JPS597226A - Measuring method for incidence angle of polarization analyzing monitor - Google Patents

Measuring method for incidence angle of polarization analyzing monitor

Info

Publication number
JPS597226A
JPS597226A JP11534982A JP11534982A JPS597226A JP S597226 A JPS597226 A JP S597226A JP 11534982 A JP11534982 A JP 11534982A JP 11534982 A JP11534982 A JP 11534982A JP S597226 A JPS597226 A JP S597226A
Authority
JP
Japan
Prior art keywords
sample
incidence angle
polarization analyzing
monitor
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11534982A
Other languages
Japanese (ja)
Other versions
JPH0479405B2 (en
Inventor
Yasuaki Hayashi
林 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP11534982A priority Critical patent/JPS597226A/en
Publication of JPS597226A publication Critical patent/JPS597226A/en
Publication of JPH0479405B2 publication Critical patent/JPH0479405B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Abstract

PURPOSE:To determine simply and accurately an incidence angle of a polarization analyzing monitor, by measuring a polarization analyzing parameter of a sample by using the bulk sample having a known optical constant. CONSTITUTION:First, an incidence angle is roughly set and the polarization analyzing parameters psi, DELTA of the sample are measured basing on equations by a polarization analyzing monitor having an optical axis adjusted by using the parameter sample having a known optical constant and then, the incidence angle is determined accurately from these values.

Description

【発明の詳細な説明】 この発明は偏光解析モニタの入射角測定法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the angle of incidence of an ellipsometry monitor.

成膜装置の膜厚モニタとして発光分光法、原子吸光法、
電圧変化法、反射率変化法或いは質量分析法等が従来広
く利用さilできたが、最近ではより高い測定種度を得
る短点から上述の方法に代って偏光解析法(エリシンメ
トリ−)が使用されるようになってきた。偏光解析法は
偏光が試料表面で反射されるときに生じる状態の変化を
測定して薄膜の膜厚や光学定数を精度よく決定できるも
のであり、この偏光解析法を膜厚評価に取り入れた従来
の装置は通常光源部と受光部と試料ホルダとを精密加工
された架台によって一体的に構成したものであり、そし
てこの架台上で入射角の設定が行なわれる。従って、こ
のような装置を真空プロセス装置に組み込む際に全体を
一体化することやその調整を行なうことは実際問題とし
て困難であり、−zだモニタ装置全体を一体fli t
、て組み込むと、入射角設定角の正確さも悪くなる。
Emission spectroscopy, atomic absorption spectroscopy,
Voltage change method, reflectance change method, mass spectrometry, etc. have been widely used in the past, but recently ellisymmetry has been replaced by the above methods due to its shortcomings in obtaining higher measurement specificity. has come to be used. Ellipsometry is a method that can accurately determine the thickness and optical constants of thin films by measuring the changes in the state that occur when polarized light is reflected on the sample surface. The device normally has a light source section, a light receiving section, and a sample holder integrally constructed by a precision-machined pedestal, and the incident angle is set on this pedestal. Therefore, when incorporating such a device into a vacuum process device, it is actually difficult to integrate and adjust the entire device, and it is difficult to integrate the entire monitor device into a vacuum process device.
, the accuracy of the incident angle setting angle will also deteriorate.

そこで、この発明は、偏光解析モニタの入射角を予じめ
正確に設定せずに大まかに設定しておき、真空プロセス
装置K組み込む際に入射角を簡単かつ正確に決定できる
新規の入射角測定法を提供することにある。
Therefore, this invention provides a new method for measuring the angle of incidence that allows the angle of incidence of the polarization analysis monitor to be roughly set without being precisely set in advance, and the angle of incidence can be easily and accurately determined when incorporating the vacuum process equipment K. It is about providing law.

ところで薄膜による光の反射について考えてみると、第
7図に示すように基板の屈折率をns。
By the way, considering the reflection of light by a thin film, as shown in FIG. 7, the refractive index of the substrate is ns.

薄膜の屈折率をn、膜厚をdとし、真空中より単色平行
光線が入射角ψで試料に入射したとすると、入射光線と
法線を含む面忙平行な方向すなわちp方向および上記面
に垂直な方向すなわちS方向におけるそり、ぞれの成分
の反射率は 薄膜内の屈折角) で表わされる。
If the refractive index of the thin film is n and the film thickness is d, and a monochromatic parallel ray is incident on the sample from vacuum at an incident angle ψ, then the direction parallel to the plane including the normal to the incident ray, that is, the p direction, and the above-mentioned plane. The reflectance of each component of warpage in the vertical direction, that is, the S direction, is expressed by the refraction angle within the thin film.

r1p+rla  は真空と薄膜s  r* 9@rx
 S  は薄膜と基板でのフレネル反射係数で、それぞ
れ。
r1p+rla is vacuum and thin film s r* 9@rx
S is the Fresnel reflection coefficient at the thin film and substrate, respectively.

であシ、ここで91 は基板内の屈折角である。入射光
と反射光との間の偏光状態の変化を決めるのは/Rpと
l几Sとの比であり、すなわち偏光p成分と3成分の反
射率の比は、 三tanF’Δ で表わされ、従って 部 tanW=−Δ=δp−δ。
, where 91 is the refraction angle within the substrate. What determines the change in the polarization state between the incident light and the reflected light is the ratio of /Rp and 1S, that is, the ratio of the polarization p component and the reflectance of the three components is expressed as 3tanF'Δ. Therefore, tanW=-Δ=δp-δ.

R,s と表わすことができ、このV、Δは偏光解析パラメータ
と呼ばれ、これらのパラメータは表面の光学定数、膜厚
、入射角との間に一定の関係が成り立つことが認められ
る。従って薄膜の膜厚dおよび屈折率nがわかっていれ
ば上式(2) b (”) b (3)の順序に計算し
て偏光解析ノぐラメータV、Δを求めることができる。
It can be expressed as R,s, and V and Δ are called ellipsometry parameters, and it is recognized that these parameters have a certain relationship with the optical constants of the surface, the film thickness, and the angle of incidence. Therefore, if the film thickness d and refractive index n of the thin film are known, the polarization analysis parameters V and Δ can be obtained by calculating in the order of the above equation (2) b ('') b (3).

従ってこの発明による入射角測定法においては。Therefore, in the incident angle measurement method according to the present invention.

まず大まかな入射角の設定を行ない、そして光学定数が
既知のノ々ルク試料を用い光軸調整のなされた偏光解析
モニタで上記試料の偏光解析パラメータV、Δを上式に
基いて測定し、これらの値から入射角を正確に決めるよ
うにされる。
First, a rough angle of incidence is set, and the polarization analysis parameters V and Δ of the sample are measured based on the above formula using a polarization analysis monitor with the optical axis adjusted using a Norouruk sample with known optical constants. The angle of incidence is determined accurately from these values.

以下この発明の一実施例を添附図面の第1図を参照して
説明する。
An embodiment of the present invention will be described below with reference to FIG. 1 of the accompanying drawings.

図示実施例では試料として生のシリコンウェファを用い
て入射角を決定する場合 ついて考察する。シリコンの
He−Neレーザ光波長(1,,32r A)における
光学定数nはn = 3rj −0,0,2iである。
In the illustrated embodiment, a case will be considered in which the incident angle is determined using a raw silicon wafer as a sample. The optical constant n of silicon at the He--Ne laser light wavelength (1, 32r A) is n = 3rj -0, 0, 2i.

この試料の偏光解析パラメータV、Δを入射角、ψ=7
00の近傍で測定する。生のシリコンウェファ上には自
然酸化膜がついていることを考慮し、屈折率n =/、
’l!の膜が厚さdについているとしてo、i ’毎の
入射角について偏光解析パラメータV、Δを計算し、そ
の結果を第2図の図表に示j〜た。第2図において矢印
は通常の偏光解析装置で得られるW、Δの精確度の範囲
を示しており、精確度はパラメータytについては±0
.Oj0.またパラメータΔについては±0910とし
ている。
The polarization analysis parameter V of this sample, Δ is the incident angle, ψ=7
Measure near 00. Considering that there is a natural oxide film on the raw silicon wafer, the refractive index n = /,
'l! Assuming that the film has a thickness d, the ellipsometry parameters V and Δ were calculated for each incident angle o and i', and the results are shown in the diagram of FIG. In Figure 2, the arrows indicate the accuracy range of W and Δ obtained with a normal polarization analyzer, and the accuracy is ±0 for the parameter yt.
.. Oj0. Further, the parameter Δ is set to ±0910.

従って、第2図かられかるように測定した偏光解析ノξ
ラメータV、Δの値から入射角ψおよび自然酸化膜の膜
厚dを求めることができる。まだ自然酸化膜の屈折率n
 K :t: 0./の誤差があったとしても、第2図
にψ=70.00の曲線のn :” /、3! 、 n
 = /、j!で示しだように求める入射角ψに対する
誤差は極めて小さい。
Therefore, the polarization analysis data ξ as shown in Figure 2.
The incident angle ψ and the thickness d of the natural oxide film can be determined from the values of the parameters V and Δ. The refractive index n of the natural oxide film is still
K:t: 0. Even if there is an error of
= /, j! As shown in , the error for the angle of incidence ψ found is extremely small.

このようにこの発明の方法によれば、既知の光学定数を
もつノ々ルク試料を用いてその偏光解析パラメータV、
Δを測定することKよって偏光解析モニタの入射角を簡
単かつ正確に決定することができる。
As described above, according to the method of the present invention, the ellipsometry parameters V,
By measuring ΔK, the angle of incidence of the ellipsometric monitor can be determined simply and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単層膜による光の干渉を示す図、第2図はこの
発明の方法の一実施例を示すグラフである。 第1図 1 13
FIG. 1 is a diagram showing light interference due to a single layer film, and FIG. 2 is a graph showing an embodiment of the method of the present invention. Figure 1 1 13

Claims (1)

【特許請求の範囲】[Claims] 既知の光学定数をもつノ々ルク試料の偏光解析パラメー
タV、Δを、光軸調整のなされた偏光解析モニタで測定
し、上記偏光解析ノぞラメータV、Δの値から入射角を
算出することを特徴とすω偏光解析モニタの入射角測定
法。
Measure the polarization analysis parameters V and Δ of a Norouruk sample with known optical constants using a polarization analysis monitor with optical axis adjustment, and calculate the incident angle from the values of the polarization analysis parameters V and Δ. An incident angle measurement method for an ω ellipsometry monitor.
JP11534982A 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor Granted JPS597226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11534982A JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11534982A JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Publications (2)

Publication Number Publication Date
JPS597226A true JPS597226A (en) 1984-01-14
JPH0479405B2 JPH0479405B2 (en) 1992-12-15

Family

ID=14660319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11534982A Granted JPS597226A (en) 1982-07-05 1982-07-05 Measuring method for incidence angle of polarization analyzing monitor

Country Status (1)

Country Link
JP (1) JPS597226A (en)

Also Published As

Publication number Publication date
JPH0479405B2 (en) 1992-12-15

Similar Documents

Publication Publication Date Title
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
Jellison et al. Optical functions of uniaxial ZnO determined by generalized ellipsometry
Landgren et al. Determination of the optical properties of silicon/silica surfaces by means of ellipsometry, using different ambient media
US6242739B1 (en) Method and apparatus for non-destructive determination of film thickness and dopant concentration using fourier transform infrared spectrometry
Fanton et al. Multiparameter measurements of thin films using beam‐profile reflectometry
WO2022105244A1 (en) Method for measuring thickness and optical constants of diamond film
JPH06317408A (en) Determination of characteristic value of transparent layer using polarization analysis method
US7463355B1 (en) Nondestructive optical technique for simultaneously measuring optical constants and thickness of thin films
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
Kim et al. An evaluation of errors in determining the refractive index and thickness of thin SiO2 films using a rotating analyzer ellipsometer
KR20200126558A (en) Method for measuring the light intensity of continuous rotation of a polarizer
US6731386B2 (en) Measurement technique for ultra-thin oxides
JPH08152307A (en) Method and apparatus for measuring optical constants
JPS597226A (en) Measuring method for incidence angle of polarization analyzing monitor
JPS6231289B2 (en)
JPH0721405B2 (en) Fourier transform method Infrared film thickness measurement method
JP3007944B2 (en) A method for determining the optical properties of thin films.
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JP2522480B2 (en) Refractive index measurement method
JPH08105716A (en) Wafer thickness measuring method
Woollam et al. Metrology standards with ellipsometers
US7307723B2 (en) Method for the optical characterization of materials without using a physical model
Yang et al. Characterizing optical properties of red, green, and blue color filters for automated film-thickness measurement
JP3206950B2 (en) Wave plate characteristic measuring device
El-Ghazzawi et al. Spectroellipsometry characterization of directly bonded silicon-on-insulator structures