JP5400286B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP5400286B2
JP5400286B2 JP2007264345A JP2007264345A JP5400286B2 JP 5400286 B2 JP5400286 B2 JP 5400286B2 JP 2007264345 A JP2007264345 A JP 2007264345A JP 2007264345 A JP2007264345 A JP 2007264345A JP 5400286 B2 JP5400286 B2 JP 5400286B2
Authority
JP
Japan
Prior art keywords
protrusion
tire
protrusions
air flow
pneumatic tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007264345A
Other languages
Japanese (ja)
Other versions
JP2009090849A (en
Inventor
正志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007264345A priority Critical patent/JP5400286B2/en
Publication of JP2009090849A publication Critical patent/JP2009090849A/en
Application granted granted Critical
Publication of JP5400286B2 publication Critical patent/JP5400286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は空気入りタイヤに関し、さらに詳しくは、乱流を発生させる突起を備える空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly, to a pneumatic tire including a protrusion that generates turbulent flow.

一般に、空気入りタイヤにおけるタイヤ温度の上昇は、材料物性の変化などの経時的変化を促進したり、高速走行時にはトレッド部の破損などの原因になり、耐久性の観点から好ましくないとされている。特に、重荷重での使用となるオフザロードラジアルタイヤ(ORR)や、トラック・バスラジアルタイヤ(TBR)、パンク走行時(内圧0kPa走行時)のランフラットタイヤにおいては、耐久性を向上させるために、タイヤ温度を低減させることが大きな課題となっている。   In general, an increase in tire temperature in a pneumatic tire promotes a change over time such as a change in material properties, or causes a damage of a tread portion at high speed running, which is not preferable from the viewpoint of durability. . To improve durability, especially in off-the-road radial tires (ORR), truck / bus radial tires (TBR), and run-flat tires during puncture (running at an internal pressure of 0 kPa), which are used under heavy loads Reducing tire temperature has become a major issue.

例えば、断面三日月状のサイドウォール補強層を有するランフラットタイヤでは、パンク走行時にタイヤ径方向の変形がサイドウォール補強層に集中して、該サイドウォール補強層が非常に高温に達してしまい、耐久性に多大な影響を与えている。   For example, in a run flat tire having a side wall reinforcing layer having a crescent-shaped cross section, deformation in the tire radial direction is concentrated on the side wall reinforcing layer during puncturing, and the side wall reinforcing layer reaches a very high temperature, resulting in durability. Has a great influence on sex.

このような空気入りタイヤにおけるタイヤ温度を低減させる手段として、空気入りタイヤの各構成部材(特に、サイドウォール部に位置するカーカス層やビード部など)の歪みを低減・抑制する補強部材を設け、タイヤの歪みによる温度上昇を極力防止する技術が開示されている(例えば、特許文献1参照)。   As a means for reducing the tire temperature in such a pneumatic tire, a reinforcing member for reducing and suppressing distortion of each component of the pneumatic tire (particularly, a carcass layer and a bead portion located in a sidewall portion) is provided. A technique for preventing temperature rise due to tire distortion as much as possible has been disclosed (for example, see Patent Document 1).

しかし、上述した従来の空気入りタイヤでは、補強部材が設けられることによって、タイヤ重量の増加や補強部材でのセパレーション(剥離)など意図しない新たな故障が発生してしまうことがあり、操縦安定性や乗り心地性等の通常走行性能を悪化させてしまうという問題があった。特に、ランフラットタイヤでは、通常内圧走行時の縦バネ(タイヤ縦方向の弾力性)が高まり、通常走行性能を悪化させることが懸念され、この通常走行性能を損なわない手法が求められる。   However, in the conventional pneumatic tire described above, the provision of the reinforcing member may cause an unintended new failure such as an increase in tire weight or separation (peeling) at the reinforcing member. There is a problem that the normal running performance such as the riding comfort is deteriorated. In particular, in a run-flat tire, there is a concern that the vertical spring (elasticity in the tire longitudinal direction) during normal internal pressure travel is increased and the normal travel performance is deteriorated, and a technique that does not impair this normal travel performance is required.

一方、タイヤ表面に多数の突起を設けたタイヤが従来より提案されている。従来の突起は、タイヤのサイドウォール部に生じる凹凸を目立たないようにしたり(例えば、特許文献2参照)、バッドレス部の耐クラック性能を向上させたり(例えば、特許文献3参照)するためのものであった。   On the other hand, tires having a large number of protrusions on the tire surface have been conventionally proposed. Conventional protrusions are intended to make the unevenness generated in the sidewall portion of the tire inconspicuous (for example, refer to Patent Document 2) or to improve the crack resistance performance of the paddle portion (for example, refer to Patent Document 3). Met.

ここで、本発明者は、タイヤ表面に設けられた突起がタイヤ温度を低減させる手段になり得ることに着目した。つまり、タイヤが回転すると、タイヤ表面に沿って空気流が流れるが、その空気流とタイヤ表面との間で熱交換が行われ、タイヤ温度の低減が可能であるからである。しかし、フラットなタイヤ表面を流れる空気流は、タイヤ表面に沿ってスムーズな流れであるため、タイヤ表面との間で積極的な熱交換が行われず、熱交換効率が悪い。これに対し、突起を設けたタイヤ表面を流れる空気流は、突起によって乱流となる。乱流は、スムーズな空気流に比べて流速が速く、流速の速い空気流の方が熱交換が促進される。又、乱流は、スムーズが空気流に比べてタイヤ表面に突き当たる確率が非常に高いため、熱交換が促進される。このため、タイヤ表面に突起を設けることにより、乱流空気とタイヤ表面との間で積極的な熱交換が行われ、タイヤ温度の低減手段となり得る。
特開2006−76431号公報 特開平11−321243号公報 特開2002−205514号公報
Here, the inventor has paid attention to that the protrusion provided on the tire surface can be a means for reducing the tire temperature. That is, when the tire rotates, an air flow flows along the tire surface, and heat exchange is performed between the air flow and the tire surface, so that the tire temperature can be reduced. However, since the airflow flowing on the flat tire surface is a smooth flow along the tire surface, positive heat exchange is not performed with the tire surface, and heat exchange efficiency is poor. On the other hand, the airflow flowing on the tire surface provided with the protrusions becomes turbulent flow due to the protrusions. The turbulent flow has a higher flow velocity than the smooth air flow, and the air flow having a higher flow velocity promotes heat exchange. Further, since the turbulent flow has a very high probability of hitting the tire surface smoothly compared to the air flow, heat exchange is promoted. For this reason, by providing protrusions on the tire surface, positive heat exchange is performed between the turbulent air and the tire surface, which can be a means for reducing the tire temperature.
JP 2006-76431 A Japanese Patent Laid-Open No. 11-32143 JP 2002-205514 A

しかしながら、タイヤ表面に設けられる突起は、タイヤ内部の熱をタイヤ表面より放熱する際の支障、つまり、蓄熱を促進するものともなるため、単にタイヤ表面に突起を設けただけではタイヤ温度を低減することができない。   However, since the protrusion provided on the tire surface also serves as a hindrance when the heat inside the tire is dissipated from the tire surface, that is, promotes heat storage, simply providing the protrusion on the tire surface reduces the tire temperature. I can't.

そこで、本発明は、タイヤ表面に適切な条件で突起を設けることによってタイヤ温度の低減を図ることができる空気入りタイヤを提供することを目的とする。   Then, an object of this invention is to provide the pneumatic tire which can aim at reduction of tire temperature by providing a protrusion on the tire surface on appropriate conditions.

本発明の特徴は、タイヤ表面に多数の突起が設けられた空気入りタイヤであって、各突起は、その高さが0.3〜5mmの範囲であり、且つ、タイヤ表面に対して空気流が突き当たる側の前壁面のなす角度が70度〜110度の範囲であることをことを要旨とする。   A feature of the present invention is a pneumatic tire in which a large number of protrusions are provided on the tire surface, each protrusion having a height in the range of 0.3 to 5 mm, and air flow with respect to the tire surface. The gist of the present invention is that the angle formed by the front wall surface on the side where the abuts is in the range of 70 to 110 degrees.

このような構成によれば、タイヤ表面を流れる空気流が突起によって乱流となり、その乱流とタイヤ表面との間で積極的な熱交換が行われる。   According to such a configuration, the airflow flowing on the tire surface becomes turbulent due to the protrusions, and positive heat exchange is performed between the turbulent flow and the tire surface.

ここで、突起の高さが0.3mm未満であると、空気流の内で、突起の上方を通って流れる上方空気流がほとんど曲がることなく通過するため、熱交換を積極的に促進させる大きさの乱流を発生させることができず、突起の高さが5mmを越えると、突起による蓄熱が大きくなり過ぎる。これに対し、突起の高さが0.3mm〜5mmの範囲であると、熱交換を積極的に促進させる程度の乱流を発生させ、且つ、突起による蓄熱も小さく抑えることができる。   Here, if the height of the protrusion is less than 0.3 mm, the upper air flow that flows through the upper portion of the protrusion passes through the air flow almost without bending, so that the heat exchange is actively promoted. If the turbulent flow cannot be generated and the height of the protrusion exceeds 5 mm, the heat storage by the protrusion becomes too large. On the other hand, when the height of the protrusion is in the range of 0.3 mm to 5 mm, a turbulent flow that actively promotes heat exchange can be generated, and heat storage by the protrusion can be suppressed to be small.

また、突起の前壁面の角度がタイヤ表面に対して70度未満であると、突起に衝突した空気流のうち、突起の上方に向かって流れる上方空気流は、突起との剥離角度が小さくなり、突起の下流側で緩やかな下降流とが発生せず、タイヤ表面との間で有効な熱交換を促進できない。又、タイヤ表面に対して突起の前壁面の角度が110度を越えると、突起に衝突した空気流のうち、突起の上方に向かって流れる上方空気流は、突起との剥離角度があまりにも大きく突起から上方に離れる方向に流れることになり、突起の下流側で下降流となりにくいため、タイヤ表面との間で有効な熱交換を促進できない。これに対し、突起の前壁面の角度が70〜110の範囲にあると、突起に衝突した空気流のうち、突起の上方に向かって流れる上方空気流は、突起との剥離角度が適切であり、突起の下流側で下降流となりタイヤ表面に突き当たるため、タイヤ表面との間で積極的な熱交換が行われる。このため、タイヤ表面に設けた突起によるタイヤ温度の低減を確実に図ることができる。   In addition, when the angle of the front wall surface of the protrusion is less than 70 degrees with respect to the tire surface, among the airflows that have collided with the protrusion, the upper airflow that flows upward from the protrusion has a smaller separation angle from the protrusion. A gentle downward flow does not occur on the downstream side of the protrusion, and effective heat exchange with the tire surface cannot be promoted. Also, if the angle of the front wall surface of the protrusion with respect to the tire surface exceeds 110 degrees, among the airflows that collided with the protrusion, the upper airflow that flows toward the top of the protrusion has an excessively large separation angle with the protrusion. Since it flows in a direction away from the protrusion and is unlikely to flow downward on the downstream side of the protrusion, effective heat exchange with the tire surface cannot be promoted. On the other hand, when the angle of the front wall surface of the protrusion is in the range of 70 to 110, the upper air flow that flows upward of the protrusion out of the air flow that collides with the protrusion has an appropriate separation angle with the protrusion. Since the downflow flows downstream from the protrusion and hits the tire surface, positive heat exchange is performed with the tire surface. For this reason, the tire temperature can be reliably reduced by the protrusions provided on the tire surface.

また、各突起の幅寸法は、0.3mm〜5mmの範囲であることが好ましい。突起の幅が0.3mm未満であると、空気流の内で、突起の側方を通って流れる側方空気流がほとんど曲がることなく通過するため、熱交換を積極的に促進させる大きさの乱流を発生させることができず、突起の幅が5mmを越えると、突起による蓄熱が大きくなり過ぎる。これに対し、突起の幅が0.3mm〜5mmの範囲であると、熱交換を積極的に促進させる程度の乱流を発生させ、且つ、突起による蓄熱も小さく抑えることができる。このため、タイヤ表面に設けた突起によるタイヤ温度の低減を確実に図ることができる。   The width dimension of each protrusion is preferably in the range of 0.3 mm to 5 mm. If the width of the protrusion is less than 0.3 mm, the side airflow that flows through the side of the protrusion passes through the side of the protrusion almost without bending, so that the heat exchange is actively promoted. If the turbulent flow cannot be generated and the width of the protrusion exceeds 5 mm, the heat storage by the protrusion becomes too large. On the other hand, when the width of the protrusion is in the range of 0.3 mm to 5 mm, a turbulent flow that actively promotes heat exchange can be generated, and heat storage by the protrusion can be suppressed to a low level. For this reason, the tire temperature can be reliably reduced by the protrusions provided on the tire surface.

さらに、各突起は、タイヤ表面に対して側壁面のなす角度が70度〜110度の範囲であることが好ましい。突起の側壁面の角度が70度未満であると、突起内の蓄熱が大きくなり過ぎる。又、突起の側壁面の角度が110度を超えると、突起に衝突した空気流の内で、突起の側方に向かって流れる側方空気流は、突起から離れる方向に流れて突起の下流で戻り流とならないため、突起の周囲に所定の放熱効果が期待できる放熱領域を形成できない。これに対し、側壁面の角度が70度〜110の範囲では、突起に衝突した空気流のうち、突起の側方に向かって流れる側方空気流は、突起の下流側で戻り流を形成し、突起の周囲に所定の放熱効果が期待できる放熱領域を形成し、且つ、突起による蓄熱も小さく抑えることができる。このため、タイヤ表面に設けた突起によるタイヤ温度の低減を確実に図ることができる。   Furthermore, each protrusion preferably has an angle formed by the side wall surface with respect to the tire surface in a range of 70 degrees to 110 degrees. If the angle of the side wall surface of the protrusion is less than 70 degrees, heat storage in the protrusion becomes too large. When the angle of the side wall surface of the protrusion exceeds 110 degrees, the side air flow that flows toward the side of the protrusion out of the air flow that collides with the protrusion flows in the direction away from the protrusion and is downstream of the protrusion. Since it does not become a return flow, it is not possible to form a heat dissipation region where a predetermined heat dissipation effect is expected around the protrusion. On the other hand, in the range of the angle of the side wall surface of 70 to 110, the side air flow that flows toward the side of the protrusion out of the air flow that collides with the protrusion forms a return flow downstream of the protrusion. In addition, it is possible to form a heat dissipation region in which a predetermined heat dissipation effect can be expected around the protrusion, and to suppress heat storage by the protrusion. For this reason, the tire temperature can be reliably reduced by the protrusions provided on the tire surface.

本発明によれば、タイヤ表面に設けた突起によってタイヤ温度の低減を図ることができる空気入りタイヤを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the pneumatic tire which can aim at reduction of tire temperature with the protrusion provided in the tire surface can be provided.

以下、本発明の実施の形態に係る空気入りタイヤについて、図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。なお、図1〜図6は本発明の一実施の形態を示し、図1は空気入りタイヤの一部を破断した状態を示す斜視図、図2は空気入りタイヤのトレッド幅方向断面図、図3は突起の斜視図、図4は突起に突き当たった空気流が乱流となる状態を示す斜視図、図5(a)は図3のA矢視図であり、上方空気流の流れを示す図、図5(b)は突起を上方から見た図であり、側方空気流の流れを示す図、図6は図3のB矢視図である。   Hereinafter, a pneumatic tire according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of dimensions are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, the part from which the relationship and ratio of a mutual dimension differ also in between drawings is contained. 1 to 6 show an embodiment of the present invention, FIG. 1 is a perspective view showing a state in which a part of a pneumatic tire is broken, and FIG. 2 is a cross-sectional view in the tread width direction of the pneumatic tire. 3 is a perspective view of the protrusion, FIG. 4 is a perspective view showing a state in which the air flow hitting the protrusion becomes a turbulent flow, and FIG. 5A is a view as viewed from the arrow A in FIG. FIG. 5 and FIG. 5B are views of the protrusions as viewed from above, showing the flow of the side air flow, and FIG. 6 is a view taken in the direction of arrow B in FIG.

(空気入りタイヤの構成)
図1及び図2に示すように、空気入りタイヤ1は、ビードコア3a及びビードフィラー3bを少なくとも含む一対のビード部3を有している。また、空気入りタイヤ1は、ビードコア3aの周りでトレッド幅方向内側からトレッド幅方向外側へ向けて折り返され、サイドウォール部SWを経由してトロイド状に延びるカーカス層5を有している。カーカス層5のトレッド幅方向内側には、トレッド幅方向断面において、サイドウォール部SWを補強する三日月状のサイドウォール補強層7が設けられている。サイドウォール補強層7のトレッド幅方向内側には、チューブに相当する気密性の高いゴム層であるインナーライナー9が設けられている。
(Composition of pneumatic tire)
As shown in FIGS. 1 and 2, the pneumatic tire 1 has a pair of bead portions 3 including at least a bead core 3a and a bead filler 3b. The pneumatic tire 1 has a carcass layer 5 that is folded around the bead core 3a from the inner side in the tread width direction toward the outer side in the tread width direction and extends in a toroidal shape via the sidewall portion SW. On the inner side in the tread width direction of the carcass layer 5, a crescent-shaped side wall reinforcing layer 7 that reinforces the sidewall portion SW in the cross section in the tread width direction is provided. An inner liner 9, which is a highly airtight rubber layer corresponding to a tube, is provided on the inner side in the tread width direction of the sidewall reinforcing layer 7.

カーカス層5のタイヤ径方向外側には、ベルト層11が設けられている。ベルト層11は、タイヤ周方向に対してコードが傾いて配置される第1ベルト層11Aと、第2ベルト層11Bと、タイヤ周方向に対してコードが略平行に配置される周方向ベルト層11Cとによって構成されている。   A belt layer 11 is provided outside the carcass layer 5 in the tire radial direction. The belt layer 11 includes a first belt layer 11A and a second belt layer 11B in which a cord is inclined with respect to the tire circumferential direction, and a circumferential belt layer in which the cord is arranged substantially parallel to the tire circumferential direction. 11C.

ベルト層のタイヤ径方向外側には、路面と接するトレッド部13が設けられている。また、サイドウォール部SWのタイヤ表面15の周方向には、多数の突起17が間隔を置いて設けられている。   A tread portion 13 in contact with the road surface is provided on the outer side of the belt layer in the tire radial direction. A large number of protrusions 17 are provided at intervals in the circumferential direction of the tire surface 15 of the sidewall portion SW.

(突起の配列、配置密度)
図1に示すように、多数の突起17は、周方向及びタイヤ径方向にそれぞれ所定の間隔を置いて配置され、且つ、周方向に沿った列と、これに対してタイヤ径方向に隣接する列、が互いに1/2間隔だけシフトした位置に配列されている。つまり、多数の突起17は、千鳥配列に配置されている。多数の突起17は、0.1個〜13個/cmの配置密度で設けられている。
(Projection arrangement, arrangement density)
As shown in FIG. 1, the plurality of protrusions 17 are arranged at predetermined intervals in the circumferential direction and the tire radial direction, and are adjacent to the row along the circumferential direction and the tire radial direction thereto. The columns are arranged at positions shifted from each other by ½ interval. That is, the many protrusions 17 are arranged in a staggered arrangement. The many protrusions 17 are provided at an arrangement density of 0.1 to 13 pieces / cm 2 .

(突起の構成)
図3に示すように、各突起17は、上方から見た形状が台形の四角柱である。各突起17の幅寸法Dは、0.3mm〜5mmの範囲に設定されている。各突起17の高さ寸法Hは、0.3mm〜5mmの範囲に設定されている。各突起17は、タイヤ表面15に対して空気流が突き当たる側の前壁面17aのなす角度θ1が70度〜110度の範囲に設定されている。各突起17は、タイヤ表面15に対して側壁面17cのなす角度θ2,θ3が70度〜110の範囲に設定されている。尚、本実施の形態では、幅寸法D、高さ寸法Hは、それぞれ突起17の最大値を示すものである。又、タイヤ表面とはタイヤの外面と内面を示すものである。
(Structure of protrusion)
As shown in FIG. 3, each protrusion 17 is a quadrangular prism having a trapezoidal shape when viewed from above. The width dimension D of each protrusion 17 is set in the range of 0.3 mm to 5 mm. The height dimension H of each protrusion 17 is set in the range of 0.3 mm to 5 mm. Each protrusion 17 has an angle θ <b> 1 formed by the front wall surface 17 a on the side where the air flow strikes the tire surface 15 in a range of 70 to 110 degrees. Each projection 17 has an angle θ <b> 2 and θ <b> 3 formed by the side wall surface 17 c with respect to the tire surface 15 in a range of 70 degrees to 110 degrees. In the present embodiment, the width dimension D and the height dimension H indicate the maximum values of the protrusions 17, respectively. The tire surface indicates the outer surface and the inner surface of the tire.

(突起の作用)
上記構成において、空気入りタイヤ1が回転すると、図4に示すように、タイヤ表面15の近傍にはタイヤ回転方向とは逆方向の空気流aが相対的に流れる。この空気流aは各突起17に突き当たる。突起17の前壁面17aに突き当たった空気流aは、図5(a)、(b)に示すように、上壁面17bより上方に流れる上方空気流a1と、左右の側壁面17cに沿って流れる一対の側方空気流a2とに主に分流され、乱流となる。このようにタイヤ表面15を流れる空気流aが乱流となるため、タイヤ表面16を規則正しくスムーズに流れる空気流と比較して、タイヤ表面15との間で積極的に熱交換が行われる。
(Function of protrusion)
In the above configuration, when the pneumatic tire 1 rotates, an air flow “a” in the direction opposite to the tire rotation direction relatively flows in the vicinity of the tire surface 15 as shown in FIG. This air flow a hits each projection 17. As shown in FIGS. 5A and 5B, the air flow a hitting the front wall surface 17a of the protrusion 17 flows along the upper air flow a1 flowing upward from the upper wall surface 17b and the left and right side wall surfaces 17c. The flow is mainly divided into a pair of side air flows a2 and becomes a turbulent flow. Since the air flow a flowing through the tire surface 15 becomes a turbulent flow in this way, heat exchange is actively performed with the tire surface 15 as compared with the air flow flowing regularly and smoothly on the tire surface 16.

ここで、突起17の高さHが0.3mm未満であると、空気流aの内で、突起17の上方を通って流れる上方空気流a1がほとんど曲がることなく通過するため、熱交換を積極的に促進させる大きさの乱流を発生させることができない。又、突起17の高さHが5mmを越えると、突起17内の蓄熱が大きくなり過ぎる。これに対し、突起17の高さHが0.3mm〜5mmの範囲であると、熱交換を積極的に促進させる程度の乱流を発生させ、且つ、突起17による蓄熱も小さく抑えることができる。   Here, when the height H of the protrusion 17 is less than 0.3 mm, the upper air flow a1 flowing through the upper portion of the protrusion 17 passes through the air flow a with almost no bending, so that heat exchange is actively performed. Turbulent flow of a magnitude that can be promoted automatically cannot be generated. If the height H of the protrusion 17 exceeds 5 mm, the heat storage in the protrusion 17 becomes too large. On the other hand, when the height H of the protrusions 17 is in the range of 0.3 mm to 5 mm, turbulent flow that can actively promote heat exchange can be generated, and heat storage by the protrusions 17 can be suppressed. .

また、突起17は、タイヤ表面15に対して空気流が突き当たる側の前壁面17aのなす角度θ1が70度〜110度の範囲に設定されている。図5(a)に示すように、突起17の前壁面17aの角度θ1が70度未満であると、突起17に衝突した空気流aの内で、突起17の上方に向かって流れる上方空気流a1は、突起17との剥離角度βが小さくなり、突起17の下流側で緩やかな下降流にしか変化せず、タイヤ表面15との間で積極的な熱交換が行われない。突起17の前壁面17aの角度θ1が110度を越えると、突起17に衝突した空気流aの内で、突起17の上方に向かって流れる上方空気流a1は、突起17との剥離角度βがあまりにも大きくて突起17から上方へ離れる方向(図5(a)のb矢印方向)へ流れることになり、突起17の下流側で下降流となりにくい。このため、、タイヤ表面15との間で積極的な熱交換が行われない。   Further, in the protrusion 17, an angle θ <b> 1 formed by the front wall surface 17 a on the side where the air flow strikes the tire surface 15 is set in a range of 70 degrees to 110 degrees. As shown in FIG. 5A, when the angle θ1 of the front wall surface 17a of the protrusion 17 is less than 70 degrees, the upper airflow that flows upward of the protrusion 17 in the airflow a that collides with the protrusion 17 In a1, the peeling angle β with the protrusion 17 becomes small, and only a gentle downward flow is changed on the downstream side of the protrusion 17, and no positive heat exchange is performed with the tire surface 15. When the angle θ1 of the front wall surface 17a of the protrusion 17 exceeds 110 degrees, the upper air flow a1 that flows upward of the protrusion 17 in the air flow a that has collided with the protrusion 17 has a separation angle β with respect to the protrusion 17. It is so large that it flows in the direction away from the protrusion 17 (the direction of the arrow b in FIG. 5A), and is unlikely to flow downward on the downstream side of the protrusion 17. For this reason, positive heat exchange with the tire surface 15 is not performed.

これに対し、突起17の前壁面17aの角度θ1が70〜110の範囲にあると、上方空気流a1は、突起17との剥離角度βがある程度大きくて、突起17の下流側で激しい下降流となって戻り、タイヤ表面15に突き当たるため、タイヤ表面15との間で有効な熱交換がなされる。このため、タイヤ表面15に設けた突起17によるタイヤ温度の低減を確実に図ることができる。   On the other hand, when the angle θ1 of the front wall surface 17a of the protrusion 17 is in the range of 70 to 110, the upper air flow a1 has a large separation angle β with the protrusion 17, and a strong downward flow on the downstream side of the protrusion 17. Thus, since it hits the tire surface 15, effective heat exchange with the tire surface 15 is performed. For this reason, the tire temperature can be reliably reduced by the protrusions 17 provided on the tire surface 15.

この実施の形態では、各突起17の幅寸法Dは、0.3mm〜5mmの範囲に設定されている。突起17の幅が0.3mm未満であると、空気流aの内で、突起17の側方を通って流れる側方空気流a2がほとんど曲がることなく通過するため、ほとんどタイヤ表面15に熱交換を積極的に促進させる大きさの乱流を発生させることができない。突起17の幅寸法Dが5mmを越えると、突起17による蓄熱が大きくなり過ぎる。これに対し、突起17の幅Dが0.3mm〜5mmの範囲であると、タイヤ表面15に熱交換を積極的に促進させる程度の乱流を発生させ、且つ、突起17による蓄熱も小さく抑えることができる。以上より、タイヤ表面15に設けた突起17によるタイヤ温度の低減を確実に図ることができる。   In this embodiment, the width dimension D of each protrusion 17 is set in the range of 0.3 mm to 5 mm. If the width of the projection 17 is less than 0.3 mm, the side air flow a2 flowing through the side of the projection 17 passes through the side of the projection 17 with almost no bending, so that heat exchange with the tire surface 15 is almost achieved. It is not possible to generate a turbulent flow of a magnitude that actively promotes If the width D of the protrusion 17 exceeds 5 mm, the heat storage by the protrusion 17 becomes too large. On the other hand, when the width D of the protrusion 17 is in the range of 0.3 mm to 5 mm, a turbulent flow that actively promotes heat exchange is generated on the tire surface 15, and heat storage by the protrusion 17 is suppressed to a low level. be able to. As described above, the tire temperature can be reliably reduced by the protrusions 17 provided on the tire surface 15.

この実施の形態では、各突起17は、タイヤ表面15に対して側壁面17cのなす角度θ2,θ3が70度〜110度の範囲に設定されている。突起17の側壁面17cの角度が70度未満であると、突起17内の蓄熱が大きくなり過ぎる。又、突起17の側壁面17cの角度θ2,θ3が110度を超えると、突起17に衝突した空気流の内で、突起17の側方に向かって流れる側方空気流a2は、突起17から離れる方向(図5(b)のc矢印方向)に流れて突起17の下流で戻り流とならないため、突起17の周囲に所定の放熱効果が期待できる放熱領域を形成できない。これに対し、側壁面17cの角度θ2,θ3が70度〜110の範囲では、突起17に衝突した空気流の内で、突起17の側方に向かって流れる側方空気流a2は、突起17の下流側で戻り流を形成し、突起17の周囲に所定の放熱効果が期待できる放熱領域を形成し、且つ、突起17による蓄熱も小さく抑えることができる。以上より、タイヤ表面15に設けた突起17によるタイヤ温度の低減を確実に図ることができる。   In this embodiment, each projection 17 is set such that the angles θ2 and θ3 formed by the side wall surface 17c with respect to the tire surface 15 are in the range of 70 degrees to 110 degrees. When the angle of the side wall surface 17c of the protrusion 17 is less than 70 degrees, the heat storage in the protrusion 17 becomes too large. When the angles θ2 and θ3 of the side wall surface 17c of the protrusion 17 exceed 110 degrees, the side air flow a2 that flows toward the side of the protrusion 17 out of the airflow that collides with the protrusion 17 is generated from the protrusion 17. Since it flows in the direction away from (in the direction of arrow c in FIG. 5B) and does not return to the downstream of the protrusion 17, a heat dissipation region in which a predetermined heat dissipation effect can be expected cannot be formed around the protrusion 17. On the other hand, when the angles θ2 and θ3 of the side wall surface 17c are in the range of 70 degrees to 110, the side airflow a2 that flows toward the side of the protrusion 17 out of the airflow that collides with the protrusion 17 is the protrusion 17. Thus, a return flow is formed on the downstream side, a heat dissipation region in which a predetermined heat dissipation effect can be expected is formed around the protrusion 17, and heat storage by the protrusion 17 can be suppressed small. As described above, the tire temperature can be reliably reduced by the protrusions 17 provided on the tire surface 15.

この実施の形態では、突起17の配置密度は、0.1個〜13個/cmの範囲に設定されている。ここで、突起17の配置密度が13個/cmを越えると、突起17による放熱効果より突起17による蓄熱効果の方が大きくなる。又、突起17の配置密度が0.1個/cm未満になると、タイヤ表面15の面積に対し突起による乱流域があまりに小さくて突起17による放熱効果がほとんど期待できない。これに対し、突起17の配置密度が0.1個〜13個/cmの範囲であると、タイヤ表面15に十分に大きな範囲で乱流領域を発生させることができ、しかも、突起17による蓄熱もある程度小さく抑えることができる。したがって、このような配置密度にすることにより、タイヤ表面15に設けた突起17によるタイヤ温度の低減を確実に図ることができる。 In this embodiment, the arrangement density of the protrusions 17 is set in a range of 0.1 to 13 pieces / cm 2 . Here, when the arrangement density of the protrusions 17 exceeds 13 / cm 2 , the heat storage effect by the protrusions 17 becomes larger than the heat dissipation effect by the protrusions 17. Further, when the arrangement density of the protrusions 17 is less than 0.1 / cm 2 , the turbulent flow area due to the protrusions is too small with respect to the area of the tire surface 15, and the heat dissipation effect by the protrusions 17 can hardly be expected. On the other hand, when the arrangement density of the projections 17 is in the range of 0.1 to 13 pieces / cm 2 , a turbulent flow region can be generated in a sufficiently large range on the tire surface 15. Heat storage can also be suppressed to some extent. Therefore, by using such an arrangement density, the tire temperature can be reliably reduced by the protrusions 17 provided on the tire surface 15.

(その他の実施の形態)
上記実施の形態では、空気入りタイヤ1は、サイドウォール補強層7を有するもの(ランフラットタイヤ)であったが、これ以外のタイヤ、つまり、サイドウォール補強層7を有しないもの(オフザロードラジアルタイヤ)や、トラック・バスラジアルタイヤ等であっても同様に適用可能である。
(Other embodiments)
In the above embodiment, the pneumatic tire 1 has the sidewall reinforcing layer 7 (run flat tire), but other tires, that is, the tire not having the sidewall reinforcing layer 7 (off-the-road radial). Tires), truck / bus radial tires, and the like.

上記実施の形態では、突起17は四角柱形状であったが、突起は円柱形状であっても良く、その他様々な形状が可能である。   In the above embodiment, the protrusion 17 has a quadrangular prism shape, but the protrusion may have a cylindrical shape, and various other shapes are possible.

上記実施の形態では、突起17の配列パターンは、空気流aの方向及びその直交方向に等間隔に配置したが、千鳥パターン等の種々の配列パターンが可能である。   In the above-described embodiment, the arrangement pattern of the protrusions 17 is arranged at equal intervals in the direction of the air flow a and the direction orthogonal thereto, but various arrangement patterns such as a staggered pattern are possible.

上記実施の形態では、突起17は、サイドウォール部SWの外面に設けられたが、図7(a)に示すように、トレッド部13に形成された溝13Aの底面13aに設けても良い。又、図7(b)に示すように、突起17をトレッド部13に形成された溝13Aの側面13bに設けても良い。このような位置に突起17を設けることによって、セパレーション(剥離)や亀裂が発生し易いベルト層11の端部に最も近いトレッド部13に形成される溝13A近傍でタイヤ温度を低減させることができ、耐久性の向上に寄与する。   In the above-described embodiment, the protrusion 17 is provided on the outer surface of the sidewall portion SW, but may be provided on the bottom surface 13a of the groove 13A formed in the tread portion 13 as shown in FIG. Further, as shown in FIG. 7B, the protrusion 17 may be provided on the side surface 13 b of the groove 13 </ b> A formed in the tread portion 13. By providing the protrusions 17 at such positions, the tire temperature can be reduced in the vicinity of the groove 13A formed in the tread portion 13 closest to the end portion of the belt layer 11 where separation (peeling) or cracks are likely to occur. Contributes to improved durability.

又、図8に示すように、突起17は、インナーライナー9のトレッド幅方向内側の内面に設けても良い。この位置に突起17を設けることによって、タイヤ内面側からタイヤ温度を低減することができる。   Further, as shown in FIG. 8, the protrusion 17 may be provided on the inner surface of the inner liner 9 on the inner side in the tread width direction. By providing the protrusion 17 at this position, the tire temperature can be reduced from the tire inner surface side.

特に、空気入りタイヤ1のパンク状態におけるタイヤ内面の温度低減に効果があり、耐久性を向上できる。具体的には、空気入りタイヤ1がパンク状態となると、空気入りタイヤ1に開いた穴を介してタイヤ内部の内気とタイヤ外部の外気とが熱交換する。このとき、突起17がタイヤ内部の内気を加速させることが可能となり、熱交換をスムーズに行うことができるため、パンク状態におけるタイヤ内面の温度を低減させることが可能となる。   In particular, it is effective in reducing the temperature of the tire inner surface in the punctured state of the pneumatic tire 1, and durability can be improved. Specifically, when the pneumatic tire 1 is in a punctured state, heat is exchanged between the inside air inside the tire and the outside air outside the tire through a hole opened in the pneumatic tire 1. At this time, since the protrusion 17 can accelerate the inside air inside the tire and heat exchange can be performed smoothly, the temperature of the tire inner surface in the punctured state can be reduced.

特に、サイドウォール補強層7が設けられた空気入りタイヤ(ランフラットタイヤ)では、サイドウォール補強層7が設けられていない空気入りタイヤに比べて、パンク状態となると、タイヤ内部の温度が高くなってしまう。このため、突起17をタイヤ内部に設けることでタイヤ内部の温度を低減でき、耐久性を向上できる。   In particular, in a pneumatic tire (run-flat tire) provided with the sidewall reinforcement layer 7, the temperature inside the tire becomes higher when a punctured state is obtained as compared to a pneumatic tire without the sidewall reinforcement layer 7. End up. For this reason, by providing the protrusion 17 inside the tire, the temperature inside the tire can be reduced and the durability can be improved.

〔実施例〕
(突起の高さ、前壁面の角度に関する実験内容)
突起は、上記実施の形態のものと同様に、四角柱形状であり、幅Dが2mm、高さHが0.3mm〜6mm範囲の各種寸法、前壁面及び側壁面の各角度θ1、θ2、θ3が90度である。
〔Example〕
(Experiments regarding the height of protrusions and the angle of the front wall)
Similar to the above embodiment, the protrusion has a quadrangular prism shape, a width D of 2 mm, a height H of various dimensions in the range of 0.3 mm to 6 mm, and angles θ1, θ2 of the front wall surface and the side wall surface, θ3 is 90 degrees.

各空気入りタイヤに関するデータは、以下に示す条件において測定された。   Data on each pneumatic tire was measured under the following conditions.

タイヤサイズ : 285/50R20
ホイールサイズ : 8JJ×20
内圧条件 : 0kPa(パンク状態)
荷重条件 : 9.8kN
各空気入りタイヤを室内に設置されたドラム試験機に装着し、一定の速度(90km/h)で転動させて突起のない空気入りタイヤが故障するまでの耐久距離を100とし、突起のある空気入りタイヤの耐久性を相対値で評価した。指数が大きいほど、耐久性、つまり、温度低減特性が優れていると類推できる。
Tire size: 285 / 50R20
Wheel size: 8JJ × 20
Internal pressure condition: 0 kPa (puncture state)
Load condition: 9.8kN
Each pneumatic tire is mounted on a drum testing machine installed indoors, rolled at a constant speed (90 km / h), and the durability distance until a pneumatic tire without a protrusion fails is set to 100, and there is a protrusion. The durability of the pneumatic tire was evaluated as a relative value. It can be inferred that the larger the index, the better the durability, that is, the temperature reduction characteristics.

図9に示すように、突起の高さHが0.3mm〜5mmの範囲で耐久性(放熱特性)が向上することが実験で確認された。   As shown in FIG. 9, it was confirmed by experiments that the durability (heat dissipation characteristics) is improved when the height H of the protrusion is in the range of 0.3 mm to 5 mm.

図10に示すように、突起の前壁面の角度θ1が70度〜110度の範囲で突起による耐久性(放熱特性)の向上が実験で確認された。   As shown in FIG. 10, it was confirmed by experiment that the durability (heat radiation characteristic) was improved by the protrusion when the angle θ1 of the front wall surface of the protrusion was in the range of 70 to 110 degrees.

(突起の側壁面の角度に関する実験内容)
突起の側壁面の角度に関する実験条件等は、上記した実験内容と同様である。突起の側壁面の角度θ2,θ3が異なるサンプルについて実験を行い、図11に示すような実験結果が得られた。
(Experiments regarding the angle of the side wall of the protrusion)
The experimental conditions regarding the angle of the side wall surface of the protrusion are the same as the above-described experimental contents. Experiments were performed on samples with different angles θ2 and θ3 on the side wall surfaces of the protrusions, and experimental results as shown in FIG. 11 were obtained.

図11に示すように、突起の側壁面の角度θ2,θ3が70度〜110の範囲で突起による耐久性(放熱特性)の向上が実験で確認された。   As shown in FIG. 11, it was confirmed by experiments that the durability (heat dissipation characteristics) was improved by the protrusions when the angles θ2 and θ3 of the side wall surfaces of the protrusions were in the range of 70 to 110.

(突起の幅に関する実験内容)
突起の幅に関する実験条件等は、上記と実験内容と同様である。突起の幅寸法Dが異なるサンプルについて実験を行い、図12に示すような実験結果が得られた。
(Experiment contents regarding the width of protrusions)
The experimental conditions regarding the width of the protrusions are the same as those described above. Experiments were performed on samples with different width dimensions D of the protrusions, and experimental results as shown in FIG. 12 were obtained.

図12に示すように、突起の幅Dが0.3mm〜5mmの範囲で突起による耐久性(放熱特性)の向上が実験で確認された。   As shown in FIG. 12, it was confirmed by experiments that the durability (heat dissipation characteristics) was improved by the protrusions when the protrusion width D was in the range of 0.3 mm to 5 mm.

本発明の実施の形態に係る空気入りタイヤの一部を破断した状態を示す斜視図である。It is a perspective view showing the state where a part of the pneumatic tire concerning an embodiment of the invention was fractured. 本発明の実施の形態に係る空気入りタイヤのトレッド幅方向断面図である。It is a tread width direction sectional view of a pneumatic tire concerning an embodiment of the invention. 突起の斜視図である。It is a perspective view of a protrusion. 突起に突き当たった空気流が乱流となる状態を示す斜視図である。It is a perspective view which shows the state from which the airflow which hit | hung the protrusion became a turbulent flow. (a)は図3のA矢視図であり、上方空気流の流れを示す図、(b)は突起を上方から見た図であり、側方空気流の流れを示す図である。FIG. 4A is a view taken in the direction of arrow A in FIG. 3 and shows a flow of an upper air flow. FIG. 4B is a view of a protrusion as viewed from above, and shows a flow of a side air flow. 図3のB矢視図である。FIG. 4 is a view taken in the direction of arrow B in FIG. (a)は突起がトレッド部の溝の底面に設けられた空気入りタイヤの断面図、(b)は突起がトレッド部の溝の側面に設けられた空気入りタイヤの断面図である。(A) is sectional drawing of the pneumatic tire in which protrusion was provided in the bottom face of the groove | channel of a tread part, (b) is sectional drawing of the pneumatic tire in which protrusion was provided in the side surface of the groove | channel of a tread part. 突起がタイヤ内面に設けられた空気入りタイヤの断面図である。It is sectional drawing of the pneumatic tire in which protrusion was provided in the tire inner surface. 実験により得られた突起の高さと耐久性の関係を示す図である。It is a figure which shows the relationship between the height of the processus | protrusion obtained by experiment, and durability. 実験により得られた突起の前壁面と耐久性の関係を示す図である。It is a figure which shows the relationship between the front wall surface of a processus | protrusion obtained by experiment, and durability. 実験により得られた突起の側壁面と耐久性の関係を示す図である。It is a figure which shows the relationship between the side wall surface of the processus | protrusion obtained by experiment, and durability. 実験により得られた突起の幅と耐久性の関係を示す図である。It is a figure which shows the relationship between the width | variety of protrusion obtained by experiment, and durability.

符号の説明Explanation of symbols

1 空気入りタイヤ
15 タイヤ表面
17,17A 突起
17a 前壁面
17b 上壁面
17c 側壁面
a 空気流
a1 上方空気流
a2 側方空気流
D 突起の幅
H 突起の高さ
θ1 突起の前壁面の角度
θ2,θ3 突起の側壁面の角度
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 15 Tire surface 17, 17A Protrusion 17a Front wall surface 17b Upper wall surface 17c Side wall surface a Air flow a1 Upper air flow a2 Side air flow D Width of protrusion H Height of protrusion θ1 Angle of front wall of protrusion θ2, θ3 Angle of side wall of protrusion

Claims (2)

タイヤ表面に多数の突起が設けられた空気入りタイヤであって、
前記各突起は、その高さが0.3〜5mmの範囲であり、且つ、タイヤ表面に対して空気流が突き当たる側の前壁面のなす角度が70度〜110度の範囲であり、
路面と接するトレッド部には、溝が形成されており、
前記各突起は、前記溝の底面に設けられていることを特徴とする空気入りタイヤ。
A pneumatic tire having a large number of protrusions on the tire surface,
Each of the protrusions has a height in the range of 0.3 to 5 mm, and an angle formed by the front wall surface on the side where the airflow strikes the tire surface is in the range of 70 to 110 degrees.
A groove is formed in the tread part in contact with the road surface,
Each said protrusion is provided in the bottom face of the said groove | channel, The pneumatic tire characterized by the above-mentioned.
前記溝は、タイヤ周方向に沿って延びる溝のうち、ベルト層の端部に最も近い位置に設けられた溝であることを特徴とする請求項1に記載の空気入りタイヤ。  2. The pneumatic tire according to claim 1, wherein the groove is a groove provided at a position closest to an end portion of the belt layer among the grooves extending along the tire circumferential direction.
JP2007264345A 2007-10-10 2007-10-10 Pneumatic tire Expired - Fee Related JP5400286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264345A JP5400286B2 (en) 2007-10-10 2007-10-10 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264345A JP5400286B2 (en) 2007-10-10 2007-10-10 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2009090849A JP2009090849A (en) 2009-04-30
JP5400286B2 true JP5400286B2 (en) 2014-01-29

Family

ID=40663264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264345A Expired - Fee Related JP5400286B2 (en) 2007-10-10 2007-10-10 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP5400286B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529833B2 (en) * 2015-06-16 2019-06-12 Toyo Tire株式会社 Non pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238703A (en) * 1991-01-10 1992-08-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP4541512B2 (en) * 2000-08-14 2010-09-08 株式会社ブリヂストン Pneumatic tire
JP2006111088A (en) * 2004-10-13 2006-04-27 Bridgestone Corp Pneumatic tire
JP2006168380A (en) * 2004-12-10 2006-06-29 Bridgestone Corp Pneumatic tire
US8522844B2 (en) * 2005-09-13 2013-09-03 Bridgestone Corporation Pneumatic tire with heat dissipating side portion
JP5170999B2 (en) * 2006-09-13 2013-03-27 株式会社ブリヂストン Pneumatic tire

Also Published As

Publication number Publication date
JP2009090849A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5636482B2 (en) Pneumatic tire
JP5081476B2 (en) Pneumatic tire
JP5437999B2 (en) Pneumatic tire
JP5081477B2 (en) Pneumatic tire
JP5258210B2 (en) Pneumatic tire
EP2644409B1 (en) Pneumatic tire
JP5222551B2 (en) Pneumatic tire
JP5285698B2 (en) Pneumatic tire
JP5170999B2 (en) Pneumatic tire
JP5186203B2 (en) Pneumatic tire
US8448681B2 (en) Pneumatic tire
JP2011168219A (en) Tire for heavy load
JP2010006141A (en) Pneumatic tire
JP5147324B2 (en) Pneumatic tire
JP2009160991A (en) Pneumatic tire
JP5243015B2 (en) Pneumatic tire
JP5193593B2 (en) Pneumatic tire
JP5385528B2 (en) Pneumatic tire
JP5400286B2 (en) Pneumatic tire
JP5890113B2 (en) tire
JP5727875B2 (en) tire
JP5886532B2 (en) tire
JP2010167998A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees