JP6520795B2 - Film thickness distribution measurement method - Google Patents

Film thickness distribution measurement method Download PDF

Info

Publication number
JP6520795B2
JP6520795B2 JP2016075691A JP2016075691A JP6520795B2 JP 6520795 B2 JP6520795 B2 JP 6520795B2 JP 2016075691 A JP2016075691 A JP 2016075691A JP 2016075691 A JP2016075691 A JP 2016075691A JP 6520795 B2 JP6520795 B2 JP 6520795B2
Authority
JP
Japan
Prior art keywords
thin film
film thickness
wafer
thickness distribution
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075691A
Other languages
Japanese (ja)
Other versions
JP2017146288A (en
Inventor
登 桑原
登 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to PCT/JP2016/005254 priority Critical patent/WO2017141299A1/en
Priority to TW106100977A priority patent/TW201740079A/en
Publication of JP2017146288A publication Critical patent/JP2017146288A/en
Application granted granted Critical
Publication of JP6520795B2 publication Critical patent/JP6520795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも1層の薄膜を有する薄膜付ウェーハの薄膜の膜厚分布を測定する膜厚分布測定方法に関する。   The present invention relates to a film thickness distribution measuring method of measuring the film thickness distribution of a thin film of a thin film-coated wafer having at least one thin film.

近年、デザインルールの微細化に伴って、FD−SOI(Fully Depleted SOI)デバイス、FinFETデバイス、SiナノワイヤートランジスタなどのSOIデバイスに用いられる、特に高い膜厚均一性を要求される極薄膜のSOI層を有するSOIウェーハが使われ始めている。これらデバイスにおいて、SOI層の膜厚及び埋め込み酸化膜(以下、BOX膜と言う)の膜厚の均一性がトランジスターの特性を決める上で重要な項目となっている。   In recent years, along with the miniaturization of design rules, extremely thin film SOI that requires particularly high film thickness uniformity, which is used for SOI devices such as FD-SOI (Fully Depleted SOI) devices, FinFET devices, Si nanowire transistors, etc. SOI wafers with layers are beginning to be used. In these devices, the uniformity of the film thickness of the SOI layer and the film thickness of the buried oxide film (hereinafter referred to as a BOX film) is an important item in determining the characteristics of the transistor.

SOIウェーハのような、薄膜付ウェーハの薄膜の膜厚を測定する方法として、反射分光法がある。従来の反射分光法では、薄膜付ウェーハの薄膜に光を照射し、その反射光を分光器で分光して反射光のスペクトルを求めている。そして、薄膜の表面と裏面からの反射光の干渉具合が、波長と薄膜の厚さによる光路差に依存して変化することを利用し、スペクトル内のピーク波長や薄膜の屈折率の値等を用いて、その薄膜の厚さを算出している。しかしながら、このような反射分光法では、ウェーハ全面を高精度に測定しようとすると、測定点数が極端に増えるため、膨大な計算量と時間が必要であり、現実的には全面を測定することは不可能となっていた。   Reflection spectroscopy is a method of measuring the film thickness of a thin film-attached wafer such as an SOI wafer. In the conventional reflection spectroscopy, a thin film of a thin film-attached wafer is irradiated with light, and the reflected light is dispersed by a spectroscope to obtain a spectrum of the reflected light. Then, using the fact that the interference condition of the light reflected from the front and back of the thin film changes depending on the wavelength and the optical path difference due to the thickness of the thin film, the peak wavelength in the spectrum, the value of the refractive index of the thin film, etc. The thickness of the thin film is calculated using this. However, in such reflection spectroscopy, when it is intended to measure the entire surface of the wafer with high accuracy, the number of measurement points extremely increases, so a huge amount of calculation and time are required, and in reality, it is necessary to measure the entire surface. It was impossible.

これに対し、表面に被膜(薄膜)を有する測定対象物の被膜膜厚をより高スループットで2次元的に測定する方法として、特許文献1に記載された方法がある。その方法では、測定対象物の表面に線状の光を照射し、その線状の光の照射領域からの反射光を、位置情報を保持したまま分光できる分光器(イメージング分光器)を用いて分光することにより、その線状の光の照射領域内の被膜膜厚を一括して算出している。そして、線状の光の照射領域と垂直な方向に、その照射領域を移動しつつ、その照射領域内の被膜膜厚を一括して算出する操作を繰り返し行うことで、測定対象物上の被膜膜厚を2次元的に測定している。   On the other hand, there is a method described in Patent Document 1 as a method of two-dimensionally measuring the film thickness of a film to be measured with a film (thin film) on the surface with higher throughput. In the method, linear light is irradiated to the surface of the measurement object, and reflected light from the irradiation area of the linear light is dispersed using a spectroscope (imaging spectroscope) that can disperse the light while holding positional information. By spectrally separating, the film thickness in the irradiation area of the linear light is calculated at once. Then, while moving the irradiation area in a direction perpendicular to the irradiation area of the linear light, the coating film on the measurement object is repeatedly performed by repeatedly performing an operation of calculating the film thickness in the irradiation area at one time. The film thickness is measured two-dimensionally.

さらに、SOIウェーハのような薄膜付ウェーハの全面の膜厚分布を精度良く、高いスループットで測定できる膜厚分布測定方法として、ウェーハ全面の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法が提案されている(特許文献2)。   Furthermore, as a film thickness distribution measuring method capable of accurately measuring the film thickness distribution on the entire surface of a thin film-attached wafer such as an SOI wafer with high throughput, the film thickness distribution on the entire surface of the wafer is measured by reflection spectroscopy using a line light source. A film thickness distribution measuring method has been proposed (Patent Document 2).

特許文献2の方法によれば、図8に示すような膜厚分布測定装置10において、ライン光源11からの入射光が薄膜で反射して検出器13で検出される際の入射角の幾何学的なズレを補正することによって、薄膜付ウェーハ3の全面の膜厚分布を精度良く、高いスループットで測定することができる。   According to the method of Patent Document 2, in the film thickness distribution measuring apparatus 10 as shown in FIG. 8, the geometry of the incident angle when the incident light from the line light source 11 is reflected by the thin film and detected by the detector 13 By correcting such a deviation, the film thickness distribution on the entire surface of the thin film-coated wafer 3 can be measured with high accuracy and high throughput.

特開2000−314612号公報Japanese Patent Laid-Open No. 2000-314612 特開2015−17804号公報JP, 2015-17804, A

しかし、特許文献2のようなライン光源を用いた反射分光法による膜厚分布測定方法を用いた場合でも、光源、検出系、光学系など(以下ではこれらをまとめて測定系と呼ぶことがある)に起因した総合的な反射光強度の時間変動があり、膜厚測定の安定性、再現性、繰り返し測定精度が、十分ではなかった。特に、最先端のデバイス作製のための極薄膜のSOIウェーハのSOI層、BOX層については、従来に比べ極めて高い膜厚測定精度が要求されており、従来の膜厚分布測定方法ではこれらの要求に対して必ずしも十分に対応できていなかった。   However, even when the film thickness distribution measuring method by reflection spectroscopy using a line light source as in Patent Document 2 is used, a light source, a detection system, an optical system, etc. (these may be collectively referred to as a measurement system Stability of the film thickness measurement, reproducibility, and repeated measurement accuracy were not sufficient. In particular, extremely high film thickness measurement accuracy is required for the SOI layer and BOX layer of ultrathin film SOI wafers for advanced device fabrication, and these requirements are required in the conventional film thickness distribution measurement method. It did not necessarily correspond sufficiently to.

本発明は、上記問題点に鑑みてなされたものであって、薄膜付ウェーハの膜厚分布をライン光源を用いた反射分光法によって測定する際に、安定かつ高精度に膜厚分布測定を行うことができる膜厚分布測定方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when the film thickness distribution of a thin film-attached wafer is measured by reflection spectroscopy using a line light source, the film thickness distribution is stably and accurately measured. It is an object of the present invention to provide a film thickness distribution measuring method that can

上記目的を達成するために、本発明は、基板の表面上に形成された少なくとも1層の薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法であって、
前記ライン光源として、前記薄膜付ウェーハの直径より長い光源を有するライン光源を用い、
前記ライン光源から照射される線状の光で前記薄膜付ウェーハの表面を走査して反射光を検出する際に、同時に、リファレンスに前記線状の光の一部を照射し、その反射光も検出する工程と、
該リファレンスからの反射光強度を用いて前記薄膜付ウェーハからの反射光強度を補正する工程と、
該補正された薄膜付ウェーハの反射光強度から、前記膜厚分布を算出する工程とを含むことを特徴とする膜厚分布測定方法を提供する。
In order to achieve the above object, the present invention measures a film thickness distribution of a thin film-coated wafer having at least one thin film formed on the surface of a substrate by reflection spectroscopy using a line light source. Thickness distribution measurement method,
As the line light source, a line light source having a light source longer than the diameter of the thin film-coated wafer is used.
When scanning the surface of the thin film-coated wafer with linear light emitted from the line light source to detect reflected light, at the same time, a part of the linear light is irradiated to the reference, and the reflected light is also transmitted. A process of detecting
Correcting the reflected light intensity from the thin film-coated wafer using the reflected light intensity from the reference;
And calculating a film thickness distribution from the corrected light intensity of the thin film-attached wafer.

このように、薄膜付ウェーハの直径より長い光源を有するライン光源を用い、薄膜付ウェーハとリファレンスからの反射光を同時に検出し、測定装置の測定系に起因した総合的な反射光強度の変動を補正して薄膜の膜厚分布を算出することにより、薄膜付ウェーハの膜厚分布測定を、安定かつ高精度で行うことができる。   Thus, using the line light source having a light source longer than the diameter of the thin film-coated wafer, the reflected light from the thin film-coated wafer and the reference can be simultaneously detected, and the fluctuation of the total reflected light intensity caused by the measurement system of the measuring apparatus By calculating the film thickness distribution of the thin film by correction, the film thickness distribution measurement of the thin film-coated wafer can be stably and accurately performed.

このとき、前記リファレンスとして、鏡面研磨されたシリコン単結晶ウェーハを用いることが好ましい。   At this time, it is preferable to use a mirror-polished silicon single crystal wafer as the reference.

このような鏡面研磨されたシリコン単結晶ウェーハであれば、極めて平坦な表面を有しており、面内の反射率の均一性が極めて高いので、リファレンスとして好適に用いることができる。   Such a mirror-polished silicon single crystal wafer has an extremely flat surface and has extremely high in-plane reflectance uniformity, and thus can be suitably used as a reference.

このとき、前記リファレンスを、前記ライン光源の線状の照射領域内の両側に1個ずつ離間させて固定配置し、前記薄膜付ウェーハが、前記離間させた両リファレンスの間を通過するように移動させて、前記線状の光で前記薄膜付ウェーハの表面を走査することが好ましい。   At this time, the reference is fixedly disposed one by one on both sides in the linear irradiation area of the line light source, and the thin film-coated wafer is moved so as to pass between the two spaced references. It is preferable to scan the surface of the thin film-coated wafer with the linear light.

このように、薄膜付ウェーハの両側にリファレンスを配置して、両側のリファレンスからの反射光強度を用いて、薄膜付ウェーハからの反射光強度を補正することによって、測定装置の測定系に起因した総合的な反射光強度の変動の影響をより確実に抑制することが可能となる。それにより薄膜付ウェーハの膜厚分布測定を、より安定かつより高精度で行うことができる。   As described above, the reference was placed on both sides of the thin film-coated wafer, and the reflected light intensity from the thin film-coated wafer was corrected using the reflected light intensities from the references on both sides, resulting in the measurement system of the measuring apparatus. It is possible to more reliably suppress the influence of the fluctuation of the overall reflected light intensity. Thereby, film thickness distribution measurement of the thin film-attached wafer can be performed more stably and with higher accuracy.

このとき、前記リファレンスを、前記ライン光源の線状の照射領域内の両側に1個ずつ離間させて固定配置し、前記離間させた両リファレンスの間に、前記線状の光と前記薄膜付ウェーハの直径が重なる位置に前記薄膜付ウェーハを配置し、前記薄膜付ウェーハをその中心を軸に回転させることによって、前記線状の光で前記薄膜付ウェーハの表面を走査することが好ましい。   At this time, the references are fixedly disposed one by one on both sides in the linear irradiation area of the line light source, and the linear light and the wafer with the thin film are disposed between the two separated references. It is preferable to scan the surface of the thin film-coated wafer with the linear light by disposing the thin film-coated wafer at a position where the diameters of the thin film-coated wafers overlap and rotating the thin film-coated wafer about its center.

このように、離間させた両リファレンスの間に配置した薄膜付ウェーハを、その中心を軸に回転させることによって表面を走査すれば、離間させた両リファレンスの間を通過するように移動させた場合と同一の測定精度を維持しながら、膜厚分布測定を行うための占有面積をほぼ半分にすることができる。また、このようにウェーハ回転機構を使った走査方式を採用することによって、アライナーなどのウェーハ回転機構を有する他の装置に、ライン光源を用いた膜厚分布測定機能を容易に組み込むことが可能になる。それによって、クリーンルーム内の装置の設置面積を低減でき、クリーンルームを有効に使うことができる。   In this way, if the wafer with a thin film disposed between the two separated references is scanned so that the surface is rotated about its center, it is moved so as to pass between the two separated references. The occupied area for performing the film thickness distribution measurement can be approximately halved while maintaining the same measurement accuracy. Also, by adopting a scanning method using a wafer rotation mechanism as described above, it is possible to easily incorporate a film thickness distribution measurement function using a line light source into another device having a wafer rotation mechanism such as an aligner. Become. Thereby, the installation area of the device in the clean room can be reduced, and the clean room can be used effectively.

このとき、前記反射光強度の補正を、前記膜厚分布を算出する際に用いる反射光の波長ごとに行うことが好ましい。   At this time, it is preferable to perform the correction of the reflected light intensity for each wavelength of the reflected light used when calculating the film thickness distribution.

このように、反射光強度の補正を、膜厚分布を算出する際に用いる反射光の波長ごとに行うことにより、より精度の高い膜厚分布測定を行うことができる。   As described above, by performing correction of the reflected light intensity for each wavelength of the reflected light used when calculating the film thickness distribution, it is possible to perform film thickness distribution measurement with higher accuracy.

以上のように、本発明の膜厚分布測定方法によれば、薄膜付ウェーハの直径より長い光源を有するライン光源からの反射光強度をリファレンスで検出し、薄膜付ウェーハからの反射光強度をリファレンスからの反射光強度を用いて補正することで、薄膜付ウェーハの薄膜の膜厚分布測定を、安定かつ高精度で行うことができる。   As described above, according to the film thickness distribution measuring method of the present invention, the reflected light intensity from the line light source having the light source longer than the diameter of the thin film-attached wafer is detected by the reference, and the reflected light intensity from the thin film-attached wafer is referred to The film thickness distribution measurement of the thin film of the thin film-attached wafer can be stably and accurately performed by correcting using the reflected light intensity from the above.

本発明の膜厚分布測定方法の実施態様の一例を示す模式図である。It is a schematic diagram which shows an example of the embodiment of the film thickness distribution measuring method of this invention. 本発明の膜厚分布測定方法の工程フローを示す図である。It is a figure which shows the process flow of the film thickness distribution measuring method of this invention. 本発明の膜厚分布測定方法の実施態様の他の例を示す模式図である。It is a schematic diagram which shows the other example of the embodiment of the film thickness distribution measuring method of this invention. 実施例のSOIウェーハのSOI層の膜厚と測定回の関係を示すグラフである。It is a graph which shows the film thickness of the SOI layer of the SOI wafer of an Example, and the relationship of measurement time. 実施例のSOIウェーハのBOX層の膜厚と測定回の関係を示すグラフである。It is a graph which shows the film thickness of the BOX layer of the SOI wafer of an Example, and the relationship of measurement time. 比較例のSOIウェーハのSOI層の膜厚と測定回の関係を示すグラフである。It is a graph which shows the film thickness of the SOI layer of the SOI wafer of a comparative example, and the relationship of measurement time. 比較例のSOIウェーハのBOX層の膜厚と測定回の関係を示すグラフである。It is a graph which shows the film thickness of the BOX layer of the SOI wafer of a comparative example, and the relationship of measurement time. 従来のライン光源を用いた反射分光法による膜厚分布測定装置の一例を示す概略図である。It is the schematic which shows an example of the film thickness distribution measuring apparatus by the reflection spectroscopy using the conventional line light source. 本発明の膜厚分布測定方法の実施態様のさらに他の例を示す模式図である。It is a schematic diagram which shows the further another example of the embodiment of the film thickness distribution measuring method of this invention.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of an embodiment with reference to the drawings, but the present invention is not limited thereto.

まず、本発明の膜厚分布測定方法について、図1及び図2を参照して説明する。   First, the film thickness distribution measuring method of the present invention will be described with reference to FIG. 1 and FIG.

図1は本発明の膜厚分布測定方法の実施態様の一例を示す模式図(略上方から見た図)であり、図2は本発明の膜厚分布測定方法の工程フローを示す図である。本発明の膜厚分布測定方法では、基板の表面上に形成された少なくとも1層の薄膜を有する薄膜付ウェーハの薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する。ライン光源としては、直線状の光を照射できるものであれば種々のものを使用することができる。   FIG. 1 is a schematic view (as viewed from above) showing an example of the embodiment of the film thickness distribution measuring method of the present invention, and FIG. 2 is a diagram showing the process flow of the film thickness distribution measuring method of the present invention . In the film thickness distribution measuring method of the present invention, the film thickness distribution of a thin film-attached wafer having at least one thin film formed on the surface of a substrate is measured by reflection spectroscopy using a line light source. As the line light source, various types can be used as long as they can emit linear light.

本発明の膜厚分布測定方法では、図1に示すようにライン光源として、薄膜付ウェーハ3の直径より長い光源を有するライン光源1を用いる(図2のA)。さらに、本発明の膜厚分布測定方法は、ライン光源1から照射される線状の光4で薄膜付ウェーハ3の表面を走査して反射光を検出する際に、同時に、リファレンス2に線状の光4の一部を照射し、その反射光も検出する工程と(図2のB)、該リファレンス2からの反射光強度を用いて薄膜付ウェーハ3からの反射光強度を補正する工程と(図2のC)、該補正された薄膜付ウェーハ3の反射光強度から、膜厚分布を算出する工程(図2のD)とを含む。   In the film thickness distribution measuring method of the present invention, as shown in FIG. 1, the line light source 1 having a light source longer than the diameter of the thin film-coated wafer 3 is used as the line light source (A in FIG. 2). Further, according to the film thickness distribution measuring method of the present invention, when the surface of the thin film-coated wafer 3 is scanned with the linear light 4 emitted from the line light source 1 to detect the reflected light, the reference 2 is linear simultaneously. Irradiating a part of the light 4 and detecting the reflected light (FIG. 2B), and correcting the reflected light intensity from the thin film-coated wafer 3 using the reflected light intensity from the reference 2; (C in FIG. 2) includes the step of calculating the film thickness distribution from the corrected light intensity of the thin film-attached wafer 3 (D in FIG. 2).

ここで、ライン光源1から照射される線状の光4で薄膜付ウェーハ3の表面を走査する場合、図1ではライン光源1とリファレンス2を固定し、薄膜付ウェーハ3をライン光源1とリファレンス2に対して移動させることで線状の光4の走査を行っている。しかしながら、薄膜付ウェーハ3を固定し、ライン光源1とリファレンス2を薄膜付ウェーハ3に対して移動させて、線状の光4を走査してもよい。   Here, when scanning the surface of the thin film-coated wafer 3 with the linear light 4 emitted from the line light source 1, the line light source 1 and the reference 2 are fixed in FIG. The linear light 4 is scanned by moving it relative to 2. However, the thin film wafer 3 may be fixed, and the line light source 1 and the reference 2 may be moved relative to the thin film wafer 3 to scan the linear light 4.

このように、薄膜付ウェーハ3の直径より長い光源を有するライン光源1を用い、薄膜付ウェーハ3とリファレンス2からの反射光を同時に検出し、薄膜付ウェーハ3からの反射光強度の変動を補正して薄膜の膜厚分布を算出することにより、薄膜付ウェーハ3の膜厚分布測定を、安定かつ高精度で行うことができる。また、本発明の方法では、薄膜付ウェーハ3のウェーハ全面の膜厚分布を測定することができる。   As described above, the line light source 1 having the light source longer than the diameter of the thin film-coated wafer 3 simultaneously detects the reflected light from the thin film-coated wafer 3 and the reference 2 and corrects the fluctuation of the reflected light intensity from the thin film-coated wafer 3 By calculating the film thickness distribution of the thin film, the film thickness distribution measurement of the thin film-coated wafer 3 can be stably and accurately performed. In the method of the present invention, the film thickness distribution of the entire surface of the thin film-coated wafer 3 can be measured.

また、リファレンス2として、鏡面研磨されたシリコン単結晶ウェーハを用いることが好ましい。半導体デバイスを製造するために作製された鏡面研磨されたシリコン単結晶ウェーハは、極めて平坦な表面を有しており、面内の反射率の均一性が極めて高いので、リファレンス2として好適である。具体的には、例えば、直径125mmの鏡面研磨されたシリコン単結晶ウェーハをリファレンス2として用いることができる。   Further, it is preferable to use a mirror-polished silicon single crystal wafer as the reference 2. A mirror-polished silicon single crystal wafer fabricated to manufacture a semiconductor device is suitable as the reference 2 because it has a very flat surface and the uniformity of the in-plane reflectance is extremely high. Specifically, for example, a mirror-polished silicon single crystal wafer with a diameter of 125 mm can be used as the reference 2.

また、リファレンス2としては、表面の反射率が均一なものが好ましく、面内の反射率のバラツキが1%以内のものがより好ましい。表面の反射率が均一であれば、リファレンス2とライン光源1の位置関係に若干のずれが生じたような場合でも、リファレンス2からの反射光強度はほとんど変化しないので、薄膜付ウェーハ3の反射光強度の補正を常に極めて正確に行うことができる。さらに、リファレンス2としては、表面の反射率が適切なものであれば、シリコン単結晶ウェーハに限らず、他の半導体ウェーハや他の材料を用いることもできる。   Further, as the reference 2, one having a uniform surface reflectance is preferable, and one having a variation in the in-plane reflectance of 1% or less is more preferable. If the reflectance of the surface is uniform, even if a slight deviation occurs in the positional relationship between the reference 2 and the line light source 1, the reflected light intensity from the reference 2 hardly changes, so the reflection of the thin film-coated wafer 3 The correction of the light intensity can always be done very accurately. Furthermore, as the reference 2, as long as the reflectance of the surface is appropriate, not only a silicon single crystal wafer but also other semiconductor wafers and other materials can be used.

また、図1に示すように、リファレンス2を、ライン光源1の線状の照射領域4内の両側に1個ずつ離間させて固定配置し、薄膜付ウェーハ3が、離間させた両リファレンス2の間を通過するように移動させて、線状の光4で薄膜付ウェーハ3の表面を走査することが好ましい。   Further, as shown in FIG. 1, the reference 2 is fixedly disposed one by one on both sides in the linear irradiation area 4 of the line light source 1 and the thin film-coated wafer 3 is separated from both the references 2. It is preferable to move so as to pass between and scan the surface of the thin film-coated wafer 3 with the linear light 4.

このように、測定対象である薄膜付ウェーハ3の両側にリファレンス2が配置された状態で、薄膜付ウェーハ3とリファレンス2から同時に反射光を検出するようにし、例えば、両側のリファレンス2からの反射光強度の平均値を求め、それを基準に薄膜付ウェーハ3からの反射光強度を補正することによって、薄膜付ウェーハ3からの反射光強度の時間に対する変動の影響を十分に抑制することが可能となる。   As described above, in a state where the reference 2 is disposed on both sides of the thin film-attached wafer 3 to be measured, reflected light is simultaneously detected from the thin film-attached wafer 3 and the reference 2. For example, reflection from the reference 2 on both sides By determining the average value of the light intensity and correcting the reflected light intensity from the thin film-coated wafer 3 on the basis thereof, it is possible to sufficiently suppress the influence of the fluctuation of the reflected light intensity from the thin film attached wafer 3 with respect to time. It becomes.

しかしながら、リファレンス2は、ライン光源1の線状の照射領域4内に配置され、ライン光源1からの線状の光で薄膜付ウェーハ3を走査する際に、同時に、リファレンス2からの反射光も検出することができるものであれば、その配置や大きさは特には限定されない。例えば、直径が300mmを超える大直径の薄膜付ウェーハ3の薄膜の膜厚分布を測定する場合などは、薄膜付ウェーハ3の両側にリファレンス2を配置するとライン光源1の長さが極めて長くなるため、図3に示すように、リファレンス2を薄膜付ウェーハ3の片側だけに配置して、ライン光源1の長さを抑制してもよい。また、リファレンス2の形状は、矩形、あるいは他の形状であってもよい。また、リファレンス2は線状の光4の一部を照射した際にその反射光を測定できればよいので、図1のように線状の光4がリファレンス2を横断するように構成してもよいし、リファレンス2の表面上に線状の光4の末端が位置していてもよい。   However, the reference 2 is disposed in the linear irradiation area 4 of the line light source 1, and when scanning the thin film-coated wafer 3 with the linear light from the line light source 1, the reflected light from the reference 2 is also simultaneously The arrangement and size thereof are not particularly limited as long as they can be detected. For example, when measuring the film thickness distribution of the thin film-coated wafer 3 having a large diameter exceeding 300 mm, the length of the line light source 1 becomes extremely long when the reference 2 is disposed on both sides of the thin film-coated wafer 3. As shown in FIG. 3, the reference 2 may be disposed only on one side of the thin film-coated wafer 3 to suppress the length of the line light source 1. Also, the shape of the reference 2 may be rectangular or another shape. Further, as long as the reference 2 can measure the reflected light when it is irradiated with a part of the linear light 4, the linear light 4 may be configured to cross the reference 2 as shown in FIG. 1. The end of the linear light 4 may be located on the surface of the reference 2.

また、本発明の膜厚分布測定方法では、図9に示すように、リファレンス2を、ライン光源1の線状の照射領域内の両側に1個ずつ離間させて固定配置し、離間させた両リファレンス2の間に、線状の光4と薄膜付ウェーハ3の直径が重なる位置に薄膜付ウェーハ3を配置し、薄膜付ウェーハ3をその中心を軸に回転させることによって、線状の光4で薄膜付ウェーハ3の表面を走査してもよい。   Further, in the film thickness distribution measuring method according to the present invention, as shown in FIG. 9, the reference 2 is separately disposed one by one on both sides within the linear irradiation area of the line light source 1 and both disposed apart. The thin film-coated wafer 3 is disposed between the reference 2 at a position where the linear light 4 and the thin film-coated wafer 3 overlap in diameter, and the thin film-coated wafer 3 is rotated about its center to form linear light 4. The surface of the thin film-coated wafer 3 may be scanned.

このように、薄膜付ウェーハ3をその中心を軸に回転させて表面の走査を行えば、図1に示す、薄膜付ウェーハ3を離間させた両リファレンス2の間を通過させて直線的に走査する場合と同一の測定精度を維持しながら、以下で説明するように、測定に用いる装置の大きさを大幅に縮小することができる。   As described above, if the thin film-coated wafer 3 is rotated about its center to scan the surface, the thin-film coated wafer 3 shown in FIG. The size of the apparatus used for the measurement can be greatly reduced, as described below, while maintaining the same measurement accuracy as in the previous case.

本発明の膜厚分布測定方法に適用することができる膜厚分布測定装置において、薄膜付ウェーハ3を保持して移動又は回転させ、その全面を線状の光4で走査して膜厚分布測定を行うための部分を測定部と呼ぶことにする。線状の光4を直線的に走査する場合、図1において、線状の光4によって薄膜付ウェーハ3の下端から上端までを走査するためには、少なくとも線状の光4の上下に薄膜付ウェーハ1個分のスペースを有する測定部が必要である。一方、薄膜付ウェーハ3を回転させて走査する場合、測定部の占有面積はほぼ薄膜付ウェーハ1個分でよいため、直線的に走査する場合に比べて、測定部の占有面積をほぼ半分にすることができる。   In the film thickness distribution measuring apparatus applicable to the film thickness distribution measuring method of the present invention, the wafer 3 with a thin film is held and moved or rotated, and the entire surface is scanned with linear light 4 to measure the film thickness distribution. The part to do is called the measurement part. When scanning linear light 4, in FIG. 1, in order to scan from the lower end to the upper end of thin film-coated wafer 3 by linear light 4, thin films are attached to the upper and lower sides of at least linear light 4. A measuring unit having a space for one wafer is required. On the other hand, when the thin film wafer 3 is rotated and scanned, the occupied area of the measurement unit may be about one thin film attached wafer, so the occupied area of the measurement unit is reduced to about half compared to when linearly scanned. can do.

また、上述したようなウェーハ回転機構を使った走査方式を採用することによって、アライナーなどのウェーハ回転機構を有する他の装置(製造装置、検査装置、評価装置)に、ライン光源を用いた膜厚分布測定装置(機能)を容易に組み込むことが可能になる。それによって、クリーンルーム内の装置の設置面積を低減でき、クリーンルームを有効に使うことができる。   Further, by adopting the scanning method using the wafer rotation mechanism as described above, the film thickness using the line light source in another apparatus (manufacturing apparatus, inspection apparatus, evaluation apparatus) having a wafer rotation mechanism such as aligner. It becomes possible to easily incorporate the distribution measurement device (function). Thereby, the installation area of the device in the clean room can be reduced, and the clean room can be used effectively.

また、本発明の膜厚分布測定方法では、反射光強度の補正を、膜厚分布を算出する際に用いる反射光の波長ごとに行うことが好ましい。   Further, in the film thickness distribution measuring method of the present invention, it is preferable to correct the reflected light intensity for each wavelength of the reflected light used when calculating the film thickness distribution.

反射光強度の補正は、薄膜付ウェーハ3へ照射される線状の光4の全波長に対して一括して行うことが簡便であり、膜厚測定(計算)時間も短くなる。しかしながら、膜厚分布を算出する際に用いる反射光の波長ごとに反射光強度の補正を行うことで、光源の波長分布が変動した場合に対応でき、薄膜の膜厚分布測定の精度をより高めることができる。   It is simple to correct the reflected light intensity collectively for all the wavelengths of the linear light 4 irradiated to the thin film-coated wafer 3, and the film thickness measurement (calculation) time is also shortened. However, by correcting the reflected light intensity for each wavelength of the reflected light used when calculating the film thickness distribution, it is possible to cope with the case where the wavelength distribution of the light source fluctuates, and to improve the accuracy of the film thickness distribution measurement of the thin film. be able to.

この場合、波長ごとの補正は、例えば、ウェーハ上の各点からの反射光をCCDで検出する際、各点からの反射光を分光器で分光することによって波長成分に分け、それをCCDの例えば縦方向の各ピクセルに展開することで縦方向の各ピクセルがそれぞれある波長(範囲)の光を受けるように構成し、そのピクセル毎に補正を行うことで実現できる。
その際、ある波長範囲に対応するいくつかのピクセルの平均を用いることで、計算量を減らすこともできる。
In this case, for example, when the reflected light from each point on the wafer is detected by a CCD, the correction for each wavelength is divided into wavelength components by dispersing the reflected light from each point by a spectroscope, which is divided by the CCD For example, by developing each pixel in the vertical direction, each pixel in the vertical direction is configured to receive light of a certain wavelength (range), and the correction can be performed for each pixel.
At that time, the computational complexity can be reduced by using an average of several pixels corresponding to a certain wavelength range.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be more specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

(実施例)
イオン注入剥離法によって作製された薄膜SOIウェーハ(直径300mm、SOI層膜厚:88nm、BOX層膜厚:145nm、両膜厚はSOIウェーハ製造時の設定膜厚)を膜厚測定用薄膜付ウェーハ3として、本発明の膜厚分布測定方法により、SOI層の膜厚分布とBOX層の膜厚分布を測定した。同一の薄膜SOIウェーハについて、30回繰り返し膜厚分布測定を行った。
(Example)
Wafer with thin film for measurement of thin film SOI wafer (diameter 300 mm, thickness of SOI layer: 88 nm, thickness of BOX layer: 145 nm, both film thickness set in SOI wafer manufacture) manufactured by ion implantation peeling method As No. 3, the film thickness distribution of the SOI layer and the film thickness distribution of the BOX layer were measured by the film thickness distribution measuring method of the present invention. The film thickness distribution measurement was repeated 30 times for the same thin film SOI wafer.

この際、リファレンス2として、鏡面研磨されたシリコン単結晶ウェーハ(直径125mm)を図1のように線状の照射領域4内の両側に離間させて配置した。そして、ライン光源1の線状の照射領域4と両リファレンスウェーハを固定した状態で、薄膜SOIウェーハを両リファレンスウェーハの間の照射領域の線状の方向に対して、直角に走査(移動)させた。   At this time, as a reference 2, a mirror-polished silicon single crystal wafer (diameter 125 mm) was spaced apart on both sides in a linear irradiation area 4 as shown in FIG. Then, in a state where the linear irradiation area 4 of the line light source 1 and both reference wafers are fixed, the thin film SOI wafer is scanned (moved) at right angles to the linear direction of the irradiation area between both reference wafers. The

ライン光源1としては、波長450〜750nmの波長帯の可視光光源を用い、1mmピッチで薄膜SOIウェーハ表面全面の膜厚測定を行い、面内平均値を算出した。この際、薄膜SOIウェーハ上の線状の光4で照射された領域の各測定ポイントの反射光強度については、450〜750nmの波長帯全体の反射光強度を検出し、その反射光強度を、同一のライン(線)上で同時に照射されるリファレンスウェーハ2枚からの反射光強度の平均値を用いて補正し、補正後の反射光強度を用いて薄膜の膜厚分布を算出した。   As the line light source 1, using a visible light source of a wavelength band of 450 to 750 nm, film thickness measurement on the entire surface of the thin film SOI wafer was performed at 1 mm pitch to calculate an in-plane average value. At this time, with regard to the reflected light intensity of each measurement point in the region irradiated with the linear light 4 on the thin film SOI wafer, the reflected light intensity of the entire wavelength band of 450 to 750 nm is detected. Correction was performed using the average value of the reflected light intensity from two reference wafers simultaneously irradiated on the same line (line), and the film thickness distribution of the thin film was calculated using the corrected reflected light intensity.

このようにして算出したSOI層及びBOX層の膜厚(膜厚分布)から、ウェーハ面内膜厚の平均値を求めてそれぞれの膜厚とした。30回の繰り返し膜厚分布測定における測定回(1回〜30回)と各回の膜厚の関係を図4(SOI層)及び図5(BOX層)に示す。   From the film thicknesses (film thickness distributions) of the SOI layer and the BOX layer calculated in this manner, the average value of the in-plane film thickness on the wafer is determined and used as the respective film thickness. FIG. 4 (SOI layer) and FIG. 5 (BOX layer) show the relationship between the measurement times (once to 30 times) and the film thickness of each time in the 30 times repeated measurement of film thickness distribution.

図4に示すSOI層の膜厚の30回の繰り返し測定においては、平均膜厚が一方向に変動するような傾向はなく、その繰り返し測定の最大値と最小値の差はわずかに約0.07nmであり、30回の測定を通して極めて安定したSOI層の膜厚の値が得られた。このことから、各回の膜厚の測定精度も高いと言える。   In 30 repetitive measurements of the film thickness of the SOI layer shown in FIG. 4, there is no tendency for the average film thickness to fluctuate in one direction, and the difference between the maximum value and the minimum value of the repeated measurement is only about 0. The value of the film thickness of the SOI layer which was 07 nm and was very stable through 30 measurements was obtained. From this, it can be said that the measurement accuracy of the film thickness of each time is also high.

また、図5に示すBOX層の膜厚の30回の繰り返し測定においても、膜厚が一方向に変動するような傾向はなく、その繰り返し測定の最大値と最小値の差は、約0.46nmと十分に小さいものであり、30回の測定を通して安定したBOX層の膜厚の値が得られた。このため、各回の膜厚の測定精度も高いと言える。   Also, in the case of 30 repeated measurements of the film thickness of the BOX layer shown in FIG. 5, there is no tendency for the film thickness to fluctuate in one direction, and the difference between the maximum value and the minimum value of the repeated measurement is about 0. A sufficiently small value of 46 nm, and a stable BOX layer thickness value was obtained through 30 measurements. For this reason, it can be said that the measurement accuracy of the film thickness of each time is also high.

(比較例)
実施例で用いたのと同じ薄膜SOIウェーハを用い、SOI層の膜厚とBOX層の膜厚を30回繰り返し測定した。この際、実施例で用いたリファレンスウェーハは配置せず、従って、リファレンスからの反射光の検出、及び、薄膜SOIウェーハの反射光強度の補正は行わなかった。
(Comparative example)
The film thickness of the SOI layer and the film thickness of the BOX layer were repeatedly measured 30 times using the same thin film SOI wafer as used in the example. At this time, the reference wafer used in the example was not disposed, and therefore, the detection of the reflected light from the reference and the correction of the reflected light intensity of the thin film SOI wafer were not performed.

実施例と同様にして、測定回と、各回のSOI層及びBOX層の膜厚の関係を求め、それぞれ、図6及び図7に示した。   The relationship between the number of measurements and the thickness of the SOI layer and the thickness of each BOX layer was determined in the same manner as in the example, and is shown in FIGS. 6 and 7, respectively.

図6に示すSOI層の膜厚の30回の繰り返し測定においては、回が進むにつれてSOI層の膜厚は増加する方向に変動しており、その繰り返し測定の最大値と最小値の差は約0.47nmであった。この値は、実施例に比べてはるかに大きく、安定した膜厚測定は困難であった。   In 30 repetitive measurements of the film thickness of the SOI layer shown in FIG. 6, the film thickness of the SOI layer fluctuates as the process progresses, and the difference between the maximum value and the minimum value of the repeated measurement is about It was 0.47 nm. This value is much larger than that of the example, and stable film thickness measurement was difficult.

また、図7に示すBOX層の膜厚の30回の繰り返し測定においては、回が進むにつれてBOX層の膜厚が減少する方向に変動しており、その繰り返し測定の最大値と最小値の差は約2.9nmに達していた。この値も、実施例に比べてはるかに大きく、安定した膜厚測定は困難であった。   Further, in the repeated measurement of the film thickness of the BOX layer 30 times shown in FIG. 7, the film thickness of the BOX layer fluctuates as the time goes on, and the difference between the maximum value and the minimum value of the repeated measurement Has reached about 2.9 nm. This value is also much larger than in the examples, and stable film thickness measurement was difficult.

このように、本発明の膜厚分布測定方法により、従来に比べ、膜厚分布測定の安定性、再現性、繰り返し測定精度を向上させることができた。   As described above, according to the film thickness distribution measuring method of the present invention, the stability, the reproducibility, and the repeated measurement accuracy of the film thickness distribution measurement can be improved as compared with the conventional method.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.

1…ライン光源、 2…リファレンス、 3…薄膜付ウェーハ、
4…線状の光(線状の照射領域)、 10…膜厚分布測定装置、
11…ライン光源(従来技術)、 13…検出器。
1 ... line light source, 2 ... reference, 3 ... wafer with thin film,
4 linear light (linear irradiation area) 10 film thickness distribution measuring device
11: Line light source (conventional technology) 13: Detector.

Claims (3)

基板の表面上に形成された少なくとも1層の薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法であって、
前記ライン光源として、前記薄膜付ウェーハの直径より長い光源を有するライン光源を用い、
前記ライン光源から照射される線状の光で前記薄膜付ウェーハの表面を走査して反射光を検出する際に、同時に、リファレンスに前記線状の光の一部を照射し、その反射光も検出する工程と、
該リファレンスからの反射光強度を用いて前記薄膜付ウェーハからの反射光強度を補正する工程と、
該補正された薄膜付ウェーハの反射光強度から、前記膜厚分布を算出する工程とを含み、
前記リファレンスを、前記ライン光源の線状の照射領域内の両側に1個ずつ離間させて固定配置し、
前記薄膜付ウェーハが前記離間させた両リファレンスの間を通過するように移動させるか、又は前記離間させた両リファレンスの間に、前記線状の光と前記薄膜付ウェーハの直径が重なる位置に前記薄膜付ウェーハを配置し、前記薄膜付ウェーハをその中心を軸に回転させることによって、前記線状の光で前記薄膜付ウェーハの表面を走査し、
該両側の前記リファレンスからの反射光強度の平均値を求め、それを基準に前記薄膜付ウェーハからの反射光強度を補正することを特徴とする膜厚分布測定方法。
A film thickness distribution measuring method of measuring a film thickness distribution of a thin film-attached wafer having at least one thin film formed on a surface of a substrate by reflection spectroscopy using a line light source,
As the line light source, a line light source having a light source longer than the diameter of the thin film-coated wafer is used.
When scanning the surface of the thin film-coated wafer with linear light emitted from the line light source to detect reflected light, at the same time, a part of the linear light is irradiated to the reference, and the reflected light is also transmitted. A process of detecting
Correcting the reflected light intensity from the thin film-coated wafer using the reflected light intensity from the reference;
From the reflected light intensity of the corrected film with wafers, saw including a step of calculating the film thickness distribution,
The reference is fixedly disposed one by one on both sides in a linear irradiation area of the line light source,
The thin film-coated wafer is moved so as to pass between the spaced references, or the linear light and the thin film-deposited wafer overlap each other between the spaced references. The surface of the thin film-coated wafer is scanned with the linear light by arranging the thin film-coated wafer and rotating the thin film-coated wafer about its center,
A method of measuring a film thickness distribution comprising: calculating an average value of reflected light intensities from the references on both sides, and correcting the reflected light intensity from the thin film-coated wafer based on the average value .
前記リファレンスとして、鏡面研磨されたシリコン単結晶ウェーハを用いることを特徴とする請求項1に記載の膜厚分布測定方法。   2. The film thickness distribution measuring method according to claim 1, wherein a mirror-polished silicon single crystal wafer is used as the reference. 前記反射光強度の補正を、前記膜厚分布を算出する際に用いる反射光の波長ごとに行うことを特徴とする請求項1又は請求項2に記載の膜厚分布測定方法。 3. The film thickness distribution measuring method according to claim 1, wherein the correction of the reflected light intensity is performed for each wavelength of the reflected light used when calculating the film thickness distribution.
JP2016075691A 2016-02-15 2016-04-05 Film thickness distribution measurement method Active JP6520795B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/005254 WO2017141299A1 (en) 2016-02-15 2016-12-28 Film-thickness-distribution measuring method
TW106100977A TW201740079A (en) 2016-02-15 2017-01-12 Film-thickness-distribution measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016026340 2016-02-15
JP2016026340 2016-02-15

Publications (2)

Publication Number Publication Date
JP2017146288A JP2017146288A (en) 2017-08-24
JP6520795B2 true JP6520795B2 (en) 2019-05-29

Family

ID=59682088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075691A Active JP6520795B2 (en) 2016-02-15 2016-04-05 Film thickness distribution measurement method

Country Status (2)

Country Link
JP (1) JP6520795B2 (en)
TW (1) TW201740079A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361936B (en) * 2018-03-26 2021-03-12 上海微电子装备(集团)股份有限公司 Mask thickness detection device, storage mechanism, transmission mechanism and photoetching system
KR102073767B1 (en) * 2018-10-30 2020-02-05 한국미쯔보시다이아몬드공업(주) Method for inspecting thickness of rib mark
JP7341849B2 (en) 2019-10-24 2023-09-11 大塚電子株式会社 Optical measurement device and optical measurement method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL110466A (en) * 1994-07-26 1998-07-15 C I Systems Israel Ltd Film thickness mapping using interferometric spectral imaging
JP4070887B2 (en) * 1998-07-08 2008-04-02 大日本スクリーン製造株式会社 Film thickness measuring device
JP2000314612A (en) * 1999-04-30 2000-11-14 Kawatetsu Techno Res Corp Measurement method for film thickness of light transmission film and film thickness measuring device
JP3866933B2 (en) * 2001-04-27 2007-01-10 シャープ株式会社 Film thickness measuring device
JP2004012302A (en) * 2002-06-07 2004-01-15 Hitachi Ltd Method and instrument for measuring film thickness distribution
JP5502227B1 (en) * 2013-07-08 2014-05-28 株式会社多聞 Film thickness distribution measurement method

Also Published As

Publication number Publication date
JP2017146288A (en) 2017-08-24
TW201740079A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
CN108463877B (en) System and method for extended infrared spectroscopic ellipsometry
JP7181211B2 (en) Metrology method and system for thick films and high aspect ratio structures
JP5365581B2 (en) Evaluation method of wafer with thin film
CN107548554B (en) The sensor and metering system with electrically controllable aperture for inspection
JP6793647B2 (en) Sedimentation monitoring system and its operation method
TWI493296B (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP5790644B2 (en) Inspection apparatus and inspection method
WO2017154505A1 (en) Multi-element simultaneous x-ray fluorescence analysis device and multi-element simultaneous x-ray fluorescence analysis method
US10935373B2 (en) Topography measurement system
US9970863B2 (en) Optical metrology with reduced focus error sensitivity
JP6520795B2 (en) Film thickness distribution measurement method
US20150356726A1 (en) Inspection apparatus, inspection method, exposure system, exposure method, and device manufacturing method
JP5502227B1 (en) Film thickness distribution measurement method
WO2017122248A1 (en) Method for measuring film thickness distribution of wafer with thin film
WO2017141299A1 (en) Film-thickness-distribution measuring method
JP2009099757A (en) Apparatus, method and program for measuring semiconductor surface distortion
TWI666428B (en) Polarized light measuring device and polarized light irradiation device
US20230280661A1 (en) A fabrication process deviation determination method, calibration method, inspection tool, fabrication system and a sample
TW202142970A (en) Thick photo resist layer metrology target
JP2015099898A (en) Evaluation device, evaluation method, exposure system and method for manufacturing semiconductor device
JP2005164439A (en) Method for optically measuring thickness or optical characteristic value of film and optical surface analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250