JP5502227B1 - Film thickness distribution measurement method - Google Patents

Film thickness distribution measurement method Download PDF

Info

Publication number
JP5502227B1
JP5502227B1 JP2013142919A JP2013142919A JP5502227B1 JP 5502227 B1 JP5502227 B1 JP 5502227B1 JP 2013142919 A JP2013142919 A JP 2013142919A JP 2013142919 A JP2013142919 A JP 2013142919A JP 5502227 B1 JP5502227 B1 JP 5502227B1
Authority
JP
Japan
Prior art keywords
wafer
thin film
measured
film thickness
thickness distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013142919A
Other languages
Japanese (ja)
Other versions
JP2015017804A (en
Inventor
祥仙 堀江
登 桑原
Original Assignee
株式会社多聞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社多聞 filed Critical 株式会社多聞
Priority to JP2013142919A priority Critical patent/JP5502227B1/en
Application granted granted Critical
Publication of JP5502227B1 publication Critical patent/JP5502227B1/en
Publication of JP2015017804A publication Critical patent/JP2015017804A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】薄膜付ウェーハの全面の膜厚分布を精度良く、高いスループットで測定できる膜厚分布測定方法を提供する。
【解決手段】
予め分かっている膜厚の薄膜を有する薄膜付ウェーハを用いて、該薄膜付ウェーハの中心の反射率を測定し、該測定した反射率と予め分かっている膜厚からウェーハ中心における補正された入射角を算出する。測定対象の薄膜付ウェーハと、算出したウェーハ中心における補正された入射角を用い、該薄膜付ウェーハをライン光源に垂直なウェーハ面内方向に移動させながら、ライン光源の中心位置でのウェーハ中心線に沿った領域の膜厚分布を測定する。その後、薄膜付ウェーハを90°回転させた後、測定した領域の反射率分布をライン光源方向の各点において測定し、測定した反射率分布からライン光源方向の各点における補正された入射角を算出する。補正された入射角を用いて薄膜付ウェーハの薄膜の膜厚分布を測定する。
【選択図】 図1
The present invention provides a film thickness distribution measuring method capable of measuring the film thickness distribution on the entire surface of a wafer with a thin film with high accuracy and high throughput.
[Solution]
Using a wafer with a thin film having a thin film with a known thickness, the reflectance at the center of the wafer with the thin film is measured, and the corrected incidence at the center of the wafer is measured from the measured reflectance and the known thickness. Calculate the corner. Using the wafer with the thin film to be measured and the corrected incident angle at the calculated wafer center, the wafer center line at the center position of the line light source is moved while moving the wafer with the thin film in the wafer surface direction perpendicular to the line light source. The film thickness distribution in the region along the line is measured. Then, after rotating the wafer with thin film by 90 °, the reflectance distribution of the measured region is measured at each point in the line light source direction, and the corrected incident angle at each point in the line light source direction is calculated from the measured reflectance distribution. calculate. The film thickness distribution of the thin film of the wafer with a thin film is measured using the corrected incident angle.
[Selection] Figure 1

Description

本発明は、半導体デバイスに使われる1層以上の薄膜付ウェーハのウェーハ全面の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法に関する。   The present invention relates to a film thickness distribution measuring method for measuring the film thickness distribution of the entire surface of a wafer with a thin film of one or more layers used in a semiconductor device by reflection spectroscopy using a line light source.

近年、デザインルールの微細化に伴って、FD−SOI(Fully Depleted SOI)デバイス、FinFETデバイス、SiナノワイヤートランジスタなどのSOIデバイスに用いられる、特に高い膜厚均一性を要求される極薄膜のSOI層を有するSOIウェーハが使われ始めている。これらデバイスにおいて、SOI膜厚及び埋め込み酸化膜(BOX膜)厚の均一性がトランジスターの特性を決める上で重要な項目となっている。   In recent years, with the miniaturization of design rules, an ultra-thin SOI that is used for SOI devices such as FD-SOI (Fully Depleted SOI) devices, FinFET devices, Si nanowire transistors, and the like, which requires particularly high film thickness uniformity. SOI wafers with layers have begun to be used. In these devices, the uniformity of the SOI film thickness and the buried oxide film (BOX film) thickness is an important item in determining the characteristics of the transistor.

基板の表面に薄膜を有する、このような薄膜付ウェーハの薄膜の膜厚分布を算出する現有の膜厚測定方法は、分光エリプソ法、反射分光法によるポイント毎の膜厚測定が一般的であるが、ウェーハ全面を高スループットで高精度に膜厚分布測定できる膜厚分布測定装置は市販されていない。   The current film thickness measurement method for calculating the film thickness distribution of such a thin film-attached wafer having a thin film on the surface of the substrate is generally a film thickness measurement at each point by spectroscopic ellipsometry or reflection spectroscopy. However, a film thickness distribution measuring apparatus capable of measuring the film thickness distribution with high throughput and high accuracy over the entire wafer surface is not commercially available.

分光エリプソ法、反射分光法によるポイント測定においては、各測定点毎に、ある波長範囲(一般的には、可視光域)のスペクトルを取り、そのスペクトルに対してモデル膜構造にフィッティングすることで各測定点の膜厚を求めている。従って、ウェーハ全面を高スループットで高精度に測定を行おうとすると、測定点数が極端に増えるため、計算量と時間の制約から現実的に測定不可能である。
そのため、例えば直径300mm以上のSOIウェーハなどの薄膜付ウェーハの膜厚分布の測定を高密度で精度良く、かつ短時間で行うことが課題となっている。
In point measurement by spectroscopic ellipsometry or reflection spectroscopy, a spectrum in a certain wavelength range (generally, visible light region) is taken for each measurement point, and the spectrum is fitted to the model film structure. The film thickness at each measurement point is obtained. Therefore, if it is attempted to measure the entire wafer surface with high throughput and high accuracy, the number of measurement points increases extremely, making it impossible to measure practically due to the amount of calculation and time constraints.
Therefore, for example, it is a problem to measure the film thickness distribution of a wafer with a thin film such as an SOI wafer having a diameter of 300 mm or more with high density and accuracy in a short time.

これに対し、ライン光源を用いた分光反射法により、ライン光源からの線状の光を測定対象物に照射し、測定対象物をライン光源に垂直な方向にスキャンしながら膜厚を測定する方法が知られている(特許文献1参照)。   In contrast, a method of measuring the film thickness while irradiating a measurement object with linear light from the line light source and scanning the measurement object in a direction perpendicular to the line light source by spectral reflection using a line light source. Is known (see Patent Document 1).

特開2000−314612号公報JP 2000-314612 A

しかし、この方法で膜厚測定を行っても十分な測定精度が出ないという問題がある。この原因を発明者等が調査したところ、以下のことが判明した。
ライン光源を用いたスキャン方式の分光反射法による膜厚分布測定において、光源からの入射光が薄膜で反射して検出器(カメラ)で検出される際の入射角は、光源のライン方向の各測定点で異なる。そのため、各測定点毎の入射角を予め算出し、所定値(理論入射角)に設定しておく必要がある。
However, there is a problem that sufficient measurement accuracy cannot be obtained even when film thickness is measured by this method. When the inventors investigated the cause, the following was found.
In film thickness distribution measurement by scanning spectral reflection method using a line light source, the incident angle when the incident light from the light source is reflected by the thin film and detected by the detector (camera) Different at measurement points. Therefore, it is necessary to calculate the incident angle for each measurement point in advance and set it to a predetermined value (theoretical incident angle).

しかしながら、実際の測定系においては、光学系の幾何学的なズレが多少なりとも生じてしまうため、理論入射角からのズレが避けられず、薄膜の測定結果に誤差を生じてしまう。誤差の度合いは、測定対象の薄膜の膜厚が薄ければ薄いほど無視できなくなるため、特に、高い膜厚均一性の要求される極薄膜のSOI層(例えば、SOI膜厚が20nm以下)では問題となる。   However, in an actual measurement system, some geometrical deviation of the optical system occurs, and thus a deviation from the theoretical incident angle cannot be avoided, and an error occurs in the measurement result of the thin film. The degree of error is not negligible as the film thickness of the thin film to be measured is thinner. In particular, in the thin film SOI layer (for example, the SOI film thickness is 20 nm or less) that requires high film thickness uniformity. It becomes a problem.

本発明は前述のような問題に鑑みてなされたもので、薄膜付ウェーハの全面の膜厚分布を精度良く、高いスループットで測定できる膜厚分布測定方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a film thickness distribution measuring method capable of measuring the film thickness distribution on the entire surface of a thin film-coated wafer with high accuracy and high throughput.

上記目的を達成するために、本発明によれば、基板の表面上に形成された少なくとも1つの薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法であって、前記薄膜付ウェーハ上のライン光源方向の各点における入射角を補正する下記の第1の工程、第2の工程、及び第3の工程と、前記補正された入射角を用いて前記薄膜付ウェーハの薄膜の膜厚分布を測定する第4の工程を有し、前記第1の工程において、予め分かっている膜厚の薄膜を有する薄膜付ウェーハを用いて、該薄膜付ウェーハの中心の反射率を測定し、該測定した反射率と前記予め分かっている膜厚からウェーハ中心における補正された入射角を算出し、前記第2の工程において、前記第1の工程で用いた前記薄膜付ウェーハの薄膜と同じ材質の薄膜を有する前記膜厚分布の測定対象の薄膜付ウェーハと、前記算出したウェーハ中心における補正された入射角を用い、該薄膜付ウェーハを前記ライン光源に垂直なウェーハ面内方向に移動させながら、前記ライン光源の中心位置でのウェーハ中心線に沿った領域の膜厚分布を測定し、前記第3の工程において、前記第2の工程後の薄膜付ウェーハを90°回転させた後、前記第2の工程で測定した領域の反射率分布を前記ライン光源方向の各点において測定し、該測定した反射率分布と前記第2の工程で測定した膜厚分布から前記ライン光源方向の各点における補正された入射角を算出することを特徴とする膜厚分布測定方法が提供される。   In order to achieve the above object, according to the present invention, the film thickness distribution of the thin film of a wafer with a thin film having at least one thin film formed on the surface of the substrate is measured by reflection spectroscopy using a line light source. A film thickness distribution measuring method, which corrects an incident angle at each point in a line light source direction on the wafer with a thin film, and includes the following first step, second step, and third step. A fourth step of measuring a film thickness distribution of the thin film of the wafer with a thin film using an incident angle, and using the wafer with a thin film having a thin film with a known film thickness in the first step, The reflectivity at the center of the wafer with the thin film is measured, and the corrected incident angle at the wafer center is calculated from the measured reflectivity and the previously known film thickness. In the second step, the first step Before used in the process Using the thin film-coated wafer having a thin film of the same material as the thin film of the thin film-coated wafer and the corrected incident angle at the calculated wafer center, the thin film-coated wafer is perpendicular to the line light source. While moving in the wafer in-plane direction, the film thickness distribution of the region along the wafer center line at the center position of the line light source is measured, and in the third step, the thin film-coated wafer after the second step is measured. After rotating 90 °, the reflectance distribution of the region measured in the second step is measured at each point in the line light source direction, and the measured reflectance distribution and the film thickness distribution measured in the second step are measured. A film thickness distribution measuring method is provided that calculates a corrected incident angle at each point in the line light source direction.

このような膜厚分布測定方法であれば、ライン光源方向の各点における補正された入射角を精度良く得ることができるので、この入射角を用いて薄膜付ウェーハの全面の膜厚分布を精度良く、高いスループットで測定できる。   With such a film thickness distribution measuring method, the corrected incident angle at each point in the direction of the line light source can be obtained with high accuracy. Therefore, the film thickness distribution on the entire surface of the wafer with a thin film can be accurately obtained using this incident angle. It can be measured with good and high throughput.

このとき、前記第1の工程において用いる薄膜付ウェーハ及び/又は前記測定対象の薄膜付ウェーハとして、エリプソメータで校正された200nm以上の膜厚のシリコン酸化膜がシリコン単結晶ウェーハの表面上に形成されたウェーハを用いることが好ましい。
このようにすれば、光源からの入射光の波長の変化に対する反射率の絶対値が十分に大きくなるので、入射角の測定精度を高めることができる。
At this time, a silicon oxide film having a thickness of 200 nm or more calibrated with an ellipsometer is formed on the surface of the silicon single crystal wafer as the wafer with a thin film used in the first step and / or the wafer with a thin film to be measured. It is preferable to use a different wafer.
By doing so, the absolute value of the reflectance with respect to the change in the wavelength of the incident light from the light source becomes sufficiently large, so that the measurement accuracy of the incident angle can be increased.

本発明の膜厚分布測定方法によれば、ライン光源を用いた反射分光法による膜厚分布測定において、ライン光源方向の各点における入射角を補正し、この補正された入射角を用いて薄膜付ウェーハの薄膜の膜厚分布を測定するので、例えば、極薄膜SOI層、極薄膜BOX層を有するSOIウェーハなどの薄膜付ウェーハの全面の膜厚分布を高精度に実用的な高いスループットで測定することが可能である。従って、例えばFD−SOIデバイスで要求されるような、SOI層厚、BOX層膜厚分布均一性の高いウェーハの工程管理、品質管理が可能になる。   According to the film thickness distribution measuring method of the present invention, in the film thickness distribution measurement by reflection spectroscopy using a line light source, the incident angle at each point in the line light source direction is corrected, and the thin film is obtained using the corrected incident angle. Measure the film thickness distribution of the thin film on the attached wafer. For example, measure the film thickness distribution on the entire surface of the wafer with the thin film such as an SOI wafer having an ultrathin SOI layer or an ultrathin BOX layer with high accuracy and practical high throughput. Is possible. Therefore, for example, the wafer process management and quality control with high uniformity of SOI layer thickness and BOX layer film thickness distribution as required by the FD-SOI device can be realized.

本発明の膜厚分布測定方法の一例のフロー図である。It is a flowchart of an example of the film thickness distribution measuring method of this invention. 本発明の膜厚分布測定方法を実施するための測定装置の一例を示す概略図である。It is the schematic which shows an example of the measuring apparatus for enforcing the film thickness distribution measuring method of this invention. 実施例における第2の工程で測定した膜厚分布を示す図である。It is a figure which shows the film thickness distribution measured at the 2nd process in the Example. 実施例における補正入射角と比較例における理論入射角を示す図である。It is a figure which shows the correction | amendment incident angle in an Example, and the theoretical incident angle in a comparative example. 実施例におけるSOI膜厚分布測定結果を示す図である。It is a figure which shows the SOI film thickness distribution measurement result in an Example. 比較例におけるSOI膜厚分布測定結果を示す図である。It is a figure which shows the SOI film thickness distribution measurement result in a comparative example.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

本発明は、薄膜付ウェーハの薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法である。
測定対象の薄膜付ウェーハは、基板の表面上に形成された少なくとも1つの薄膜を有する。1層の薄膜を有する薄膜付ウェーハの例としては、シリコン酸化膜付きのシリコン単結晶ウェーハが挙げられる。また、2層の薄膜を有する薄膜付ウェーハの例としては、シリコン基板の上に埋め込み酸化膜(BOX膜)が形成され、その上にシリコン単結晶からなるSOI層が形成されたSOIウェーハが挙げられる。しかし、本発明はこれらのウェーハに限定されるものではなく、3層以上の薄膜構造にも適用可能である。
The present invention is a film thickness distribution measuring method for measuring a film thickness distribution of a thin film of a wafer with a thin film by reflection spectroscopy using a line light source.
The wafer with a thin film to be measured has at least one thin film formed on the surface of the substrate. As an example of a wafer with a thin film having a single layer of thin film, a silicon single crystal wafer with a silicon oxide film can be given. An example of a wafer with a thin film having two thin films is an SOI wafer in which a buried oxide film (BOX film) is formed on a silicon substrate and an SOI layer made of silicon single crystal is formed thereon. It is done. However, the present invention is not limited to these wafers, and can be applied to a thin film structure having three or more layers.

ここでは、本発明の膜厚分布測定方法について、測定対象の薄膜付ウェーハとして、シリコン酸化膜付きのシリコン単結晶ウェーハを用いた場合を例として、図1及び図2を参照しながら説明する。   Here, the film thickness distribution measuring method of the present invention will be described with reference to FIGS. 1 and 2 by taking as an example a case where a silicon single crystal wafer with a silicon oxide film is used as a wafer with a thin film to be measured.

本発明の膜厚分布測定方法は、例えば図2に示すような測定装置を用いて実施することができる。
図2に示すように、測定装置1はライン光源2、検出器(カメラ及び分光器)3を有している。ライン光源2から線状の光が測定対象の薄膜付ウェーハWに照射される。この照射された光の反射光を検出器3で検出し、スペクトル解析することで、薄膜付ウェーハ上のライン光源方向の各測定点における薄膜の膜厚分布を測定できる。
The film thickness distribution measuring method of the present invention can be implemented using a measuring apparatus as shown in FIG.
As shown in FIG. 2, the measuring apparatus 1 includes a line light source 2 and a detector (camera and spectroscope) 3. Linear light is irradiated from the line light source 2 onto the wafer W with a thin film to be measured. By detecting the reflected light of the irradiated light with the detector 3 and performing spectrum analysis, the film thickness distribution of the thin film at each measurement point in the direction of the line light source on the wafer with the thin film can be measured.

ライン光源2から照射された光の反射光を検出器3で検出してスペクトル解析する際に、ライン光源方向の各測定点における入射角が用いられるため、予め設定しておく必要がある。この入射角はライン光源方向の各測定点で異なる値となる。
従来の膜厚分布測定方法では、理論入射角を予め設定して膜厚分布の測定に用いているが、実際の測定系においては、光学系の幾何学的なズレが存在するので、実際の入射角と理論入射角にズレが生じてしまい、膜厚分布の測定誤差の原因となる。
When the reflected light of the light emitted from the line light source 2 is detected by the detector 3 and subjected to spectrum analysis, the incident angle at each measurement point in the direction of the line light source is used, so it is necessary to set in advance. This incident angle has a different value at each measurement point in the line light source direction.
In the conventional film thickness distribution measuring method, the theoretical incident angle is set in advance and used for measuring the film thickness distribution. However, in an actual measurement system, there is a geometrical deviation of the optical system. Deviation occurs between the incident angle and the theoretical incident angle, which causes a measurement error in the film thickness distribution.

これに対し、本発明の膜厚分布測定方法では、ライン光源方向の各測定点における入射角を実際の測定系を用いて補正し、補正後の入射角を設定して膜厚分布の測定に用いる。
そのため、光学系の幾何学的なズレなどにより生じる入射角の誤差をなくすことができ、高精度の膜厚分布の測定が可能となる。
On the other hand, in the film thickness distribution measuring method of the present invention, the incident angle at each measurement point in the line light source direction is corrected using an actual measurement system, and the corrected incident angle is set to measure the film thickness distribution. Use.
Therefore, it is possible to eliminate the incident angle error caused by the geometrical deviation of the optical system, and to measure the film thickness distribution with high accuracy.

ここで、入射角の補正方法について説明する。
図1に示すように、入射角の補正は、以下に示す第1の工程、第2の工程、及び第3の工程を通じて算出される。
まず、第1の工程では、予め分かっている膜厚の薄膜を有する薄膜付ウェーハを用意する。この薄膜付ウェーハは、測定対象の薄膜付ウェーハの薄膜と同じ材質の薄膜を有し、例えば、薄膜としてシリコン酸化膜を有するシリコン単結晶ウェーハ(以下、標準酸化膜付きウェーハと言う)を用意することができる。
Here, a method of correcting the incident angle will be described.
As shown in FIG. 1, the correction of the incident angle is calculated through a first process, a second process, and a third process described below.
First, in the first step, a thin film-attached wafer having a thin film with a known thickness is prepared. This wafer with a thin film has a thin film made of the same material as the thin film of the wafer with a thin film to be measured. For example, a silicon single crystal wafer having a silicon oxide film as the thin film (hereinafter referred to as a standard oxide film wafer) is prepared. be able to.

標準酸化膜付きウェーハのシリコン酸化膜の膜厚としては、200nm以上であることが好ましく、1000nm以上であることがより好ましい。
その理由を以下に示す。反射分光法で酸化膜厚の測定精度を高めるためには、入射光の波長の変化に対して反射率の変動が大きく、反射率の絶対値が大きいことが必要である。このとき酸化膜が薄いと反射率の変動が少なく、反射率も小さくなり、測定精度を高めることができない。シリコン酸化膜の膜厚が200nm以上の場合、25〜35%の反射率が得られ、反射率の変動幅も大きくなり、測定精度を上げることができる。酸化膜厚が更に厚くなり、特に1000nm以上になると、入射光の波長の変化に対して反射率の周期的変動が顕著になるため、測定精度を更に高めることができる。
尚、シリコン酸化膜以外の薄膜に対しても反射率に関し上記と同様の傾向を示す。
The thickness of the silicon oxide film of the standard oxide film-attached wafer is preferably 200 nm or more, and more preferably 1000 nm or more.
The reason is as follows. In order to improve the measurement accuracy of the oxide film thickness by reflection spectroscopy, it is necessary that the reflectance varies greatly with changes in the wavelength of incident light, and that the absolute value of the reflectance is large. At this time, if the oxide film is thin, the change in reflectivity is small, the reflectivity is also small, and the measurement accuracy cannot be increased. When the thickness of the silicon oxide film is 200 nm or more, a reflectance of 25 to 35% is obtained, the fluctuation range of the reflectance is increased, and the measurement accuracy can be increased. When the oxide film thickness is further increased, particularly 1000 nm or more, the periodic fluctuation of the reflectance becomes remarkable with respect to the change of the wavelength of the incident light, so that the measurement accuracy can be further improved.
Note that the same tendency as described above is shown with respect to the reflectance even for thin films other than silicon oxide films.

このとき、用意する標準酸化膜付きウェーハのシリコン酸化膜の膜厚を、ウェーハ中心の1点でエリプソメータにより予め測定するようにすれば、その膜厚を高精度で測定できるし、測定時間も短時間で済むので好ましい。   At this time, if the thickness of the silicon oxide film of the wafer with the standard oxide film to be prepared is measured in advance with an ellipsometer at one point in the center of the wafer, the film thickness can be measured with high accuracy and the measurement time is also short. This is preferable because it takes time.

図2に示す測定装置を用い、用意した標準酸化膜付きウェーハに、ライン光源2の中心がウェーハ中心に対応するようにライン光源2から線状の光を標準酸化膜付きウェーハに照射して、ウェーハ中心位置のシリコン酸化膜の反射率を測定する。反射率は膜厚と入射角によって決まるので、このようにして測定した反射率と予め分かっている膜厚を用いて、ウェーハ中心、すなわち、ライン光源の中心における補正された入射角θを算出する。   Using the measuring apparatus shown in FIG. 2, the wafer with standard oxide film is irradiated with linear light from the line light source 2 so that the center of the line light source 2 corresponds to the center of the wafer, The reflectance of the silicon oxide film at the wafer center position is measured. Since the reflectivity is determined by the film thickness and the incident angle, the corrected incident angle θ at the center of the wafer, that is, the center of the line light source is calculated using the reflectivity measured in this way and the previously known film thickness. .

次に、図1に示すように、第2の工程を実施する。第2の工程では、入射角として第1の工程で算出したウェーハ中心における補正された入射角θを用いて、測定対象の薄膜付ウェーハの薄膜の膜厚分布を測定する。ここで、上記したように、測定対象の薄膜付ウェーハは、第1の工程で用いた標準酸化膜付きウェーハの薄膜と同じ材質の薄膜、すなわちシリコン酸化膜を有し、ここでは、全面にシリコン酸化膜を有するシリコン単結晶ウェーハとすることができる。   Next, as shown in FIG. 1, a second step is performed. In the second step, the film thickness distribution of the thin film of the wafer with the thin film to be measured is measured using the corrected incident angle θ at the wafer center calculated in the first step as the incident angle. Here, as described above, the wafer with a thin film to be measured has a thin film of the same material as the thin film of the wafer with the standard oxide film used in the first step, that is, a silicon oxide film. A silicon single crystal wafer having an oxide film can be obtained.

測定対象のシリコン単結晶ウェーハのシリコン酸化膜の膜厚も上記と同様に、200nm以上であることが好ましく、1000nm以上であることがより好ましい。
このシリコン単結晶ウェーハを、図2に示すように測定装置1を用いて、ライン光源2に垂直なウェーハ面内方向Aに移動(スキャン)させながら、ライン光源2の中心位置でのウェーハ中心線に沿った(ウェーハの直径方向)領域の膜厚分布を測定する。
Similarly to the above, the thickness of the silicon oxide film of the silicon single crystal wafer to be measured is preferably 200 nm or more, and more preferably 1000 nm or more.
The wafer center line at the center position of the line light source 2 while moving (scanning) this silicon single crystal wafer in the wafer surface direction A perpendicular to the line light source 2 using the measuring apparatus 1 as shown in FIG. The film thickness distribution in the region along the wafer diameter direction is measured.

次に、図1に示すように、第3の工程を実施する。第3の工程では、第2の工程後のシリコン単結晶ウェーハを90°回転させて、第2の工程で膜厚分布を測定した領域がライン光源と平行になるようにする。その後、この領域の反射率分布をライン光源方向の各点において測定する。測定した反射率分布と第2の工程で測定した膜厚分布を用い、幾何学的な関係に基づいて、ライン光源方向の各点における補正された入射角θを算出する。   Next, as shown in FIG. 1, a third step is performed. In the third step, the silicon single crystal wafer after the second step is rotated by 90 ° so that the region where the film thickness distribution is measured in the second step is parallel to the line light source. Thereafter, the reflectance distribution in this region is measured at each point in the line light source direction. Using the measured reflectance distribution and the film thickness distribution measured in the second step, the corrected incident angle θ at each point in the line light source direction is calculated based on the geometric relationship.

以上の工程により、補正された入射角を精度良く求めることができる。
次に、図1に示すように、第4の工程を実施する。第4の工程では、第3の工程で算出した補正された入射角θを用いてシリコン単結晶ウェーハのシリコン酸化膜の膜厚分布を測定する。
このように、補正された入射角を用いて、ウェーハの全面の膜厚を精度良く、高いスループットで測定できる。
Through the above steps, the corrected incident angle can be obtained with high accuracy.
Next, as shown in FIG. 1, a fourth step is performed. In the fourth step, the thickness distribution of the silicon oxide film of the silicon single crystal wafer is measured using the corrected incident angle θ calculated in the third step.
In this way, the film thickness on the entire surface of the wafer can be measured with high accuracy and high throughput using the corrected incident angle.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例)
エリプソメータで校正された膜厚1000nmのシリコン酸化膜を有するシリコン単結晶ウェーハ(標準酸化膜付きウェーハ:直径300mm、結晶方位<100>)を用いて第1の工程を行い、ライン光源中心の入射角を求めた。
その結果、入射角は3.28度と算出され、設定値(理論入射角)の3度に比べて10%程度のズレが生じていることが判明した。
(Example)
The first step is performed using a silicon single crystal wafer having a silicon oxide film with a thickness of 1000 nm calibrated by an ellipsometer (standard oxide film wafer: diameter 300 mm, crystal orientation <100>), and the incident angle at the center of the line light source Asked.
As a result, the incident angle was calculated to be 3.28 degrees, and it was found that a deviation of about 10% occurred compared to the set value (theoretical incident angle) of 3 degrees.

次に、4800nm厚の全面酸化膜付シリコン単結晶ウェーハを用いて、第2の工程を行い、ライン光源中心で、ウェーハ中心線に沿って(ウェーハの直径方向の)酸化膜の膜厚分布を測定した。この膜厚分布の結果を図3に示す。
その後、第2の工程後のウェーハを90°回転し、第2の工程で膜厚分布を求めた領域の反射率をライン光源に平行な方向の各点において測定した。測定された各点の反射率と第2の工程で測定した酸化膜厚分布を用いて、ライン光源方向の各点の入射角(補正入射角)を求めた。この入射角の結果を図4に示す。
Next, a second process is performed using a silicon oxide single crystal wafer with a total oxide film thickness of 4800 nm, and the film thickness distribution of the oxide film (in the diameter direction of the wafer) is measured along the wafer center line at the center of the line light source. It was measured. The result of this film thickness distribution is shown in FIG.
Thereafter, the wafer after the second step was rotated by 90 °, and the reflectance of the region where the film thickness distribution was obtained in the second step was measured at each point in the direction parallel to the line light source. Using the measured reflectance of each point and the oxide film thickness distribution measured in the second step, the incident angle (corrected incident angle) of each point in the line light source direction was obtained. The result of this incident angle is shown in FIG.

得られた補正入射角を用いて、直径300mmのSOIウェーハのSOI膜厚測定を行った。SOI膜厚の測定は、ウェーハに形成されたノッチ位置と垂直方向にウェーハをスキャンして行った。1回目の測定を行った後、ウェーハを180度回転して2回目の測定を行った。
図5は、1回目の測定と2回目の測定における、ノッチと平行な方向のウェーハ中心線(すなわちライン光源に平行なウェーハ中心線)の膜厚分布とその差分を示している。
尚、2回目の測定はウェーハを180度回転させて行っているが、図5には1回目と2回目の測定位置が一致するようにプロットしてある。
Using the corrected incident angle obtained, the SOI film thickness of an SOI wafer having a diameter of 300 mm was measured. The SOI film thickness was measured by scanning the wafer in the direction perpendicular to the notch position formed on the wafer. After the first measurement, the wafer was rotated 180 degrees and the second measurement was performed.
FIG. 5 shows the film thickness distribution of the wafer center line in the direction parallel to the notch (that is, the wafer center line parallel to the line light source) and the difference between the first measurement and the second measurement.
The second measurement is performed by rotating the wafer by 180 degrees. In FIG. 5, the first and second measurement positions are plotted so as to coincide with each other.

図5に示すように、膜厚差を示す折れ線グラフによれば、両者は±0.1nm以下の精度で一致していることがわかる。   As shown in FIG. 5, according to the line graph showing the film thickness difference, it can be seen that the two coincide with each other with an accuracy of ± 0.1 nm or less.

(比較例)
入射角を補正せず、初期設定値である理論入射角の設定のまま、実施例と同一のSOIウェーハ全面のSOI膜厚測定を行った。
図4に比較例で設定した理論入射角を示す。図4に示すように、理論入射角と補正入射角の間に差があることがわかる。
(Comparative example)
The SOI film thickness was measured on the entire surface of the same SOI wafer as in the example without correcting the incident angle and setting the theoretical incident angle as the initial setting value.
FIG. 4 shows the theoretical incident angle set in the comparative example. As shown in FIG. 4, it can be seen that there is a difference between the theoretical incident angle and the corrected incident angle.

図6は、1回目の測定と180度回転した2回目の測定における、ノッチと平行な方向のウェーハ中心線(すなわちライン光源に平行なウェーハ中心線)の膜厚分布とその差分を示している。
尚、2回目の測定はウェーハを180度回転させて行っているが、図6には1回目と2回目の測定位置が一致するようにプロットしてある。
図6に示すように、膜厚差を示す折れ線グラフによれば、両者には±0.5nm以上の相違が見られる。これは、初期設定された理論入射角が正確でないため、ウェーハのスキャン方向により測定値が異なることを示しており、理論入射角のままで測定を行うと膜厚測定精度が低下することを示している。
FIG. 6 shows the film thickness distribution of the wafer center line in the direction parallel to the notch (that is, the wafer center line parallel to the line light source) and the difference between the first measurement and the second measurement rotated 180 degrees. .
The second measurement is performed by rotating the wafer by 180 degrees, but FIG. 6 is plotted so that the first and second measurement positions coincide.
As shown in FIG. 6, according to the line graph showing the film thickness difference, a difference of ± 0.5 nm or more is observed between the two. This indicates that the initial theoretical incidence angle is not accurate, so the measured value varies depending on the wafer scan direction. ing.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

1…測定装置、 2…ライン光源、 3…検出器。   DESCRIPTION OF SYMBOLS 1 ... Measuring apparatus, 2 ... Line light source, 3 ... Detector.

Claims (2)

基板の表面上に形成された少なくとも1つの薄膜を有する薄膜付ウェーハの前記薄膜の膜厚分布をライン光源を用いた反射分光法によって測定する膜厚分布測定方法であって、
前記薄膜付ウェーハ上のライン光源方向の各点における入射角を補正する下記の第1の工程、第2の工程、及び第3の工程と、前記補正された入射角を用いて前記薄膜付ウェーハの薄膜の膜厚分布を測定する第4の工程を有し、
前記第1の工程において、予め分かっている膜厚の薄膜を有する薄膜付ウェーハを用いて、該薄膜付ウェーハの中心の反射率を測定し、該測定した反射率と前記予め分かっている膜厚からウェーハ中心における補正された入射角を算出し、
前記第2の工程において、前記第1の工程で用いた前記薄膜付ウェーハの薄膜と同じ材質の薄膜を有する前記膜厚分布の測定対象の薄膜付ウェーハと、前記算出したウェーハ中心における補正された入射角を用い、該薄膜付ウェーハを前記ライン光源に垂直なウェーハ面内方向に移動させながら、前記ライン光源の中心位置でのウェーハ中心線に沿った領域の膜厚分布を測定し、
前記第3の工程において、前記第2の工程後の薄膜付ウェーハを90°回転させた後、前記第2の工程で測定した領域の反射率分布を前記ライン光源方向の各点において測定し、該測定した反射率分布と前記第2の工程で測定した膜厚分布から前記ライン光源方向の各点における補正された入射角を算出することを特徴とする膜厚分布測定方法。
A film thickness distribution measuring method for measuring a film thickness distribution of a thin film of a wafer with a thin film having at least one thin film formed on a surface of a substrate by reflection spectroscopy using a line light source,
The following first, second, and third steps for correcting the incident angle at each point in the line light source direction on the thin film-attached wafer, and the thin film-attached wafer using the corrected incident angle. A fourth step of measuring the film thickness distribution of the thin film;
In the first step, using a wafer with a thin film having a thin film having a known thickness, the reflectance at the center of the wafer with the thin film is measured, and the measured reflectance and the previously known thickness are measured. To calculate the corrected angle of incidence at the wafer center,
In the second step, the wafer with a thin film to be measured for the film thickness distribution having a thin film of the same material as the thin film of the wafer with the thin film used in the first step, and the correction at the calculated wafer center Using the incident angle, while moving the wafer with thin film in the wafer surface direction perpendicular to the line light source, measure the film thickness distribution of the region along the wafer center line at the center position of the line light source,
In the third step, after rotating the wafer with a thin film after the second step by 90 °, the reflectance distribution of the region measured in the second step is measured at each point in the line light source direction, A film thickness distribution measuring method, comprising: calculating a corrected incident angle at each point in the direction of the line light source from the measured reflectance distribution and the film thickness distribution measured in the second step.
前記第1の工程において用いる薄膜付ウェーハ及び/又は前記測定対象の薄膜付ウェーハとして、エリプソメータで校正された200nm以上の膜厚のシリコン酸化膜がシリコン単結晶ウェーハの表面上に形成されたウェーハを用いることを特徴とする請求項1に記載の膜厚分布測定方法。   As a wafer with a thin film used in the first step and / or a wafer with a thin film to be measured, a wafer in which a silicon oxide film having a thickness of 200 nm or more calibrated with an ellipsometer is formed on the surface of a silicon single crystal wafer. The film thickness distribution measuring method according to claim 1, wherein the film thickness distribution measuring method is used.
JP2013142919A 2013-07-08 2013-07-08 Film thickness distribution measurement method Active JP5502227B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013142919A JP5502227B1 (en) 2013-07-08 2013-07-08 Film thickness distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013142919A JP5502227B1 (en) 2013-07-08 2013-07-08 Film thickness distribution measurement method

Publications (2)

Publication Number Publication Date
JP5502227B1 true JP5502227B1 (en) 2014-05-28
JP2015017804A JP2015017804A (en) 2015-01-29

Family

ID=50941783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013142919A Active JP5502227B1 (en) 2013-07-08 2013-07-08 Film thickness distribution measurement method

Country Status (1)

Country Link
JP (1) JP5502227B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215443B2 (en) 2019-10-24 2022-01-04 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520795B2 (en) * 2016-02-15 2019-05-29 信越半導体株式会社 Film thickness distribution measurement method
WO2017141299A1 (en) * 2016-02-15 2017-08-24 信越半導体株式会社 Film-thickness-distribution measuring method
JP6285597B1 (en) 2017-06-05 2018-02-28 大塚電子株式会社 Optical measuring apparatus and optical measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280937A (en) * 1992-04-03 1993-10-29 Sharp Corp Measuring method of film thickness
JP2000314612A (en) * 1999-04-30 2000-11-14 Kawatetsu Techno Res Corp Measurement method for film thickness of light transmission film and film thickness measuring device
JP2005221400A (en) * 2004-02-06 2005-08-18 Dainippon Printing Co Ltd Film thickness measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05280937A (en) * 1992-04-03 1993-10-29 Sharp Corp Measuring method of film thickness
JP2000314612A (en) * 1999-04-30 2000-11-14 Kawatetsu Techno Res Corp Measurement method for film thickness of light transmission film and film thickness measuring device
JP2005221400A (en) * 2004-02-06 2005-08-18 Dainippon Printing Co Ltd Film thickness measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11215443B2 (en) 2019-10-24 2022-01-04 Otsuka Electronics Co., Ltd. Optical measurement apparatus and optical measurement method

Also Published As

Publication number Publication date
JP2015017804A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
JP5660026B2 (en) Film thickness distribution measurement method
TWI536014B (en) Method and apparatus for analyzing x-ray diffraction from tilted layers
JP5365581B2 (en) Evaluation method of wafer with thin film
JP5502227B1 (en) Film thickness distribution measurement method
TWI539147B (en) Reconfigurable spectroscopic ellipsometer
US9897486B2 (en) Method of calibrating and using a measuring apparatus that performs measurements using a spectrum of light
US20100302541A1 (en) System and Method for Performing Ellipsometric Measurements on an Arbitrarily Large or Continuously Moving Sample
JP2005062188A (en) Thickness measuring apparatus and thickness measuring method
JP6520795B2 (en) Film thickness distribution measurement method
CN107917665B (en) Method and apparatus for determining the position of a light spot
WO2017122248A1 (en) Method for measuring film thickness distribution of wafer with thin film
JP5857714B2 (en) Pattern measuring method and semiconductor device manufacturing method
US6731386B2 (en) Measurement technique for ultra-thin oxides
WO2017141299A1 (en) Film-thickness-distribution measuring method
Petrik et al. Comparative measurements on atomic layer deposited Al2O3 thin films using ex situ table top and mapping ellipsometry, as well as X-ray and VUV reflectometry
JP2016114506A (en) Evaluation method of wafer with thin film
Reisinger Minimization of errors in ellipsometric measurements
TW201819880A (en) Apparatus and method for optical system polarizer calibration
Ji-Tao et al. Determination of mean thickness of an oxide layer on a silicon sphere by spectroscopic ellipsometry
JP7496168B1 (en) Film thickness distribution measuring device and film thickness distribution measuring method
JP2003315257A (en) Method of deciding composition of polycrystal compound semiconductor using spectral ellipsometer
Dong et al. The Application of AGILE for 40nm Via Hole Development of Lithography Process and Solutions
JPH0479405B2 (en)
Danzebrink et al. Ellipsometric measurements on single-crystal silicon spheres [for Avogadro's constant determination]
JP2011044586A (en) Method of measuring surface temperature

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140312

R150 Certificate of patent or registration of utility model

Ref document number: 5502227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250