JPH05280937A - Measuring method of film thickness - Google Patents

Measuring method of film thickness

Info

Publication number
JPH05280937A
JPH05280937A JP8183392A JP8183392A JPH05280937A JP H05280937 A JPH05280937 A JP H05280937A JP 8183392 A JP8183392 A JP 8183392A JP 8183392 A JP8183392 A JP 8183392A JP H05280937 A JPH05280937 A JP H05280937A
Authority
JP
Japan
Prior art keywords
wafer
light
incident
points
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8183392A
Other languages
Japanese (ja)
Inventor
Hirotoshi Kawahira
博敏 川平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8183392A priority Critical patent/JPH05280937A/en
Publication of JPH05280937A publication Critical patent/JPH05280937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To prevent occurrence of an error in measurement of a film thickness and to enable execution of highly precise measurement by measuring unevenness or a curve of a wafer and by correcting nonuniformity of an incident angle caused by the unevenness or the curve. CONSTITUTION:When a height of the surface of a wafer 6 is measured, a polarizer 2, a 1/4 wave plate 3 and an analyzer 4 provided on the optical axis of an ellipsometer are made to escape from this optical axis, a wafer stage 7 is moved up and down so that the reflection intensity of an incident light from a light source 1 be maximum, and the height of the wafer at that point is measured. Then, the stage 7 is tilted by a corrective angle (d) determined by tan (d)=a/b by using a difference (a) between the heights of two points in the vicinity of the measuring point and a distance (b) between the planes of the two points, so that an angle of incidence on a sample from the light source 1 be calibrated. In a state wherein this angle of incidence is fixed at any measuring point, a film thickness at a prescribed measuring point is measured by the ellipsometer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膜厚測定方法に関し、
特にエリプソメータを用いた測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness measuring method,
Particularly, it relates to a measuring method using an ellipsometer.

【0002】[0002]

【従来の技術】物体の表面で光が反射する場合に、光の
偏光状態は反射の前後で変化する。この点を利用したの
が偏光解析法である。すなわち、この偏光状態の変化を
測定することにより物体の光学定数や表面の性質を知る
ことができる。
2. Description of the Related Art When light is reflected on the surface of an object, the polarization state of light changes before and after reflection. The ellipsometry method makes use of this point. That is, by measuring the change in the polarization state, the optical constants of the object and the surface properties can be known.

【0003】エリプソメータは、この偏光解析法を実現
するための装置である。図5は従来例に用いられる装置
の構成図である。光源51の光軸上に、スリット58、
光チョッパ70、回転偏光子52、1/4波長板53、
膜厚を測定すべきウェハ61を載置するウェハステージ
57が設けられ、このウェハ61を反射した反射光の光
軸上にアパーチュア59、回転検光子54、フォトマル
チプライヤ55が配され、さらに選択増幅器60、オシ
ロスコープ50が順に接続されている。
An ellipsometer is a device for realizing this ellipsometry method. FIG. 5 is a block diagram of an apparatus used in the conventional example. A slit 58, on the optical axis of the light source 51,
Optical chopper 70, rotating polarizer 52, quarter wave plate 53,
A wafer stage 57 on which a wafer 61 whose film thickness is to be measured is placed is provided, and an aperture 59, a rotation analyzer 54, and a photomultiplier 55 are arranged on the optical axis of the reflected light reflected by the wafer 61. The amplifier 60 and the oscilloscope 50 are sequentially connected.

【0004】この構成による従来のエリプソメータで
は、まず、光源51がらのスリット58を通過した光
は、光チョッパ70により変調され、回転偏光子52さ
らに1/4波長板53を通過した光は直線偏光に変わ
り、ウェハ61に入射される。このウェハ61に入射し
た光の反射光は、回転検光子54で検光される。この光
はフォトマルチプライヤ55で受けるとき、光電流を生
じるが、この光電流をエレクトロニック回路で監視して
偏光の回転振動の振幅が極小となるような回転偏光子5
2と回転検光子54の角度を求める。この光電流は選択
増幅器60を通って、画像情報となってオシロスコープ
50にその波形が映し出される。
In the conventional ellipsometer having this structure, first, the light passing through the slit 58 of the light source 51 is modulated by the optical chopper 70, and the light passing through the rotating polarizer 52 and the quarter wavelength plate 53 is linearly polarized. And is incident on the wafer 61. The reflected light of the light incident on the wafer 61 is detected by the rotation analyzer 54. When this light is received by the photomultiplier 55, a photocurrent is generated, but this photocurrent is monitored by an electronic circuit to minimize the amplitude of the rotational vibration of the polarized light.
The angle between 2 and the rotation analyzer 54 is obtained. This photocurrent passes through the selective amplifier 60, becomes image information, and its waveform is displayed on the oscilloscope 50.

【0005】以上の構成および原理により、ウェハ61
に偏光をあてて、その反射光の反射係数比および位相差
により、薄膜の厚さを求めることができる。すなわち、
波長λ、入射角ψで入射した光の入射面に平行な電場の
振動成分(p成分)と、垂直な電場の振動成分(s成
分)のそれぞれの反射率rp ,rs は、(1) 式および
(2) 式に示すようになる。
With the above-described structure and principle, the wafer 61
The thickness of the thin film can be obtained by applying polarized light to and reflecting the reflection coefficient ratio and the phase difference of the reflected light. That is,
The reflectances r p and r s of the vibration component (p component) of the electric field parallel to the incident surface of the light incident at the wavelength λ and the incident angle ψ and the vibration component (s component) of the perpendicular electric field are (1 ) And
It becomes as shown in equation (2).

【0006】[0006]

【数1】 ここで、位相差δは、nを屈折率とすると、(3) 式で与
えられる。また、反射係数比(rp /rs )は、(4) 式
で与えられる。
[Equation 1] Here, the phase difference δ is given by equation (3), where n is the refractive index. The reflection coefficient ratio (r p / r s ) is given by the equation (4).

【0007】[0007]

【数2】 [Equation 2]

【0008】[0008]

【数3】 このように、p成分,s成分で振幅比が異なり、かつ相
対的に位相差が生ずるため、直線偏光は楕円偏光として
反射される。従って、偏光子および検光子の設定角をそ
れぞれP0 ,A0 とすれば、(4) 式で示す相対的な位相
差Δおよび入射角ψはそれぞれ(5) 式,(6)式に示すよう
になる。
[Equation 3] As described above, the p component and the s component have different amplitude ratios and a relative phase difference occurs, so that the linearly polarized light is reflected as elliptically polarized light. Therefore, if the setting angle of the polarizer and the analyzer as P 0, A 0, respectively, (4) relative shown by formula phase difference Δ and the incident angle ψ, respectively (5), shown in equation (6) Like

【0009】[0009]

【数4】 [Equation 4]

【0010】[0010]

【発明が解決しようとする課題】ところで、従来技術で
は、半導体の絶縁膜たとえば、特に薄い酸化膜を測定す
る方法として、上述したようなエリプソメトリによる方
法が最も精度が高く、広く用いられているものの、実際
のLSIウェハは熱処理等の影響により、ウェハ上に凹
凸やソリが発生するため、測定時のエラーの原因となっ
ていた。
By the way, in the prior art, as a method for measuring a semiconductor insulating film, for example, a thin oxide film, the ellipsometry method as described above has the highest accuracy and is widely used. However, in an actual LSI wafer, unevenness or warpage occurs on the wafer due to the influence of heat treatment or the like, which causes an error during measurement.

【0011】これは、測定値がウェハの入射角ψに依存
するため、ウェハの凹凸やソリでその入射角度がばらつ
くためである。本発明は以上の点に鑑みてなされたもの
であり、ウェハの凹凸やソリによる測定値の誤差が生じ
ない膜厚の測定方法を提供することを目的とする。
This is because the measured value depends on the incident angle ψ of the wafer, so that the incident angle varies due to unevenness and warpage of the wafer. The present invention has been made in view of the above points, and an object of the present invention is to provide a method for measuring a film thickness that does not cause an error in measured values due to unevenness or warpage of a wafer.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の膜厚の測定方法は、光軸上に沿って、エ
リプソ光源の光を直線偏光に変える偏光子と、その光が
入射するステージ上に載置されたウェハと、そのウェハ
を反射した反射光を検光する検光子とが順に配列され、
その検光された光の光電流に応じて薄膜の厚さを求める
解析手段を有するエリプソメータを用いて上記試料の膜
厚を測定する方法において、上記ウェハ面内の複数の測
定点について、上記入射光の反射強度が最大となるよう
上記ステージを上下移動させ、その移動距離から上記複
数の測定点における基準面からの高さを求め、所定の測
定点における膜厚を、その所定の測定点近傍の2点の高
さの差aおよびこの2点の平面間の距離bを用いて、下
記(A)式により求めた補正角度αだけ上記ステージを
傾斜させることにより、上記エリプソ光源から試料へ入
射する入射角度を較正し、この入射角度を上記測定点の
いずれにおいても、一定とした状態で上記エリプソメー
タにより測定することによって特徴付けられる。
In order to achieve the above object, the film thickness measuring method of the present invention comprises a polarizer for converting the light of an ellipso light source into linearly polarized light along the optical axis, and the light thereof. A wafer mounted on a stage on which is incident, and an analyzer for analyzing reflected light reflected from the wafer are arranged in order,
In the method for measuring the film thickness of the sample using an ellipsometer having an analyzing means for determining the thickness of the thin film according to the photocurrent of the detected light, in the plurality of measurement points in the wafer surface, The stage is moved up and down so that the reflection intensity of the emitted light is maximized, the height from the reference plane at the plurality of measurement points is obtained from the moving distance, and the film thickness at a predetermined measurement point is measured in the vicinity of the predetermined measurement point. By using the height difference a between the two points and the distance b between the planes of the two points, the stage is tilted by the correction angle α obtained by the following equation (A), and the sample is incident from the ellipso light source. It is characterized by calibrating the incident angle to be measured and measuring the incident angle with the ellipsometer at a constant state at any of the measuring points.

【0013】tanα=a/b・・・・(A)Tan α = a / b ... (A)

【0014】[0014]

【作用】エリプソメータにより膜厚を測定する場合、そ
の測定すべきウェハに凹凸やソリのある場合、入射角に
ばらつきが生じ、その結果測定値には誤差を生じる。
When the film thickness is measured by the ellipsometer, if the wafer to be measured has irregularities or warps, the incident angle varies, resulting in an error in the measured value.

【0015】そこで、この点を解消したのが本発明で、
以下に図4を参照しつつ、その作用を説明する。(a)
図に示すようにウェハがフラットの場合、入射角θ1
ウェハ上のどの測定点においても、同一となり、またそ
の反射角θ2 も同一となる。この入射角θ1 および反射
角θ2 は基準面におけるものとすると、(b)図に示す
ようにウェハが凸状に歪んでいる場合、たとえば、A
点、B点、C点における入射角はそれぞれ異なる値をと
る。そこでA点における入射角はθ1 +αとなり、ウェ
ハがフラットの場合の入射角θ1 と等しくなるように較
正するために、本方法では、たとえば、A点における入
射角を求める場合、すでに測定されているB点、C点に
おける膜厚h2 ,h1 およびB点およびC点の平面間の
距離をbを用いて(B)式により、較正すべき入射角度
αを求めることができる。
The present invention has solved this problem.
The operation will be described below with reference to FIG. (A)
When the wafer is flat as shown in the figure, the incident angle θ 1 is the same at any measurement point on the wafer, and the reflection angle θ 2 is the same. Assuming that the incident angle θ 1 and the reflection angle θ 2 are on the reference plane, when the wafer is convexly distorted as shown in FIG.
The incident angles at the points B, C and C have different values. Therefore, the incident angle at point A is θ 1 + α, and in order to calibrate the incident angle to be equal to the incident angle θ 1 when the wafer is flat, in this method, for example, when the incident angle at point A is obtained, it is already measured. The incident angle α to be calibrated can be obtained by the equation (B) using the film thicknesses h 2 and h 1 at the points B and C and the distance between the planes of the points B and C using b.

【0016】tanα=(h1 −h2 )/b・・・・(B) 従って、ウェハの入射面をαだけ傾けることにより、常
に光軸に対して一定の入射角度を保つことができ、その
結果、膜厚の測定誤差を生じることがない。
Tan α = (h 1 −h 2 ) / b ... (B) Therefore, by tilting the incident surface of the wafer by α, it is possible to always maintain a constant incident angle with respect to the optical axis, As a result, the measurement error of the film thickness does not occur.

【0017】[0017]

【実施例】図1は本発明実施例に用いられるエリプソメ
ータの構成図である。光源1の光軸上に、偏光子2、1
/4波長板3、膜厚を測定すべきウェハ6を載置するウ
ェハステージ7、このウェハ6を反射する反射光を検光
する検光子4および、フォトマルチプライヤ5が配され
ている。さらに増幅器9、オシロスコープ10が順に配
列されている。また、ウェハステージ7は縦横、上下移
動自在で、ウェハステージ7近傍にはウェハステージ7
を所定位置にまで駆動するステージ駆動部11が備えら
れている。さらに、入射角度の較正を行うために、ウェ
ハ6の面内の複数の測定点における基準面からの高さと
所定の高さとの差を検出し、高さデータとして記憶する
データ部8が設けられている。この高さデータを作成す
る工程は自動的に行うように構成されている。
1 is a block diagram of an ellipsometer used in an embodiment of the present invention. On the optical axis of the light source 1, the polarizers 2 and 1
A quarter wave plate 3, a wafer stage 7 on which a wafer 6 whose film thickness is to be measured is placed, an analyzer 4 for analyzing reflected light that reflects the wafer 6, and a photomultiplier 5 are arranged. Further, an amplifier 9 and an oscilloscope 10 are arranged in order. The wafer stage 7 is vertically and horizontally movable, and the wafer stage 7 is provided near the wafer stage 7.
A stage drive unit 11 is provided for driving the lens to a predetermined position. Further, in order to calibrate the incident angle, a data section 8 is provided which detects the difference between the height from the reference plane and a predetermined height at a plurality of measurement points within the plane of the wafer 6 and stores it as height data. ing. The process of creating this height data is configured to be performed automatically.

【0018】本発明実施例は以上の構成によるエリプソ
メータを用いて行う。以下にその方法について説明す
る。まず、測定すべきウェハ6の表面の高さを測定す
る。この測定を行う場合、このエリプソメータの光軸上
に設けられた偏光子2、1/4波長板3、検光子4をこ
の光軸上から逃し、光源1からの入射光の反射強度が極
大となるようウェハステージ7を上下に移動させて、そ
の点におけるウェハ高さを測定する。この高さと所定の
高さとの差は、図2に示すような高さデータとしてデー
タ部8に記憶させる。この高さデータから図3(a)図
は、ウェハ6の凹凸を示すフラットネス等高線を、所定
の高さを実線、所定の高さ以上を破線、所定の高さ以下
を一点鎖線で表したものである。また、図3(b)図
は、これらのデータからシュミレーションを行ってウェ
ハの表面の状態を立体的に表したものである。
The embodiment of the present invention is carried out by using the ellipsometer having the above structure. The method will be described below. First, the height of the surface of the wafer 6 to be measured is measured. When performing this measurement, the polarizer 2, the quarter-wave plate 3, and the analyzer 4 provided on the optical axis of this ellipsometer are escaped from this optical axis, and the reflection intensity of the incident light from the light source 1 is maximized. Then, the wafer stage 7 is moved up and down so that the wafer height at that point is measured. The difference between this height and the predetermined height is stored in the data section 8 as height data as shown in FIG. From this height data, FIG. 3A shows the flatness contour lines showing the unevenness of the wafer 6 as a solid line with a predetermined height, with a broken line above a predetermined height, and with a dashed-dotted line below a predetermined height. It is a thing. Further, FIG. 3B is a three-dimensional representation of the state of the surface of the wafer by performing simulation from these data.

【0019】次に、図4に示すように、たとえば、A点
での入射角の較正をする場合、上述したように、A点に
おける入射角をウェハがフラットの場合の入射角θ1
等しくなるように較正する。たとえば、A点における入
射角を求める場合、すでに測定されているB点、C点に
おける膜厚h2 ,h1 およびB点およびC点の平面間の
距離をbを用いて(B)式により、較正すべき入射角度
αを求める。
Next, as shown in FIG. 4, for example, when the incident angle at point A is calibrated, the incident angle at point A is made equal to the incident angle θ 1 when the wafer is flat, as described above. Calibrate to For example, when obtaining the incident angle at the point A, the film thicknesses h 2 , h 1 at the points B and C, and the distance between the planes of the points B and C, which have already been measured, are calculated by the equation (B) using b. , The incident angle α to be calibrated is determined.

【0020】そして、ステージ駆動部11の駆動によ
り、ウェハステージ7をαだけ傾斜させることにより、
常に光軸に対して一定の入射角度を保つことができ、膜
厚の測定値の誤差を解消できる。
Then, the stage driving unit 11 is driven to tilt the wafer stage 7 by α,
It is possible to always maintain a constant incident angle with respect to the optical axis, and it is possible to eliminate the error in the measured value of the film thickness.

【0021】なお、入射角を上述したように設定して、
順次ウェハ6上の点の膜厚を測定していくが、従来例で
述べたように、本実施例においても薄膜の厚さを求める
原理は同様であり、反射係数比および位相差にから求め
る。
The incident angle is set as described above,
The film thickness at points on the wafer 6 is sequentially measured, but as described in the conventional example, the principle of obtaining the thickness of the thin film is the same in this embodiment as well, and is obtained from the reflection coefficient ratio and the phase difference. ..

【0022】[0022]

【発明の効果】以上説明したように、本発明の膜厚測定
方法によれば、ウェハの凹凸やソリを測定して、その凹
凸やソリによって生じる入射角のばらつきを補正するこ
とにより、常に光軸に対して一定の入射角度を保った状
態でエリプソメトリ法により測定を行うようにしたの
で、膜厚測定の誤差が生じることがなく、高精度の測定
が可能となる。
As described above, according to the film thickness measuring method of the present invention, the unevenness or warp of the wafer is measured, and the variation of the incident angle caused by the unevenness or warp is corrected, so that the Since the measurement is performed by the ellipsometry method while keeping a constant incident angle with respect to the axis, it is possible to perform high-precision measurement without causing an error in film thickness measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例に用いられるエリプソメータの構
成図
FIG. 1 is a configuration diagram of an ellipsometer used in an embodiment of the present invention.

【図2】本発明実施例に用いられるウェハの高さデータ
を示す図
FIG. 2 is a view showing height data of a wafer used in an embodiment of the present invention.

【図3】本発明実施例に用いられるウェハの表面を表す
FIG. 3 is a diagram showing a surface of a wafer used in an example of the present invention.

【図4】本発明実施例を説明する図FIG. 4 is a diagram illustrating an embodiment of the present invention.

【図5】従来例を説明する図FIG. 5 is a diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

1・・・・光源 2・・・・偏光子 3・・・・1/4波長板 4・・・・検光子 5・・・・フォトマルチプライヤ 6・・・・ウェハ 7・・・・ウェハステージ 8・・・・データ部 10・・・・オシロスコープ 1 ... Light source 2 ... Polarizer 3 ... Quarter wave plate 4 ... Analyzer 5 ... Photomultiplier 6 ... Wafer 7 ... Wafer Stage 8 ... Data section 10 ... Oscilloscope

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光軸上に沿って、エリプソ光源の光を直
線偏光に変える偏光子と、その光が入射するステージ上
に載置されたウェハと、そのウェハを反射した反射光を
検光する検光子とが順に配列され、その検光された光の
光電流に応じて薄膜の厚さを求める解析手段を有するエ
リプソメータを用いて上記試料の膜厚を測定する方法に
おいて、上記ウェハ面内の複数の測定点について、上記
入射光の反射強度が最大となるよう上記ステージを上下
移動させ、その移動距離から上記複数の測定点における
基準面からの高さを求め、所定の測定点における膜厚
を、その所定の測定点近傍の2点の高さの差aおよびこ
の2点の平面間の距離bを用いて、下記(A)式により
求めた補正角度αだけ上記ステージを傾斜させることに
より、上記エリプソ光源から試料へ入射する入射角度を
較正し、この入射角度を上記測定点のいずれにおいて
も、一定とした状態で上記エリプソメータにより測定す
ることを特徴とする膜厚測定方法。 tanα=a/b・・・・(A)
1. A polarizer that converts light from an ellipso light source into linearly polarized light along an optical axis, a wafer mounted on a stage on which the light is incident, and reflected light reflected by the wafer is analyzed. In the method of measuring the film thickness of the sample by using an ellipsometer having an analyzing means for determining the thickness of the thin film according to the photocurrent of the analyzed light, which is sequentially arranged with an analyzer to For a plurality of measurement points, the stage is moved up and down so that the reflection intensity of the incident light is maximized, the height from the reference plane at the plurality of measurement points is obtained from the moving distance, and the film at a predetermined measurement point is obtained. Inclining the stage by a correction angle α obtained by the following equation (A) using the thickness difference a between two points in the vicinity of the predetermined measurement point and the distance b between the planes of these two points. By the above ellipso light Calibrating the incidence angle of incident on the sample from, in any of the measurement points the incident angle, the film thickness measuring method and measuring by the ellipsometer while constant. tan α = a / b ... (A)
JP8183392A 1992-04-03 1992-04-03 Measuring method of film thickness Pending JPH05280937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183392A JPH05280937A (en) 1992-04-03 1992-04-03 Measuring method of film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183392A JPH05280937A (en) 1992-04-03 1992-04-03 Measuring method of film thickness

Publications (1)

Publication Number Publication Date
JPH05280937A true JPH05280937A (en) 1993-10-29

Family

ID=13757480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183392A Pending JPH05280937A (en) 1992-04-03 1992-04-03 Measuring method of film thickness

Country Status (1)

Country Link
JP (1) JPH05280937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198342A (en) * 1993-11-09 1995-08-01 Nova Measuring Instr Ltd Thin-film-thickness measuring device
US7088448B1 (en) * 1997-08-11 2006-08-08 Robert Bosch Gmbh Ellipsometer measurement apparatus
USRE40225E1 (en) 1993-11-09 2008-04-08 Nova Measuring Instruments Ltd. Two-dimensional beam deflector
JP2013002900A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Ellipsometer device and measuring method for anti-reflection film formed on mono-crystalline silicon
JP5502227B1 (en) * 2013-07-08 2014-05-28 株式会社多聞 Film thickness distribution measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198342A (en) * 1993-11-09 1995-08-01 Nova Measuring Instr Ltd Thin-film-thickness measuring device
USRE40225E1 (en) 1993-11-09 2008-04-08 Nova Measuring Instruments Ltd. Two-dimensional beam deflector
USRE41906E1 (en) 1993-11-09 2010-11-02 Nova Measuring Instruments, Ltd. Two dimensional beam deflector
US7088448B1 (en) * 1997-08-11 2006-08-08 Robert Bosch Gmbh Ellipsometer measurement apparatus
JP2013002900A (en) * 2011-06-15 2013-01-07 Mitsubishi Electric Corp Ellipsometer device and measuring method for anti-reflection film formed on mono-crystalline silicon
JP5502227B1 (en) * 2013-07-08 2014-05-28 株式会社多聞 Film thickness distribution measurement method

Similar Documents

Publication Publication Date Title
EP0696345B1 (en) Self aligning in-situ ellipsometer and method of using for process monitoring
US6256097B1 (en) Ellipsometer and ellipsometry method
JPS60242308A (en) Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
US5034617A (en) Method and apparatus for measuring refractive index and thickness of film
KR20000022934A (en) Evaluation method for thin film molecular orientation, evaluation apparatus for the orientation and recording medium
JP2006226995A (en) Optical anisotropic parameter measuring method and measuring device
TWI792492B (en) Calibration of azimuth angle for optical metrology stage using grating-coupled surface plasmon resonance
US6665070B1 (en) Alignment of a rotatable polarizer with a sample
JPH05280937A (en) Measuring method of film thickness
JP4918634B2 (en) Measurement of elastic modulus of dielectric thin film using optical measurement system
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
US6731386B2 (en) Measurement technique for ultra-thin oxides
US5706088A (en) Polarizer-sample-analyzer intensity quotient ellipsometry
JPH1038694A (en) Ellipsometer
JP3196841B2 (en) Anisotropic thin film evaluation method, evaluation apparatus and recording medium
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP4260683B2 (en) Ellipsometer, polarization state acquisition method and light intensity acquisition method
JPH05273120A (en) Polarization analyzer
JP2712987B2 (en) Adjustment method of polarization measuring device
JP2006105748A (en) Analyzing method accompanied by incidence of beam
JP3343795B2 (en) Ellipsometer
JP2616679B2 (en) QFP lead inspection device and method
JPH1048050A (en) Ellipsometer and filming monitor
CN117110205A (en) Single-wavelength ellipsometry device with continuously variable angle and measurement method
CN116067292A (en) Ellipsometer micro-speckle calibration method