JP6526465B2 - Roundness measuring device - Google Patents

Roundness measuring device Download PDF

Info

Publication number
JP6526465B2
JP6526465B2 JP2015081637A JP2015081637A JP6526465B2 JP 6526465 B2 JP6526465 B2 JP 6526465B2 JP 2015081637 A JP2015081637 A JP 2015081637A JP 2015081637 A JP2015081637 A JP 2015081637A JP 6526465 B2 JP6526465 B2 JP 6526465B2
Authority
JP
Japan
Prior art keywords
axis
roundness
reference axis
measured
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015081637A
Other languages
Japanese (ja)
Other versions
JP2016200530A (en
Inventor
勝男 常田
勝男 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP2015081637A priority Critical patent/JP6526465B2/en
Publication of JP2016200530A publication Critical patent/JP2016200530A/en
Application granted granted Critical
Publication of JP6526465B2 publication Critical patent/JP6526465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、被測定ワークの内周面の真円度を測定する真円度測定装置の改良技術に関する。   The present invention relates to an improved technique of a roundness measuring apparatus for measuring the roundness of the inner circumferential surface of a workpiece to be measured.

例えば、被測定ワークの内周面の真円度を測定する真円度測定装置としては、被測定ワークを回転させて、被測定ワークの回転中心軸と内周面との距離を測定し、その結果から真円度を演算するものが知られている(例えば、特許文献1参照)。   For example, as a roundness measuring apparatus for measuring the roundness of the inner circumferential surface of the workpiece to be measured, the workpiece to be measured is rotated to measure the distance between the rotation center axis of the workpiece to be measured and the inner circumferential surface; It is known to calculate the roundness from the result (see, for example, Patent Document 1).

このタイプの真円度測定装置では、真円度の測定精度を向上させるために、被測定ワークの回転中心軸と、被測定ワークの内周面の軸線との軸合わせを正確に行なうことが不可欠であるが、この軸合わせ作業には、非常に時間と労力がかかる。従って、大量の被測定ワークの真円度の全数検査を実施することが困難であった。   In this type of roundness measuring device, in order to improve the measurement accuracy of roundness, it is necessary to accurately align the rotation center axis of the workpiece to be measured with the axis line of the inner peripheral surface of the workpiece to be measured. Although essential, this alignment is very time consuming and labor intensive. Therefore, it has been difficult to conduct an exhaustive inspection of the roundness of a large number of measured workpieces.

これに対して、例えば、特許文献2では、被測定ワークを回転させずに、内周面の真円度を測定する真円度測定装置が提案されている。この真円度測定装置は、被測定ワークの内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えている。   On the other hand, for example, Patent Document 2 proposes a roundness measuring device that measures the roundness of the inner peripheral surface without rotating the workpiece to be measured. The roundness measuring apparatus comprises: light irradiating means for illuminating the inner peripheral surface of the workpiece to be measured; imaging means for imaging the inner peripheral surface to form image data; and the inner periphery based on the image data And computing means for computing the roundness of the surface.

特開2009−257887号公報JP, 2009-257887, A 特開2008−209380号公報JP, 2008-209380, A

しかしながら、特許文献2の真円度測定装置の被測定ワークの内面は、有底円筒面状でなければならない。これは、この真円度測定装置が、照射する光を被測定ワークの内径より小さい径のストレートビームとして、被測定ワークの内周面の奥に入射させて、底面で反射された光による像を撮像するからである。従って、この真円度測定装置は、底面が無い円筒面状の内面を有するパイプ状等のワークを、測定することができない。また、この真円度測定装置は、底面で反射された光による像を撮像するため、被測定ワークの内周面の開口部周辺の真円度しか測定できない。このため、この真円度測定装置は、被測定ワークの内周面の奥の方の真円度、円筒度、同軸度は測定できない。つまり、特許文献2の真円度測定装置は、真円度測定装置としては未だ改良の余地を残すものであった。   However, the inner surface of the workpiece to be measured of the roundness measuring device of Patent Document 2 must have a bottomed cylindrical surface. This is because this roundness measuring device causes the light to be irradiated as a straight beam of a diameter smaller than the inner diameter of the workpiece to be measured and is incident on the back of the inner peripheral surface of the workpiece to be measured, and an image by the light reflected on the bottom surface The image of the Therefore, this roundness measuring device can not measure a work such as a pipe having a cylindrical surface without a bottom surface. Moreover, since this roundness measuring device picks up the image by the light reflected by the bottom surface, it can only measure the roundness around the opening of the inner peripheral surface of the workpiece to be measured. For this reason, this roundness measuring device can not measure the roundness, the degree of cylindricity, and the degree of coaxiality of the inner peripheral surface of the workpiece to be measured. That is, the roundness measuring apparatus of Patent Document 2 still leaves room for improvement as the roundness measuring apparatus.

本発明は、上記事情に鑑み、真円度測定装置において、軸合わせ作業を不要として全数検査を可能にすると共に、パイプ状等のワークでも測定可能にすることを技術的課題とする。   SUMMARY OF THE INVENTION In view of the above-described circumstances, the present invention has a technical object to enable 100% inspection without requiring an axis alignment operation in a roundness measuring apparatus and to enable measurement of even a pipe-like work or the like.

前記課題を解決するために創案された本発明に係る真円度測定装置は、被測定ワークの円筒面状の内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えた真円度測定装置において、前記内周面の軸線の方向に延びる基準軸と、前記内周面の内側を前記基準軸の方向に沿って、前記内周面を照らしている前記光照射手段を移動させる第1移動手段と、前記基準軸の方向に沿って、前記撮像手段を移動させる第2移動手段とを備え、前記光照射手段と前記撮像手段とが一定の距離を維持しつつ移動するように構成されたことに特徴づけられる。ここで、「内周面の軸線の方向に延びる基準軸」には、内周面の軸線の方向に対して傾斜した基準軸も含む(以下、同様)。また、真円度の定義及び表示は、JIS B 0621:1984に準拠する。   The roundness measuring apparatus according to the present invention, which was devised to solve the above problems, comprises: a light irradiating means for illuminating the cylindrical inner peripheral surface of the workpiece to be measured; and an image by imaging the inner peripheral surface A reference axis extending in the direction of the axis of the inner circumferential surface, in a roundness measuring device comprising an imaging means for forming data, and a computing means for computing the circularity of the inner circumferential surface based on the image data. And, first moving means for moving the light emitting means illuminating the inner circumferential surface along the direction of the reference axis along the direction of the reference axis, and the imaging along the direction of the reference axis A second moving means for moving the means is provided, and the light emitting means and the imaging means are configured to move while maintaining a constant distance. Here, the “reference axis extending in the direction of the axis of the inner peripheral surface” includes a reference axis inclined with respect to the direction of the axis of the inner peripheral surface (the same applies hereinafter). Moreover, the definition and display of roundness conform to JIS B 0621: 1984.

この構成によれば、内周面の画像データに基づいて内周面の真円度を演算するので、被測定ワークを回転させる必要が無い。そのため、軸合わせ作業を不要とすることができる。従って、真円度の測定に要する時間を短縮できるので、被測定ワークの全数検査が可能になる。   According to this configuration, since the roundness of the inner peripheral surface is calculated based on the image data of the inner peripheral surface, there is no need to rotate the workpiece to be measured. Therefore, alignment work can be made unnecessary. Therefore, since the time required to measure the roundness can be shortened, 100% inspection of the workpiece to be measured becomes possible.

また、内周面の内側を、内周面を照らしている光照射手段が移動し、光照射手段と撮像手段とが一定の距離を維持しつつ移動するので、パイプ状等のワークでも真円度を測定できる。また、円筒度、同軸度も測定可能となる。   In addition, the light irradiation means that illuminates the inner peripheral surface moves inside the inner peripheral surface, and the light irradiation unit and the imaging unit move while maintaining a certain distance, so even a pipe-like work is a perfect circle. The degree can be measured. In addition, cylindricity and coaxiality can also be measured.

また、撮像手段の視野内に、真円度を測定すべき内周面が入るならば、被測定ワークの軸線が基準軸に垂直な方向でどこに位置していても、真円度を測定することができる。従って、被測定ワークに対する基準軸に垂直な方向の位置決めを高精度に行なう必要が無い。   Also, if the inner peripheral surface to measure roundness is included in the field of view of the imaging means, measure roundness regardless of where the axis of the workpiece to be measured is in the direction perpendicular to the reference axis be able to. Therefore, it is not necessary to perform positioning in the direction perpendicular to the reference axis with respect to the workpiece to be measured with high accuracy.

上記の構成において、前記基準軸に沿った方向で見た場合に、前記光照射手段が、同時に放射状に光を照射してもよい。   In the above configuration, when viewed in the direction along the reference axis, the light emitting unit may simultaneously radiate light radially.

この構成であれば、光照射手段が光を走査して内周面に照射する場合に比較して、内周面の画像データを短時間で得ることができる。   With this configuration, it is possible to obtain image data of the inner peripheral surface in a short time as compared with the case where the light irradiation unit scans light and irradiates the inner peripheral surface.

上記の構成において、前記光照射手段と前記撮像手段とを連結する連結部材が設けられ、前記第2移動手段が前記第1移動手段を兼ねてもよい。   In the above configuration, a connection member may be provided to connect the light emitting unit and the imaging unit, and the second moving unit may double as the first moving unit.

この構成であれば、連結部材によって、光照射手段と撮像手段が一定の距離を維持できて、第2移動手段が第1移動手段を兼ねることができるので、製造コストを削減できる。また、内周面の一端の開口部から、撮像手段に対して一定の距離を維持したまま光照射手段を内周面の内側に導入することが容易である。従って、内周面の一端が閉塞した被測定ワークの場合でも、容易に真円度を測定することができる。   With this configuration, the light emitting means and the imaging means can maintain a constant distance by the connecting member, and the second moving means can also serve as the first moving means, so that the manufacturing cost can be reduced. In addition, it is easy to introduce the light irradiation means inside the inner peripheral surface while maintaining a fixed distance from the opening at one end of the inner peripheral surface. Therefore, even in the case of the workpiece to be measured in which one end of the inner peripheral surface is closed, the roundness can be easily measured.

上記の構成において、前記演算手段が、前記基準軸に対する前記軸線の傾斜角度に基づき前記真円度を補正してもよい。   In the above configuration, the calculation means may correct the roundness based on an inclination angle of the axis with respect to the reference axis.

この構成であれば、基準軸に対して内周面の軸線が傾斜している場合でも真円度を正確に測定することが可能になる。   With this configuration, it is possible to accurately measure the roundness even when the axis of the inner peripheral surface is inclined with respect to the reference axis.

上記の構成において、前記演算手段が、前記基準軸に対する垂直面のうちの異なる面上での前記軸線の位置に基づき前記傾斜角度を算出してもよい。   In the above configuration, the calculation means may calculate the tilt angle based on the position of the axis on a different surface of the vertical surface with respect to the reference axis.

この構成であれば、傾斜角度を容易に算出することができる。   With this configuration, the inclination angle can be easily calculated.

上記の構成において、前記演算手段が、前記基準軸に対する垂直面上での位置について、前記軸線の位置を、マスターワークにおける円筒面状内周面の軸線の位置を基準にして算出してもよい。   In the above configuration, the position of the axis may be calculated based on the position of the axis of the cylindrical inner circumferential surface of the master work with respect to the position on the vertical plane with respect to the reference axis. .

この構成であれば、真円度をより正確に測定することが可能になる。   With this configuration, it is possible to measure the roundness more accurately.

以上のように本発明によれば、真円度測定装置において、軸合わせ作業を不要として全数検査を可能にすると共に、非接触でパイプ状等のワークでも測定可能にすることができる。また、真円度の他、内径、円筒度、同軸度も同時に測定可能になる。   As described above, according to the present invention, in the roundness measuring apparatus, it is possible to perform 100% inspection without the need for the axis alignment operation, and also to measure even non-contact, pipe-like workpieces and the like. In addition to the roundness, the inner diameter, the cylindricity, and the coaxiality can also be measured simultaneously.

本発明の実施形態に係る真円度測定装置を示す概略部分断面側面図である。It is a schematic partial cross section side view showing a roundness measuring device concerning an embodiment of the present invention. (A)は、光照射手段の周辺の概略平面図、(B)は、光照射手段の周辺の概略側面図である。(A) is a schematic plan view of a periphery of a light irradiation means, (B) is a schematic side view of a periphery of a light irradiation means. 撮像手段により形成される画像データを示す概略図であり、(A)が、被測定ワークの軸線が基準軸に対して傾斜していない場合、(B)が、被測定ワークの軸線が基準軸に対して傾斜している場合である。It is the schematic which shows the image data formed of an imaging means, Comprising: When (A) is not inclined with respect to the reference axis of the to-be-measured workpiece | work, (B), the to-be-measured workpiece's axis line is a reference axis When it is inclined to the 画像データに連結部材の影が現れた状態を示す概略図であり、(A)が、連結部材が3つの場合、(B)が、連結部材が4つの場合である。It is the schematic which shows the state in which the shadow of the connection member appeared in image data, (A) is a case where there are three connection members, (B) is a case where there are four connection members. 表示手段による偏差の二次元表示例を示す概略図である。It is the schematic which shows the example of a two-dimensional display of the deviation by a display means. 被測定ワークの軸線が基準軸に対して傾斜している状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state which the axis line of to-be-measured workpiece | work inclines with respect to a reference axis. 座標の値の具体例を示す表である。It is a table | surface which shows the specific example of the value of a coordinate. 図7のデータのグラフである。It is a graph of the data of FIG. 表示手段による偏差または半径の三次元表示例を示す概略図である。It is the schematic which shows the example of a three-dimensional display of the deviation or radius by a display means.

以下、本発明を実施するための形態について図面に基づき説明する。   Hereinafter, an embodiment for carrying out the present invention will be described based on the drawings.

図1は、本発明の実施形態に係る真円度測定装置1を示す概略部分断面側面図である。真円度測定装置1によって測定される被測定ワークWは、円筒面形状の内周面Waを有する。被測定ワークWは、内周面Waの軸線Wbが上下方向となるように配置される。本実施形態では、被測定ワークWは円管状体であるが、円筒面形状の内周面を有するものであれば、例えば、外面の横断面が多角形状のものであってもよい。   FIG. 1 is a schematic partial cross-sectional side view showing a roundness measuring apparatus 1 according to an embodiment of the present invention. The workpiece to be measured W measured by the roundness measuring apparatus 1 has an inner peripheral surface Wa having a cylindrical surface shape. The workpiece W to be measured is disposed such that the axis Wb of the inner circumferential surface Wa is in the vertical direction. In the present embodiment, the workpiece W to be measured is a circular tubular body, but as long as it has a cylindrical surface-shaped inner peripheral surface, for example, the cross section of the outer surface may be polygonal.

真円度測定装置1は、被測定ワークWの内周面Waを照らすための光照射手段2と、内周面Waを撮像して画像データを形成する撮像手段3と、前記画像データに基づいて内周面Waの真円度等を演算する演算手段4と、撮像手段3を移動させるための第2移動手段としての移動手段5と、被測定ワークWを支持するための支持手段6と、演算手段4で演算された真円度を表示する表示手段7とを主要な構成要素とする。   The roundness measuring apparatus 1 is based on the light irradiator 2 for illuminating the inner circumferential surface Wa of the workpiece W to be measured, the imaging device 3 for imaging the inner circumferential surface Wa to form image data, and the image data Operation means 4 for calculating the roundness or the like of the inner peripheral surface Wa, moving means 5 as a second moving means for moving the imaging means 3, and support means 6 for supporting the workpiece W to be measured The display means 7 for displaying the roundness calculated by the calculation means 4 is the main component.

また、真円度測定装置1は、内周面Waの軸線Wbの方向に延びる基準軸Aを備える。基準軸Aは、真円度の測定の際に基準となる仮想の軸であり、後述する座標のZ軸に相当する。この基準軸Aの(延在)方向は、上下方向である。   The roundness measuring device 1 also includes a reference axis A extending in the direction of the axis Wb of the inner circumferential surface Wa. The reference axis A is a virtual axis which is a reference at the time of measurement of roundness, and corresponds to a Z axis of coordinates described later. The (extension) direction of the reference axis A is the vertical direction.

移動手段5は、不図示の制御手段で制御されることによって、ガイド部5aに沿って移動部5bが移動するように構成されており、例えば単軸ロボット等で構成される。光照射手段2と撮像手段3とは、連結部材8で連結されており、撮像手段3が移動部5bに固定されている。連結部材8の連結によって、移動手段5は、光照射手段2を移動させるための第1移動手段を兼ねる。   The moving unit 5 is configured to move the moving unit 5b along the guide unit 5a by being controlled by a control unit (not shown), and is configured by, for example, a single-axis robot. The light irradiation means 2 and the imaging means 3 are connected by a connecting member 8, and the imaging means 3 is fixed to the moving part 5b. By the connection of the connecting member 8, the moving means 5 doubles as a first moving means for moving the light emitting means 2.

真円度等の測定時には、移動部5bがガイド部5aに沿って移動することにより、内周面Waの内側を基準軸Aの方向に沿って、内周面Waを照らしている光照射手段2が移動する。そして、光照射手段2に対して一定の距離を維持しつつ、撮像手段3が基準軸Aの方向に沿って移動する。   At the time of measurement of roundness etc., the light irradiation means which illuminates the inner circumferential surface Wa along the direction of the reference axis A by moving the moving portion 5b along the guide portion 5a. 2 moves. Then, the imaging means 3 moves along the direction of the reference axis A while maintaining a constant distance with respect to the light emitting means 2.

載置台等の支持手段6には、被測定ワークWが載置される凹部6aが形成されている。凹部6aは、被測定ワークWの下端面Wcを支持する円形で平面状の底面(支持面6b)と、被測定ワークWを位置決めする円筒状の側面6cを有する。支持面6bは、基準軸Aに対し垂直な面であり、支持面6bの中心は、基準軸A上にある。   In the support means 6 such as the mounting table, a concave portion 6a on which the workpiece W to be measured is mounted is formed. The recess 6 a has a circular flat bottom surface (support surface 6 b) for supporting the lower end surface Wc of the workpiece W to be measured and a cylindrical side surface 6 c for positioning the workpiece W to be measured. The support surface 6 b is a surface perpendicular to the reference axis A, and the center of the support surface 6 b is on the reference axis A.

なお、被測定ワークWの軸線Wbと支持面6bの中心とを合わせることは、非常に難しい。これは、生産性を上げるために、凹部6aの側面6cと被測定ワークWの外周面との間に隙間Gを設けて、被測定ワークWの設置作業を実施し易くしなければならないからである。   It is very difficult to align the axis Wb of the workpiece W to be measured and the center of the support surface 6b. This is because it is necessary to provide a gap G between the side surface 6c of the recess 6a and the outer peripheral surface of the workpiece W to enhance productivity, and to facilitate the installation work of the workpiece W. is there.

真円度等の測定時に、光照射手段2は、光Lを内周面Waに照射する。詳述すれば、光照射手段2は、基準軸Aから内周面Waに向かう向きに、基準軸Aに垂直な方向に沿って光Lを放出する。従って、内周面Waにおける基準軸A方向の所定位置の部位(内周面Wa1)のみに光Lは照射される。なお、光Lは、本実施形態ではレーザ光であるが、撮像手段3で撮像可能なものであれば、これに限定されるものでは無い。   At the time of measurement of roundness etc., the light irradiation means 2 irradiates the light L to the inner peripheral surface Wa. More specifically, the light emitting means 2 emits the light L along the direction perpendicular to the reference axis A in the direction from the reference axis A toward the inner circumferential surface Wa. Therefore, the light L is irradiated only to the part (inner peripheral surface Wa1) of the predetermined position in the reference axis A direction in the inner peripheral surface Wa. The light L is a laser light in the present embodiment, but the light L is not limited to this as long as it can be imaged by the imaging unit 3.

図2(A)に示すように、基準軸Aに沿った方向で見た場合に、光照射手段2は、同時に放射状に全方位に向かって光Lを照射する。また、図2(B)に示すように、光照射手段2は、レーザ光発射部2aと、レーザ光発射部2aから発射されたレーザ光Laを反射するプリズム2bと、レーザ光発射部2aとプリズム2bを接続する無色透明な円筒体2cを有する。   As shown in FIG. 2A, when viewed in the direction along the reference axis A, the light emitting means 2 simultaneously radiates light L toward all directions in a radial manner. Further, as shown in FIG. 2B, the light irradiation means 2 includes a laser light emitting part 2a, a prism 2b for reflecting the laser light La emitted from the laser light emitting part 2a, and a laser light emitting part 2a. It has a colorless and transparent cylindrical body 2c connecting the prism 2b.

撮像手段3は、光Lを照射された内周面Wa(Wa1)を撮像して画像データを形成するものであり、例えばCCDカメラで構成される。なお、撮像手段3の視野の中心は、基準軸A上にある。   The imaging means 3 images the inner circumferential surface Wa (Wa1) irradiated with the light L to form image data, and is formed of, for example, a CCD camera. The center of the field of view of the imaging means 3 is on the reference axis A.

光照射手段2から内周面Wa(Wa1)に向かって照射された光Lは、内周面Wa(Wa1)に当たって反射する。そのため、撮像手段3によって形成された画像データでは、図3(A)に示すように、反射された光に基づく明部Bが環状に形成される。   The light L irradiated from the light irradiator 2 toward the inner circumferential surface Wa (Wa1) strikes the inner circumferential surface Wa (Wa1) and is reflected. Therefore, in the image data formed by the imaging means 3, as shown in FIG. 3A, the bright part B based on the reflected light is formed in a ring shape.

演算手段4は、撮像手段3によって形成された画像データに基づいて内周面Wa(Wa1)の真円度を演算するものであり、例えばマイコンやパソコン等で構成される。次に、演算手段4の演算方法について説明する。   The computing means 4 computes the roundness of the inner circumferential surface Wa (Wa1) based on the image data formed by the imaging means 3, and is constituted of, for example, a microcomputer, a personal computer or the like. Next, the calculation method of the calculation means 4 will be described.

図3(A)に示す画像データにおいて、明部Bの外周縁Baが、実際に内周面Wa(Wa1)が存在する位置と考えられる。そこで、まず、この外周縁Baで形成される円の重心の位置を求め、その重心の位置を外周縁Baで形成される円の中心C(内周面Wa1の中心)の位置とする。そして、この中心Cの位置から外周縁Baまでの距離(半径の実測値R)を、所定の周方向位置(0°)から所定の角度ごとに360°まで計測する。そして、半径実測値Rのうちの最大値と最小値の差を真円度として算出する。   In the image data shown in FIG. 3A, the outer peripheral edge Ba of the bright portion B is considered to be a position where the inner peripheral surface Wa (Wa1) actually exists. Therefore, first, the position of the center of gravity of the circle formed by the outer peripheral edge Ba is determined, and the position of the center of gravity is made the position of the center C of the circle formed by the outer peripheral edge Ba (the center of the inner peripheral surface Wa1). Then, the distance (measured value R of the radius) from the position of the center C to the outer peripheral edge Ba is measured from a predetermined circumferential direction position (0 °) up to 360 ° at every predetermined angle. Then, the difference between the maximum value and the minimum value of the actual radius R is calculated as the degree of roundness.

また、この計測された半径実測値Rから、内周面Waの半径の設計値(基準値)を引いたものを偏差として算出する。   Further, a value obtained by subtracting a design value (reference value) of the radius of the inner circumferential surface Wa from the measured radius actual value R is calculated as a deviation.

なお、この時の360°分の半径実測値Rは、全て記録されており、2次元形状データとして利用できる。これは、基準軸A(Z軸)方向を加味すると3次元の内径データとして利用できる。   In addition, all the radius actual value R for 360 degrees at this time are recorded, and can be utilized as two-dimensional shape data. This can be used as three-dimensional inner diameter data in consideration of the reference axis A (Z axis) direction.

これらの一連の撮像手段3による画像データ形成と演算手段4の演算を、基準軸Aの方向で所定のピッチごとに繰り返し行なうことで、基準軸Aの方向で所定のピッチごとに真円度及び偏差を算出する。より具体的には、内周面Waにおける基準軸A方向の所定ピッチごとの位置の部位Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの真円度等を算出する。   By repeating the image data formation by the series of image pickup means 3 and the calculation of the calculation means 4 at predetermined pitches in the direction of the reference axis A, roundness and roundness at predetermined pitches in the direction of the reference axis A can be obtained. Calculate the deviation. More specifically, each of the portions Wa1, Wa2, Wa3,... Wa (N-2), Wa (N-1), Wa N at positions at predetermined pitches in the reference axis A direction on the inner peripheral surface Wa. Calculate roundness etc.

この算出された真円度及び偏差を、モニター等の表示手段7に表示する。基準軸A方向の所定の位置における偏差を表示する場合には、例えば、図5に示すように、基準となる真円E(全ての周方向位置での偏差が0)を描画し、これに対して、周方向位置ごとの偏差Fを表示する(二次元表示)。更に、図9に示すように、基準軸A方向の所定ピッチごとの位置における偏差または半径実測値Rを、円筒の鳥瞰図として三次元表示することもできる。この場合、偏差が小さい(真円に近い)領域Pa、偏差が大きい(真円から離れている)領域Pb、偏差が領域Paと領域Pbの中間である領域Pcを色分けして表示することができる。色分けとしては、例えば、領域Paを緑色、領域Pbを赤色、領域Pcを黄色とすることができる。   The calculated roundness and deviation are displayed on the display means 7 such as a monitor. When displaying the deviation at a predetermined position in the direction of the reference axis A, for example, as shown in FIG. 5, a true circle E (the deviation at all circumferential positions is 0) as a reference is drawn. On the other hand, the deviation F for each circumferential position is displayed (two-dimensional display). Furthermore, as shown in FIG. 9, the deviation or the actual radius R at the position of each predetermined pitch in the reference axis A direction can be three-dimensionally displayed as a bird's-eye view of a cylinder. In this case, the area Pa with a small deviation (close to a perfect circle), the area Pb with a large deviation (far from a perfect circle), and the area Pc with a deviation between the area Pa and the area Pb are displayed in different colors it can. As the color coding, for example, the area Pa can be green, the area Pb can be red, and the area Pc can be yellow.

また、内周面Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの真円度から、立体的な真円度である円筒度を得ることができ、これを表示手段7に表示してもよい。また、内周面Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの中心C(C1,C2,C3・・・C(N−2),C(N−1),CN)から、同軸度を算出することができ、これを表示手段7に表示してもよい。   In addition, obtain cylindricality that is three-dimensional roundness from each roundness of the inner circumferential surfaces Wa1, Wa2, Wa3, ... Wa (N-2), Wa (N-1), and WaN. And may be displayed on the display means 7. Also, the center C (C1, C2, C3... C (N-2), each of the inner peripheral surfaces Wa1, Wa2, Wa3, ... Wa (N-2), Wa (N-1), and WaN. The degree of coaxiality can be calculated from C (N-1), CN), and this may be displayed on the display means 7.

また、上述したように、真円度測定装置1では、基準軸Aの方向で所定のピッチごとに真円度及び偏差を算出するが、この所定のピッチは任意に細かくできる。例えば、精度良く偏差を測定して平面形状データを形成し、この平面形状データを1/100ミリピッチで3次元化すれば、三次元形状データを得ることができ、真円度測定装置1を三次元形状計測機として応用することができる。勿論、この場合でも、計測ピッチは1/100ミリピッチに限定されず、更に1/1000ミリピッチ、1/10000ミリピッチと細かくしたり、逆に1/10ミリピッチと荒くしたりしてもよく、任意のピッチで計測することができる。   Further, as described above, the roundness measuring apparatus 1 calculates the roundness and the deviation for each predetermined pitch in the direction of the reference axis A, but the predetermined pitch can be arbitrarily small. For example, if the deviation is accurately measured to form plane shape data, and this plane shape data is three-dimensionally formed at 1/100 mm pitch, three-dimensional shape data can be obtained. It can be applied as an original shape measuring machine. Of course, even in this case, the measurement pitch is not limited to 1/100 mm pitch, and may be further reduced to 1/1000 mm pitch, 1 / 10,000 mm pitch, or roughly 1/10 mm pitch. It can measure by pitch.

なお、光照射手段2と撮像手段3との位置関係を安定化するためには、連結部材8を基準軸Aの周方向に等間隔で3つ以上配設することが好ましい。しかし、連結部材8が非透明の材質の場合、内周面Waからの反射光を遮るため、図4に示すように、円環状の明部Bにおいて、連結部材8の影に起因して欠けSが生じる。図4(A)に示すように、連結部材8が周方向に等間隔で3つ配置された場合には、明部Bの欠けSに起因して、3つの半径が測定できなくなり、3本の直径Dが求められなくなる。   In order to stabilize the positional relationship between the light emitting unit 2 and the imaging unit 3, it is preferable to arrange three or more connecting members 8 at equal intervals in the circumferential direction of the reference axis A. However, if the connecting member 8 is a non-transparent material, it blocks the reflected light from the inner peripheral surface Wa, so as shown in FIG. S occurs. As shown in FIG. 4A, in the case where three connecting members 8 are arranged at equal intervals in the circumferential direction, three radii can not be measured due to the lack S of the bright portion B, and three connecting members 8 can not be measured. The diameter D of can not be determined.

これに対して、図4(B)に示すように、連結部材8が周方向に等間隔で4つ配設された場合には、明部Bの欠けSに起因して、測定できない半径は4つとなるが、この測定できない4つの半径は2つの直径Dに相当するので、求められない直径Dの数は2つである。従って、真円度測定装置1で直径Dを求めることが想定される場合には、連結部材8は、周方向に等間隔で4つ配設されることが好ましい。なお、ここでは、理解しやすいように、明部Bの欠けS1つによって、1つの半径が測定できないものとして説明しているが、厳密には、欠けSの大きさや、半径を何度ごとに測定するかによって測定できない半径の数は異なる。   On the other hand, as shown to FIG. 4 (B), when the connection member 8 is arrange | positioned four at equal intervals in the circumferential direction, the radius which can not be measured due to the notch S of the bright part B is There are four, but since the four unmeasurable four radii correspond to two diameters D, the number of unneeded diameters D is two. Therefore, in the case where it is assumed that the diameter D is to be determined by the roundness measuring device 1, it is preferable that four connecting members 8 be arranged at equal intervals in the circumferential direction. Here, for the sake of easy understanding, although it is described that one radius can not be measured due to the lack S1 of the bright portion B, strictly speaking, the size of the lack S and the radius The number of radii that can not be measured varies depending on whether it is measured.

ところで、被測定ワークWの内周面Waの軸線Wbが基準軸Aに同軸又は平行であれば、理論上、上述の演算で正確な真円度が得られるが、図6に示すように、内周面Waの軸線Wbが基準軸Aに対して傾斜している場合には、上述の演算だけでは正確な真円度が得られない。   By the way, if the axis Wb of the inner circumferential surface Wa of the workpiece W to be measured is coaxial or parallel to the reference axis A, theoretically the above-mentioned calculation can obtain an accurate roundness, but as shown in FIG. When the axis Wb of the inner circumferential surface Wa is inclined with respect to the reference axis A, an accurate roundness can not be obtained only by the above-described calculation.

これは、内周面Waの真円度は、被測定ワークWの内周面Waの軸線Wbに垂直な方向の断面で測定しなければならないのに対して、真円度測定装置1による測定では、内周面Waの真円度を、基準軸Aに対して垂直な方向の断面(画像データ)に基づき測定するからである。   This is because the roundness of the inner circumferential surface Wa has to be measured in a cross section in the direction perpendicular to the axis Wb of the inner circumferential surface Wa of the workpiece W to be measured, while the measurement by the roundness measuring apparatus 1 This is because the roundness of the inner circumferential surface Wa is measured based on the cross section (image data) in the direction perpendicular to the reference axis A.

このような理由から、内周面Waの軸線Wbが基準軸Aに対して傾斜していることが検出される場合には、演算手段4が、基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正するようにしてもよい。   For this reason, when it is detected that the axis Wb of the inner circumferential surface Wa is inclined with respect to the reference axis A, the computing means 4 calculates the axis Wb of the inner circumferential surface Wa with respect to the reference axis A. The roundness may be corrected based on the inclination angle θ.

なお、内周面Waの軸線Wbが基準軸Aに対して傾斜していることは、同軸度を求めた結果から検出できる。例えば、図6で、内周面Wa1の中心C1と、内周面WaNの中心CNの2点間を結ぶ直線と基準軸Aとの傾斜角度θが、内周面Waの軸線Wbの基準軸Aに対する傾斜として検出される。   The fact that the axis Wb of the inner circumferential surface Wa is inclined with respect to the reference axis A can be detected from the result of finding the coaxiality. For example, in FIG. 6, the inclination angle θ between the reference axis A and the straight line connecting the center C1 of the inner circumferential surface Wa1 and the two points of the center CN of the inner circumferential surface WaN is the reference axis of the axis Wb of the inner circumferential surface Wa. Detected as a slope to A.

基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正する方法を次に具体例を挙げて説明する。   Next, a method of correcting the roundness on the basis of the inclination angle θ of the axis Wb of the inner peripheral surface Wa with respect to the reference axis A will be described with reference to a specific example.

具体例として、基準軸Aの方向のレベル(高さ)0mm〜400mm間を所定ピッチ(ここでは1mm)で測定する場合について考える。   As a specific example, consider the case where a level (height) of 0 mm to 400 mm in the direction of the reference axis A is measured at a predetermined pitch (1 mm in this case).

最初に、マスターワークMWを測定する。マスターワークMWは、補正のために形成されたワークであり、その内周面Waの横断面が実質的に真円状であり、その軸線Wbが下端面Wcに対して実質的に垂直となっている。演算手段4は、基準軸Aの方向の0mm〜400mm間を1mmごとに、上記と同様に、マスターワークMWの内周面Waの横断面の中心Cの位置を求める。   First, measure the master work MW. The master work MW is a work formed for correction, and the cross section of the inner circumferential surface Wa is substantially circular, and the axis Wb is substantially perpendicular to the lower end face Wc. ing. The calculation means 4 obtains the position of the center C of the cross section of the inner circumferential surface Wa of the master work MW in the same manner as described above, for every 1 mm between 0 mm and 400 mm in the direction of the reference axis A.

具体的には、図7に示すように、基準軸Aを、座標のZ軸とし、内周面Waの横断面(Z軸に垂直な断面)の中心Cの位置(Xm,Ym)を算出し、記憶する。なお、理解しやすいように、この具体例では、マスターワークMWの内周面Waの横断面の中心Cの座標(Xm,Ym)は、全て(0.00,0.00)としている。   Specifically, as shown in FIG. 7, with the reference axis A as the Z axis of coordinates, the position (Xm, Ym) of the center C of the transverse cross section (cross section perpendicular to the Z axis) of the inner circumferential surface Wa is calculated. And remember. For easy understanding, in this specific example, the coordinates (Xm, Ym) of the center C of the cross section of the inner circumferential surface Wa of the master work MW are all (0.00, 0.00).

次に、被測定ワークWを測定する。演算手段4は、基準軸Aの方向の0mm〜400mm間を1mmごとに、上記と同様に、被測定ワークWの内周面Waの横断面(Z軸に垂直な断面)の中心Cの位置を求める。   Next, the workpiece W to be measured is measured. The calculation means 4 positions the center C of the cross section (the cross section perpendicular to the Z axis) of the inner peripheral surface Wa of the workpiece W to be measured in the same manner as described above every 0 mm to 400 mm in the direction of the reference axis A Ask for

そして、得られた中心CのXY座標の値からマスターワークMWの中心CのXY座標の値(0.00,0.00)を差し引いたものを算出し、被測定ワークWの中心Cの座標(Xw,Yw)として記憶する。   Then, a value obtained by subtracting the value (0.00, 0.00) of the XY coordinates of the center C of the master work MW from the value of the XY coordinates of the center C obtained is calculated, and the coordinates of the center C of the workpiece W to be measured It stores as (Xw, Yw).

つまり、ここでは、演算手段4は、基準軸A(Z軸)に対する垂直面(XY座標平面又はこれに平行な平面)上での位置について、被測定ワークWにおける内周面Waの軸線Wb(中心C)の位置(Xw,Yw)を、マスターワークMWにおける円筒面状内周面Waの軸線Wb(中心C)の位置(Xm,Ym)を基準にして算出していることになる。   That is, in this case, the calculation means 4 is the axis Wb of the inner peripheral surface Wa of the work W to be measured with respect to the position on the vertical plane (XY coordinate plane or plane parallel to this) with respect to the reference axis A (Z axis). The position (Xw, Yw) of the center C) is calculated based on the position (Xm, Ym) of the axis Wb (center C) of the cylindrical inner circumferential surface Wa of the master work MW.

図7に示すように、Z=0では、(Xw,Yw)=(−1.00,0.00)であり、Z=400では、(Xw,Yw)=(1.00,0.00)である。Z=0とZ=400でYwの値は0.00なので、被測定ワークWの軸線Wbは、XZ座標平面上で基準軸A(Z軸)に対して傾斜していることになる。この算出結果を、グラフとして示したものが図8である。図8から理解できるように、基準軸A(Z軸)に対する軸線Wbの傾斜角度をθとすると、tanθ=2.00/400となるので、傾斜角度θ=arctan(2.00/400)となり、この式から傾斜角度θを算出する。   As shown in FIG. 7, (Xw, Yw) = (− 1.00, 0.00) at Z = 0, and (Xw, Yw) = (1.00, 0.00) at Z = 400. ). Since the value of Yw is 0.00 at Z = 0 and Z = 400, the axis line Wb of the workpiece W to be measured is inclined with respect to the reference axis A (Z axis) on the XZ coordinate plane. It is FIG. 8 which showed this calculation result as a graph. As can be understood from FIG. 8, assuming that the inclination angle of the axis Wb with respect to the reference axis A (Z axis) is θ, tan θ = 2.00 / 400, so the inclination angle θ = arctan (2.00 / 400). The inclination angle θ is calculated from this equation.

つまり、ここでは、演算手段4が、基準軸A(Z軸)に対する垂直面(XY座標平面又はこれに平行な平面)のうちの異なる面上での被測定ワークWの軸線Wb(中心C)の位置(Xw,Yw)に基づき傾斜角度θを算出していることになる。 That is, here, the calculation means 4 is the axis line Wb (center C) of the work W to be measured on a different plane of a plane perpendicular to the reference axis A (Z axis) (XY coordinate plane or plane parallel thereto). The inclination angle θ is calculated based on the position (Xw, Yw) of

被測定ワークWの軸線WbがXZ座標平面上で基準軸A(Z軸)に対して傾斜している場合、図3(B)に示すように、撮像手段3で形成される被測定ワークWの内周面Waの画像データの明部Bは、X軸方向に長軸をもつ楕円形状となる。図6に示す関係から分かるように、求めるべきX軸方向の半径をRrとすると、画像に基づき算出されるX軸方向の半径Raに対して、Rr=Ra×cosθの関係となるので、傾斜角度θと半径Raから半径Rrが求まる。この半径Rrから上記と同様に真円度を求めることができる。この結果、演算手段4が、基準軸A(Z軸)に対する被測定ワークWにおける軸線Wbの傾斜角度θに基づき真円度を補正したことになる。   When the axis Wb of the work W to be measured is inclined with respect to the reference axis A (Z axis) on the XZ coordinate plane, the work W to be measured formed by the imaging means 3 as shown in FIG. 3 (B) The bright portion B of the image data of the inner circumferential surface Wa has an elliptical shape having a major axis in the X-axis direction. As can be seen from the relationship shown in FIG. 6, assuming that the radius in the X-axis direction to be determined is Rr, the radius Ra in the X-axis direction calculated based on the image has a relationship of Rr = Ra × cos θ. The radius Rr is determined from the angle θ and the radius Ra. The roundness can be determined from the radius Rr in the same manner as described above. As a result, the calculating means 4 corrects the roundness based on the inclination angle θ of the axis Wb of the workpiece W to be measured with respect to the reference axis A (Z axis).

以上のように構成された真円度測定装置1では、以下の効果を享受できる。   The roundness measuring apparatus 1 configured as described above can receive the following effects.

被測定ワークWの内周面Wa1,Wa2,・・・WaN周辺の反射光による画像データに基づいて内周面Wa1,Wa2,・・・WaNの真円度等を演算するので、被測定ワークWを回転させる必要が無い。そのため、軸合わせ作業を不要とすることができる。そして、光照射手段2が内周面Waの内側を移動して、内周面Wa1,Wa2,・・・WaNの各部の反射光による画像を撮像できる。これにより、この画像に基づき真円度を測定でき、更には、真円度の立体版ともいえる円筒度や同軸度を測定できる。また、光照射手段2と撮像手段3とが一定の距離を維持しつつ移動するので、撮像手段3で撮像された内周面Waの画像が一定の大きさとなる。つまり、光照射手段2と撮像手段3との距離の変化による画像の大きさの変化が無い。また、基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正することによって、真円度の測定精度が向上する。   Since the roundness etc. of the inner peripheral surfaces Wa1, Wa2,... WaN are calculated based on the image data by the reflected light around the inner peripheral surfaces Wa1, Wa2,. There is no need to rotate W. Therefore, alignment work can be made unnecessary. Then, the light irradiator 2 moves inside the inner circumferential surface Wa, and can pick up an image by the reflected light of each portion of the inner circumferential surfaces Wa1, Wa2,. Thereby, the roundness can be measured based on this image, and furthermore, the cylindricity and the coaxiality which can be said to be a solid version of the roundness can be measured. In addition, since the light emitting unit 2 and the imaging unit 3 move while maintaining a constant distance, the image of the inner circumferential surface Wa imaged by the imaging unit 3 has a constant size. That is, there is no change in the size of the image due to the change in the distance between the light irradiation means 2 and the imaging means 3. In addition, by correcting the roundness based on the inclination angle θ of the axis Wb of the inner circumferential surface Wa with respect to the reference axis A, the measurement accuracy of the roundness is improved.

また、撮像手段3の視野内に、真円度を測定すべき内周面Waが入るならば、被測定ワークWの軸線Wbが基準軸Aに垂直な方向でどこに位置していても、真円度を測定することができる。従って、被測定ワークWに対する基準軸Aに垂直な方向の位置決めを高精度に行なう必要が無い。   In addition, if the inner circumferential surface Wa to be measured for roundness is included in the field of view of the imaging means 3, the axis Wb of the workpiece W to be measured is true regardless of where the axis Wb is perpendicular to the reference axis A. The degree of circularity can be measured. Therefore, it is not necessary to position the workpiece W in a direction perpendicular to the reference axis A with high accuracy.

本発明は、上記実施形態に限定されず、その技術的思想の範囲で様々な変形が可能である。例えば、上記実施形態では、被測定ワークWは軸線Wbが上下方向になるように配置され、光照射手段2と撮像手段3は、上下方向に沿って移動するが、これに限定されず、被測定ワークWを軸線Wbが横方向になるように配置し、光照射手段2と撮像手段3を横方向に沿って移動するように構成してもよい。   The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the technical idea thereof. For example, in the above embodiment, the workpiece W to be measured is disposed such that the axis Wb is in the vertical direction, and the light irradiation unit 2 and the imaging unit 3 move along the vertical direction. The measurement workpiece W may be disposed so that the axis Wb is in the horizontal direction, and the light irradiation unit 2 and the imaging unit 3 may be configured to move in the horizontal direction.

また、上記実施形態では、光照射手段2と撮像手段3が、連結部材8による連結で一定の距離を維持していたが、連結されていなくても、光照射手段2と撮像手段3が一定の距離を維持できればよい。例えば、撮像手段3を移動させる移動手段5(第2移動手段)とは別に、光照射手段2を移動させる第1移動手段を配設し、光照射手段2と撮像手段3を、それぞれ、被測定ワークWの反対側の開口部から導入し、測定時に同期して移動するようにしてもよい。   Moreover, in the said embodiment, although the light irradiation means 2 and the imaging means 3 maintained the fixed distance by connection by the connection member 8, even if not connected, the light irradiation means 2 and the imaging means 3 are fixed. I wish I could maintain the distance of For example, separately from the moving means 5 (second moving means) for moving the imaging means 3, a first moving means for moving the light irradiating means 2 is provided, and the light irradiating means 2 and the imaging means 3 are respectively It may be introduced from the opening on the opposite side of the measurement work W and moved synchronously at the time of measurement.

また、上記実施形態の光照射手段2におけるレーザ光発射部2aとプリズム2bとの位置関係を反対にしてもよい。   Further, the positional relationship between the laser beam emitting portion 2a and the prism 2b in the light emitting means 2 of the above embodiment may be reversed.

また、上記実施形態では、演算手段4が傾斜角度θに基づき真円度を補正する場合に、被測定ワークWの位置(Xw,Yw)を、マスターワークMWの位置(Xm,Ym)を基準にして算出していた。しかしながら、本発明はこれに限定されること無く、演算手段4が傾斜角度θに基づき真円度を補正しない場合であっても、被測定ワークWの位置(Xw,Yw)を、マスターワークMWの位置(Xm,Ym)を基準にして算出してもよい。   In the above embodiment, when the calculation means 4 corrects the roundness based on the inclination angle θ, the position (Xw, Yw) of the workpiece W to be measured is referred to as the position (Xm, Ym) of the master work MW. It was calculated. However, the present invention is not limited to this, and the position (Xw, Yw) of the workpiece W to be measured is set to the master work MW even if the arithmetic means 4 does not correct the roundness based on the inclination angle θ. It may be calculated based on the position (Xm, Ym) of.

1 真円度測定装置
2 光照射手段
3 撮像手段
4 演算手段
5 移動手段
A 基準軸
L 光
MW マスターワーク
W 被測定ワーク
Wa 内周面
Wb 軸線
θ 傾斜角度
1 Roundness measuring apparatus 2 Light irradiation means 3 Imaging means 4 Calculation means 5 Moving means A Reference axis L Light MW Master work W Workpiece to be measured Wa Inner surface Wb Axis θ Inclination angle

Claims (5)

被測定ワークの円筒面状の内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えた真円度測定装置において、
前記内周面の軸線の方向に延びる基準軸と、
前記内周面の内側を前記基準軸の方向に沿って、前記内周面を照らしている前記光照射手段を移動させる第1移動手段と、
前記基準軸の方向に沿って、前記撮像手段を移動させる第2移動手段とを備え、
前記光照射手段と前記撮像手段とが一定の距離を維持しつつ移動するように構成され
前記演算手段が、前記基準軸に対する垂直面上での位置について、前記軸線の位置を、マスターワークにおける円筒面状内周面の軸線の位置を基準にして算出することを特徴とする真円度測定装置。
Light irradiation means for illuminating the cylindrical inner peripheral surface of the workpiece to be measured, imaging means for imaging the inner peripheral surface to form image data, and perfect circle of the inner peripheral surface based on the image data In the roundness measuring device provided with the operation means for calculating the degree,
A reference axis extending in the direction of the axis of the inner circumferential surface;
First moving means for moving the light emitting means illuminating the inner peripheral surface along the direction of the reference axis on the inner side of the inner peripheral surface;
And second moving means for moving the imaging means along the direction of the reference axis,
The light emitting means and the imaging means are configured to move while maintaining a constant distance ,
The calculation means calculates the position of the axis with respect to the position on the vertical plane with respect to the reference axis, with reference to the position of the axis of the cylindrical inner peripheral surface of the master work. measuring device.
前記基準軸に沿った方向で見た場合に、前記光照射手段が、同時に放射状に光を照射することを特徴とする請求項1に記載の真円度測定装置。   The roundness measuring apparatus according to claim 1, wherein when viewed in a direction along the reference axis, the light emitting means simultaneously radiates light. 前記光照射手段と前記撮像手段とを連結する連結部材が設けられ、前記第2移動手段が前記第1移動手段を兼ねることを特徴とする請求項1又は2に記載の真円度測定装置。   The roundness measuring apparatus according to claim 1 or 2, further comprising a connecting member that connects the light emitting unit and the imaging unit, and the second moving unit doubles as the first moving unit. 前記演算手段が、前記基準軸に対する前記軸線の傾斜角度に基づき前記真円度を補正することを特徴とする請求項1〜3の何れか1項に記載の真円度測定装置。   The roundness measuring apparatus according to any one of claims 1 to 3, wherein the calculation means corrects the roundness based on an inclination angle of the axis with respect to the reference axis. 前記演算手段が、前記基準軸に対する垂直面のうちの異なる面上での前記軸線の位置に基づき前記傾斜角度を算出することを特徴とする請求項4に記載の真円度測定装置。   5. The roundness measuring apparatus according to claim 4, wherein the calculation means calculates the inclination angle based on the position of the axis on different ones of the vertical planes with respect to the reference axis.
JP2015081637A 2015-04-13 2015-04-13 Roundness measuring device Active JP6526465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081637A JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081637A JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Publications (2)

Publication Number Publication Date
JP2016200530A JP2016200530A (en) 2016-12-01
JP6526465B2 true JP6526465B2 (en) 2019-06-05

Family

ID=57424219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081637A Active JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Country Status (1)

Country Link
JP (1) JP6526465B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180163B2 (en) * 2018-07-19 2022-11-30 株式会社大林組 Roundness measuring device
CN117781909B (en) * 2024-02-27 2024-04-26 中北大学 Deep hole measuring device and measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733996B2 (en) * 1986-08-26 1995-04-12 三菱電機株式会社 Pipe inner surface shape detector
JP3012726B2 (en) * 1991-12-04 2000-02-28 ロイヤルコントロールズ株式会社 Ferrule eccentricity inspection device
JP5742655B2 (en) * 2011-01-14 2015-07-01 新日鐵住金株式会社 Defect detection apparatus and defect detection method
WO2013118912A1 (en) * 2012-02-09 2013-08-15 株式会社Ihi Inside-diameter measurement device
JP6169339B2 (en) * 2012-10-04 2017-07-26 株式会社日立製作所 Shape measuring method and apparatus

Also Published As

Publication number Publication date
JP2016200530A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
ES2541805T3 (en) Methods and systems for automating the boundary layer and orientation inspection
EP2045574B1 (en) Device and method for making reference profile data for inspecting tire
US20130300861A1 (en) Device and Method for Measuring Form Attributes, Position Attributes and Dimension Attributes of Machine Elements
JP4815451B2 (en) Component measuring device and evaluation unit using triangulation sensor
US20170160079A1 (en) Method for correcting surface shape data of annular rotating body and apparatus for inspecting appearance of annular rotating body
CN111316060B (en) Device for optically measuring the external thread profile of a pipe
US9057601B2 (en) Method of and apparatus for 3-D imaging a pipe
WO2014112431A1 (en) Normal-line detection device, processing device, and normal-line detection method
JP7268032B2 (en) METHOD, APPARATUS AND INSPECTION LINE FOR SPECIFYING THREE-DIMENSIONAL SHAPE OF CONTAINER RING SURFACE
WO2017159626A1 (en) Device, system, and method for inspecting crankshaft shape
JP6820949B2 (en) Thread measuring device
CN104969057A (en) A method and apparatus of profile measurement
JP6285037B2 (en) Manufacturing method of parts, manufacturing apparatus using the same, volume measuring method, shape measuring method
JP6526465B2 (en) Roundness measuring device
JP2017519203A (en) Object geometric measurement apparatus and method
JP4555762B2 (en) LENGTH MEASUREMENT DEVICE, LENGTH MEASUREMENT METHOD, AND LENGTH MEASUREMENT COMPUTER PROGRAM
JP7407994B2 (en) Pipe inner surface inspection method
US11333619B2 (en) Measurement X-ray CT apparatus
JP6924953B2 (en) Shape measuring device and shape measuring method
Zhang et al. Precise on-line non-target pose measurement for cylindrical components based on laser scanning
JP7363217B2 (en) Visual inspection equipment
WO2020105218A1 (en) Measurement method
JP2016095243A (en) Measuring device, measuring method, and article manufacturing method
US20230089226A1 (en) Surface defect inspection device, vehicle body surface defect inspection line and surface defect inspection process
KR101953888B1 (en) 3-dimensional inspect device for defect analysis and method for correcting position thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250