WO2020105218A1 - Measurement method - Google Patents

Measurement method

Info

Publication number
WO2020105218A1
WO2020105218A1 PCT/JP2019/027111 JP2019027111W WO2020105218A1 WO 2020105218 A1 WO2020105218 A1 WO 2020105218A1 JP 2019027111 W JP2019027111 W JP 2019027111W WO 2020105218 A1 WO2020105218 A1 WO 2020105218A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
machine tool
measurement
measuring
accuracy
Prior art date
Application number
PCT/JP2019/027111
Other languages
French (fr)
Japanese (ja)
Inventor
山田 智明
建太 神藤
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2020105218A1 publication Critical patent/WO2020105218A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a measuring method for machine accuracy of a machine tool.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring method for machine accuracy of a machine tool that can be implemented with a small number of steps and at low cost without using a standard device.
  • a measurement method The process of setting the work on the machine tool and processing it, Setting a sensor on the machine tool; Measuring the same point on the machined surface of the workpiece at at least two measurement points within the field of view of the sensor; Detecting the accuracy of the machine tool based on the measurement results at the at least two measurement points; including.
  • FIG. 3 is a side view schematically showing a step of moving a sensor attached to a spindle to measure the same point on a machining surface of a work placed on a table at two measurement points within a field of view of the sensor
  • FIG. 5 is a diagram showing a case where the moving direction of the spindle is parallel to the reference direction of the mounting surface of the table.
  • FIG. 3 is a side view schematically showing a step of moving a sensor attached to a spindle to measure the same point on a machining surface of a work placed on a table at two measurement points within a field of view of the sensor
  • FIG. 3 is a side view schematically showing a step of moving a sensor attached to a spindle to measure the same point on a machining surface of a work placed on a table at two measurement points within a field of view of the sensor
  • FIG. 6 is a diagram showing a case where the moving direction of the main shaft has an inclination angle with respect to the reference direction of the mounting surface of the table. It is a side view which shows typically the process of rotating and moving the sensor attached to the main shaft, and measuring the same point of the processed surface of the workpiece mounted on the table at two measurement points within the visual field of the sensor. It is the figure which showed typically three measurement points in the visual field of a sensor. It is the figure which showed typically the machine precision which exists for every X, Y, and Z axis of a machine tool. It is a figure which shows the process which calculates
  • FIG. 1 schematically shows a process in which a sensor attached to a spindle (tool spindle) is moved to measure the same point on a machining surface of a workpiece placed on a table at two measurement points within the field of view of the sensor. It is a side view shown.
  • FIG. 1 shows a case where the main shaft moves in a direction parallel to a reference direction (for example, the X-axis direction, but not limited to this) of the mounting surface of the table.
  • a reference direction for example, the X-axis direction, but not limited to this
  • the sensor 30 is set on the spindle 20 of the machine tool without removing the work W from the table 10. ..
  • a three-dimensional sensor that can obtain a three-dimensional profile, such as a fringe projection area sensor, can be exemplified. Further, a three-dimensional profile can be obtained by scanning in the direction perpendicular to the longitudinal direction of the line light using the optical cutting type sensor.
  • a two-dimensional sensor such as an image sensor may be used depending on the direction of detection.
  • the calibration is performed for the sensor alone (calibration within the measurement range of the sensor), and the measurement is performed with the coordinates in the two-dimensional field of view calibrated. Further, the measurement is performed in the state where the attachment of the sensor to the spindle is calibrated near the reference position of the machine tool (for example, the center of rotation of the table).
  • the calibration related to this attachment is for making a reference, and for example, the same point may be measured at two points S1 and S2 on the visual field in the vicinity of the center of rotation of the table to give an apparent inclination. Due to the nature of this measurement, it is necessary for the sensor to be able to guarantee accuracy within a certain plane (within the measurement range).
  • FIG. 1 shows a case where the main shaft 20 moves in the X-axis direction.
  • the invention is not limited to this, and the sensor side may be fixed and the work side may be moved.
  • the table on which the work is placed can be moved without moving the member to which the sensor is attached. Further, both the sensor and the work can be moved. Any mode can be adopted as long as the sensor and the workpiece can be moved in translation relative to each other.
  • the optical axis of the sensor 30 (axis of the main shaft 20) is orthogonal to the mounting surface 10a of the table 10, and the moving direction of the main shaft 20 is parallel to the reference direction of the mounting surface 10a of the table 10. Indicates that That is, the case where a predetermined machine precision is obtained is shown.
  • the point A provided on the processing surface of the workpiece W which is a measurement mark, is measured at two measurement points S1 and S2 in the visual field 32 of the sensor 30. Specifically, the point A is measured at the position shown by the solid line in FIG. 1 to obtain the measurement point S1 in the visual field 32, and then the spindle 20 to which the sensor 30 is attached is moved by the distance L (thick arrow). (See FIG. 1), the point A is measured again at the position indicated by the broken line in FIG. As a result, the measuring point S2 is obtained within the visual field.
  • the point A on the work W to be the measurement mark if a punch or marking is attached to the work, this can be used. Further, a convex portion, a concave portion, an edge portion, a corner portion or the like formed on the work W by machining can also be used as the measurement mark.
  • the inclination angle ⁇ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained.
  • the deviation ⁇ Z 0, it can be determined that the moving direction of the spindle 20 is parallel (not inclined) to the reference direction of the mounting surface 10a of the table 10. ..
  • FIG. 2 is a side view schematically showing a case where the sensor attached to the main shaft is moved to measure the same point on the machining surface of the workpiece placed on the table at two measurement points within the field of view of the sensor.
  • FIG. 2 is a diagram showing a case where the movement direction of the main shaft has an inclination angle with respect to the reference direction of the mounting surface of the table.
  • the point A is measured at the position shown by the solid line in FIG. 2 to obtain the measurement point S1 in the visual field, and then the spindle to which the sensor 30 is attached is moved by the distance L. (Refer to the thick arrow) and measure the point A again at the position shown by the broken line in FIG. As a result, the measuring point S2 is obtained within the visual field.
  • the inclination angle ⁇ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained.
  • the deviation ⁇ Z has a predetermined value other than zero, so that the moving direction of the spindle 20 is not parallel (inclined) to the reference direction of the mounting surface 10a of the table 10. You can judge.
  • the inclination angle ⁇ of the movement direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained.
  • the sensor 30 and the workpiece W are moved in translation relative to each other, so that the same point on the machined surface of the workpiece W is measured at two measurement points S1 in the visual field of the sensor 30. It is possible to detect the inclination angle ⁇ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 as the accuracy of the machine tool 2 based on the measurement result in S2.
  • FIG. 3 is a side view schematically showing a case where the sensor mounted on the spindle is rotated and moved to measure the same point on the machined surface of the workpiece placed on the table at two measurement points within the field of view of the sensor. It is a figure.
  • the sensor 30 and the workpiece W are moved in translation relative to each other, The measuring point S1 and the measuring point S2 are obtained within the visual field 32 of the sensor 30 to detect the accuracy of the machine tool 2.
  • the sensor 30 and the work W are relatively rotationally and translationally moved to obtain the measurement point S1 and the measurement point S1 ′ within the field of view 32 of the sensor 30 to detect the accuracy of the machine tool 2. ..
  • the measurement point S1 is arranged such that the line connecting to the rotation center CL of the sensor 30 (spindle 20) coincides with the moving direction of the spindle 20. Further, the measurement point S1 is arranged at a distance M from the rotation center CL of the sensor 30. In this state, the point A is measured at the position shown by the solid line in FIG. 3 to obtain the measurement point S1 in the field of view, and then the spindle 32 to which the sensor 30 is attached is rotated 180 degrees and the spindle 32 is moved by the distance 2 The point A is measured again at the position shown by the broken line in FIG. 3 after moving by ⁇ M (see the thick arrow). As a result, the measurement point S1 ′ is obtained within the visual field.
  • the tilt angle ⁇ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained.
  • the sensor 30 is attached to the spindle 20, The work W is placed on the table 10, Based on the difference between the measurement results at the two measurement points S1 and S2 (S1 and S1 ′) within the field of view of the sensor 30, the tilt angle ⁇ with respect to the moving direction of the spindle 20 and the reference direction of the mounting surface 10a of the table 10 is detected. can do.
  • the sensor 30 and the workpiece W are moved in translation relative to each other, whereby the same point P on the machining surface of the workpiece W is measured at at least two measurement points S1 and S2 in the field of view 32 of the sensor 30, and the machine tool is machined.
  • the accuracy of 2 can be detected (first embodiment).
  • the sensor 30 and the workpiece W are relatively rotated and translated, so that the same point P on the processing surface of the workpiece W is measured at at least two measurement points S1 and S1 ′ in the visual field 32 of the sensor 30.
  • the accuracy of the machine tool 2 can be detected (second embodiment). In any case, the function of the machine tool 2 can be effectively used to efficiently detect the accuracy of the machine tool 2.
  • the sensor 30 and the workpiece W are relatively rotationally and translationally moved to measure the same point on the machined surface of the workpiece W at at least two measurement points within the field of view of the sensor 30.
  • the accuracy of can be detected.
  • the accuracy of the machine tool 2 can be efficiently detected by effectively utilizing the function of the machine tool 2.
  • the main shaft 20 to which the sensor 30 is attached is rotated here, the present invention is not limited to this, and the table 10 side may be rotated.
  • the surface of the workpiece W processed into a flat surface by grinding is processed not along the table 10 but along the moving direction of the spindle 20. Therefore, the surface of the work W is tilted in the opposite direction by rotating the table 10 by 180 °, and the tilt of the X axis can be detected with higher sensitivity than when the reference device is used.
  • detection of the tilt angle ⁇ in the moving direction of the main shaft 20 has been described as an example, but the mechanical accuracy of detection is not limited to this.
  • the same point P on the machined surface of the workpiece W is measured at at least two measurement points S1 and S2 in the field of view 32 of the sensor 30, and the table 10 is placed on the optical axis of the sensor 30 (axis of the main shaft 20). It is also possible to detect the tilt angle with respect to the surface 10a.
  • the sensor 30 based on the deviation between the coordinates of the measurement point 2 and the coordinates when the optical axis of the sensor 30 (the axis of the main shaft 20) is orthogonal to the mounting surface 10a of the table 10, the sensor 30 The tilt angle of the optical axis (the axis of the main axis 20) can be calculated.
  • the tilt angle of the mounting surface 10a of the table 10 with respect to the reference direction in the movement direction of the spindle 20 in the X-axis direction and the Y-axis direction. ⁇ can be detected.
  • the tilt angle of the optical axis of the sensor 30 (axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 can also be detected.
  • the sensor 30 and the work W are relatively rotationally moved to measure the same point on the processed surface of the work W at at least two measurement points within the field of view of the sensor. To do. Using this measuring method, it is possible to detect the tilt angle of the optical axis of the sensor 30 (the axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 as the mechanical accuracy.
  • the inclination angle of the rotation axis of the sensor 30 (main shaft 20), that is, the optical axis of the sensor 30 (axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 can be obtained. If the measurement is performed at least at three points on the work, the inclination angle of the rotation axis of the sensor 30 (spindle 20) with respect to the mounting surface 10a of the table 10 can be obtained.
  • the sensor 30 is rotated by a predetermined angle. Then, when the rotation axis CL of the sensor 30 (spindle 20) is perpendicular to the mounting surface 10a of the table 10, the sensor 30 moves with such a movement amount that the measurement point S1 ′ after rotation returns to the position of the point A. Let At this time, the inclination angle of the optical axis of the sensor 30 can be obtained based on the obtained deviation of the coordinates between the measurement points S1 and S1 '.
  • the inclination angle of the optical axis of the sensor 30 with respect to the mounting surface 10a of the table 10 is measured. Can be asked.
  • FIG. 5 is a diagram schematically showing the machine accuracy that exists for each of the X, Y, and Z axes of the machine tool.
  • FIG. 6 is a diagram showing a process of obtaining a tilt angle in the X-axis direction by sequentially moving a sensor attached to a spindle while keeping the same measurement point in the same visual field.
  • FIG. 6 shows that steps 1 and 2 are performed so that at least two of the measurement points in the visual field are measured at the same position in the visual field.
  • the stage is moved by 2 / 3FOV, and in step 2, the measurement mark T2 is The measurement is performed so as to come to the position of the measurement mark T1 in step 1.
  • the accuracy of the sensor 30 can be connected in a scale-like manner, and the entire workpiece W can be measured.
  • the work W is a rack and pinion rack
  • a large number of measurement marks can be obtained along the longitudinal direction of the rack.
  • This common mark as an intermediary, it is possible to detect a relative coordinate change of a long stroke.
  • the shape of the work W used for the measurement is preferably a shape that allows the points as the measurement marks to be specified. Therefore, it can be said that a part of a polygonal cone, a cone, a convex sphere, or a concave sphere is preferable.
  • the case where the sensor 30 is attached to the spindle 20 of the machine tool 2 has been described as an example, but the present invention is not limited to this. If the sensor 30 can be moved relative to the work W, the sensor 30 can be attached to any other member of the machine tool 2.
  • a step of setting the work W on the machine tool 2 and performing machining A step of setting the sensor 30 on the machine tool 2, Measuring the same point on the machined surface of the work W at at least two measurement points within the field of view of the sensor 30; Detecting the accuracy of the machine tool 2 based on the measurement results at at least two measurement points; including.
  • the accuracy of the machine tool 2 is measured using the machined work W without installing a reference device or the like inside the machine tool 2, so that the accuracy of the machine tool can be measured with a small number of steps and at low cost. be able to.
  • the accuracy of the machine tool can be measured efficiently and reliably.
  • the standard device needs to be verified every year, and a large amount of cost is required for one test. Also, if it is deformed due to some accident, it will be in an unusable state.
  • the reference device can be used as a reference because the temperature condition must be constant (for example, 20 ° C. ⁇ 0.5 ° C.), and it may be difficult to use it on a machine tool.
  • the use of no scale provides a great advantage.
  • the senor 30 is an optical cutting type sensor, it is possible to obtain a three-dimensional profile by scanning in the direction perpendicular to the longitudinal direction of the line light.
  • a three-dimensional sensor such as a fringe projection area sensor is used as the sensor 30, it can be expected that the measurement will be completed in a shorter time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Provided is a method for measuring the precision of a machine tool, including a step for setting a workpiece in a machine tool and machining the workpiece, a step for setting a sensor in the machine tool, a step for measuring the same point on a machined surface of the workpiece in at least two measurement points in the field of view of the sensor, and a step for detecting the precision of the machine tool on the basis of the measurement results in the at least two measurement points. It is thereby possible to realize a measurement method relating to the mechanical precision of a machine tool, that can be performed in a small number of steps and at low cost without the use of a measurement standard.

Description

測定方法Measuring method
 本発明は、工作機械の機械精度についての測定方法に関する。 The present invention relates to a measuring method for machine accuracy of a machine tool.
 工作機械の機械精度を把握して適切にキャリブレーションを行うことが、高い寸法精度を伴う機械加工を行うために重要である。これに対応するため、精度が補償された四直角マスタのような基準器を用いて、工作機械の精度測定を行う方法が提案されている(例えば、特許文献1参照)。 It is important to understand the machine accuracy of the machine tool and perform appropriate calibration in order to perform machining with high dimensional accuracy. In order to deal with this, there has been proposed a method for measuring the accuracy of a machine tool using a reference device such as a quadrangle master whose accuracy is compensated (for example, refer to Patent Document 1).
特開2009-103599号Japanese Patent Laid-Open No. 2009-103599
 特許文献1に記載の測定方法では、機内に設置した基準器を、工具主軸に取り付けたセンサで測定することにより、真直度や直角度の測定を行うことができる。しかし、基準器を別途所有する必要がある上、測定の度にセンサを機内に設置する必要があり、コストや工数の面で課題を有する。 With the measuring method described in Patent Document 1, the straightness and squareness can be measured by measuring the reference device installed in the machine with the sensor attached to the tool spindle. However, it is necessary to separately own a standard device, and it is necessary to install a sensor inside the machine for each measurement, which causes problems in terms of cost and man-hours.
 本発明は、上記問題に鑑みてなされたものであり、基準器を用いずに、少ない工数かつ低コストで実施可能な工作機械の機械精度に関する測定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a measuring method for machine accuracy of a machine tool that can be implemented with a small number of steps and at low cost without using a standard device.
 上記課題を解決するために、本開示の1つの実施態様に係る測定方法は、
 ワークを工作機械にセットして加工を行う工程と、
 センサを前記工作機械にセットする工程と、
 前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定する工程と、
 前記少なくとも2つの測定点における測定結果に基づいて、前記工作機械の精度を検出する工程と、
を含む。
In order to solve the above problems, a measurement method according to one embodiment of the present disclosure,
The process of setting the work on the machine tool and processing it,
Setting a sensor on the machine tool;
Measuring the same point on the machined surface of the workpiece at at least two measurement points within the field of view of the sensor;
Detecting the accuracy of the machine tool based on the measurement results at the at least two measurement points;
including.
 上記の実施態様によれば、基準器を用いずに、少ない工数かつ低コストで実施可能な工作機械の機械精度に関する測定方法を提供することができる。 According to the above-described embodiment, it is possible to provide a measuring method for machine accuracy of a machine tool that can be implemented with a small number of steps and at low cost without using a standard device.
主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して平行な場合を示す図である。FIG. 3 is a side view schematically showing a step of moving a sensor attached to a spindle to measure the same point on a machining surface of a work placed on a table at two measurement points within a field of view of the sensor, FIG. 5 is a diagram showing a case where the moving direction of the spindle is parallel to the reference direction of the mounting surface of the table. 主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して傾斜角を有する場合を示す図である。FIG. 3 is a side view schematically showing a step of moving a sensor attached to a spindle to measure the same point on a machining surface of a work placed on a table at two measurement points within a field of view of the sensor, FIG. 6 is a diagram showing a case where the moving direction of the main shaft has an inclination angle with respect to the reference direction of the mounting surface of the table. 主軸に取り付けられたセンサを回転及び移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図である。It is a side view which shows typically the process of rotating and moving the sensor attached to the main shaft, and measuring the same point of the processed surface of the workpiece mounted on the table at two measurement points within the visual field of the sensor. センサの視野内における3つの測定点を模式的に示した図である。It is the figure which showed typically three measurement points in the visual field of a sensor. 工作機械のX、Y、Z軸ごとに存在する機械精度を模式的に示した図である。It is the figure which showed typically the machine precision which exists for every X, Y, and Z axis of a machine tool. 同一の測定点が同一視野に入るようにしながら、主軸に取り付けられたセンサを順次移動させて、X軸方向における傾斜角を求める工程を示す図である。It is a figure which shows the process which calculates | requires the inclination angle in an X-axis direction by moving a sensor attached to the main shaft one by one, making the same measurement point enter the same visual field.
 以下、図面を参照しながら、本開示を実施するための実施形態や実施例を説明する。なお、以下に説明する測定方法は、本開示の技術思想を具体化するためのものであって、特定的な記載がない限り、本開示を以下のものに限定しない。
 各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態や実施例に分けて示す場合があるが、異なる実施形態や実施例で示した構成の部分的な置換または組み合わせは可能である。後述の実施形態や実施例では、前述と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態や実施例ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
Hereinafter, embodiments and examples for carrying out the present disclosure will be described with reference to the drawings. The measurement method described below is for embodying the technical idea of the present disclosure, and the present disclosure is not limited to the following unless specified otherwise.
In the drawings, members having the same function may be designated by the same reference numeral. Although there are cases in which the embodiments and examples are shown separately for the sake of convenience, in order to facilitate explanation and understanding of the points, partial replacement or combination of the configurations shown in different embodiments and examples is possible. In the later-described embodiments and examples, description of matters common to the above is omitted, and only different points will be described. In particular, similar effects obtained by the same configuration will not be sequentially described for each embodiment or example. In some cases, the size, positional relationship, etc. of the members shown in each drawing are exaggerated in order to clarify the explanation.
(本開示の第1の実施形態に係る測定方法)
 はじめに、図1及び図2を参照しながら、工作機械の機械精度に関する本開示の第1の実施形態に係る測定方法の説明を行う。まず、図1を参照しながら、測定方法の基本的な説明を行う。図1は、主軸(工具主軸)に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図である。特に、図1では、主軸がテーブルの載置面の基準方向(例えばX軸方向だがこれには限られない)に対して平行な方向へ移動した場合を示す。
(Measurement method according to the first embodiment of the present disclosure)
First, the measurement method according to the first embodiment of the present disclosure regarding the machine accuracy of a machine tool will be described with reference to FIGS. 1 and 2. First, a basic description of the measurement method will be given with reference to FIG. FIG. 1 schematically shows a process in which a sensor attached to a spindle (tool spindle) is moved to measure the same point on a machining surface of a workpiece placed on a table at two measurement points within the field of view of the sensor. It is a side view shown. In particular, FIG. 1 shows a case where the main shaft moves in a direction parallel to a reference direction (for example, the X-axis direction, but not limited to this) of the mounting surface of the table.
 本実施形態では、ワークWを工作機械2のテーブル10の載置面10aにセットして加工を行った後、ワークWをテーブル10から取り外すことなく、センサ30を工作機械の主軸20にセットする。ここで用いるセンサ30としては、縞投影エリアセンサのような、三次元のプロファイルが得られる三次元センサを例示することができる。また、光学切断式センサを用いて、ライン光の長手方向に対して垂直な方向に走査することにより、三次元のプロファイルを得ることもできる。また、検出する方向によっては、画像センサのような二次元センサを用いることもできる。 In the present embodiment, after the work W is set on the mounting surface 10a of the table 10 of the machine tool 2 and processed, the sensor 30 is set on the spindle 20 of the machine tool without removing the work W from the table 10. .. As the sensor 30 used here, a three-dimensional sensor that can obtain a three-dimensional profile, such as a fringe projection area sensor, can be exemplified. Further, a three-dimensional profile can be obtained by scanning in the direction perpendicular to the longitudinal direction of the line light using the optical cutting type sensor. A two-dimensional sensor such as an image sensor may be used depending on the direction of detection.
 何れのセンサを用いる場合も、センサ単体でのキャリブレーション(センサの測定範囲内でのキャリブレーション)が完了し、二次元の視野内の座標が校正された状態で計測を行う。
 また、工作機械の基準位置(例えばテーブルの回転中心)付近でセンサの主軸に対する取り付けが校正されている状態で測定を行う。この取り付けに関する校正は基準を作るためのもので、例えばテーブル回転中心付近で視野上の2点S1、S2で同一点を測定して見かけ上の傾きを出しても良い。なお、本測定の性質上、一定の面内(測定範囲内)で精度を保証できるセンサである必要がある。
Whichever sensor is used, the calibration is performed for the sensor alone (calibration within the measurement range of the sensor), and the measurement is performed with the coordinates in the two-dimensional field of view calibrated.
Further, the measurement is performed in the state where the attachment of the sensor to the spindle is calibrated near the reference position of the machine tool (for example, the center of rotation of the table). The calibration related to this attachment is for making a reference, and for example, the same point may be measured at two points S1 and S2 on the visual field in the vicinity of the center of rotation of the table to give an apparent inclination. Due to the nature of this measurement, it is necessary for the sensor to be able to guarantee accuracy within a certain plane (within the measurement range).
 本実施形態では、工作機械2の機械精度に関する測定の一例として、主軸20の移動方向のテーブルの載置面の基準方向に対する傾斜角度を検出する場合を例にとって説明する。本実施形態では、ワークWをテーブル10上に固定し、主軸20の移動によりセンサ30を移動させて測定を行う。図1では、主軸20がX軸方向に移動する場合を示す。
 ただし、これに限られるものではなく、センサ側を固定して、ワーク側を移動させることもできる。例えば、センサが取り付けられた部材は動かさずに、ワークが載置されたテーブルを移動させることもできる。更に、センサ及びワークの両方を移動させることもできる。センサ及びワークを相対的に並進移動させることができれば、任意の態様を採用することができる。
In the present embodiment, as an example of measurement of the machine accuracy of the machine tool 2, a case will be described in which the tilt angle of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface of the table is detected. In this embodiment, the work W is fixed on the table 10, and the sensor 30 is moved by the movement of the main shaft 20 to perform the measurement. FIG. 1 shows a case where the main shaft 20 moves in the X-axis direction.
However, the invention is not limited to this, and the sensor side may be fixed and the work side may be moved. For example, the table on which the work is placed can be moved without moving the member to which the sensor is attached. Further, both the sensor and the work can be moved. Any mode can be adopted as long as the sensor and the workpiece can be moved in translation relative to each other.
<主軸の移動方向がテーブルの載置面の基準方向に対して平行な場合>
 図1では、センサ30の光軸(主軸20の軸)がテーブル10の載置面10aに対して直交し、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行になっている場合を示す。つまり、所定の機械精度が得られている場合を示す。
<When the moving direction of the spindle is parallel to the reference direction of the table mounting surface>
In FIG. 1, the optical axis of the sensor 30 (axis of the main shaft 20) is orthogonal to the mounting surface 10a of the table 10, and the moving direction of the main shaft 20 is parallel to the reference direction of the mounting surface 10a of the table 10. Indicates that That is, the case where a predetermined machine precision is obtained is shown.
 センサ30を主軸20にセットした後、測定用マークであるワークWの加工面に設けられた点Aを、センサ30の視野32内における2つの測定点S1、S2で測定する。具体的には、図1の実線で示す位置で点Aを測定して、視野32内に測定点S1を得た後、センサ30が取り付けられた主軸20を距離Lだけ移動させて(太矢印参照)、図1の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S2を得る。 After setting the sensor 30 on the spindle 20, the point A provided on the processing surface of the workpiece W, which is a measurement mark, is measured at two measurement points S1 and S2 in the visual field 32 of the sensor 30. Specifically, the point A is measured at the position shown by the solid line in FIG. 1 to obtain the measurement point S1 in the visual field 32, and then the spindle 20 to which the sensor 30 is attached is moved by the distance L (thick arrow). (See FIG. 1), the point A is measured again at the position indicated by the broken line in FIG. As a result, the measuring point S2 is obtained within the visual field.
 測定用マークとなるワークW上の点Aとしては、ワークにポンチやマーキングが付けられていれば、これを用いることができる。また、機械加工でワークWに形成された凸部、凹部、エッジ部、コーナー部等を測定用マークとして用いることもできる。 As the point A on the work W to be the measurement mark, if a punch or marking is attached to the work, this can be used. Further, a convex portion, a concave portion, an edge portion, a corner portion or the like formed on the work W by machining can also be used as the measurement mark.
 センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S2のZ軸方向の座標Z2を計測し、その偏差ΔZ(=Z2-Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。図1に示す場合には、偏差ΔZ=0となるので、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行である(傾斜していない)と判断することができる。 When a three-dimensional profile is obtained by the sensor 30, the coordinate Z1 of the measurement point S1 in the Z-axis direction and the coordinate Z2 of the measurement point S2 in the Z-axis direction are measured and based on the deviation ΔZ (= Z2-Z1). The inclination angle θ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained. In the case shown in FIG. 1, since the deviation ΔZ = 0, it can be determined that the moving direction of the spindle 20 is parallel (not inclined) to the reference direction of the mounting surface 10a of the table 10. ..
<主軸の移動方向がテーブルの載置面の基準方向に対して傾斜を有する場合>
 次に、図2を参照しながら、センサ30の光軸はテーブル10の載置面10aに対して直交し、主軸20の移動方向がテーブル10の載置面100aの基準方向に対して、角度θだけ傾斜している場合について説明する。図2は、主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する場合を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して傾斜角を有する場合を示す図である。
<When the moving direction of the main shaft is inclined with respect to the reference direction of the table mounting surface>
Next, referring to FIG. 2, the optical axis of the sensor 30 is orthogonal to the mounting surface 10a of the table 10, and the movement direction of the main shaft 20 is an angle with respect to the reference direction of the mounting surface 100a of the table 10. A case of inclining by θ will be described. FIG. 2 is a side view schematically showing a case where the sensor attached to the main shaft is moved to measure the same point on the machining surface of the workpiece placed on the table at two measurement points within the field of view of the sensor. In particular, it is a diagram showing a case where the movement direction of the main shaft has an inclination angle with respect to the reference direction of the mounting surface of the table.
 センサ30を主軸20にセットした後、図2の実線で示す位置で点Aを測定して、視野内に測定点S1を得た後、センサ30が取り付けられた主軸を距離Lだけ移動させて(太矢印参照)、図2の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S2を得る。 After the sensor 30 is set on the spindle 20, the point A is measured at the position shown by the solid line in FIG. 2 to obtain the measurement point S1 in the visual field, and then the spindle to which the sensor 30 is attached is moved by the distance L. (Refer to the thick arrow) and measure the point A again at the position shown by the broken line in FIG. As a result, the measuring point S2 is obtained within the visual field.
 センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S2のZ軸方向の座標Z2を計測し、その偏差ΔZ(=Z2-Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。図2に示す場合には、偏差ΔZがゼロ以外の所定の値となるので、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行ではない(傾斜している)と判断することができる。そして、偏差ΔZの値に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。具体的には、角度θ=ARCSIN(ΔZ/L)で傾斜角度θを算出することができる。 When a three-dimensional profile is obtained by the sensor 30, the coordinate Z1 of the measuring point S1 in the Z-axis direction and the coordinate Z2 of the measuring point S2 in the Z-axis direction are measured and based on the deviation ΔZ (= Z2-Z1). The inclination angle θ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained. In the case shown in FIG. 2, the deviation ΔZ has a predetermined value other than zero, so that the moving direction of the spindle 20 is not parallel (inclined) to the reference direction of the mounting surface 10a of the table 10. You can judge. Then, based on the value of the deviation ΔZ, the inclination angle θ of the movement direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained. Specifically, the inclination angle θ can be calculated by the angle θ = ARCSIN (ΔZ / L).
 以上のように、第1の実施形態においては、センサ30及びワークWを相対的に並進移動させることにより、ワークWの加工面の同一点を、センサ30の視野内における2つの測定点S1、S2で測定し、この測定結果に基づいて、工作機械2の精度として、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを検出することができる。 As described above, in the first embodiment, the sensor 30 and the workpiece W are moved in translation relative to each other, so that the same point on the machined surface of the workpiece W is measured at two measurement points S1 in the visual field of the sensor 30. It is possible to detect the inclination angle θ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 as the accuracy of the machine tool 2 based on the measurement result in S2.
(本開示の第2の実施形態に係る測定方法)
 次に、図3を参照しながら、本開示の第2の実施形態に係る測定方法の説明を行う。図3は、主軸に取り付けられたセンサを回転及び移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する場合を模式的に示す側面図である。
(Measurement method according to the second embodiment of the present disclosure)
Next, a measurement method according to the second embodiment of the present disclosure will be described with reference to FIG. FIG. 3 is a side view schematically showing a case where the sensor mounted on the spindle is rotated and moved to measure the same point on the machined surface of the workpiece placed on the table at two measurement points within the field of view of the sensor. It is a figure.
 上記の第1の実施形態では、センサ30及びワークWを相対的に並進移動させることにより、
センサ30の視野32内に測定点S1及び測定点S2を得て、工作機械2の精度を検出している。本実施形態では、センサ30及びワークWを相対的に回転移動及び並進移動させることにより、センサ30の視野32内に測定点S1及び測定点S1’を得て、工作機械2の精度を検出する。
In the first embodiment described above, the sensor 30 and the workpiece W are moved in translation relative to each other,
The measuring point S1 and the measuring point S2 are obtained within the visual field 32 of the sensor 30 to detect the accuracy of the machine tool 2. In the present embodiment, the sensor 30 and the work W are relatively rotationally and translationally moved to obtain the measurement point S1 and the measurement point S1 ′ within the field of view 32 of the sensor 30 to detect the accuracy of the machine tool 2. ..
 センサ30の視野32内において、測定点S1は、センサ30(主軸20)の回転中心CLと結ぶ線が主軸20の移動方向に一致するように配置されている。また、測定点S1は、センサ30の回転中心CLから距離Mだけ離間して配置されている。
 この状態において、図3の実線で示す位置で点Aを測定して、視野内に測定点S1を得た後、センサ30が取り付けられた主軸32を180度回転させるとともに、主軸32を距離2×Mだけ移動させて(太矢印参照)、図3の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S1’を得る。
In the visual field 32 of the sensor 30, the measurement point S1 is arranged such that the line connecting to the rotation center CL of the sensor 30 (spindle 20) coincides with the moving direction of the spindle 20. Further, the measurement point S1 is arranged at a distance M from the rotation center CL of the sensor 30.
In this state, the point A is measured at the position shown by the solid line in FIG. 3 to obtain the measurement point S1 in the field of view, and then the spindle 32 to which the sensor 30 is attached is rotated 180 degrees and the spindle 32 is moved by the distance 2 The point A is measured again at the position shown by the broken line in FIG. 3 after moving by × M (see the thick arrow). As a result, the measurement point S1 ′ is obtained within the visual field.
 センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S1’のZ軸方向の座標Z1’を計測し、その偏差ΔZ(=Z1’-Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。具体的には、角度θ=ARCSIN(ΔZ/L)で傾斜角度θを算出することができる。
 その他の点については、第1の実施形態と同様なので、更なる説明は省略する。
When a three-dimensional profile is obtained by the sensor 30, the coordinate Z1 of the measurement point S1 in the Z-axis direction and the coordinate Z1 ′ of the measurement point S1 ′ in the Z-axis direction are measured, and their deviation ΔZ (= Z1′−Z1). Based on the above, the tilt angle θ of the moving direction of the spindle 20 with respect to the reference direction of the mounting surface 10a of the table 10 can be obtained. Specifically, the inclination angle θ can be calculated by the angle θ = ARCSIN (ΔZ / L).
Since the other points are the same as those of the first embodiment, further description will be omitted.
 以上のように、上記の第1及び第2の実施形態に係る測定方法では、
 センサ30が主軸20に取り付けられ、
 ワークWがテーブル10に載置され、
 センサ30の視野内における2つの測定点S1、S2(S1、S1’)における測定結果の差分に基づいて、主軸20の移動方向及びテーブル10の載置面10aの基準方向に対する傾斜角θを検出することができる。
As described above, in the measuring methods according to the first and second embodiments described above,
The sensor 30 is attached to the spindle 20,
The work W is placed on the table 10,
Based on the difference between the measurement results at the two measurement points S1 and S2 (S1 and S1 ′) within the field of view of the sensor 30, the tilt angle θ with respect to the moving direction of the spindle 20 and the reference direction of the mounting surface 10a of the table 10 is detected. can do.
 これにより、基準器等を工作機械2の機内に設置することなく、加工したワークWを用いて、少ない工数で確実に傾斜に関する精度を測定することができる。 With this, it is possible to reliably measure the inclination accuracy with a small number of man-hours using the machined work W without installing a reference device or the like inside the machine tool 2.
 特に、センサ30及びワークWを相対的に並進移動させることにより、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S2で測定して、工作機械2の精度を検出することができる(第1の実施形態)。更に、センサ30及びワークWを相対的に回転及び並進移動させることにより、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S1’で測定して、工作機械2の精度を検出することができる(第2の実施形態)。何れにおいても、工作機械2の機能を有効利用して、工作機械2の精度を効率的に検出することができる。 In particular, the sensor 30 and the workpiece W are moved in translation relative to each other, whereby the same point P on the machining surface of the workpiece W is measured at at least two measurement points S1 and S2 in the field of view 32 of the sensor 30, and the machine tool is machined. The accuracy of 2 can be detected (first embodiment). Further, the sensor 30 and the workpiece W are relatively rotated and translated, so that the same point P on the processing surface of the workpiece W is measured at at least two measurement points S1 and S1 ′ in the visual field 32 of the sensor 30. The accuracy of the machine tool 2 can be detected (second embodiment). In any case, the function of the machine tool 2 can be effectively used to efficiently detect the accuracy of the machine tool 2.
 また、センサ30及びワークWを相対的に回転移動及び並進移動させることにより、ワークWの加工面の同一点を、センサ30の視野内における少なくとも2つの測定点で測定することにより、工作機械2の精度を検出することができる。この場合においても、工作機械2の機能を有効利用して、工作機械2の精度を効率的に検出することができる。
 特に、2つの測定点の偏差に基づいて並進移動における誤差を検出し、2つの測定点の和に基づいて回転移動における誤差を検出することができるので、回転移動誤差及び並進移動誤差の分離推定が容易になる。
 なお、ここではセンサ30を取り付けた主軸20を回転させているが、これに限られるものではなく、テーブル10側を回転させることもできる。このとき、研削により平面に加工されたワークWの表面は、テーブル10ではなく、主軸20の移動方向に沿って加工されている。このため、テーブル10の180°回転により、ワークWの表面は逆方向に傾斜することとなり、基準器を使った場合より高感度でX軸の傾斜を検出することができる。
Further, the sensor 30 and the workpiece W are relatively rotationally and translationally moved to measure the same point on the machined surface of the workpiece W at at least two measurement points within the field of view of the sensor 30. The accuracy of can be detected. Also in this case, the accuracy of the machine tool 2 can be efficiently detected by effectively utilizing the function of the machine tool 2.
In particular, since it is possible to detect the error in translational movement based on the deviation between the two measurement points and the error in rotational movement based on the sum of the two measurement points, separate estimation of the rotational movement error and the translational movement error can be performed. Will be easier.
In addition, although the main shaft 20 to which the sensor 30 is attached is rotated here, the present invention is not limited to this, and the table 10 side may be rotated. At this time, the surface of the workpiece W processed into a flat surface by grinding is processed not along the table 10 but along the moving direction of the spindle 20. Therefore, the surface of the work W is tilted in the opposite direction by rotating the table 10 by 180 °, and the tilt of the X axis can be detected with higher sensitivity than when the reference device is used.
 上記においては、主軸20の移動方向の傾斜角度θの検出を例にとって説明したが、検出する機械精度はこれに限られるものではない。例えば、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S2で測定して、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することもできる。具体的には、測定点2の座標と、センサ30の光軸(主軸20の軸)がテーブル10の載置面10aに対して直交している場合の座標との偏差に基づいて、センサ30の光軸(主軸20の軸)の傾斜角度を求めることができる。 In the above description, detection of the tilt angle θ in the moving direction of the main shaft 20 has been described as an example, but the mechanical accuracy of detection is not limited to this. For example, the same point P on the machined surface of the workpiece W is measured at at least two measurement points S1 and S2 in the field of view 32 of the sensor 30, and the table 10 is placed on the optical axis of the sensor 30 (axis of the main shaft 20). It is also possible to detect the tilt angle with respect to the surface 10a. Specifically, based on the deviation between the coordinates of the measurement point 2 and the coordinates when the optical axis of the sensor 30 (the axis of the main shaft 20) is orthogonal to the mounting surface 10a of the table 10, the sensor 30 The tilt angle of the optical axis (the axis of the main axis 20) can be calculated.
(本開示の第3の実施形態に係る測定方法)
 次に、図4を参照しながら、本開示の第3の実施形態に係る測定方法の説明を行う。図4は、
センサの視野内における3つの測定点を模式的に示した図である。
 上記の第1または第2の実施形態に係る測定方法を、X軸方向だけでなく、Y軸方向にも行うことにより、図4に示すようなセンサの視野内における3つの測定点T1~T3を得ることができる。これにより、センサ30の視野32内における2つの測定点における測定結果の差分に基づいて、X軸方向及びY軸方向における主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角θを検出することができる。同様に、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することもできる。
(Measurement method according to the third embodiment of the present disclosure)
Next, a measurement method according to the third embodiment of the present disclosure will be described with reference to FIG. Figure 4
It is the figure which showed typically three measurement points in the visual field of a sensor.
By performing the measurement method according to the first or second embodiment described above not only in the X-axis direction but also in the Y-axis direction, three measurement points T1 to T3 in the field of view of the sensor as shown in FIG. Can be obtained. Thereby, based on the difference between the measurement results at the two measurement points within the field of view 32 of the sensor 30, the tilt angle of the mounting surface 10a of the table 10 with respect to the reference direction in the movement direction of the spindle 20 in the X-axis direction and the Y-axis direction. θ can be detected. Similarly, the tilt angle of the optical axis of the sensor 30 (axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 can also be detected.
(本開示の第4の実施形態に係る測定方法)
 本開示の第4の実施形態に係る測定方法では、センサ30及びワークWを相対的に回転移動させて、ワークWの加工面の同一点を、センサの視野内における少なくとも2つの測定点で測定する。この測定方法を用いて、機械精度として、例えば、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することができる。
(Measurement method according to the fourth embodiment of the present disclosure)
In the measurement method according to the fourth embodiment of the present disclosure, the sensor 30 and the work W are relatively rotationally moved to measure the same point on the processed surface of the work W at at least two measurement points within the field of view of the sensor. To do. Using this measuring method, it is possible to detect the tilt angle of the optical axis of the sensor 30 (the axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 as the mechanical accuracy.
 センサ30及びワークWを相対的に360度回転移動させた場合、仮に、センサ30(主軸20)の回転軸がテーブル10の載置面10aに対して垂直であれば、視野32上の点のワークWへの投影像は真円を描くことになる。一方、仮に、センサ30(主軸20)の回転軸がテーブル10の載置面10aに対して傾斜している場合には、上記の真円の投影像に対して偏差が生じる。よって、この偏差に基づいて、センサ30(主軸20)の回転軸、つまりセンサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を求めることができる。少なくとも、ワーク上の3点で測定を行えば、センサ30(主軸20)の回転軸のテーブル10の載置面10aに対する傾斜角度を求めることができる。 When the sensor 30 and the work W are rotationally moved 360 degrees relative to each other, if the rotation axis of the sensor 30 (spindle 20) is perpendicular to the mounting surface 10a of the table 10, a point on the field of view 32 is detected. The projected image on the work W will draw a perfect circle. On the other hand, if the rotation axis of the sensor 30 (spindle 20) is inclined with respect to the mounting surface 10a of the table 10, a deviation occurs with respect to the projected image of the perfect circle. Therefore, based on this deviation, the inclination angle of the rotation axis of the sensor 30 (main shaft 20), that is, the optical axis of the sensor 30 (axis of the main shaft 20) with respect to the mounting surface 10a of the table 10 can be obtained. If the measurement is performed at least at three points on the work, the inclination angle of the rotation axis of the sensor 30 (spindle 20) with respect to the mounting surface 10a of the table 10 can be obtained.
 また、センサ30でワーク上の点Aを測定して、視野32内に測定点S1を得た後、センサ30を所定の角度だけ回転させる。そして、センサ30(主軸20)の回転軸CLがテーブル10の載置面10aに対して垂直な場合に、回転後の測定点S1’が点Aの位置に戻るような移動量でセンサ30移動させる。このとき、得られた測定点S1及びS1’の間の座標の偏差に基づいて、センサ30の光軸の傾斜角度を求めることができる。ワークWの加工面の同一点Aを、センサ30の視野内における少なくとも3つの測定点(3つの回転角度)で測定することにより、センサ30の光軸のテーブル10の載置面10aに対する傾斜角度を求めることができる。 Further, after measuring the point A on the work with the sensor 30 and obtaining the measurement point S1 within the visual field 32, the sensor 30 is rotated by a predetermined angle. Then, when the rotation axis CL of the sensor 30 (spindle 20) is perpendicular to the mounting surface 10a of the table 10, the sensor 30 moves with such a movement amount that the measurement point S1 ′ after rotation returns to the position of the point A. Let At this time, the inclination angle of the optical axis of the sensor 30 can be obtained based on the obtained deviation of the coordinates between the measurement points S1 and S1 '. By measuring the same point A on the machined surface of the work W at at least three measurement points (three rotation angles) within the field of view of the sensor 30, the inclination angle of the optical axis of the sensor 30 with respect to the mounting surface 10a of the table 10 is measured. Can be asked.
テーブル10
(本開示の第5の実施形態に係る測定方法)
 次に、図5及び図6を参照しながら、本開示の第5の実施形態に係る測定方法の説明を行う。図5は、工作機械のX、Y、Z軸ごとに存在する機械精度を模式的に示した図である。図6は、同一の測定点が同一視野に入るようにしながら、主軸に取り付けられたセンサを順次移動させて、X軸方向における傾斜角を求める工程を示す図である。
Table 10
(Measurement method according to the fifth embodiment of the present disclosure)
Next, a measurement method according to the fifth embodiment of the present disclosure will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram schematically showing the machine accuracy that exists for each of the X, Y, and Z axes of the machine tool. FIG. 6 is a diagram showing a process of obtaining a tilt angle in the X-axis direction by sequentially moving a sensor attached to a spindle while keeping the same measurement point in the same visual field.
 図5に示すように、工作機械2の機械精度として、各軸ごとに、軸方向における位置、水平方向の真直度、垂直方向の真直度、軸周りのローリング、ヨーイング及びピッチングがある。更に、各軸間の直角度(XY軸、XZ軸及びYZ軸間の直角度)がある。よって、工作機械2の機械精度として、6要素×3軸+3要素(軸間)=21個の要素がある。
 これらの機械精度の各要素は、ワークW上の所定の箇所を基準にすることにより、上記の実施形態で説明した測定方法を用いて算出することができる。
As shown in FIG. 5, the machine accuracy of the machine tool 2 includes position in the axial direction, straightness in the horizontal direction, straightness in the vertical direction, rolling around the axis, yawing, and pitching for each axis. Further, there is a squareness between the axes (a squareness between the XY axis, the XZ axis, and the YZ axis). Therefore, the machine accuracy of the machine tool 2 is 6 elements × 3 axes + 3 elements (between axes) = 21 elements.
Each element of these machine precisions can be calculated by using the measuring method described in the above-mentioned embodiment by using a predetermined position on the work W as a reference.
 上記の要素を求めるため、図6に示すように、同一の測定点が同一視野に入るようにしながら、主軸20に取り付けられたセンサ30を順次移動させて、X軸方向における傾斜角を求めるステップを繰り返す。つまり、視野内の精度を頼りに、全体の測定を尺取り虫状につないでいく所謂逐次三点法を採用することができる。図6では、視野内の測定点のうち、少なくとも2点を視野内の同一の位置で測定するように、ステップ1からステップ2を行ったところを示す。 In order to obtain the above-mentioned elements, as shown in FIG. 6, a step of obtaining the inclination angle in the X-axis direction by sequentially moving the sensor 30 attached to the spindle 20 while keeping the same measurement point in the same visual field. repeat. That is, it is possible to employ a so-called sequential three-point method in which the whole measurement is connected like a scale depending on the accuracy within the field of view. FIG. 6 shows that steps 1 and 2 are performed so that at least two of the measurement points in the visual field are measured at the same position in the visual field.
 例えば、視野の2/3(以下2/3FOV)の距離だけ離間した測定マークT1、T2がある場合(ステップ1参照)に、ステージを2/3FOVずつ動かして、ステップ2では、測定マークT2がステップ1における測定マークT1の位置に来るようにして測定する。このように、予めキャリブレーションされた視野内で同じ点を2か所で測ることによって、センサ30の精度を尺取虫状につないでいき、ワークW全体の測定を行うことができる。 For example, when there are measurement marks T1 and T2 separated by a distance of 2/3 (hereinafter, 2 / 3FOV) of the field of view (see step 1), the stage is moved by 2 / 3FOV, and in step 2, the measurement mark T2 is The measurement is performed so as to come to the position of the measurement mark T1 in step 1. In this way, by measuring the same point at two points within the field of view that has been calibrated in advance, the accuracy of the sensor 30 can be connected in a scale-like manner, and the entire workpiece W can be measured.
 このとき、ワークWには、センサ30の視野内に複数入る間隔で多数の測定用マークを作り込む必要がある。例えば、ワークWがラックアンドピニオンのラックであれば、ラックの長手方向に沿って、多数の測定用マークを得ることができる。この共通のマークを仲介として、長ストロークの相対座標変化を検出することができる。
 これをX軸だけでなく、Y軸方向に行うことにより、上記の機械精度の各要素を検出することができ、適正なキャリブレーションを行うことができる。なお、測定に用いるワークWの形状としては、測定用マークとしての点が特定できる形状が望ましいので、多面錐体、円錐、凸球、凹球の一部が好ましいといえる。
At this time, it is necessary to make a large number of measurement marks on the work W at intervals such that a plurality of them are within the visual field of the sensor 30. For example, if the work W is a rack and pinion rack, a large number of measurement marks can be obtained along the longitudinal direction of the rack. Using this common mark as an intermediary, it is possible to detect a relative coordinate change of a long stroke.
By performing this not only in the X-axis direction but also in the Y-axis direction, it is possible to detect each element of the above-described machine accuracy and perform appropriate calibration. The shape of the work W used for the measurement is preferably a shape that allows the points as the measurement marks to be specified. Therefore, it can be said that a part of a polygonal cone, a cone, a convex sphere, or a concave sphere is preferable.
 上記の実施形態においては、センサ30を工作機械2の主軸20に取り付ける場合を例にして説明したが、これに限られるものではない。センサ30をワークWに対して相対的に移動可能であれば、センサ30を工作機械2のその他の任意の部材に取り付けることができる。 In the above embodiment, the case where the sensor 30 is attached to the spindle 20 of the machine tool 2 has been described as an example, but the present invention is not limited to this. If the sensor 30 can be moved relative to the work W, the sensor 30 can be attached to any other member of the machine tool 2.
 以上のように、上記の実施形態に係る測定方法では、
 ワークWを工作機械2にセットして加工を行う工程と、
 センサ30を工作機械2にセットする工程と、
 ワークWの加工面の同一点を、センサ30の視野内における少なくとも2つの測定点で測定する工程と、
 少なくとも2つの測定点における測定結果に基づいて、工作機械2の精度を検出する工程と、
を含む。
As described above, in the measurement method according to the above embodiment,
A step of setting the work W on the machine tool 2 and performing machining,
A step of setting the sensor 30 on the machine tool 2,
Measuring the same point on the machined surface of the work W at at least two measurement points within the field of view of the sensor 30;
Detecting the accuracy of the machine tool 2 based on the measurement results at at least two measurement points;
including.
 これにより、基準器等を工作機械2の機内に設置することなく、加工したワークWを用いて、工作機械2の精度を測定するので、少ない工数かつ低コストで工作機械の精度の測定を行うことができる。特に、ワークの加工面の同一点を、センサの視野内における少なくとも2つの測定点で測定することにより、効率的に確実に工作機械の精度を測定することができる。
 基準器は、毎年検定が必要であり、1回の検定に多額の費用がかかる。また、何かの事故で変形してしまうと、使用不能な状態に陥る。また、基準器が基準として使えるのは、温度条件が一定(例えば、20℃±0.5℃)である必要があり、工作機上で使用するのが困難な場合もある。よって、基準器を用いないことにより、大きな利点がもたらされる。
As a result, the accuracy of the machine tool 2 is measured using the machined work W without installing a reference device or the like inside the machine tool 2, so that the accuracy of the machine tool can be measured with a small number of steps and at low cost. be able to. In particular, by measuring the same point on the machined surface of the workpiece at at least two measurement points within the field of view of the sensor, the accuracy of the machine tool can be measured efficiently and reliably.
The standard device needs to be verified every year, and a large amount of cost is required for one test. Also, if it is deformed due to some accident, it will be in an unusable state. Further, the reference device can be used as a reference because the temperature condition must be constant (for example, 20 ° C. ± 0.5 ° C.), and it may be difficult to use it on a machine tool. Thus, the use of no scale provides a great advantage.
 センサ30が光学切断式センサであっても、ライン光の長手方向に対して垂直な方向に走査することにより、三次元のプロファイルを得ることもできる。
 また、センサ30として、縞投影エリアセンサのような三次元センサを用いる場合には、より短かい時間で測定を完了することが期待できる。
Even if the sensor 30 is an optical cutting type sensor, it is possible to obtain a three-dimensional profile by scanning in the direction perpendicular to the longitudinal direction of the line light.
When a three-dimensional sensor such as a fringe projection area sensor is used as the sensor 30, it can be expected that the measurement will be completed in a shorter time.
 本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。 Although the embodiments and modes of the present invention have been described, the disclosure may change in details of the configuration, and combinations of elements in the embodiments and modes, changes in order, etc. are claimed. It can be realized without departing from the scope and the idea of.
2   工作機械
10  テーブル
10a 載置面
30  センサ
32  視野
W   ワーク
2 machine tool 10 table 10a mounting surface 30 sensor 32 field of view W work

Claims (7)

  1.  ワークを工作機械にセットして加工を行う工程と、
     センサを前記工作機械にセットする工程と、
     前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定する工程と、
     前記少なくとも2つの測定点における測定結果に基づいて、前記工作機械の精度を検出する工程と、
    を含むことを特徴とする工作機械の精度の測定方法。
    The process of setting the work on the machine tool and processing it,
    Setting a sensor on the machine tool;
    Measuring the same point on the machined surface of the workpiece at at least two measurement points within the field of view of the sensor;
    Detecting the accuracy of the machine tool based on the measurement results at the at least two measurement points;
    A method for measuring the accuracy of a machine tool, comprising:
  2.  前記センサ及び前記ワークを相対的に並進移動させることにより、前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定することを特徴とする請求項1に記載の工作機械の精度の測定方法。
    The translational movement of the sensor and the workpiece relative to each other allows the same point on the machined surface of the workpiece to be measured at at least two measurement points within the field of view of the sensor. How to measure the accuracy of machine tools.
  3.  前記センサ及び前記ワークを相対的に回転移動及び並進移動させることにより、前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定することを特徴とする請求項1に記載の工作機械の精度の測定方法。
    The relatively same rotational movement and translational movement of the sensor and the workpiece measure the same point on the machined surface of the workpiece at at least two measurement points within the field of view of the sensor. The method for measuring the accuracy of machine tools described in.
  4.  前記センサが光学切断式センサであることを特徴とする請求項1から3の何れか1項に記載の工作機械の精度の測定方法。
    The said sensor is an optical cutting | disconnection type sensor, The measuring method of the precision of the machine tool in any one of Claim 1 to 3 characterized by the above-mentioned.
  5.  前記センサが縞投影エリアセンサであることを特徴とする請求項1から3の何れか1項に記載の工作機械の精度の測定方法。
    The method for measuring the accuracy of a machine tool according to claim 1, wherein the sensor is a fringe projection area sensor.
  6.  前記センサが主軸に取り付けられ、
     前記ワークがテーブルに載置され、
     前記センサの視野内における2つの測定点における測定結果の差分に基づいて、前記主軸の移動方向及び前記テーブルの載置面の基準方向に対する傾斜角を検出することを特徴とする請求項4または5に記載の工作機械の精度の測定方法。
    The sensor is attached to the spindle,
    The work is placed on the table,
    The tilt angle of the moving direction of the spindle and the tilt angle of the mounting surface of the table with respect to the reference direction is detected based on a difference between measurement results at two measuring points in the field of view of the sensor. The method for measuring the accuracy of machine tools described in.
  7.  予めキャリブレーションの測定点のうち、少なくとも2点を視野内の同一の位置で測定する工程を繰り返して、前記ワークの全体を測定することを特徴とする請求項1から6の何れか1項に記載の工作機械の精度の測定方法。 7. The whole work is measured by repeating a step of measuring at least two of the calibration measurement points at the same position in the field of view in advance, to measure the entire work. A method for measuring the accuracy of the described machine tool.
PCT/JP2019/027111 2018-11-19 2019-07-09 Measurement method WO2020105218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216261A JP6757391B2 (en) 2018-11-19 2018-11-19 Measuring method
JP2018-216261 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105218A1 true WO2020105218A1 (en) 2020-05-28

Family

ID=70773979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027111 WO2020105218A1 (en) 2018-11-19 2019-07-09 Measurement method

Country Status (2)

Country Link
JP (1) JP6757391B2 (en)
WO (1) WO2020105218A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080507B2 (en) * 2020-07-21 2022-06-06 株式会社トキワシステムテクノロジーズ Calibration device, calibration program, calibration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157951A (en) * 1999-11-30 2001-06-12 Univ Chuo Shape accuracy measuring device by sequential two-point method, and method for measuring space between laser displacement meter for measuring shape accuracy by sequential two-point method
JP2003177019A (en) * 2001-10-03 2003-06-27 Mamoru Otsuki Method for camera posture calculation by free photographing
JP2003285249A (en) * 2002-03-27 2003-10-07 Mori Seiki Co Ltd Accuracy analyzing device for machine tool
JP2012093258A (en) * 2010-10-27 2012-05-17 Nikon Corp Shape measurement device
JP2016070762A (en) * 2014-09-29 2016-05-09 ファナック株式会社 Detection method and detector for detecting three-dimensional position of object
JP2018043333A (en) * 2016-09-16 2018-03-22 ファナック株式会社 Machine tool and workpiece plane processing method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789058B2 (en) * 1986-06-11 1995-09-27 キヤノン株式会社 Distance measuring device
JPH0493705A (en) * 1990-08-09 1992-03-26 Topcon Corp Apparatus and method for measuring three-dimensional position
JPH04146043A (en) * 1990-10-08 1992-05-20 Toshiba Corp Nc control device for three dimensional surface cutting machine
JPH04176543A (en) * 1990-11-08 1992-06-24 Fanuc Ltd Control unit for digitizing
JPH0778252A (en) * 1993-06-30 1995-03-20 Kobe Steel Ltd Object recognition method
JPH1069543A (en) * 1996-08-29 1998-03-10 Oki Electric Ind Co Ltd Method and device for reconstituting curved surface of object
JPH11325869A (en) * 1998-05-11 1999-11-26 Mitsutoyo Corp Method and apparatus for measuring shape of work and coordinate measuring machine
EP1128156A1 (en) * 2000-02-10 2001-08-29 General Electric Company Method and apparatus for automatically compensating for measurement error
JP2001241928A (en) * 2000-03-01 2001-09-07 Sanyo Electric Co Ltd Shape measuring apparatus
JP2002197463A (en) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd Device and system for detecting behavior
JP2003136370A (en) * 2001-10-31 2003-05-14 Tokyo Seimitsu Co Ltd Nc machine tool
JP2003211346A (en) * 2002-01-15 2003-07-29 Mori Seiki Co Ltd Precision analyzing instrument for machine tool
JP4614337B2 (en) * 2005-03-31 2011-01-19 国立大学法人広島大学 Tool tip position detection method, workpiece machining method, and wear state detection method
JP5184046B2 (en) * 2007-10-24 2013-04-17 株式会社ミツトヨ Reference device
JP2011058854A (en) * 2009-09-07 2011-03-24 Sharp Corp Portable terminal
US9188973B2 (en) * 2011-07-08 2015-11-17 Restoration Robotics, Inc. Calibration and transformation of a camera system's coordinate system
JP5896844B2 (en) * 2012-07-02 2016-03-30 国立大学法人名古屋大学 Machine tool with workpiece diameter measurement function
JP6435750B2 (en) * 2014-09-26 2018-12-12 富士通株式会社 Three-dimensional coordinate calculation apparatus, three-dimensional coordinate calculation method, and three-dimensional coordinate calculation program
KR102060288B1 (en) * 2015-03-17 2019-12-27 도시바 기카이 가부시키가이샤 Machine tool
JP2018030195A (en) * 2016-08-24 2018-03-01 株式会社ニイガタマシンテクノ Method for correction of thermal displacement of machine tool and reference gauge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157951A (en) * 1999-11-30 2001-06-12 Univ Chuo Shape accuracy measuring device by sequential two-point method, and method for measuring space between laser displacement meter for measuring shape accuracy by sequential two-point method
JP2003177019A (en) * 2001-10-03 2003-06-27 Mamoru Otsuki Method for camera posture calculation by free photographing
JP2003285249A (en) * 2002-03-27 2003-10-07 Mori Seiki Co Ltd Accuracy analyzing device for machine tool
JP2012093258A (en) * 2010-10-27 2012-05-17 Nikon Corp Shape measurement device
JP2016070762A (en) * 2014-09-29 2016-05-09 ファナック株式会社 Detection method and detector for detecting three-dimensional position of object
JP2018043333A (en) * 2016-09-16 2018-03-22 ファナック株式会社 Machine tool and workpiece plane processing method

Also Published As

Publication number Publication date
JP2020082231A (en) 2020-06-04
JP6757391B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
US7440089B2 (en) Method of measuring decentering of lens
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
US10166644B2 (en) Processing inspection workpiece for machine tool, and on-machine measurement method using said workpiece
US20110295408A1 (en) Process for positioning a workpiece
JP2013503380A (en) Calibration method for machine tools
WO2020004222A1 (en) Inspection master
JP4049272B2 (en) Reference member for inspection master of optical 3D measuring machine
CN101451825A (en) Calibrating method of image measuring instrument
JP5270138B2 (en) Calibration jig and calibration method
JP2006258612A (en) Inter-shaft angle correction method
JP4964691B2 (en) Measuring method of measured surface
US10222193B2 (en) Method and apparatus for inspecting workpieces
JP4890188B2 (en) Motion error measurement reference body and motion error measurement device
CN112894490B (en) Method for realizing perpendicularity error detection of numerical control machine tool based on rotating L-shaped array
WO2020105218A1 (en) Measurement method
Zexiao et al. Modeling and calibration of a structured-light-sensor-based five-axis scanning system
US11187881B2 (en) Method and device for producing an optical component having at least three monolithically arranged optical functional surfaces and optical component
EP3960368B1 (en) Method for calibrating the geometric errors of a machine tool
US20230205164A1 (en) Calibration method and calibration system for machine tools
CN113375590B (en) Ultra-precision machining in-situ measurement device and method based on three-dimensional deflection beam
JP2006098201A (en) Measuring tool and measuring method
JP2005090963A (en) Calibration method and device for measuring device
Ramamurthy et al. Error mapping method for multi-axis additive manufacturing system
JP2017120216A (en) Position measurement system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886087

Country of ref document: EP

Kind code of ref document: A1