ましい。これにより、外側環状部2のタイヤ幅方向中央部での座屈を抑制して、連結部3の耐久性をさらに向上できる。幅方向補強層は、外側環状部2に埋設されるか、もしくは外側環状部2の外側に配置される。幅方向補強層としては、スチールコードやCFRP、GFRP等の繊維強化プラスチック製のコードをタイヤ幅方向に対して略平行に配列したもの、円筒状の金属製リングや高モジュラス樹脂製リングなどが例示される。   In the present invention, it is preferable to further arrange a width direction reinforcing layer between the tire radial direction outer end of the connecting portion 3 and the tread 9 to enhance the rigidity in the tire width direction. Thereby, the buckling of the outer annular portion 2 at the center in the tire width direction can be suppressed, and the durability of the connecting portion 3 can be further improved. The widthwise reinforcing layer is embedded in the outer annular portion 2 or disposed outside the outer annular portion 2. As the width direction reinforcing layer, a steel cord, a fiber reinforced plastic cord such as CFRP, GFRP, etc. arranged substantially parallel to the tire width direction, a cylindrical metal ring, a high modulus resin ring, etc. are illustrated. Be done.

[他の実施形態]
(1)前述の実施形態では、突出部5を矩形板状としているが、突出部5は図6(a)のような三角板状でもよい。また、突出部5は、貫通孔4の周方向に間隔を空けて複数形成されていることが好ましい。図6(b)は、2つの矩形板状の突出部5を対向するように形成した例を示す。図6(c)は、4つの三角板状の突出部5を貫通孔4の周方向に等間隔に並べて形成した例を示す。
[Other embodiments]
(1) In the above-mentioned embodiment, although the protrusion part 5 is made into the rectangular plate shape, the protrusion part 5 may be a triangular plate shape like Fig.6 (a). Moreover, it is preferable that the protrusion part 5 is formed in multiple numbers at intervals in the circumferential direction of the through hole 4. FIG. 6 (b) shows an example in which two rectangular plate-like protrusions 5 are formed to face each other. FIG. 6C shows an example in which four triangular plate-like protrusions 5 are formed at equal intervals in the circumferential direction of the through hole 4.

(2)本発明において、第1連結部31又は第2連結部32の側面には、図7に示すように、タイヤ周方向CDと交差する方向に突出する少なくとも一つの突条体6が第1連結部31又は第2連結部32の延設方向PLに沿って形成されていてもよい。   (2) In the present invention, as shown in FIG. 7, at least one protrusion 6 protruding in the direction intersecting with the tire circumferential direction CD is provided on the side surface of the first connection portion 31 or the second connection portion 32. You may form along the extending direction PL of 1 connection part 31 or 2nd connection part 32. FIG.

タイヤ転動時、内側環状部1と外側環状部2の間の空間には、相対的に略タイヤ周方向に沿って流れる空気流が発生する。この空気流は、タイヤ周方向CDと交差する方向に突出する突出部6によって乱流となって第1連結部31又は第2連結部32の側面を流れ、第1連結部31又は第2連結部32との熱交換を促進させるため、第1連結部31又は第2連結部32を効果的に冷却することができる。これにより、第1連結部31及び第2連結部32の温度を低減でき、非空気圧タイヤTの耐久性を向上できる。   At the time of tire rolling, an air flow relatively flowing along the tire circumferential direction is generated in the space between the inner annular portion 1 and the outer annular portion 2. The air flow is turbulently flowed through the side surface of the first connection portion 31 or the second connection portion 32 by the projecting portion 6 which protrudes in the direction intersecting the tire circumferential direction CD, and flows through the first connection portion 31 or the second connection In order to promote heat exchange with the part 32, the first connection part 31 or the second connection part 32 can be effectively cooled. Thereby, the temperature of the 1st connection part 31 and the 2nd connection part 32 can be reduced, and the endurance of non-pneumatic tire T can be improved.

突条体6は、第1連結部31の4つの側面のうちタイヤ径方向内側を向いた側面31b、及び第2連結部32の4つの側面のうちタイヤ径方向内側を向いた側面32bにそれぞれ形成されている。側面31b及び側面32bは、タイヤ周方向CDに対して略平行となっている。   The protrusion 6 is respectively provided to a side 31b facing inward in the tire radial direction among four side faces of the first connecting portion 31 and a side 32b facing inside in the tire radial direction among four side faces of the second connecting portion 32. It is formed. The side surface 31 b and the side surface 32 b are substantially parallel to the tire circumferential direction CD.

図8は、第1連結部31を延設方向PLに対する直交方向で切断した断面図である。突条体6は、第1連結部31の側面31bからタイヤ径方向内側へ向かって突出している。突条体6の断面形状は、略矩形状をしている。ただし、突条体6の断面形状は、矩形状に限定されず、台形状、三角形状などでもよい。   FIG. 8 is a cross-sectional view of the first connecting portion 31 cut in a direction perpendicular to the extending direction PL. The protrusion 6 protrudes from the side surface 31 b of the first connection portion 31 inward in the tire radial direction. The cross-sectional shape of the protrusion 6 is substantially rectangular. However, the cross-sectional shape of the protruding member 6 is not limited to the rectangular shape, and may be trapezoidal or triangular.

突条体6は、タイヤ回転方向前方に位置する前壁面6aと、タイヤ回転方向に対して前壁面6aの後方に位置する後壁面6bと、第1連結部31の側面31bから最も突出する上面6cとを有している。   The protrusion 6 has a front wall 6a located forward in the tire rotation direction, a rear wall 6b located rearward of the front wall 6a in the tire rotation direction, and an upper surface most projecting from the side 31b of the first connecting portion 31. And 6c.

突条体6の前壁面6aと第1連結部31の側面31bとのなす角度θ1は、45〜150°が好ましく、90〜135°がより好ましい。本実施形態では、角度θ1を90°としている。突条体6の後壁面6bと第1連結部31の側面31bとのなす角度θ2は、45〜150°が好ましく、90〜135°がより好ましい。本実施形態では、角度θ2を90°としている。突条体6の上面6cは、第1連結部31の側面31bと略平行となっている。   45-150 degrees is preferable, and, as for angle (theta) 1 which the front wall surface 6a of the protrusion 6 and the side surface 31b of the 1st connection part 31 to make, 90-135 degrees are more preferable. In the present embodiment, the angle θ1 is 90 °. 45-150 degrees is preferable and, as for angle (theta) 2 which the rear wall surface 6b of the protrusion 6 and the side surface 31b of the 1st connection part 31 to make, 90-135 degrees are more preferable. In the present embodiment, the angle θ2 is 90 °. The upper surface 6 c of the protrusion 6 is substantially parallel to the side surface 31 b of the first connecting portion 31.

突条体6の側面31b側の幅は、板厚tに対して10〜90%が好ましく、20〜50%がより好ましい。また、突条体6の高さは、板幅wに対して5〜50%が好ましく、10〜30%がより好ましい。   10 to 90% is preferable with respect to the plate thickness t, and, as for the width | variety by the side of the side 31b of the protrusion 6, 6 to 20% is more preferable. Moreover, 5 to 50% is preferable with respect to the board width w, and, as for the height of the protruding body 6, 10 to 30% is more preferable.

突条体6の剛性は、第1連結部31及び第2連結部32の剛性よりも小さいことが好ましい。突条体6は、前述の弾性材料の何れかで成形されるが、前述の弾性材料のうち架橋ゴムやポリウレタン樹脂で成形されるのが好ましく、架橋ゴムで成形されるのが特に好ましい。突条体6の引張モジュラスは、乗り心地が悪化するのを抑制する観点から、0.2〜5MPaが好ましく、0.5〜2MPaがより好ましい。   It is preferable that the rigidity of the protrusion 6 be smaller than the rigidity of the first connection portion 31 and the second connection portion 32. The protrusion 6 is formed of any of the above-mentioned elastic materials, but among the above-mentioned elastic materials, it is preferable to be formed of crosslinked rubber or polyurethane resin, and it is particularly preferable to be formed of crosslinked rubber. From a viewpoint of suppressing that a ride comfort deteriorates, 0.2-5 Mpa is preferable, and, as for the tensile modulus of the protruding body 6, 0.5-2 Mpa is more preferable.

突条体6と第1連結部31及び第2連結部32は、同じ材料で成形されても、或いは異なる材料で成形されてもよい。突条体6を第1連結部31及び第2連結部32と異なる材料で成形する場合、突条体6を第1連結部31及び第2連結部32と一体的に成形してもよく、別々に成形した突条体6と第1連結部31及び第2連結部32とを接着や溶着により一体化してもよい。   The protrusion 6 and the first connecting portion 31 and the second connecting portion 32 may be formed of the same material or may be formed of different materials. When the protrusion 6 is formed of a material different from the first connecting portion 31 and the second connecting portion 32, the protrusion 6 may be formed integrally with the first connecting portion 31 and the second connecting portion 32, The separately formed projecting members 6 may be integrated with the first connecting portion 31 and the second connecting portion 32 by adhesion or welding.

さらに、突条体6には、タイヤ周方向CDに貫通する第2貫通孔7が形成されていてもよい。突条体6にタイヤ周方向CDに貫通する第2貫通孔7を形成することで、第2貫通孔7を通過する空気流の流速が向上するため、第1連結部31又は第2連結部32の冷却効果を高めることができる。本実施形態では、3つの第2貫通孔7が突条体6に形成されているが、第2貫通孔7の数は突条体6のサイズ等によって適宜設定可能である。   Furthermore, the second through holes 7 penetrating in the tire circumferential direction CD may be formed in the protrusion 6. By forming the second through holes 7 penetrating in the tire circumferential direction CD in the protrusion 6, the flow velocity of the air flow passing through the second through holes 7 is improved, so the first connecting portion 31 or the second connecting portion The cooling effect of 32 can be enhanced. In the present embodiment, the three second through holes 7 are formed in the protrusion 6, but the number of the second through holes 7 can be appropriately set according to the size of the protrusion 6 or the like.

本実施形態における第2貫通孔7の軸方向は、タイヤ周方向CDに一致している。第2貫通孔7の軸方向に垂直な面による断面積は、軸方向に一定である。第2貫通孔7の両方の開口端は何れも円形となっており、すなわち第2貫通孔7は円孔である。第2貫通孔7の直径は、例えば突条体6の高さに対して10〜50%である。なお、第2貫通孔7の開口端は円形に限らず、三角形、四角形等の多角形、楕円形などでもよい。   The axial direction of the second through hole 7 in the present embodiment coincides with the tire circumferential direction CD. The cross-sectional area by the surface perpendicular to the axial direction of the second through hole 7 is constant in the axial direction. Both open ends of the second through holes 7 are circular, that is, the second through holes 7 are circular holes. The diameter of the second through hole 7 is, for example, 10 to 50% of the height of the protrusion 6. The open end of the second through hole 7 is not limited to a circular shape, and may be a triangular shape, a polygonal shape such as a rectangular shape, or an elliptical shape.

(3)本発明の非空気圧タイヤは、第1連結部及び第2連結部を板幅方向がタイヤ周方向CDと一致するような長尺板状としてもよい。   (3) In the non-pneumatic tire according to the present invention, the first connecting portion and the second connecting portion may be in the form of a long plate whose plate width direction coincides with the tire circumferential direction CD.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Hereinafter, an example etc. which show the composition and effect of the present invention concretely are described. In addition, the evaluation item in an Example etc. measured as follows.

耐久性
直径1.7mのドラムを備えた室内ドラム試験機を使用し、空気圧を180kPa、試験速度を80km/hとし、タイヤ負荷荷重をJIS規定の85%から始め、規定時間毎に荷重を上げていき最終的に140%で走行させ、そのまま故障するまで走行試験を行った。この耐久試験中の連結部の表面温度を15分毎に測定した。表面温度が低いほど耐久性に有利である。比較例1での温度を100としたときの指数で示し、この値が大きいほど耐久性に優れる。
Durability Using an indoor drum tester equipped with a drum with a diameter of 1.7 m, the air pressure is 180 kPa, the test speed is 80 km / h, the tire load starts from 85% of the JIS standard, and the load is increased every specified time Finally, the car was run at 140%, and a driving test was conducted until it broke down. The surface temperature of the connection part during this endurance test was measured every 15 minutes. The lower the surface temperature, the more advantageous the durability. The index is based on the temperature of Comparative Example 1 as 100. The larger the value, the better the durability.

比較例1
図2Bに示す非空気圧タイヤから貫通孔(突出部を含む)を除いたものを比較例1とした。耐久性の結果を表1に示す。
Comparative Example 1
A non-pneumatic tire shown in FIG. 2B from which the through holes (including the protrusions) are removed is taken as Comparative Example 1. The results of durability are shown in Table 1.

実施例1
図2Bに示す非空気圧タイヤから突出部を除いたものを実施例1とした。耐久性の結果を表1に示す。
Example 1
The non-pneumatic tire shown in FIG. The results of durability are shown in Table 1.

実施例2
図2Bに示す非空気圧タイヤを実施例1とした。耐久性の結果を表1に示す。
Example 2
The non-pneumatic tire shown in FIG. The results of durability are shown in Table 1.

実施例3
図7に示す非空気圧タイヤから第2貫通孔を除いたものを実施例3とした。耐久性の結果を表1に示す。
Example 3
A tire obtained by removing the second through hole from the non-pneumatic tire shown in FIG. The results of durability are shown in Table 1.

実施例4
図7に示す非空気圧タイヤを実施例4とした。耐久性の結果を表1に示す。
Example 4
The non-pneumatic tire shown in FIG. The results of durability are shown in Table 1.

なお、何れの非空気圧タイヤも、タイヤの外径を535mm、タイヤ幅を140mm、リム径を14インチとした。   In each non-pneumatic tire, the outer diameter of the tire was 535 mm, the tire width was 140 mm, and the rim diameter was 14 inches.

Figure 0006529833
Figure 0006529833

表1の結果から以下のことが分かる。実施例1の非空気圧タイヤは、比較例1と比べて、耐久性が向上した。また、実施例2の非空気圧タイヤは、実施例1に比べて、耐久性がさらに向上し、実施例3の非空気圧タイヤは、実施例2に比べて、耐久性がさらに向上し、実施例4の非空気圧タイヤは、実施例3に比べて、耐久性がさらに向上した。   The following can be understood from the results of Table 1. The non-pneumatic tire of Example 1 has improved durability as compared with Comparative Example 1. In addition, the non-pneumatic tire of Example 2 is further improved in durability as compared to Example 1, and the non-pneumatic tire of Example 3 is further improved in durability as compared to Example 2; The non-pneumatic tire of No. 4 had further improved durability as compared with Example 3.

1 内側環状部
2 外側環状部
3 連結部
4 貫通孔
5 突出部
6 突条体
7 第2貫通孔
31 第1連結部
32 第2連結部
SS 支持構造体
T 非空気圧タイヤ
CD タイヤ周方向
WD タイヤ幅方向
WD1 タイヤ幅方向一方側
WD2 タイヤ幅方向他方側

DESCRIPTION OF SYMBOLS 1 inner side annular part 2 outer side annular part 3 connection part 4 through-hole 5 protrusion part 6 protrusion 7 2nd through-hole 31 1st connection part 32 2nd connection part SS support structure T non-pneumatic tire CD tire circumferential direction WD tire Width direction WD1 Tire width direction one side WD2 Tire width direction other side

Claims (3)

車両からの荷重を支持する支持構造体を備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結し、タイヤ周方向に各々独立して設けられた複数の連結部とを備え、
前記複数の連結部は、前記内側環状部のタイヤ幅方向一方側から前記外側環状部のタイヤ幅方向他方側へ向かって延設される長尺板状の第1連結部と、前記内側環状部の前記タイヤ幅方向他方側から前記外側環状部の前記タイヤ幅方向一方側へ向かって延設される長尺板状の第2連結部とがタイヤ周方向に沿って交互に配列されて構成されており、
前記第1連結部又は第2連結部には、タイヤ周方向に貫通する貫通孔が形成され
前記貫通孔の内周面には、前記貫通孔の周方向に延びる突出部が形成されていることを特徴とする非空気圧タイヤ。
In a non-pneumatic tire comprising a support structure for supporting a load from a vehicle,
The support structure connects the inner annular portion, the outer annular portion concentrically provided on the outer side of the inner annular portion, the inner annular portion and the outer annular portion, and is independent in the circumferential direction of the tire. And a plurality of connection parts provided
The plurality of connecting portions are long plate-shaped first connecting portions that extend from one tire width direction side of the inner annular portion toward the other tire width direction side of the outer annular portion, and the inner annular portion And an elongated plate-shaped second connecting portion extending from the other side in the tire width direction toward the one side in the tire width direction of the outer annular portion is alternately arranged along the tire circumferential direction. Yes,
A through hole penetrating in the tire circumferential direction is formed in the first connection portion or the second connection portion ,
The non-pneumatic tire according to claim 1, wherein a protrusion extending in a circumferential direction of the through hole is formed on an inner peripheral surface of the through hole .
前記突出部は、前記貫通孔の軸方向に間隔を空けて複数形成されていることを特徴とする請求項1に記載の非空気圧タイヤ。 Non pneumatic tire according to claim 1 wherein the protrusions, characterized in that formed with a plurality at intervals in the axial direction of the through hole. 前記突出部は、前記貫通孔の周方向に間隔を空けて複数形成されていることを特徴とする請求項1又は2に記載の非空気圧タイヤ。 The non-pneumatic tire according to claim 1 or 2 , wherein a plurality of the projecting portions are formed at intervals in the circumferential direction of the through hole.
JP2015121338A 2015-06-16 2015-06-16 Non pneumatic tire Active JP6529833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121338A JP6529833B2 (en) 2015-06-16 2015-06-16 Non pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121338A JP6529833B2 (en) 2015-06-16 2015-06-16 Non pneumatic tire

Publications (2)

Publication Number Publication Date
JP2017007363A JP2017007363A (en) 2017-01-12
JP6529833B2 true JP6529833B2 (en) 2019-06-12

Family

ID=57760597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121338A Active JP6529833B2 (en) 2015-06-16 2015-06-16 Non pneumatic tire

Country Status (1)

Country Link
JP (1) JP6529833B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6553420B2 (en) * 2015-06-16 2019-07-31 Toyo Tire株式会社 Non pneumatic tire
JP7282635B2 (en) * 2019-08-26 2023-05-29 Toyo Tire株式会社 Non-pneumatic tire and method for manufacturing non-pneumatic tire
JP2022104243A (en) * 2020-12-28 2022-07-08 Toyo Tire株式会社 Non-pneumatic tire

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921029A (en) * 1984-04-16 1990-05-01 The Uniroyal Goodrich Tire Company Trapezoidal non-pneumatic tire with supporting and cushioning members
JPS61100603U (en) * 1984-12-07 1986-06-27
JPH03189202A (en) * 1989-12-20 1991-08-19 Yokohama Rubber Co Ltd:The Non-pneumatic tire
US8631844B2 (en) * 2005-06-13 2014-01-21 Millenworks Variable compliance wheel
JP2008049943A (en) * 2006-08-28 2008-03-06 Yokohama Rubber Co Ltd:The Wheel for non-pneumatic tire and assembly of non-pneumatic tire/wheel
KR101108289B1 (en) * 2007-03-12 2012-01-25 가부시키가이샤 브리지스톤 Pneumatic tire
JP2008302782A (en) * 2007-06-06 2008-12-18 Yokohama Rubber Co Ltd:The Wheel for non-pneumatic tire and assembly of non-pneumatic tire/wheel
JP5400286B2 (en) * 2007-10-10 2014-01-29 株式会社ブリヂストン Pneumatic tire
US20090173421A1 (en) * 2008-01-08 2009-07-09 Freudenberg-Nok General Partnership Flatless Hybrid Isolated Tire
JP2010167998A (en) * 2009-01-26 2010-08-05 Bridgestone Corp Pneumatic tire
US9895933B2 (en) * 2013-06-11 2018-02-20 Sumitomo Rubber Industries, Ltd. Non-pneumatic tire
JP6092045B2 (en) * 2013-08-20 2017-03-08 東洋ゴム工業株式会社 Non-pneumatic tire
JP6092046B2 (en) * 2013-08-22 2017-03-08 東洋ゴム工業株式会社 Non-pneumatic tire
JP6099519B2 (en) * 2013-08-22 2017-03-22 東洋ゴム工業株式会社 Non-pneumatic tire

Also Published As

Publication number Publication date
JP2017007363A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6092046B2 (en) Non-pneumatic tire
JP6099519B2 (en) Non-pneumatic tire
JP5221306B2 (en) Non-pneumatic tire
JP6025315B2 (en) Non-pneumatic tire
JP6159234B2 (en) Non-pneumatic tire
JP5972149B2 (en) Non-pneumatic tire
JP6013899B2 (en) Non-pneumatic tire
JP6445238B2 (en) Non-pneumatic tire
JP2019043505A (en) Non-pneumatic tire
JP2019043502A (en) Non-pneumatic tire
JP2011183894A (en) Non-pneumatic tire
JP6529834B2 (en) Non pneumatic tire
JP2019104438A (en) Non-pneumatic tire
JP6226734B2 (en) Non-pneumatic tire
JP2019043504A (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6076704B2 (en) Non-pneumatic tire
JP6529833B2 (en) Non pneumatic tire
JP2018095068A (en) Non-pneumatic tire
JP6535498B2 (en) Non pneumatic tire
JP5543846B2 (en) Non-pneumatic tire
JP6092045B2 (en) Non-pneumatic tire
JP6182452B2 (en) Non-pneumatic tire
JP6025498B2 (en) Non-pneumatic tire
JP6553420B2 (en) Non pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6529833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250