JPH0479405B2 - - Google Patents

Info

Publication number
JPH0479405B2
JPH0479405B2 JP11534982A JP11534982A JPH0479405B2 JP H0479405 B2 JPH0479405 B2 JP H0479405B2 JP 11534982 A JP11534982 A JP 11534982A JP 11534982 A JP11534982 A JP 11534982A JP H0479405 B2 JPH0479405 B2 JP H0479405B2
Authority
JP
Japan
Prior art keywords
angle
incidence
monitor
ellipsometry
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11534982A
Other languages
Japanese (ja)
Other versions
JPS597226A (en
Inventor
Yasuaki Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP11534982A priority Critical patent/JPS597226A/en
Publication of JPS597226A publication Critical patent/JPS597226A/en
Publication of JPH0479405B2 publication Critical patent/JPH0479405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Description

【発明の詳細な説明】 この発明は偏光解析モニタの入射角測定法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the angle of incidence of an ellipsometry monitor.

成膜装置の膜厚モニタとして発光分光法、原子
吸光法、電圧変化法、反射率変化法或いは質量分
析法等が従来広く利用されてきたが、最近ではよ
り高い測定精度を得る観点から上述の方法に代つ
て偏光解析法(エリプソメトリー)が使用される
ようになつてきた。偏光解析法は偏光が試料表面
で反射されるときに生じる状態の変化を測定して
薄膜の膜厚や光学定数を精度よく決定できるもの
であり、この偏光解析法を膜厚評価に取り入れた
従来の装置は通常光源部と受光部と試料ホルダと
を精密加工された架台によつて一体的に構成した
ものであり、そしてこの架台上で入射角の設定が
行なわれる。従つて、このような装置を真空プロ
セス装置に組み込む際に全体を一体化することや
その調整を行なうことは実際問題として困難であ
り、またモニタ装置全体を一体化して組み込む
と、入射角設定角の正確さも悪くなる。
Conventionally, emission spectroscopy, atomic absorption spectrometry, voltage change method, reflectance change method, mass spectrometry, etc. have been widely used to monitor the film thickness of film forming equipment, but recently, the above-mentioned methods have been used from the viewpoint of obtaining higher measurement accuracy. Ellipsometry has been replaced by ellipsometry. Ellipsometry is a method that can accurately determine the thickness and optical constants of thin films by measuring changes in the state that occur when polarized light is reflected on the sample surface. The device usually has a light source section, a light receiving section, and a sample holder integrally formed on a precision-machined pedestal, and the incident angle is set on this pedestal. Therefore, when incorporating such a device into a vacuum process device, it is actually difficult to integrate the entire device and adjust it, and if the entire monitor device is integrated and installed, the incident angle setting angle accuracy also deteriorates.

そこで、この発明は、偏光解析モニタの入射角
を予じめ正確に設定せずに大まかに設定してお
き、真空プロセス装置に組み込む際に入射角を簡
単かつ正確に決定できる新規の入射角測定法を提
供することにある。
Therefore, this invention provides a new method for measuring the angle of incidence that allows the angle of incidence of the polarization analysis monitor to be roughly set without being precisely set in advance, and the angle of incidence can be easily and accurately determined when the monitor is installed in a vacuum process device. It is about providing law.

ところで薄膜による光の反射について考えてみ
ると、第1図に示すように基板の屈折率をns、薄
膜の屈折率をn、膜厚をdとし、真空中より単色
平行光線が入射角で試料に入射したとすると、
入射光線と法線を含む面に平行な方向すなわちp
方向および上記面に垂直な方向すなわちs方向に
おけるそれぞれの成分の反射率は δ=2π/λ・2nd cos 1(λ:光の波長、1:薄 膜内の屈折角) で表わされる。
By the way, considering the reflection of light by a thin film, as shown in Figure 1, the refractive index of the substrate is ns, the refractive index of the thin film is n, and the film thickness is d. If it is incident on
The direction parallel to the plane containing the incident ray and the normal, i.e. p
The reflectance of each component in the direction and the direction perpendicular to the above plane, that is, the s direction, is It is expressed as δ=2π/λ・2nd cos 1 (λ: wavelength of light, 1 : angle of refraction within the thin film).

r1p、r1sは真空と薄膜、r2p、r2sは薄膜と基板
でのフレネル反射係数で、それぞれ、 であり、ここで2は基板内の屈折角である。入
射光と反射光との間の偏光状態の変化を決めるの
は1RpとRsとの比であり、すなわち偏光p成分
とs成分の反射率の比は、 1Rb/1Rs=Rpeip/Rseis=r1p+r2pe-2i〓/1+r1
pr2pe-2i〓/r1s+r2se-2i〓/1+r1sr2se-2i〓≡tan
Ψei〓(3) で表わされ、従つて tanΨ-=Rb/Rs、Δ=δp−δs (4) と表わすことができ、このΨ、Δは偏光解析パラ
メータと呼ばれ、これらのパラメータは表面の光
学定数、膜厚、入射角との間に一定の関係が成り
立つことが認められる。従つて薄膜の膜厚dおよ
び屈折率nがわかつていれば上式(2)、(1)、(3)の順
序に計算して偏光解析パラメータΨ、Δを求める
ことができる。
r 1 p, r 1 s are the Fresnel reflection coefficients in vacuum and thin film, r 2 p, r 2 s are Fresnel reflection coefficients in thin film and substrate, respectively. , where 2 is the refraction angle within the substrate. It is the ratio of 1Rp and Rs that determines the change in the polarization state between the incident light and the reflected light, that is, the ratio of the reflectance of the polarization p component and s component is 1Rb/1Rs=Rpe ip /Rse is = r 1 p + r 2 pe -2i 〓/1 + r 1
pr 2 pe -2i 〓/r 1 s+r 2 se -2i 〓/1+r 1 sr 2 se -2i 〓≡tan
Ψe i 〓(3) Therefore, it can be expressed as tanΨ - = Rb/Rs, Δ=δp−δs (4) These Ψ and Δ are called ellipsometry parameters, and these parameters are It is recognized that a certain relationship holds between the optical constants of the surface, the film thickness, and the angle of incidence. Therefore, if the film thickness d and refractive index n of the thin film are known, the ellipsometry parameters Ψ and Δ can be determined by calculating in the order of the above equations (2), (1), and (3).

従つてこの発明による入射角測定法において
は、まず大まかな入射角の設定を行ない、そして
光学定数が既知で、表面にそれとは異なる光学定
数の薄い層を有する試料を用い光軸調整のなされ
た偏光解析モニタで上記試料の偏光解析パラメー
タΨ、Δを上式に基いて測定し、これらの値から
入射角を正確に決めるようにされる。
Therefore, in the incident angle measurement method according to the present invention, the angle of incidence is first roughly set, and then the optical axis is adjusted using a sample whose optical constants are known and whose surface has a thin layer with a different optical constant. The polarization analysis parameters Ψ and Δ of the sample are measured using the polarization analysis monitor based on the above equations, and the angle of incidence is accurately determined from these values.

以下この発明の一実施例を添附図面の第2図を
参照して説明する。
An embodiment of the present invention will be described below with reference to FIG. 2 of the accompanying drawings.

図示実施例では試料として生のシリコンウエフ
アを用いて入射角を決定する場合について考察す
る。シリコンのHe−Neレーザ光波長(6.328Å)
における光学定数nはn=3.85−0.02iである。こ
の試料の偏光解析パラメータΨ、Δを入射角=
70゜の近傍で測定する。生のシリコンウエフア上
には自然酸化膜がついていることを考慮し、屈折
率n=1.45の膜が厚さdについているとして0.1゜
毎の入射角について偏光解析パラメータΨ、Δを
計算し、その結果を第2図の図表に示した。第2
図において矢印は通常の偏光解析装置で得られる
Ψ、Δの精確度の範囲を示しており、精確度はパ
ラメータΨについては±0.05゜、またパラメータ
Δについては±0.1゜としている。
In the illustrated embodiment, a case will be considered in which the angle of incidence is determined using a raw silicon wafer as a sample. Silicon He-Ne laser wavelength (6.328Å)
The optical constant n in is n=3.85−0.02i. The ellipsometry parameters Ψ and Δ of this sample are the incident angle =
Measure near 70°. Considering that there is a natural oxide film on the raw silicon wafer, and assuming that the film has a refractive index of n = 1.45 and has a thickness of d, calculate the ellipsometry parameters Ψ and Δ for each incident angle of 0.1°, The results are shown in the diagram of FIG. Second
In the figure, the arrows indicate the accuracy range of Ψ and Δ obtained with a normal polarization analyzer, and the accuracy is set to ±0.05° for the parameter Ψ and ±0.1° for the parameter Δ.

従つて、第2図からわかるように測定した偏光
解析パラメータΨ、Δの値から入射角および自
然酸化膜の膜厚dを求めることができる。また自
然酸化膜の屈折率nに±0.1の誤差があつたとし
ても、第2図に=70.0゜の曲線のn=1.35、n=
1.55で示したように求める入射角に対する誤差
は極めて小さい。
Therefore, as can be seen from FIG. 2, the incident angle and the thickness d of the natural oxide film can be determined from the values of the measured polarization analysis parameters Ψ and Δ. Also, even if there is an error of ±0.1 in the refractive index n of the natural oxide film, n = 1.35 for the =70.0° curve in Figure 2, and n =
As shown in 1.55, the error in the angle of incidence determined is extremely small.

このようにこの発明の方法によれば、既知の光
学定数をもち、表面にそれとは異なる光学定数の
薄い層を有する試料を用いてその偏光解析パラメ
ータΨ、Δを測定することによつて偏光解析モニ
タの入射角を簡単かつ正確に決することができ
る。
As described above, according to the method of the present invention, ellipsometric analysis can be performed by measuring the ellipsometric parameters Ψ and Δ using a sample having a known optical constant and having a thin layer on the surface with a different optical constant. The angle of incidence of the monitor can be easily and accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単層膜による光の干渉を示す図、第2
図はこの発明の方法の一実施例を示すグラフであ
る。
Figure 1 shows the interference of light by a single layer film, Figure 2
The figure is a graph showing one embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 既知の光学定数をもち、表面にそれとは異な
る既知の光学定数の薄い層を有する試料の偏光解
析パラメータΨ、Δを、光軸調整のなされた偏光
解析モニタで測定し、上記偏光解析パラメータ
Ψ、Δの値から上記光軸調整のなされた偏光解析
モニタの入射角を算出することを特徴とする偏光
解析モニタの入射角測定法。
1. Measure the ellipsometric parameters Ψ and Δ of a sample that has a known optical constant and a thin layer with a different known optical constant on the surface using an ellipsometric monitor with optical axis adjustment, and measure the ellipsometric parameters Ψ , Δ, the incident angle of the ellipsometry monitor whose optical axis has been adjusted is calculated from the values of Δ.
JP11534982A 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor Granted JPS597226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11534982A JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11534982A JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Publications (2)

Publication Number Publication Date
JPS597226A JPS597226A (en) 1984-01-14
JPH0479405B2 true JPH0479405B2 (en) 1992-12-15

Family

ID=14660319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11534982A Granted JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Country Status (1)

Country Link
JP (1) JPS597226A (en)

Also Published As

Publication number Publication date
JPS597226A (en) 1984-01-14

Similar Documents

Publication Publication Date Title
US6242739B1 (en) Method and apparatus for non-destructive determination of film thickness and dopant concentration using fourier transform infrared spectrometry
Jellison Jr Optical functions of GaAs, GaP, and Ge determined by two-channel polarization modulation ellipsometry
JP5186129B2 (en) Method and apparatus for measuring groove pattern depth
Fanton et al. Multiparameter measurements of thin films using beam‐profile reflectometry
JPH10125753A (en) Method of measuring semiconductor carrier concn., manufacturing semiconductor device and semiconductor wafer
EP0397388A2 (en) Method and apparatus for measuring thickness of thin films
US5526117A (en) Method for the determination of characteristic values of transparent layers with the aid of ellipsometry
JP2000065536A (en) Method and instrument for measuring film thickness and optical constant
JP2746865B2 (en) Ellipsometric measurement method, ellipsometer and apparatus for controlling layer formation using such method and apparatus
US6233046B1 (en) Method of measuring the thickness of a layer of silicon damaged by plasma etching
US7463355B1 (en) Nondestructive optical technique for simultaneously measuring optical constants and thickness of thin films
CN111076668B (en) Differential reflection spectrum measurement method for nano-thickness SiO2 thickness
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
Kim et al. An evaluation of errors in determining the refractive index and thickness of thin SiO2 films using a rotating analyzer ellipsometer
US6731386B2 (en) Measurement technique for ultra-thin oxides
JPS6231289B2 (en)
JPH0479405B2 (en)
Luttmann et al. Optical properties of Cd1− x Mg x Te epitaxial layers: A variable‐angle spectroscopic ellipsometry study
US6476912B1 (en) Method of measuring surface form of semiconductor thin film
JPH1038694A (en) Ellipsometer
Durgapal et al. Thin film ellipsometry metrology
JPH10206354A (en) Method for measuring density of thin film
JP2890588B2 (en) Method of measuring film thickness
Hansen et al. Thickness and refractive index analysis of ellipsometry data of ultra-thin semi-transparent films
JP3007944B2 (en) A method for determining the optical properties of thin films.