JP2016200530A - Roundness measurement device - Google Patents

Roundness measurement device Download PDF

Info

Publication number
JP2016200530A
JP2016200530A JP2015081637A JP2015081637A JP2016200530A JP 2016200530 A JP2016200530 A JP 2016200530A JP 2015081637 A JP2015081637 A JP 2015081637A JP 2015081637 A JP2015081637 A JP 2015081637A JP 2016200530 A JP2016200530 A JP 2016200530A
Authority
JP
Japan
Prior art keywords
inner peripheral
peripheral surface
roundness
axis
reference axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015081637A
Other languages
Japanese (ja)
Other versions
JP6526465B2 (en
Inventor
勝男 常田
Katsuo Tokita
勝男 常田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP2015081637A priority Critical patent/JP6526465B2/en
Publication of JP2016200530A publication Critical patent/JP2016200530A/en
Application granted granted Critical
Publication of JP6526465B2 publication Critical patent/JP6526465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a total inspection without requiring an alignment operation and to allow even a work such as a pipe-like work to be measured in a roundness measurement device.SOLUTION: A roundness measurement device 1 includes a reference axis A which extends in the direction of an axial line Wb of an inner peripheral surface Wa formed in a cylindrical surface shape of a work W to be measured. The roundness measurement device 1 includes: light irradiation means 2 for radially radiating light for illuminating a region Wa1 at a predetermined position in a direction of the reference axis A in the inner peripheral surface Wa; imaging means 3 for imaging the inner peripheral surface Wa so as to form image data; and computation means 4 for calculating a roundness of the inner peripheral surface Wa on the basis of the image data. In the roundness measurement device 1, the light irradiation means 2 illuminating the inner peripheral surface Wa moves in the inner side of the inner peripheral surface Wa along the direction of the reference axis A, and the imaging means 3 moves. The light irradiation means 2 and the imaging means 3 move while maintaining a constant distance between them due to connection effected by a coupling member 8.SELECTED DRAWING: Figure 1

Description

本発明は、被測定ワークの内周面の真円度を測定する真円度測定装置の改良技術に関する。   The present invention relates to a technique for improving a roundness measuring apparatus that measures the roundness of an inner peripheral surface of a workpiece to be measured.

例えば、被測定ワークの内周面の真円度を測定する真円度測定装置としては、被測定ワークを回転させて、被測定ワークの回転中心軸と内周面との距離を測定し、その結果から真円度を演算するものが知られている(例えば、特許文献1参照)。   For example, as a roundness measuring device for measuring the roundness of the inner peripheral surface of the workpiece to be measured, the workpiece is rotated, the distance between the rotation center axis of the workpiece to be measured and the inner peripheral surface is measured, A device that calculates the roundness from the result is known (for example, see Patent Document 1).

このタイプの真円度測定装置では、真円度の測定精度を向上させるために、被測定ワークの回転中心軸と、被測定ワークの内周面の軸線との軸合わせを正確に行なうことが不可欠であるが、この軸合わせ作業には、非常に時間と労力がかかる。従って、大量の被測定ワークの真円度の全数検査を実施することが困難であった。   In this type of roundness measuring device, in order to improve the measurement accuracy of roundness, it is possible to accurately align the rotation center axis of the workpiece to be measured and the axis of the inner peripheral surface of the workpiece to be measured. Although essential, this alignment process is very time consuming and labor intensive. Therefore, it has been difficult to perform a total inspection of the roundness of a large number of workpieces.

これに対して、例えば、特許文献2では、被測定ワークを回転させずに、内周面の真円度を測定する真円度測定装置が提案されている。この真円度測定装置は、被測定ワークの内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えている。   On the other hand, for example, Patent Document 2 proposes a roundness measuring apparatus that measures the roundness of the inner peripheral surface without rotating the workpiece to be measured. The roundness measuring apparatus includes a light irradiation unit for illuminating an inner peripheral surface of a workpiece to be measured, an imaging unit that images the inner peripheral surface to form image data, and the inner periphery based on the image data. Computing means for computing the roundness of the surface.

特開2009−257887号公報JP 2009-257887 A 特開2008−209380号公報JP 2008-209380 A

しかしながら、特許文献2の真円度測定装置の被測定ワークの内面は、有底円筒面状でなければならない。これは、この真円度測定装置が、照射する光を被測定ワークの内径より小さい径のストレートビームとして、被測定ワークの内周面の奥に入射させて、底面で反射された光による像を撮像するからである。従って、この真円度測定装置は、底面が無い円筒面状の内面を有するパイプ状等のワークを、測定することができない。また、この真円度測定装置は、底面で反射された光による像を撮像するため、被測定ワークの内周面の開口部周辺の真円度しか測定できない。このため、この真円度測定装置は、被測定ワークの内周面の奥の方の真円度、円筒度、同軸度は測定できない。つまり、特許文献2の真円度測定装置は、真円度測定装置としては未だ改良の余地を残すものであった。   However, the inner surface of the workpiece to be measured of the roundness measuring device of Patent Document 2 must have a bottomed cylindrical surface shape. This is because the roundness measuring device makes the irradiated light as a straight beam having a diameter smaller than the inner diameter of the workpiece to be measured, incident on the inner surface of the workpiece to be measured, and reflected by the bottom surface. It is because it images. Therefore, this roundness measuring apparatus cannot measure a pipe-shaped workpiece having a cylindrical inner surface without a bottom surface. Moreover, since this roundness measuring apparatus captures an image of light reflected from the bottom surface, it can only measure the roundness around the opening on the inner peripheral surface of the workpiece to be measured. For this reason, this roundness measuring apparatus cannot measure the roundness, cylindricity, and concentricity of the inner circumference of the work to be measured. That is, the roundness measuring device of Patent Document 2 still leaves room for improvement as a roundness measuring device.

本発明は、上記事情に鑑み、真円度測定装置において、軸合わせ作業を不要として全数検査を可能にすると共に、パイプ状等のワークでも測定可能にすることを技術的課題とする。   In view of the above circumstances, an object of the present invention is to make it possible to perform a complete inspection in a roundness measuring device without requiring an alignment operation, and to make it possible to measure even a workpiece such as a pipe.

前記課題を解決するために創案された本発明に係る真円度測定装置は、被測定ワークの円筒面状の内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えた真円度測定装置において、前記内周面の軸線の方向に延びる基準軸と、前記内周面の内側を前記基準軸の方向に沿って、前記内周面を照らしている前記光照射手段を移動させる第1移動手段と、前記基準軸の方向に沿って、前記撮像手段を移動させる第2移動手段とを備え、前記光照射手段と前記撮像手段とが一定の距離を維持しつつ移動するように構成されたことに特徴づけられる。ここで、「内周面の軸線の方向に延びる基準軸」には、内周面の軸線の方向に対して傾斜した基準軸も含む(以下、同様)。また、真円度の定義及び表示は、JIS B 0621:1984に準拠する。   The roundness measuring apparatus according to the present invention, which was created to solve the above-mentioned problems, includes a light irradiation means for illuminating the cylindrical inner peripheral surface of the workpiece to be measured, and an image obtained by imaging the inner peripheral surface. A reference axis extending in the direction of the axis of the inner peripheral surface in a roundness measuring apparatus comprising imaging means for forming data and a calculating means for calculating the roundness of the inner peripheral surface based on the image data A first moving means for moving the light irradiation means illuminating the inner peripheral surface along the direction of the reference axis on the inner side of the inner peripheral surface, and the imaging along the direction of the reference axis A second moving means for moving the means, and the light irradiating means and the imaging means are configured to move while maintaining a certain distance. Here, the “reference axis extending in the direction of the axis of the inner peripheral surface” includes a reference axis inclined with respect to the direction of the axis of the inner peripheral surface (hereinafter the same). The definition and display of roundness conform to JIS B 0621: 1984.

この構成によれば、内周面の画像データに基づいて内周面の真円度を演算するので、被測定ワークを回転させる必要が無い。そのため、軸合わせ作業を不要とすることができる。従って、真円度の測定に要する時間を短縮できるので、被測定ワークの全数検査が可能になる。   According to this configuration, since the roundness of the inner peripheral surface is calculated based on the image data of the inner peripheral surface, there is no need to rotate the workpiece to be measured. Therefore, an axis alignment operation can be made unnecessary. Accordingly, since the time required for measuring the roundness can be shortened, it is possible to inspect all the workpieces to be measured.

また、内周面の内側を、内周面を照らしている光照射手段が移動し、光照射手段と撮像手段とが一定の距離を維持しつつ移動するので、パイプ状等のワークでも真円度を測定できる。また、円筒度、同軸度も測定可能となる。   Also, the light irradiation means illuminating the inner peripheral surface moves inside the inner peripheral surface, and the light irradiation means and the imaging means move while maintaining a certain distance. The degree can be measured. Also, the cylindricity and coaxiality can be measured.

また、撮像手段の視野内に、真円度を測定すべき内周面が入るならば、被測定ワークの軸線が基準軸に垂直な方向でどこに位置していても、真円度を測定することができる。従って、被測定ワークに対する基準軸に垂直な方向の位置決めを高精度に行なう必要が無い。   Further, if the inner peripheral surface where the roundness is to be measured falls within the field of view of the imaging means, the roundness is measured no matter where the axis of the workpiece to be measured is located in the direction perpendicular to the reference axis. be able to. Therefore, it is not necessary to position the workpiece to be measured in a direction perpendicular to the reference axis with high accuracy.

上記の構成において、前記基準軸に沿った方向で見た場合に、前記光照射手段が、同時に放射状に光を照射してもよい。   In the above configuration, when viewed in a direction along the reference axis, the light irradiation unit may simultaneously irradiate light radially.

この構成であれば、光照射手段が光を走査して内周面に照射する場合に比較して、内周面の画像データを短時間で得ることができる。   With this configuration, the image data of the inner peripheral surface can be obtained in a shorter time than when the light irradiation means scans the light and irradiates the inner peripheral surface.

上記の構成において、前記光照射手段と前記撮像手段とを連結する連結部材が設けられ、前記第2移動手段が前記第1移動手段を兼ねてもよい。   In the above configuration, a connecting member that connects the light irradiation unit and the imaging unit may be provided, and the second moving unit may also serve as the first moving unit.

この構成であれば、連結部材によって、光照射手段と撮像手段が一定の距離を維持できて、第2移動手段が第1移動手段を兼ねることができるので、製造コストを削減できる。また、内周面の一端の開口部から、撮像手段に対して一定の距離を維持したまま光照射手段を内周面の内側に導入することが容易である。従って、内周面の一端が閉塞した被測定ワークの場合でも、容易に真円度を測定することができる。   If it is this structure, since a light irradiation means and an imaging means can maintain a fixed distance and a 2nd moving means can serve as a 1st moving means with a connection member, manufacturing cost can be reduced. In addition, it is easy to introduce the light irradiation unit from the opening at one end of the inner peripheral surface to the inside of the inner peripheral surface while maintaining a certain distance from the imaging unit. Therefore, even in the case of a workpiece to be measured in which one end of the inner peripheral surface is closed, the roundness can be easily measured.

上記の構成において、前記演算手段が、前記基準軸に対する前記軸線の傾斜角度に基づき前記真円度を補正してもよい。   In the above configuration, the calculation means may correct the roundness based on an inclination angle of the axis with respect to the reference axis.

この構成であれば、基準軸に対して内周面の軸線が傾斜している場合でも真円度を正確に測定することが可能になる。   With this configuration, the roundness can be accurately measured even when the axis of the inner peripheral surface is inclined with respect to the reference axis.

上記の構成において、前記演算手段が、前記基準軸に対する垂直面のうちの異なる面上での前記軸線の位置に基づき前記傾斜角度を算出してもよい。   In the above configuration, the calculation means may calculate the tilt angle based on a position of the axis on a different plane among the planes perpendicular to the reference axis.

この構成であれば、傾斜角度を容易に算出することができる。   With this configuration, the tilt angle can be easily calculated.

上記の構成において、前記演算手段が、前記基準軸に対する垂直面上での位置について、前記軸線の位置を、マスターワークにおける円筒面状内周面の軸線の位置を基準にして算出してもよい。   In the above configuration, the calculation unit may calculate the position of the axis with respect to the position on the vertical plane with respect to the reference axis with reference to the position of the axis of the cylindrical inner peripheral surface of the master work. .

この構成であれば、真円度をより正確に測定することが可能になる。   With this configuration, the roundness can be measured more accurately.

以上のように本発明によれば、真円度測定装置において、軸合わせ作業を不要として全数検査を可能にすると共に、非接触でパイプ状等のワークでも測定可能にすることができる。また、真円度の他、内径、円筒度、同軸度も同時に測定可能になる。   As described above, according to the present invention, in the roundness measuring device, it is possible to perform a complete inspection without requiring an alignment operation, and it is also possible to measure a workpiece such as a pipe without contact. In addition to roundness, inner diameter, cylindricity, and coaxiality can be measured simultaneously.

本発明の実施形態に係る真円度測定装置を示す概略部分断面側面図である。It is a general | schematic fragmentary sectional side view which shows the roundness measuring apparatus which concerns on embodiment of this invention. (A)は、光照射手段の周辺の概略平面図、(B)は、光照射手段の周辺の概略側面図である。(A) is a schematic plan view of the periphery of the light irradiation means, and (B) is a schematic side view of the periphery of the light irradiation means. 撮像手段により形成される画像データを示す概略図であり、(A)が、被測定ワークの軸線が基準軸に対して傾斜していない場合、(B)が、被測定ワークの軸線が基準軸に対して傾斜している場合である。It is the schematic which shows the image data formed by an imaging means, When (A) is not inclined with respect to a reference axis with respect to the axis of a to-be-measured workpiece, (B) is an axis of a to-be-measured workpiece with a reference axis It is a case where it inclines with respect to. 画像データに連結部材の影が現れた状態を示す概略図であり、(A)が、連結部材が3つの場合、(B)が、連結部材が4つの場合である。It is the schematic which shows the state where the shadow of the connection member appeared in image data, (A) is a case where there are three connection members, (B) is a case where there are four connection members. 表示手段による偏差の二次元表示例を示す概略図である。It is the schematic which shows the example of a two-dimensional display of the deviation by a display means. 被測定ワークの軸線が基準軸に対して傾斜している状態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the state in which the axis line of the to-be-measured workpiece is inclined with respect to the reference axis. 座標の値の具体例を示す表である。It is a table | surface which shows the specific example of the value of a coordinate. 図7のデータのグラフである。It is a graph of the data of FIG. 表示手段による偏差または半径の三次元表示例を示す概略図である。It is the schematic which shows the example of a three-dimensional display of the deviation or radius by a display means.

以下、本発明を実施するための形態について図面に基づき説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る真円度測定装置1を示す概略部分断面側面図である。真円度測定装置1によって測定される被測定ワークWは、円筒面形状の内周面Waを有する。被測定ワークWは、内周面Waの軸線Wbが上下方向となるように配置される。本実施形態では、被測定ワークWは円管状体であるが、円筒面形状の内周面を有するものであれば、例えば、外面の横断面が多角形状のものであってもよい。   FIG. 1 is a schematic partial cross-sectional side view showing a roundness measuring apparatus 1 according to an embodiment of the present invention. A workpiece W measured by the roundness measuring device 1 has a cylindrical inner peripheral surface Wa. The workpiece W to be measured is arranged such that the axis Wb of the inner peripheral surface Wa is in the vertical direction. In the present embodiment, the workpiece W to be measured is a circular tubular body. However, as long as it has a cylindrical inner peripheral surface, for example, the outer surface may have a polygonal cross section.

真円度測定装置1は、被測定ワークWの内周面Waを照らすための光照射手段2と、内周面Waを撮像して画像データを形成する撮像手段3と、前記画像データに基づいて内周面Waの真円度等を演算する演算手段4と、撮像手段3を移動させるための第2移動手段としての移動手段5と、被測定ワークWを支持するための支持手段6と、演算手段4で演算された真円度を表示する表示手段7とを主要な構成要素とする。   The roundness measuring apparatus 1 is based on the light irradiation means 2 for illuminating the inner peripheral surface Wa of the workpiece W to be measured, the imaging means 3 for imaging the inner peripheral surface Wa to form image data, and the image data. A calculating means 4 for calculating the roundness of the inner peripheral surface Wa, a moving means 5 as a second moving means for moving the imaging means 3, and a supporting means 6 for supporting the workpiece W to be measured. The display means 7 for displaying the roundness calculated by the calculation means 4 is a main component.

また、真円度測定装置1は、内周面Waの軸線Wbの方向に延びる基準軸Aを備える。基準軸Aは、真円度の測定の際に基準となる仮想の軸であり、後述する座標のZ軸に相当する。この基準軸Aの(延在)方向は、上下方向である。   Moreover, the roundness measuring device 1 includes a reference axis A that extends in the direction of the axis Wb of the inner peripheral surface Wa. The reference axis A is a virtual axis that serves as a reference when measuring roundness, and corresponds to a Z-axis of coordinates described later. The (extending) direction of the reference axis A is the vertical direction.

移動手段5は、不図示の制御手段で制御されることによって、ガイド部5aに沿って移動部5bが移動するように構成されており、例えば単軸ロボット等で構成される。光照射手段2と撮像手段3とは、連結部材8で連結されており、撮像手段3が移動部5bに固定されている。連結部材8の連結によって、移動手段5は、光照射手段2を移動させるための第1移動手段を兼ねる。   The moving unit 5 is configured such that the moving unit 5b moves along the guide unit 5a by being controlled by a control unit (not shown). For example, the moving unit 5 is configured by a single-axis robot or the like. The light irradiation means 2 and the imaging means 3 are connected by a connecting member 8, and the imaging means 3 is fixed to the moving part 5b. By the connection of the connecting member 8, the moving means 5 also serves as a first moving means for moving the light irradiation means 2.

真円度等の測定時には、移動部5bがガイド部5aに沿って移動することにより、内周面Waの内側を基準軸Aの方向に沿って、内周面Waを照らしている光照射手段2が移動する。そして、光照射手段2に対して一定の距離を維持しつつ、撮像手段3が基準軸Aの方向に沿って移動する。   At the time of measuring roundness or the like, the light irradiating means illuminates the inner peripheral surface Wa along the direction of the reference axis A on the inner side of the inner peripheral surface Wa by moving the moving portion 5b along the guide portion 5a. 2 moves. Then, the imaging unit 3 moves along the direction of the reference axis A while maintaining a certain distance from the light irradiation unit 2.

載置台等の支持手段6には、被測定ワークWが載置される凹部6aが形成されている。凹部6aは、被測定ワークWの下端面Wcを支持する円形で平面状の底面(支持面6b)と、被測定ワークWを位置決めする円筒状の側面6cを有する。支持面6bは、基準軸Aに対し垂直な面であり、支持面6bの中心は、基準軸A上にある。   The supporting means 6 such as a mounting table is formed with a recess 6a on which the workpiece W to be measured is mounted. The recess 6a has a circular and flat bottom surface (support surface 6b) that supports the lower end surface Wc of the workpiece W to be measured, and a cylindrical side surface 6c that positions the workpiece W to be measured. The support surface 6b is a surface perpendicular to the reference axis A, and the center of the support surface 6b is on the reference axis A.

なお、被測定ワークWの軸線Wbと支持面6bの中心とを合わせることは、非常に難しい。これは、生産性を上げるために、凹部6aの側面6cと被測定ワークWの外周面との間に隙間Gを設けて、被測定ワークWの設置作業を実施し易くしなければならないからである。   Note that it is very difficult to align the axis Wb of the workpiece W to be measured with the center of the support surface 6b. This is because, in order to increase productivity, it is necessary to provide a gap G between the side surface 6c of the recess 6a and the outer peripheral surface of the workpiece W to facilitate the installation work of the workpiece W to be measured. is there.

真円度等の測定時に、光照射手段2は、光Lを内周面Waに照射する。詳述すれば、光照射手段2は、基準軸Aから内周面Waに向かう向きに、基準軸Aに垂直な方向に沿って光Lを放出する。従って、内周面Waにおける基準軸A方向の所定位置の部位(内周面Wa1)のみに光Lは照射される。なお、光Lは、本実施形態ではレーザ光であるが、撮像手段3で撮像可能なものであれば、これに限定されるものでは無い。   When measuring roundness or the like, the light irradiation means 2 irradiates the inner circumferential surface Wa with the light L. More specifically, the light irradiation means 2 emits light L along a direction perpendicular to the reference axis A in a direction from the reference axis A toward the inner peripheral surface Wa. Therefore, the light L is irradiated only on a portion (inner peripheral surface Wa1) at a predetermined position in the reference axis A direction on the inner peripheral surface Wa. The light L is laser light in the present embodiment, but is not limited to this as long as it can be imaged by the imaging means 3.

図2(A)に示すように、基準軸Aに沿った方向で見た場合に、光照射手段2は、同時に放射状に全方位に向かって光Lを照射する。また、図2(B)に示すように、光照射手段2は、レーザ光発射部2aと、レーザ光発射部2aから発射されたレーザ光Laを反射するプリズム2bと、レーザ光発射部2aとプリズム2bを接続する無色透明な円筒体2cを有する。   As shown in FIG. 2A, when viewed in a direction along the reference axis A, the light irradiation means 2 simultaneously irradiates the light L radially in all directions. Further, as shown in FIG. 2B, the light irradiation means 2 includes a laser beam emitting unit 2a, a prism 2b that reflects the laser beam La emitted from the laser beam emitting unit 2a, and a laser beam emitting unit 2a. It has a colorless and transparent cylindrical body 2c for connecting the prism 2b.

撮像手段3は、光Lを照射された内周面Wa(Wa1)を撮像して画像データを形成するものであり、例えばCCDカメラで構成される。なお、撮像手段3の視野の中心は、基準軸A上にある。   The imaging means 3 forms an image data by imaging the inner peripheral surface Wa (Wa1) irradiated with the light L, and is constituted by a CCD camera, for example. Note that the center of the field of view of the imaging means 3 is on the reference axis A.

光照射手段2から内周面Wa(Wa1)に向かって照射された光Lは、内周面Wa(Wa1)に当たって反射する。そのため、撮像手段3によって形成された画像データでは、図3(A)に示すように、反射された光に基づく明部Bが環状に形成される。   The light L emitted from the light irradiation means 2 toward the inner peripheral surface Wa (Wa1) hits the inner peripheral surface Wa (Wa1) and is reflected. Therefore, in the image data formed by the imaging unit 3, as shown in FIG. 3A, a bright portion B based on the reflected light is formed in an annular shape.

演算手段4は、撮像手段3によって形成された画像データに基づいて内周面Wa(Wa1)の真円度を演算するものであり、例えばマイコンやパソコン等で構成される。次に、演算手段4の演算方法について説明する。   The computing means 4 computes the roundness of the inner peripheral surface Wa (Wa1) based on the image data formed by the imaging means 3, and is constituted by, for example, a microcomputer or a personal computer. Next, the calculation method of the calculation means 4 will be described.

図3(A)に示す画像データにおいて、明部Bの外周縁Baが、実際に内周面Wa(Wa1)が存在する位置と考えられる。そこで、まず、この外周縁Baで形成される円の重心の位置を求め、その重心の位置を外周縁Baで形成される円の中心C(内周面Wa1の中心)の位置とする。そして、この中心Cの位置から外周縁Baまでの距離(半径の実測値R)を、所定の周方向位置(0°)から所定の角度ごとに360°まで計測する。そして、半径実測値Rのうちの最大値と最小値の差を真円度として算出する。   In the image data shown in FIG. 3A, the outer peripheral edge Ba of the bright part B is considered to be a position where the inner peripheral surface Wa (Wa1) actually exists. Therefore, first, the position of the center of gravity of the circle formed by the outer peripheral edge Ba is obtained, and the position of the center of gravity is set as the position of the center C of the circle formed by the outer peripheral edge Ba (center of the inner peripheral surface Wa1). Then, the distance from the position of the center C to the outer peripheral edge Ba (measured value R of the radius) is measured from a predetermined circumferential position (0 °) to 360 ° for each predetermined angle. Then, the difference between the maximum value and the minimum value of the measured radius values R is calculated as the roundness.

また、この計測された半径実測値Rから、内周面Waの半径の設計値(基準値)を引いたものを偏差として算出する。   Further, a value obtained by subtracting the design value (reference value) of the radius of the inner peripheral surface Wa from the measured radius measurement value R is calculated as a deviation.

なお、この時の360°分の半径実測値Rは、全て記録されており、2次元形状データとして利用できる。これは、基準軸A(Z軸)方向を加味すると3次元の内径データとして利用できる。   Note that the actual measured radius R for 360 ° at this time is all recorded and can be used as two-dimensional shape data. This can be used as three-dimensional inner diameter data in consideration of the reference axis A (Z axis) direction.

これらの一連の撮像手段3による画像データ形成と演算手段4の演算を、基準軸Aの方向で所定のピッチごとに繰り返し行なうことで、基準軸Aの方向で所定のピッチごとに真円度及び偏差を算出する。より具体的には、内周面Waにおける基準軸A方向の所定ピッチごとの位置の部位Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの真円度等を算出する。   By repeating the image data formation by the series of image pickup means 3 and the calculation by the calculation means 4 at a predetermined pitch in the direction of the reference axis A, the roundness and the roundness at every predetermined pitch in the direction of the reference axis A can be obtained. Calculate the deviation. More specifically, each of the portions Wa1, Wa2, Wa3,..., Wa (N-2), Wa (N-1), WaN at predetermined pitches in the reference axis A direction on the inner peripheral surface Wa. Calculate roundness and the like.

この算出された真円度及び偏差を、モニター等の表示手段7に表示する。基準軸A方向の所定の位置における偏差を表示する場合には、例えば、図5に示すように、基準となる真円E(全ての周方向位置での偏差が0)を描画し、これに対して、周方向位置ごとの偏差Fを表示する(二次元表示)。更に、図9に示すように、基準軸A方向の所定ピッチごとの位置における偏差または半径実測値Rを、円筒の鳥瞰図として三次元表示することもできる。この場合、偏差が小さい(真円に近い)領域Pa、偏差が大きい(真円から離れている)領域Pb、偏差が領域Paと領域Pbの中間である領域Pcを色分けして表示することができる。色分けとしては、例えば、領域Paを緑色、領域Pbを赤色、領域Pcを黄色とすることができる。   The calculated roundness and deviation are displayed on the display means 7 such as a monitor. When displaying the deviation at a predetermined position in the direction of the reference axis A, for example, as shown in FIG. 5, a perfect circle E as a reference (with zero deviation at all circumferential positions) is drawn. On the other hand, the deviation F for each circumferential position is displayed (two-dimensional display). Furthermore, as shown in FIG. 9, the deviation or the measured radius value R at a position for each predetermined pitch in the direction of the reference axis A can be displayed three-dimensionally as a bird's eye view of a cylinder. In this case, a region Pa having a small deviation (close to a perfect circle), a region Pb having a large deviation (away from the perfect circle), and a region Pc having a deviation between the region Pa and the region Pb may be displayed in different colors. it can. For example, the area Pa can be green, the area Pb can be red, and the area Pc can be yellow.

また、内周面Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの真円度から、立体的な真円度である円筒度を得ることができ、これを表示手段7に表示してもよい。また、内周面Wa1,Wa2,Wa3,・・・Wa(N−2),Wa(N−1),WaNのそれぞれの中心C(C1,C2,C3・・・C(N−2),C(N−1),CN)から、同軸度を算出することができ、これを表示手段7に表示してもよい。   In addition, cylindricity that is a three-dimensional roundness is obtained from the roundness of each of the inner peripheral surfaces Wa1, Wa2, Wa3,..., Wa (N-2), Wa (N-1), and WaN. This may be displayed on the display means 7. Further, the centers C (C1, C2, C3... C (N-2), Wa (N-2), Wa (N-1), WaN of the inner peripheral surfaces Wa1, Wa2, Wa3,. The degree of coaxiality can be calculated from C (N−1), CN), and this may be displayed on the display means 7.

また、上述したように、真円度測定装置1では、基準軸Aの方向で所定のピッチごとに真円度及び偏差を算出するが、この所定のピッチは任意に細かくできる。例えば、精度良く偏差を測定して平面形状データを形成し、この平面形状データを1/100ミリピッチで3次元化すれば、三次元形状データを得ることができ、真円度測定装置1を三次元形状計測機として応用することができる。勿論、この場合でも、計測ピッチは1/100ミリピッチに限定されず、更に1/1000ミリピッチ、1/10000ミリピッチと細かくしたり、逆に1/10ミリピッチと荒くしたりしてもよく、任意のピッチで計測することができる。   As described above, the roundness measuring apparatus 1 calculates the roundness and the deviation for each predetermined pitch in the direction of the reference axis A, but the predetermined pitch can be arbitrarily fine. For example, if the deviation is accurately measured to form plane shape data, and the plane shape data is three-dimensionalized at a 1/100 mm pitch, three-dimensional shape data can be obtained. It can be applied as an original shape measuring instrument. Of course, even in this case, the measurement pitch is not limited to 1/100 mm pitch, and may be further reduced to 1/1000 mm pitch and 1/10000 mm pitch, or vice versa. It can be measured by pitch.

なお、光照射手段2と撮像手段3との位置関係を安定化するためには、連結部材8を基準軸Aの周方向に等間隔で3つ以上配設することが好ましい。しかし、連結部材8が非透明の材質の場合、内周面Waからの反射光を遮るため、図4に示すように、円環状の明部Bにおいて、連結部材8の影に起因して欠けSが生じる。図4(A)に示すように、連結部材8が周方向に等間隔で3つ配置された場合には、明部Bの欠けSに起因して、3つの半径が測定できなくなり、3本の直径Dが求められなくなる。   In order to stabilize the positional relationship between the light irradiation means 2 and the imaging means 3, it is preferable to arrange three or more connecting members 8 at equal intervals in the circumferential direction of the reference axis A. However, when the connecting member 8 is made of a non-transparent material, the reflected light from the inner circumferential surface Wa is blocked, and therefore, as shown in FIG. S occurs. As shown in FIG. 4A, when three connecting members 8 are arranged at equal intervals in the circumferential direction, three radii cannot be measured due to the lack S of the bright part B. The diameter D cannot be obtained.

これに対して、図4(B)に示すように、連結部材8が周方向に等間隔で4つ配設された場合には、明部Bの欠けSに起因して、測定できない半径は4つとなるが、この測定できない4つの半径は2つの直径Dに相当するので、求められない直径Dの数は2つである。従って、真円度測定装置1で直径Dを求めることが想定される場合には、連結部材8は、周方向に等間隔で4つ配設されることが好ましい。なお、ここでは、理解しやすいように、明部Bの欠けS1つによって、1つの半径が測定できないものとして説明しているが、厳密には、欠けSの大きさや、半径を何度ごとに測定するかによって測定できない半径の数は異なる。   On the other hand, as shown in FIG. 4B, when four connecting members 8 are arranged at equal intervals in the circumferential direction, the radius that cannot be measured due to the lack S of the bright portion B is Although four radii that cannot be measured correspond to two diameters D, the number of diameters D that cannot be obtained is two. Therefore, when it is assumed that the roundness measuring apparatus 1 determines the diameter D, it is preferable that four connecting members 8 are arranged at equal intervals in the circumferential direction. Here, for the sake of easy understanding, the description has been made assuming that one radius cannot be measured by one missing portion S of the bright portion B. Strictly speaking, the size and the radius of the missing portion S are changed every time. The number of radii that cannot be measured differs depending on whether the measurement is performed.

ところで、被測定ワークWの内周面Waの軸線Wbが基準軸Aに同軸又は平行であれば、理論上、上述の演算で正確な真円度が得られるが、図6に示すように、内周面Waの軸線Wbが基準軸Aに対して傾斜している場合には、上述の演算だけでは正確な真円度が得られない。   By the way, if the axis Wb of the inner peripheral surface Wa of the workpiece W to be measured is coaxial or parallel to the reference axis A, theoretically, an accurate roundness can be obtained by the above-described calculation, but as shown in FIG. When the axis Wb of the inner peripheral surface Wa is inclined with respect to the reference axis A, an accurate roundness cannot be obtained only by the above calculation.

これは、内周面Waの真円度は、被測定ワークWの内周面Waの軸線Wbに垂直な方向の断面で測定しなければならないのに対して、真円度測定装置1による測定では、内周面Waの真円度を、基準軸Aに対して垂直な方向の断面(画像データ)に基づき測定するからである。   This is because the roundness of the inner peripheral surface Wa has to be measured in a cross section in a direction perpendicular to the axis Wb of the inner peripheral surface Wa of the workpiece W to be measured, whereas the roundness measuring device 1 measures it. This is because the roundness of the inner peripheral surface Wa is measured based on a cross section (image data) in a direction perpendicular to the reference axis A.

このような理由から、内周面Waの軸線Wbが基準軸Aに対して傾斜していることが検出される場合には、演算手段4が、基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正するようにしてもよい。   For this reason, when it is detected that the axis Wb of the inner peripheral surface Wa is tilted with respect to the reference axis A, the calculation means 4 determines the axis Wb of the inner peripheral surface Wa with respect to the reference axis A. The roundness may be corrected based on the inclination angle θ.

なお、内周面Waの軸線Wbが基準軸Aに対して傾斜していることは、同軸度を求めた結果から検出できる。例えば、図6で、内周面Wa1の中心C1と、内周面WaNの中心CNの2点間を結ぶ直線と基準軸Aとの傾斜角度θが、内周面Waの軸線Wbの基準軸Aに対する傾斜として検出される。   The fact that the axis Wb of the inner peripheral surface Wa is inclined with respect to the reference axis A can be detected from the result of obtaining the coaxiality. For example, in FIG. 6, the inclination angle θ between the reference axis A and the straight line connecting the two points of the center C1 of the inner peripheral surface Wa1 and the center CN of the inner peripheral surface WaN is the reference axis of the axis Wb of the inner peripheral surface Wa. Detected as slope with respect to A.

基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正する方法を次に具体例を挙げて説明する。   A method for correcting the roundness based on the inclination angle θ of the axis Wb of the inner peripheral surface Wa with respect to the reference axis A will be described below with a specific example.

具体例として、基準軸Aの方向のレベル(高さ)0mm〜400mm間を所定ピッチ(ここでは1mm)で測定する場合について考える。   As a specific example, consider a case where the level (height) in the direction of the reference axis A is measured at a predetermined pitch (here, 1 mm) between 0 mm and 400 mm.

最初に、マスターワークMWを測定する。マスターワークMWは、補正のために形成されたワークであり、その内周面Waの横断面が実質的に真円状であり、その軸線Wbが下端面Wcに対して実質的に垂直となっている。演算手段4は、基準軸Aの方向の0mm〜400mm間を1mmごとに、上記と同様に、マスターワークMWの内周面Waの横断面の中心Cの位置を求める。   First, the master work MW is measured. The master workpiece MW is a workpiece formed for correction, and the inner circumferential surface Wa has a substantially circular cross section, and the axis Wb is substantially perpendicular to the lower end surface Wc. ing. The calculation means 4 calculates | requires the position of the center C of the cross section of the internal peripheral surface Wa of the master workpiece MW for every 1 mm between 0 mm-400 mm of the direction of the reference axis A similarly to the above.

具体的には、図7に示すように、基準軸Aを、座標のZ軸とし、内周面Waの横断面(Z軸に垂直な断面)の中心Cの位置(Xm,Ym)を算出し、記憶する。なお、理解しやすいように、この具体例では、マスターワークMWの内周面Waの横断面の中心Cの座標(Xm,Ym)は、全て(0.00,0.00)としている。   Specifically, as shown in FIG. 7, the reference axis A is the Z axis of coordinates, and the position (Xm, Ym) of the center C of the transverse section (cross section perpendicular to the Z axis) of the inner peripheral surface Wa is calculated. And remember. For easy understanding, in this specific example, the coordinates (Xm, Ym) of the center C of the cross section of the inner peripheral surface Wa of the master work MW are all (0.00, 0.00).

次に、被測定ワークWを測定する。演算手段4は、基準軸Aの方向の0mm〜400mm間を1mmごとに、上記と同様に、被測定ワークWの内周面Waの横断面(Z軸に垂直な断面)の中心Cの位置を求める。   Next, the workpiece W to be measured is measured. The calculation means 4 is the position of the center C of the transverse section (cross section perpendicular to the Z axis) of the inner peripheral surface Wa of the workpiece W to be measured, in the same manner as described above, every 1 mm between 0 mm and 400 mm in the direction of the reference axis A. Ask for.

そして、得られた中心CのXY座標の値からマスターワークMWの中心CのXY座標の値(0.00,0.00)を差し引いたものを算出し、被測定ワークWの中心Cの座標(Xw,Yw)として記憶する。   Then, a value obtained by subtracting the XY coordinate value (0.00, 0.00) of the center C of the master workpiece MW from the obtained XY coordinate value of the center C is calculated, and the coordinates of the center C of the workpiece W to be measured are calculated. Store as (Xw, Yw).

つまり、ここでは、演算手段4は、基準軸A(Z軸)に対する垂直面(XY座標平面又はこれに平行な平面)上での位置について、被測定ワークWにおける内周面Waの軸線Wb(中心C)の位置(Xw,Yw)を、マスターワークMWにおける円筒面状内周面Waの軸線Wb(中心C)の位置(Xm,Ym)を基準にして算出していることになる。   In other words, here, the calculation means 4 has the axis Wb (the inner circumferential surface Wa of the workpiece W to be measured with respect to the position on the vertical plane (the XY coordinate plane or a plane parallel thereto) with respect to the reference axis A (Z axis). The position (Xw, Yw) of the center C) is calculated on the basis of the position (Xm, Ym) of the axis Wb (center C) of the cylindrical inner peripheral surface Wa in the master work MW.

図7に示すように、Z=0では、(Xw,Yw)=(−1.00,0.00)であり、Z=400では、(Xw,Yw)=(1.00,0.00)である。Z=0とZ=400でYwの値は0.00なので、被測定ワークWの軸線Wbは、XZ座標平面上で基準軸A(Z軸)に対して傾斜していることになる。この算出結果を、グラフとして示したものが図8である。図8から理解できるように、基準軸A(Z軸)に対する軸線Wbの傾斜角度をθとすると、tanθ=2.00/400となるので、傾斜角度θ=arctan(2.00/400)となり、この式から傾斜角度θを算出する。   As shown in FIG. 7, when Z = 0, (Xw, Yw) = (− 1.00,0.00), and when Z = 400, (Xw, Yw) = (1.00,0.00 ). Since Z = 0 and Z = 400 and the value of Yw is 0.00, the axis Wb of the workpiece W to be measured is inclined with respect to the reference axis A (Z axis) on the XZ coordinate plane. FIG. 8 shows the calculation result as a graph. As can be understood from FIG. 8, when the inclination angle of the axis Wb with respect to the reference axis A (Z axis) is θ, tan θ = 2.00 / 400, and therefore the inclination angle θ = arctan (2.00 / 400). The inclination angle θ is calculated from this equation.

つまり、ここでは、演算手段4が、基準軸A(Z軸)に対する垂直面(XY座標平面又はこれに平行な平面)のうちの異なる面上での被測定ワークWの軸線Wb(中心C)の位置(Xw,Yw)に基づき傾斜角度θを算出していることになる。 In other words, here, the calculation means 4 has the axis Wb (center C) of the workpiece W to be measured on a different plane in the plane perpendicular to the reference axis A (Z axis) (the XY coordinate plane or a plane parallel thereto). That is, the inclination angle θ is calculated based on the position (Xw, Yw).

被測定ワークWの軸線WbがXZ座標平面上で基準軸A(Z軸)に対して傾斜している場合、図3(B)に示すように、撮像手段3で形成される被測定ワークWの内周面Waの画像データの明部Bは、X軸方向に長軸をもつ楕円形状となる。図6に示す関係から分かるように、求めるべきX軸方向の半径をRrとすると、画像に基づき算出されるX軸方向の半径Raに対して、Rr=Ra×cosθの関係となるので、傾斜角度θと半径Raから半径Rrが求まる。この半径Rrから上記と同様に真円度を求めることができる。この結果、演算手段4が、基準軸A(Z軸)に対する被測定ワークWにおける軸線Wbの傾斜角度θに基づき真円度を補正したことになる。   When the axis Wb of the workpiece W to be measured is inclined with respect to the reference axis A (Z axis) on the XZ coordinate plane, the workpiece W to be measured formed by the imaging means 3 as shown in FIG. The bright portion B of the image data on the inner circumferential surface Wa is an elliptical shape having a long axis in the X-axis direction. As can be seen from the relationship shown in FIG. 6, if the radius in the X-axis direction to be obtained is Rr, the relationship is Rr = Ra × cos θ with respect to the radius Ra in the X-axis direction calculated based on the image. The radius Rr is obtained from the angle θ and the radius Ra. The roundness can be obtained from the radius Rr in the same manner as described above. As a result, the calculation means 4 corrects the roundness based on the inclination angle θ of the axis Wb of the workpiece W to be measured with respect to the reference axis A (Z axis).

以上のように構成された真円度測定装置1では、以下の効果を享受できる。   The roundness measuring apparatus 1 configured as described above can enjoy the following effects.

被測定ワークWの内周面Wa1,Wa2,・・・WaN周辺の反射光による画像データに基づいて内周面Wa1,Wa2,・・・WaNの真円度等を演算するので、被測定ワークWを回転させる必要が無い。そのため、軸合わせ作業を不要とすることができる。そして、光照射手段2が内周面Waの内側を移動して、内周面Wa1,Wa2,・・・WaNの各部の反射光による画像を撮像できる。これにより、この画像に基づき真円度を測定でき、更には、真円度の立体版ともいえる円筒度や同軸度を測定できる。また、光照射手段2と撮像手段3とが一定の距離を維持しつつ移動するので、撮像手段3で撮像された内周面Waの画像が一定の大きさとなる。つまり、光照射手段2と撮像手段3との距離の変化による画像の大きさの変化が無い。また、基準軸Aに対する内周面Waの軸線Wbの傾斜角度θに基づき真円度を補正することによって、真円度の測定精度が向上する。   Since the roundness and the like of the inner peripheral surfaces Wa1, Wa2,... WaN are calculated based on the image data of the reflected light around the inner peripheral surfaces Wa1, Wa2,. There is no need to rotate W. Therefore, an axis alignment operation can be made unnecessary. And the light irradiation means 2 moves inside the inner peripheral surface Wa, and can capture an image of reflected light from each part of the inner peripheral surfaces Wa1, Wa2,... Thereby, the roundness can be measured based on this image, and further, the cylindricity and the coaxiality which can be said to be a three-dimensional version of the roundness can be measured. Moreover, since the light irradiation means 2 and the imaging means 3 move, maintaining a fixed distance, the image of the internal peripheral surface Wa imaged with the imaging means 3 becomes a fixed magnitude | size. That is, there is no change in the size of the image due to a change in the distance between the light irradiation means 2 and the imaging means 3. Further, by correcting the roundness based on the inclination angle θ of the axis Wb of the inner peripheral surface Wa with respect to the reference axis A, the measurement accuracy of the roundness is improved.

また、撮像手段3の視野内に、真円度を測定すべき内周面Waが入るならば、被測定ワークWの軸線Wbが基準軸Aに垂直な方向でどこに位置していても、真円度を測定することができる。従って、被測定ワークWに対する基準軸Aに垂直な方向の位置決めを高精度に行なう必要が無い。   Further, if the inner circumferential surface Wa whose roundness is to be measured falls within the field of view of the imaging means 3, no matter where the axis Wb of the workpiece W to be measured is located in the direction perpendicular to the reference axis A, Circularity can be measured. Therefore, it is not necessary to position the workpiece W in a direction perpendicular to the reference axis A with high accuracy.

本発明は、上記実施形態に限定されず、その技術的思想の範囲で様々な変形が可能である。例えば、上記実施形態では、被測定ワークWは軸線Wbが上下方向になるように配置され、光照射手段2と撮像手段3は、上下方向に沿って移動するが、これに限定されず、被測定ワークWを軸線Wbが横方向になるように配置し、光照射手段2と撮像手段3を横方向に沿って移動するように構成してもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the technical idea. For example, in the above embodiment, the workpiece W to be measured is arranged so that the axis Wb is in the vertical direction, and the light irradiation means 2 and the imaging means 3 move along the vertical direction. The measurement workpiece W may be arranged so that the axis Wb is in the horizontal direction, and the light irradiation means 2 and the imaging means 3 may be moved along the horizontal direction.

また、上記実施形態では、光照射手段2と撮像手段3が、連結部材8による連結で一定の距離を維持していたが、連結されていなくても、光照射手段2と撮像手段3が一定の距離を維持できればよい。例えば、撮像手段3を移動させる移動手段5(第2移動手段)とは別に、光照射手段2を移動させる第1移動手段を配設し、光照射手段2と撮像手段3を、それぞれ、被測定ワークWの反対側の開口部から導入し、測定時に同期して移動するようにしてもよい。   Moreover, in the said embodiment, although the light irradiation means 2 and the imaging means 3 maintained the fixed distance by the connection by the connection member 8, even if it is not connected, the light irradiation means 2 and the imaging means 3 are constant. It is sufficient if the distance can be maintained. For example, apart from the moving means 5 (second moving means) for moving the imaging means 3, a first moving means for moving the light irradiation means 2 is provided, and the light irradiation means 2 and the imaging means 3 are respectively covered. It may be introduced from the opening on the opposite side of the measurement workpiece W and moved in synchronization with the measurement.

また、上記実施形態の光照射手段2におけるレーザ光発射部2aとプリズム2bとの位置関係を反対にしてもよい。   Moreover, you may make the positional relationship of the laser beam emission part 2a and the prism 2b in the light irradiation means 2 of the said embodiment reverse.

また、上記実施形態では、演算手段4が傾斜角度θに基づき真円度を補正する場合に、被測定ワークWの位置(Xw,Yw)を、マスターワークMWの位置(Xm,Ym)を基準にして算出していた。しかしながら、本発明はこれに限定されること無く、演算手段4が傾斜角度θに基づき真円度を補正しない場合であっても、被測定ワークWの位置(Xw,Yw)を、マスターワークMWの位置(Xm,Ym)を基準にして算出してもよい。   Moreover, in the said embodiment, when the calculating means 4 correct | amends roundness based on inclination-angle (theta), the position (Xw, Yw) of the to-be-measured workpiece W is based on the position (Xm, Ym) of the master workpiece MW. Was calculated. However, the present invention is not limited to this, and the position (Xw, Yw) of the workpiece W to be measured is determined as the master workpiece MW even when the calculation means 4 does not correct the roundness based on the inclination angle θ. The position (Xm, Ym) may be used as a reference.

1 真円度測定装置
2 光照射手段
3 撮像手段
4 演算手段
5 移動手段
A 基準軸
L 光
MW マスターワーク
W 被測定ワーク
Wa 内周面
Wb 軸線
θ 傾斜角度
DESCRIPTION OF SYMBOLS 1 Roundness measuring apparatus 2 Light irradiation means 3 Imaging means 4 Calculation means 5 Moving means A Reference axis L Light MW Master work W Work to be measured Wa Inner peripheral surface Wb Axis line θ Inclination angle

Claims (6)

被測定ワークの円筒面状の内周面を照らすための光照射手段と、前記内周面を撮像して画像データを形成する撮像手段と、前記画像データに基づいて前記内周面の真円度を演算する演算手段とを備えた真円度測定装置において、
前記内周面の軸線の方向に延びる基準軸と、
前記内周面の内側を前記基準軸の方向に沿って、前記内周面を照らしている前記光照射手段を移動させる第1移動手段と、
前記基準軸の方向に沿って、前記撮像手段を移動させる第2移動手段とを備え、
前記光照射手段と前記撮像手段とが一定の距離を維持しつつ移動するように構成されたことを特徴とする真円度測定装置。
Light irradiation means for illuminating the cylindrical inner peripheral surface of the workpiece to be measured, imaging means for imaging the inner peripheral surface to form image data, and a perfect circle on the inner peripheral surface based on the image data In a roundness measuring device provided with a calculation means for calculating the degree,
A reference axis extending in the direction of the axis of the inner peripheral surface;
A first moving means for moving the light irradiation means illuminating the inner peripheral surface along the direction of the reference axis on the inner side of the inner peripheral surface;
Second moving means for moving the imaging means along the direction of the reference axis,
An apparatus for measuring roundness, wherein the light irradiation means and the imaging means are configured to move while maintaining a certain distance.
前記基準軸に沿った方向で見た場合に、前記光照射手段が、同時に放射状に光を照射することを特徴とする請求項1に記載の真円度測定装置。   The roundness measuring device according to claim 1, wherein when viewed in a direction along the reference axis, the light irradiation unit simultaneously emits light radially. 前記光照射手段と前記撮像手段とを連結する連結部材が設けられ、前記第2移動手段が前記第1移動手段を兼ねることを特徴とする請求項1又は2に記載の真円度測定装置。   The roundness measuring apparatus according to claim 1, wherein a connecting member that connects the light irradiation unit and the imaging unit is provided, and the second moving unit also serves as the first moving unit. 前記演算手段が、前記基準軸に対する前記軸線の傾斜角度に基づき前記真円度を補正することを特徴とする請求項1〜3の何れか1項に記載の真円度測定装置。   The roundness measurement apparatus according to claim 1, wherein the calculation unit corrects the roundness based on an inclination angle of the axis with respect to the reference axis. 前記演算手段が、前記基準軸に対する垂直面のうちの異なる面上での前記軸線の位置に基づき前記傾斜角度を算出することを特徴とする請求項4に記載の真円度測定装置。   5. The roundness measuring apparatus according to claim 4, wherein the calculation unit calculates the inclination angle based on a position of the axis on a different plane among the planes perpendicular to the reference axis. 前記演算手段が、前記基準軸に対する垂直面上での位置について、前記軸線の位置を、マスターワークにおける円筒面状内周面の軸線の位置を基準にして算出することを特徴とする請求項1〜5の何れか1項に記載の真円度測定装置。   The calculation means calculates the position of the axis with respect to the position on the vertical plane with respect to the reference axis with reference to the position of the axis of the cylindrical inner peripheral surface of the master work. The roundness measuring apparatus according to any one of?
JP2015081637A 2015-04-13 2015-04-13 Roundness measuring device Active JP6526465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081637A JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081637A JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Publications (2)

Publication Number Publication Date
JP2016200530A true JP2016200530A (en) 2016-12-01
JP6526465B2 JP6526465B2 (en) 2019-06-05

Family

ID=57424219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081637A Active JP6526465B2 (en) 2015-04-13 2015-04-13 Roundness measuring device

Country Status (1)

Country Link
JP (1) JP6526465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012764A (en) * 2018-07-19 2020-01-23 株式会社大林組 Circularity measuring device
CN117781909A (en) * 2024-02-27 2024-03-29 中北大学 Deep hole measuring device and measuring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355441A (en) * 1986-08-26 1988-03-09 Mitsubishi Electric Corp Detecting device for internal surface shape of pipe
JPH05157541A (en) * 1991-12-04 1993-06-22 Security- Japan:Kk Ferrule eccentricity inspecting apparatus
JP2012159491A (en) * 2011-01-14 2012-08-23 Nippon Steel Corp Defect detecting device and defect detecting method
WO2013118912A1 (en) * 2012-02-09 2013-08-15 株式会社Ihi Inside-diameter measurement device
JP2014074633A (en) * 2012-10-04 2014-04-24 Hitachi Ltd Shape measuring method and shape measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355441A (en) * 1986-08-26 1988-03-09 Mitsubishi Electric Corp Detecting device for internal surface shape of pipe
JPH05157541A (en) * 1991-12-04 1993-06-22 Security- Japan:Kk Ferrule eccentricity inspecting apparatus
JP2012159491A (en) * 2011-01-14 2012-08-23 Nippon Steel Corp Defect detecting device and defect detecting method
WO2013118912A1 (en) * 2012-02-09 2013-08-15 株式会社Ihi Inside-diameter measurement device
JP2014074633A (en) * 2012-10-04 2014-04-24 Hitachi Ltd Shape measuring method and shape measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012764A (en) * 2018-07-19 2020-01-23 株式会社大林組 Circularity measuring device
JP7180163B2 (en) 2018-07-19 2022-11-30 株式会社大林組 Roundness measuring device
CN117781909A (en) * 2024-02-27 2024-03-29 中北大学 Deep hole measuring device and measuring method
CN117781909B (en) * 2024-02-27 2024-04-26 中北大学 Deep hole measuring device and measuring method

Also Published As

Publication number Publication date
JP6526465B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6194996B2 (en) Shape measuring device, shape measuring method, structure manufacturing method, and shape measuring program
US10545102B2 (en) Coordinate alignment tool for coordinate measuring device and measuring X-ray CT apparatus
EP2045574B1 (en) Device and method for making reference profile data for inspecting tire
US9057601B2 (en) Method of and apparatus for 3-D imaging a pipe
US20160054119A1 (en) Shape measurement device, structure production system, shape measurement method, structure production method, and shape measurement program
CN111316060B (en) Device for optically measuring the external thread profile of a pipe
US11041818B2 (en) Dimensional X-ray computed tomography system and CT reconstruction method using same
JP7268032B2 (en) METHOD, APPARATUS AND INSPECTION LINE FOR SPECIFYING THREE-DIMENSIONAL SHAPE OF CONTAINER RING SURFACE
JP2011526375A (en) Optical inspection probe
JP6820949B2 (en) Thread measuring device
CN104969057A (en) A method and apparatus of profile measurement
CN110487193A (en) A kind of cylindrical workpiece diameter detection method based on monocular vision
JP6469927B1 (en) Inspection master
JP2014126381A (en) Shape measurement device, structure fabrication system, shape measurement method, structure fabrication method and shape measurement program
JP2016200530A (en) Roundness measurement device
Jackson et al. Error analysis and calibration for a novel pipe profiling tool
JP5101955B2 (en) Shape measuring method and shape measuring apparatus
US11333619B2 (en) Measurement X-ray CT apparatus
WO2004072628A1 (en) Defect inspection device and method therefor
JP7407994B2 (en) Pipe inner surface inspection method
JP3293830B2 (en) Apparatus and method for measuring and calculating geometric parameters of an object
JP2008157635A (en) Optical measurement apparatus and optical measurement method
JP6476957B2 (en) Shape measuring apparatus and method of measuring structure
CN109813739B (en) X-ray hardening artifact normalization correction method based on spiral phantom
JP7201208B2 (en) Calibration gauge and calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190508

R150 Certificate of patent or registration of utility model

Ref document number: 6526465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250