JP6512150B2 - Method of manufacturing RTB based sintered magnet - Google Patents

Method of manufacturing RTB based sintered magnet Download PDF

Info

Publication number
JP6512150B2
JP6512150B2 JP2016064190A JP2016064190A JP6512150B2 JP 6512150 B2 JP6512150 B2 JP 6512150B2 JP 2016064190 A JP2016064190 A JP 2016064190A JP 2016064190 A JP2016064190 A JP 2016064190A JP 6512150 B2 JP6512150 B2 JP 6512150B2
Authority
JP
Japan
Prior art keywords
sintered magnet
based sintered
rtb
alloy powder
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064190A
Other languages
Japanese (ja)
Other versions
JP2017183348A (en
Inventor
亮一 山方
亮一 山方
信彦 藤森
信彦 藤森
國吉 太
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016064190A priority Critical patent/JP6512150B2/en
Publication of JP2017183348A publication Critical patent/JP2017183348A/en
Application granted granted Critical
Publication of JP6512150B2 publication Critical patent/JP6512150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、R−T−B系焼結磁石の製造方法に関する。   The present invention relates to a method of producing an RTB-based sintered magnet.

R−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られている。ここで、Rは希土類元素のうち少なくとも一種であり、NdおよびPrの少なくとも一方を必ず含む。Tは遷移金属元素のうち少なくとも一種であり、Feを必ず含む。R−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHVを含む)用モータ、産業機器用モータなどの各種モータや、家電製品など多種多様な用途に用いられている。   The RTB based sintered magnet is known as the highest performance magnet among permanent magnets. Here, R is at least one of rare earth elements and necessarily includes at least one of Nd and Pr. T is at least one of transition metal elements and necessarily contains Fe. R-T-B sintered magnets include various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (including EV, HV and PHV), motors for industrial equipment, home appliances, etc. It is used for various purposes.

R−T−B系焼結磁石は、R214B型結晶構造を有する化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR214B相は強磁性相であり、主としてR−T−B系焼結磁石の磁化作用に寄与している。 The RTB-based sintered magnet is composed of a main phase composed of a compound having an R 2 T 14 B crystal structure, and a grain boundary phase located in a grain boundary portion of the main phase. The R 2 T 14 B phase which is the main phase is a ferromagnetic phase and mainly contributes to the magnetizing action of the RTB-based sintered magnet.

R−T−B系焼結磁石において、主相であるR214B相中のRに含まれる軽希土類元素RL(主としてNdおよび/またはPr)の一部を重希土類元素RH(主としてDyおよび/またはTb)で置換すると、保磁力HcJ(以下、単に「HcJ」という場合がある)が向上することが知られている。つまり、HcJを向上させるためには重希土類元素RHを多く使用する必要がある。 In the RTB-based sintered magnet, a part of the light rare earth element RL (mainly Nd and / or Pr) contained in R in the main phase R 2 T 14 B phase is a heavy rare earth element RH (mainly Dy) It is known that coercivity H cJ (hereinafter sometimes simply referred to as “H cJ ”) is improved by substitution with and / or Tb). That is, in order to improve HcJ , it is necessary to use many heavy rare earth elements RH.

しかし、R−T−B系焼結磁石においてR214B相中の軽希土類元素RLを重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度Br(以下、単に「Br」という場合がある)が低下する。そのため、より少ない重希土類元素RHの使用でBrを低下させずにHcJを向上させることが求められている。また、重希土類元素RHは希少金属であるため使用量削減が求められている。 However, replacing the light rare earth element RL in the R 2 T 14 B phase with the heavy rare earth element RH in the RTB-based sintered magnet improves H cJ while reducing the residual magnetic flux density B r (hereinafter simply referred to as “ B r ") is lowered. Therefore, it is required to improve H cJ without lowering B r by using less heavy rare earth element RH. In addition, since the heavy rare earth element RH is a rare metal, it is required to reduce its usage.

近年、R−T−B系焼結磁石のHcJ向上を目的として、R−T−B系焼結磁石表面にDy、Tb等の重希土類元素RHを供給し、その重希土類元素RHを磁石内部へ拡散することによってBrの低下を抑制しつつ、HcJを向上させる方法が提案されている。 In recent years, in order to improve the HcJ of RTB-based sintered magnets, heavy rare earth elements RH such as Dy and Tb are supplied to the surface of RTB-based sintered magnets, and the heavy rare earth elements RH are used as magnets. A method has been proposed to improve H cJ while suppressing the decrease in B r by diffusing inward .

特許文献1には、焼結体と重希土類元素RHを含有するバルク体とをNb製の網等を介して離間して配置し焼結体とバルク体とを所定温度に加熱することにより、前記バルク体から重希土類元素RHを焼結体の表面に供給しつつ、焼結体の内部に拡散させる方法が記載されている。   In Patent Document 1, a sintered body and a bulk body containing a heavy rare earth element RH are disposed apart from each other via a Nb net or the like, and the sintered body and the bulk body are heated to a predetermined temperature. A method is disclosed in which the heavy rare earth element RH is supplied from the bulk body to the surface of the sintered body and diffused inside the sintered body.

特許文献2には、DyおよびTbの少なくとも一方を含有する粉末を焼結体表面に存在させた状態で焼結温度よりも低い温度で加熱することで、前記粉末からDyおよびTbの少なくとも一方を焼結体に拡散させる方法が記載されている。   In Patent Document 2, at least one of Dy and Tb is prepared from the powder by heating at a temperature lower than the sintering temperature in the state where the powder containing at least one of Dy and Tb is present on the surface of the sintered body. A method of diffusing into a sintered body is described.

特許文献3には、複数個のR−T−B系焼結磁石体と、重希土類元素RHを含有する複数個のRH拡散源とを相対的に移動可能かつ近接または接触可能に処理室内に装入し、前記R−T−B系焼結磁石体と前記RH拡散源とを前記処理室内にて連続的にまたは断続的に移動させながら加熱することにより、前記RH拡散源から重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、焼結体の内部に拡散させる方法が記載されている。   In Patent Document 3, a plurality of R-T-B-based sintered magnet bodies and a plurality of RH diffusion sources containing a heavy rare earth element RH can be relatively moved and brought close to or in contact with each other in a processing chamber. Heavy rare earth element from the RH diffusion source by charging and heating while moving the RTB-based sintered magnet and the RH diffusion source continuously or intermittently in the processing chamber The method of making it diffuse to the inside of a sintered compact is described, supplying RH to the surface of the said RTB type | system | group sintered magnet body.

国際公開第2007/102391号WO 2007/102391 国際公開第2006/043348号WO 2006/043348 国際公開第2011/007758号International Publication No. 2011/077558

特許文献1〜3に記載の方法によりBrの低下を抑制しつつ、HcJを向上させることができる。しかし、特許文献1に記載の方法は、焼結体と重希土類元素RHを含有するバルク体とを離間して配置する必要があるため、配置のための工程に手間がかかる。また、特許文献2に記載の方法は、DyやTbを含有する粉末を溶媒に分散させたスラリーを焼結体に塗布する工程に手間がかかる。これに対し、特許文献3に記載の方法は、RH拡散源とR−T−B系焼結磁石体を処理室内に装入し、連続的にまたは断続的に移動させる。具体的には、処理容器が回転および/または揺動される。そのため、R−T−B系焼結磁石体とRH拡散源とを離間して配置する必要がなく、さらに、溶媒に分散させたり、溶媒に分散させたスラリーを焼結体へ塗布する必要もない。特許文献3の方法によれば、RH拡散源より重希土類元素RHをR−T−B系焼結磁石体に供給しつつ、焼結体の内部に拡散させることができる。 While suppressing the decrease in B r by the method described in Patent Documents 1 to 3, it is possible to improve the H cJ. However, in the method described in Patent Document 1, since the sintered body and the bulk body containing the heavy rare earth element RH need to be arranged separately, the process for the arrangement takes time and effort. Moreover, the method of patent document 2 takes an effort in the process of apply | coating to a sintered compact the slurry which disperse | distributed the powder containing Dy and Tb to a solvent. On the other hand, according to the method described in Patent Document 3, the RH diffusion source and the RTB-based sintered magnet body are inserted into the processing chamber and moved continuously or intermittently. Specifically, the processing vessel is rotated and / or rocked. Therefore, it is not necessary to separate the RTB-based sintered magnet body and the RH diffusion source from each other, and it is also necessary to apply a slurry dispersed in a solvent or a slurry dispersed in a solvent to the sintered body. Absent. According to the method of Patent Document 3, the heavy rare earth element RH can be diffused to the inside of the sintered body while being supplied to the RTB-based sintered magnet body from the RH diffusion source.

特許文献3に記載の方法によれば、比較的簡便に、Brの低下を抑制しつつ、HcJを向上させることができるものの、HcJの向上幅が変動し、安定して高いHcJが得られない場合があった。 According to the method described in Patent Document 3, a relatively simple manner, while suppressing the decrease in B r, although it is possible to improve the H cJ, increased width of the H cJ varies, high stable H cJ There were times when I could not get

また、高い保磁力を示すR−T−B系焼結磁石として、従来よりも多様な形状を持つものが求められるようになってきた。例えば、縦5mm×横5mm×長さ50mmのサイズを有するような、一方向に長く延びた形状のR−T−B系焼結磁石の需要がある。このような非等方的な形状を有するR−T−B系焼結磁石の素材に対して、特許文献3に記載されている技術を適用すると、R−T−B系焼結磁石素材の一部に割れ、欠けが発生する場合があることが分かった。   In addition, as RTB-based sintered magnets exhibiting high coercivity, magnets having various shapes as compared with the prior art have been required. For example, there is a demand for an RTB-based sintered magnet having a shape extending in one direction, having a size of 5 mm long × 5 mm wide × 50 mm long. When the technology described in Patent Document 3 is applied to the raw material of the RTB-based sintered magnet having such an anisotropic shape, the RTB-based sintered magnet raw material It was found that cracking and chipping may occur in part.

本開示は、新たなR−T−B系焼結磁石の製造方法を提供する。   The present disclosure provides a method of manufacturing a novel RTB-based sintered magnet.

本開示のR−T−B系焼結磁石の製造方法は、ある態様において、複数個のR−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種であり、NdおよびPrの少なくとも一方を必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)を準備する工程と、重希土類元素RH(重希土類元素RHはTbおよびDyの少なくとも一方)を20質量%以上80質量%以下含有する、大きさが90μm以下の複数個の合金粉末粒子を準備する工程と、複数個の撹拌補助部材であって、重量比率で前記複数個の撹拌補助部材の全体の65%以上の撹拌補助部材が0.5mm以上4mm以下の直径を有する撹拌補助部材を準備する工程と、前記複数個のR−T−B系焼結磁石素材と、前記複数個のR−T−B系焼結磁石素材に対して重量比率で2%以上15%以下の前記合金粉末粒子と、前記複数個のR−T−B系焼結磁石素材に対して重量比率で100%以上500%以下の前記撹拌補助部材とを処理容器内に装入する工程と、前記処理容器を加熱すると共に回転および/または揺動させることで、前記R−T−B系焼結磁石素材と前記合金粉末粒子と前記撹拌補助部材を連続的にまたは断続的に移動させてRH供給拡散処理を行う工程とを含む。   In one aspect, the method of producing an RTB-based sintered magnet according to the present disclosure includes a plurality of RTB-based sintered magnet materials (R is at least one of rare earth elements, Nd and Pr). A step of preparing at least one of T, at least one of transition metal elements and always containing Fe, and 20 mass% or more of heavy rare earth element RH (heavy rare earth element RH is at least one of Tb and Dy) Preparing a plurality of alloy powder particles having a size of 90 μm or less, containing 80% by mass or less, and a plurality of agitation assisting members, wherein 65% of the total of the plurality of agitation assisting members in weight ratio Preparing a stirring aid member having a diameter of 0.5 mm or more and 4 mm or less, the plurality of R-T-B-based sintered magnet materials, and the plurality of R-T-B Based sintered magnet material And 2% or more and 15% or less by weight ratio, and 100% or more and 500% or less by weight ratio with respect to the plurality of RTB-based sintered magnet materials The R-T-B-based sintered magnet material, the alloy powder particle, and the stirring auxiliary member are provided by the steps of: Moving continuously or intermittently to perform RH supply diffusion processing.

ある実施形態において、前記RH供給拡散処理を行う工程において、前記処理容器を800℃以上1000℃以下の処理温度に加熱する。   In one embodiment, in the step of performing the RH supply diffusion process, the processing container is heated to a processing temperature of 800 ° C. or more and 1000 ° C. or less.

ある実施形態において、前記複数個の合金粉末粒子の大きさは、それぞれ、38μm以上75μm以下である。   In one embodiment, the plurality of alloy powder particles have a size of 38 μm or more and 75 μm or less.

ある実施形態において、前記処理容器内に装入する前記複数個の合金粉末粒子の前記R−T−B系焼結磁石素材に対する重量比率が3%以上7%以下である。   In one embodiment, a weight ratio of the plurality of alloy powder particles charged into the processing container to the RTB-based sintered magnet material is 3% or more and 7% or less.

ある実施形態において、前記複数個の合金粉末粒子は、少なくとも一部に新生表面が露出している合金粉末粒子を含有している。   In one embodiment, the plurality of alloy powder particles contain alloy powder particles in which a new surface is exposed at least in part.

ある実施形態において、前記複数個の合金粉末粒子は、前記重希土類元素RHを35質量%以上65質量%以下含有する。   In one embodiment, the plurality of alloy powder particles contain 35% by mass or more and 65% by mass or less of the heavy rare earth element RH.

ある実施形態において、前記重希土類元素RHはTbである。   In one embodiment, the heavy rare earth element RH is Tb.

ある実施形態において、前記複数個のR−T−B系焼結磁石素材は、1000mm3以上の体積を有し、直交する3方向における3つのサイズの最大のサイズが最小のサイズの2倍以上である。 In one embodiment, the plurality of R-T-B-based sintered magnet materials have a volume of 1000 mm 3 or more, and a maximum size of three sizes in three orthogonal directions is twice or more the minimum size It is.

ある実施形態において、前記複数個の焼結磁石素材の各々は、1辺の長さが40mm以上、他の2辺の長さがそれぞれ10mm以下の直方体の形状、または各頂点位置で面取りされている概略直方体の形状を有している。   In one embodiment, each of the plurality of sintered magnet materials is chamfered at the shape of a rectangular solid having a length of 40 mm or more on one side and 10 mm or less on the other two sides, or at each vertex position It has the shape of a generally rectangular parallelepiped.

ある実施形態において、前記複数個の撹拌補助部材のそれぞれは、ジルコニア、窒化ケイ素、炭化ケイ素、窒化硼素、または、これらの混合物のセラミックスから形成されている。   In one embodiment, each of the plurality of stirring aids is formed of a ceramic of zirconia, silicon nitride, silicon carbide, boron nitride, or a mixture thereof.

ある実施形態において、前記RH供給拡散処理の工程によって前記複数個の合金粉末粒子のいずれかから前記重希土類元素RHが供給された前記R−T−B系焼結磁石素材を、前記合金粉末粒子に非接触の状態で、加熱してRH拡散処理を行う工程を含む。   In one embodiment, the R-T-B-based sintered magnet material to which the heavy rare earth element RH is supplied from any of the plurality of alloy powder particles in the step of the RH supply and diffusion treatment is the alloy powder particles. In the non-contact state, the process of heating and performing RH diffusion processing is included.

ある実施形態において、前記複数個の合金粉末粒子は、重希土類元素RH(重希土類元素RHはTb及び/又はDy)を35質量%以上50質量%以下含有する合金を水素粉砕することにより作製され、前記水素粉砕における脱水素工程で、前記合金を400℃以上550℃以下に加熱する。   In one embodiment, the plurality of alloy powder particles are produced by hydrogen-pulverizing an alloy containing heavy rare earth element RH (heavy rare earth element RH is Tb and / or Dy) in an amount of 35% by mass to 50% by mass. In the dehydrogenation step in the hydrogen grinding, the alloy is heated to 400 ° C. or more and 550 ° C. or less.

本開示の実施形態によると、安定して高いHcJを得ることができる。また、R−T−B系焼結磁石素材が欠けやすい形状を有していても、割れおよび欠けの発生を低減する効果も得られる。 According to the embodiments of the present disclosure, stable and high H cJ can be obtained. Moreover, even if the RTB-based sintered magnet material has a shape that is easily chipped, the effect of reducing the occurrence of cracking and chipping can also be obtained.

(a)及び(b)は、焼結磁石素材の形状の例を示す斜視図である。(A) And (b) is a perspective view which shows the example of the shape of a sintered magnet raw material. 本発明のRH供給拡散処理に使用される装置の一例を模式的に示す断面図である。It is a sectional view showing typically an example of an apparatus used for RH supply diffusion processing of the present invention. 拡散処理工程時におけるヒートパターンの一例を示すグラフである。It is a graph which shows an example of the heat pattern at the time of a diffusion treatment process.

本発明による検討の結果、特許文献3に記載の方法によれば、個々のRH拡散源が大きすぎたり、小さなRH拡散源が多く存在したりすると、R−T−B系焼結磁石への重希土類元素RHの供給が不十分となり、高いHcJが得られない場合のあることが分かった。 As a result of the study according to the present invention, according to the method described in Patent Document 3, when the individual RH diffusion sources are too large or there are many small RH diffusion sources, the RTB sintered magnet can be obtained. It has been found that the supply of the heavy rare earth element RH is insufficient and high H cJ can not be obtained.

また、重希土類元素RHを20質量%以上80質量%以下含有するRH拡散源の大きさを90μm以下に制限し、かつ、処理容器内に挿入されるRH拡散源の重量比率を適切な範囲に調整するとともに、0.5mm以上4mm以下の直径を有する撹拌補助部材を用いることにより、安定して高いHcJを得ることができ、更に、R−T−B系焼結磁石素材が欠けやすい形状を有していても、割れおよび欠けの発生を低減する効果も得られることが分かった。 In addition, the size of the RH diffusion source containing the heavy rare earth element RH in the range of 20% by mass to 80% by mass is limited to 90 μm or less, and the weight ratio of the RH diffusion source inserted in the processing vessel is in an appropriate range. By adjusting the stirring assist member having a diameter of 0.5 mm or more and 4 mm or less, it is possible to stably obtain a high H cJ , and further, a shape in which the RTB -based sintered magnet material is easily chipped It has been found that the effect of reducing the occurrence of cracking and chipping can also be obtained even if the

本開示のR−T−B系焼結磁石の製造方法は、限定的ではない例示的な態様において、複数個のR−T−B系焼結磁石素材を準備する工程と、重希土類元素RHを20質量%以上80質量%以下含有する、大きさが90μm以下の複数個の合金粉末粒子を準備する工程と、それぞれの直径が0.5mm以上4mm以下の範囲にある複数個の撹拌補助部材を準備する工程とを含む。   The manufacturing method of the RTB-based sintered magnet of the present disclosure is, in a non-limiting exemplary embodiment, a step of preparing a plurality of RTB-based sintered magnet materials; Preparing a plurality of alloy powder particles having a size of 90 μm or less and containing 20 mass% or more and 80 mass% or less, and a plurality of stirring assisting members each having a diameter of 0.5 mm or more and 4 mm or less And preparing the

ここで、Rは希土類元素のうち少なくとも一種でありNdおよぴPrの少なくとも一方を必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。重希土類元素RHはTbおよびDyの少なくとも一方である。なお、重量比率で撹拌補助部材全体の65%以上を占める撹拌補助部材は、それぞれ、0.5mm以上4mm以下の直径を有している。重量比率で撹拌補助部材全体の65%以上を占める撹拌補助部材のそれぞれの直径は、ある態様において、1mm以上3mm以下であり、他の態様において、2mm以上3mm以下であり得る。   Here, R is at least one of rare earth elements and always includes at least one of Nd and Pr. T is at least one of transition metal elements and necessarily includes Fe. The heavy rare earth element RH is at least one of Tb and Dy. In addition, the stirring assistance member which occupies 65% or more of the whole stirring assistance member by a weight ratio has a diameter of 0.5 mm or more and 4 mm or less, respectively. The diameter of each of the stirring aid members that occupy 65% or more of the entire stirring aid member by weight ratio may be 1 mm or more and 3 mm or less in one aspect, and 2 mm or more 3 mm or less in another aspect.

本開示のR−T−B系焼結磁石の製造方法は、限定的ではない例示的な態様において、さらに、前記複数個のR−T−B系焼結磁石素材と、これら複数個のR−T−B系焼結磁石素材に対して重量比率で2%以上15%以下の前記合金粉末粒子と、これら複数個のR−T−B系焼結磁石素材に対して重量比率で100%以上500%以下の前記撹拌補助部材とを処理容器内に装入する工程と、処理容器を加熱すると共に回転および/または揺動させることにより、R−T−B系焼結磁石素材と合金粉末粒子と撹拌補助部材を連続的にまたは断続的に移動させてRH供給拡散処理を行う工程とを含む。   The manufacturing method of the RTB-based sintered magnet of the present disclosure further includes, in a non-limiting exemplary embodiment, the plurality of RTB-based sintered magnet materials, and the plurality of R-based sintered magnets. 100% by weight ratio of the alloy powder particles of 2% or more and 15% or less by weight ratio to a sintered material of a T-B based sintered magnet and the plurality of R-T-B sintered magnet materials R-T-B-based sintered magnet material and alloy powder by heating the processing container and rotating and / or rocking while charging the processing aid with the above-mentioned stirring auxiliary member of 500% or less and the processing container. Moving the particles and the stirring aid continuously or intermittently to perform the RH supply diffusion process.

RH供給拡散処理を行う工程において、重希土類元素RHを20質量%以上80質量%以下含有する、各合金粉末粒子はRH拡散源として機能する。処理容器が回転および/または揺動しているとき、加熱した処理容器内において、R−T−B系焼結磁石素材と合金粉末粒子とは撹拌され、互いに接触したり、接触後に離れたりすることを繰り返す。このとき、撹拌補助部材は、R−T−B系焼結磁石素材および合金粉末粒子の撹拌を促進するため、R−T−B系焼結磁石素材、合金粉末粒子、および撹拌補助部材は、処理容器内において流動して移動する。処理容器内に装入される撹拌補助部材の、処理容器内に装入されるR−T−B系焼結磁石素材に対する重量比率は、ある好ましい態様において、200%以上300%以下であり得る。   In the step of performing the RH supply diffusion process, each alloy powder particle containing the heavy rare earth element RH in an amount of 20% by mass to 80% by mass functions as an RH diffusion source. When the processing container is rotating and / or swinging, in the heated processing container, the RTB-based sintered magnet material and the alloy powder particles are agitated and come in contact with each other or are separated after the contact. Repeat the thing. At this time, the agitation assisting member promotes agitation of the RTB-based sintered magnet material and the alloy powder particles, so that the RTB-based sintered magnet material, the alloy powder particles, and the agitation assisting member are: It flows and moves in the processing vessel. The weight ratio of the stirring auxiliary member charged into the processing vessel to the RTB-based sintered magnet material charged into the processing vessel may be 200% or more and 300% or less in a preferred embodiment. .

ある好ましい態様において、複数個の合金粉末粒子は、重希土類元素RH(重希土類元素RHはTb及び/又はDy)を35質量%以上50質量%以下含有する合金を水素粉砕することにより作製され、前記水素粉砕における脱水素工程において、前記合金を400℃以上550℃以下に加熱する。   In a preferred embodiment, the plurality of alloy powder particles are produced by hydrogen-pulverizing an alloy containing heavy rare earth element RH (heavy rare earth element RH is Tb and / or Dy) in an amount of 35% by mass to 50% by mass. In the dehydrogenation step in the hydrogen grinding, the alloy is heated to 400 ° C. or more and 550 ° C. or less.

特許文献3に記載の方法ではRH拡散源の大きさは特に限定されていない。また、特許文献3には、特定の大きさのRH拡散源をR−T−B系焼結磁石素材に対してどのくらい装入するかは記載されてない。本発明者らは、特許文献3に記載の方法を詳細に検討した結果、RH拡散源として、特定の大きさの合金粉末粒子を準備すること、および、前記特定の大きさの合金粉末粒子の装入量をR−T−B系焼結磁石素材の重量比率に対して特定の割合とすることにより、安定して高いHcJを得ることができることを見出した。 In the method described in Patent Document 3, the size of the RH diffusion source is not particularly limited. In addition, Patent Document 3 does not describe how to insert an RH diffusion source of a specific size into an RTB-based sintered magnet material. As a result of examining the method described in Patent Document 3 in detail, the present inventors prepared alloy powder particles of a specific size as an RH diffusion source, and of the alloy powder particles of the specific size. It has been found that by setting the loading amount to a specific ratio to the weight ratio of the RTB -based sintered magnet material, it is possible to stably obtain high HcJ .

なお、本開示において、重希土類元素RHをR−T−B系焼結磁石素材に供給しつつ、その重希土類元素RHを磁石内部へ拡散させることを「RH供給拡散処理」という。また、RH供給拡散処理を実施した後、重希土類元素RHの供給を行わずに、重希土類元素RHをR−T−B系焼結磁石の内部に拡散させることを「RH拡散処理」という。さらに、RH供給拡散処理後またはRH拡散処理後に、R−T−B系焼結磁石の磁石特性向上を目的として行う熱処理を単に「熱処理」という。   In the present disclosure, while the heavy rare earth element RH is supplied to the RTB-based sintered magnet material, the diffusion of the heavy rare earth element RH into the magnet is referred to as “RH supply diffusion processing”. In addition, after the RH supply diffusion process is performed, diffusion of the heavy rare earth element RH into the R-T-B-based sintered magnet without supplying the heavy rare earth element RH is referred to as "RH diffusion process". Furthermore, heat treatment performed for the purpose of improving the magnet characteristics of the RTB-based sintered magnet after RH supply diffusion treatment or after RH diffusion treatment is simply referred to as “heat treatment”.

[複数個のR−T−B系焼結磁石素材を準備する工程]
本発明の実施形態において、R−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種でありNdおよびPrの少なくとも一方を必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)には、公知の組成、製造方法によって製造されたR−T−B系焼結磁石素材を用いることができる。
[Step of preparing a plurality of RTB based sintered magnet materials]
In the embodiment of the present invention, an RTB-based sintered magnet material (R is at least one of rare earth elements and always includes at least one of Nd and Pr, T is at least one of transition metal elements, and Fe The RTB based sintered magnet material manufactured according to the known composition and manufacturing method can be used in the following.

本開示において、RH供給拡散処理前およびRH供給拡散処理中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」といい、RH供給拡散処理後のR−T−B系焼結磁石を「R−T−B系焼結磁石」という。   In the present disclosure, RTB-based sintered magnets before RH supply diffusion processing and during RH supply diffusion processing are referred to as “RTB-based sintered magnet materials”, and RT after RT-supply diffusion processing. The -B-based sintered magnet is referred to as "R-T-B-based sintered magnet".

本開示の実施形態におけるR−T−B系焼結磁石素材は、例えば、以下の組成を有する。
希土類元素R:12〜17原子%
B(Bの一部はCで置換されていてもよい):5〜8原子%
添加元素M(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0〜2原子%
T(Feを主とする遷移金属であって、Coを含んでもよい)および不可避不純物:残部
The R-T-B-based sintered magnet material in the embodiment of the present disclosure has, for example, the following composition.
Rare earth element R: 12 to 17 atomic%
B (a part of B may be substituted with C): 5 to 8 atomic%
Selected from the group consisting of the additive elements M (Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one kind): 0 to 2 atomic%
T (a transition metal mainly composed of Fe and may contain Co) and unavoidable impurities: balance

上記組成のR−T−B系焼結磁石素材は、公知の製造方法によって製造される。   The R-T-B-based sintered magnet material of the above composition is manufactured by a known manufacturing method.

本開示の実施形態で使用され得る複数個の焼結磁石素材は、例えば、それぞれ、1000mm3以上の体積を有し、直交する3方向における3つのサイズの最大のサイズが最小のサイズの2倍以上である。 The plurality of sintered magnet materials that can be used in the embodiments of the present disclosure have, for example, a volume of 1000 mm 3 or more, respectively, and a maximum size of three sizes in three orthogonal directions is twice the minimum size It is above.

図1は、焼結磁石素材1の形状の例を示す斜視図である。図1(a)には、焼結磁石素材1の寸法、すなわち長さL、奥行きD、高さHが示されている。図1(b)には、図1(a)に示される焼結磁石素材の8個の頂点に面取りを行った形態が図示されている。   FIG. 1 is a perspective view showing an example of the shape of a sintered magnet material 1. In FIG. 1A, the dimensions of the sintered magnet material 1, that is, the length L, the depth D, and the height H are shown. FIG. 1 (b) shows a form in which chamfering is performed on eight apexes of the sintered magnet material shown in FIG. 1 (a).

ある実施形態において、複数個の焼結磁石素材の各々は、1辺の長さ(L)が40mm以上、他の2辺の長さ(D、H)がそれぞれ20mm以下の直方体の形状を有している。他の実施形態において、複数個の焼結磁石素材の各々は、1辺の長さが40mm以上、他の2辺の長さがそれぞれ10mm以下の概略直方体の形状を有していてもよい。個々の焼結磁石素材は、図1(b)に示されるように、各頂点位置で面取りされていてもよい。面取りにより、割れおよび欠けの発生は更に抑制され得る。   In one embodiment, each of the plurality of sintered magnet materials has a rectangular parallelepiped shape in which one side has a length (L) of 40 mm or more and the other two sides (D, H) has a length of 20 mm or less. doing. In another embodiment, each of the plurality of sintered magnet materials may have a substantially rectangular parallelepiped shape with a length of 40 mm or more on one side and a length of 10 mm or less on the other two sides. The individual sintered magnet materials may be chamfered at each vertex position, as shown in FIG. 1 (b). By chamfering, the occurrence of cracking and chipping can be further suppressed.

なお、本開示の製造方法が適用される焼結磁石素材の形状および大きさは、上記の例に限定されない。   In addition, the shape and size of the sintered magnet raw material to which the manufacturing method of this indication is applied are not limited to said example.

[複数個の合金粉末粒子を準備する工程]
本発明は、RH拡散源として、前記重希土類元素RHを20質量%以上80質量%以下含有する、大きさが90μm以下の複数個の合金粉末粒子を準備する。本発明において、重希土類元素RHは、Tbおよび/またはDyであり、例えばTbおよび/またはDyを20質量%以上80質量%以下含有するTbFe合金、DyFe合金などを用いることができる。DyよりもTbを用いた方がより高いHcJを得ることができる。重希土類元素RHが20質量%未満であると、重希土類元素RHの供給量が少なくなり、高いHcJが得られない恐れがある。また、重希土類元素RHが80質量%を超えるとRH拡散源を処理容器内に投入する際にRH拡散源が発火する恐れがある。RH拡散源における重希土類元素RHの含有量は好ましくは35質量%以上65質量%以下であり、さらに好ましくは40質量%以上60質量%以下である。
[Step of preparing a plurality of alloy powder particles]
The present invention prepares a plurality of alloy powder particles having a size of 90 μm or less and containing 20% by mass to 80% by mass of the heavy rare earth element RH as an RH diffusion source. In the present invention, the heavy rare earth element RH is Tb and / or Dy, and for example, a TbFe alloy, a DyFe alloy, etc. containing 20% by mass to 80% by mass of Tb and / or Dy can be used. Higher HcJ can be obtained using Tb than Dy. If the heavy rare earth element RH is less than 20% by mass, the amount of the heavy rare earth element RH supplied may be small, and high H cJ may not be obtained. In addition, when the heavy rare earth element RH exceeds 80% by mass, there is a risk that the RH diffusion source may ignite when the RH diffusion source is introduced into the processing container. The content of the heavy rare earth element RH in the RH diffusion source is preferably 35% by mass to 65% by mass, and more preferably 40% by mass to 60% by mass.

本発明の実施形態における、大きさが90μm以下の複数個の合金粉末粒子を準備する方法は特に問わない。例えば、目開きが90μmのふるい(JIS Z 8801−2000標準ふるい)を用いて分級して準備することができる。大きさが90μm以下の合金粉末粒子を用いない場合、安定して高いHcJを得ることができない。大きさが90μm以下の合金粉末粒子は、重希土類元素RHを20質量%以上80質量%以下含有する合金を例えばピンミル粉砕機等の公知の方法を用いて粉砕し、目開きが90μmのふるいを用いて分級することにより準備することができる。 The method of preparing a plurality of alloy powder particles having a size of 90 μm or less in the embodiment of the present invention is not particularly limited. For example, it can be classified and prepared using a sieve with an opening of 90 μm (JIS Z 8801-2000 standard sieve). If alloy powder particles having a size of 90 μm or less are not used, high H cJ can not be stably obtained. Alloy powder particles having a size of 90 μm or less are obtained by pulverizing an alloy containing heavy rare earth element RH in an amount of 20% by mass to 80% by mass using a known method such as a pin mill crusher, and a sieve having an opening of 90 μm. It can prepare by using and classifying.

前記ピンミル粉砕機等の公知の方法を用いて大きさが90μm以下の複数個の合金粉末粒子を作製すると、合金を90μm以下まで粉砕するのに長時間を要したり、数回にわたってピンミル粉砕を行うなど、量産性の悪化を招く場合がある。そこで、これらの方法に代えて、重希土類元素RHを35質量%以上50質量%以下含有する合金に水素を吸蔵させた後、400℃以上550℃以下に加熱する脱水素工程を行う、水素粉砕を行っても良い。これにより、複数個の合金粉末粒子のほとんど(重量比率で90%以上)を90μm以下の大きさに粉砕することができるため、比較的簡便に、且つ、一度に、大量に大きさが90μm以下の複数個の合金粉末粒子を得ることができる。従って、目開きが90μmのふるいを用いた分級を行わずに複数個の合金粉末粒子をそのまま処理容器に装入し、RH供給拡散処理を行うことが可能となる。この場合、複数個の合金粉末粒子をR−T−B系焼結磁石素材に対して重量比率の下限である2%装入してRH供給拡散処理を行うと、大きさが90μm以下の複数個の合金粉末粒子の重量比率が2%以下になる恐れがあるため、重量比率で2.2%以上装入することが好ましい。   When a plurality of alloy powder particles having a size of 90 μm or less are produced using a known method such as a pin mill crusher, it takes a long time to grind the alloy to 90 μm or less, or several times In some cases, this may cause the deterioration of mass productivity. Therefore, in place of these methods, hydrogen is absorbed in an alloy containing heavy rare earth element RH of 35% by mass to 50% by mass, and then a dehydrogenation step of heating to 400 ° C. or more and 550 ° C. or less is performed. You may Thereby, most of the plurality of alloy powder particles (90% or more by weight ratio) can be crushed to a size of 90 μm or less, so the size is 90 μm or less in a relatively large amount at one time. And a plurality of alloy powder particles can be obtained. Therefore, it is possible to load a plurality of alloy powder particles as they are into the processing container without performing classification using a sieve with an opening of 90 μm, and to perform RH supply diffusion processing. In this case, when a plurality of alloy powder particles are charged at 2%, which is the lower limit of the weight ratio, to the R-T-B sintered magnet material and subjected to RH supply diffusion processing, a plurality of particles having a size of 90 μm or less Since there is a possibility that the weight ratio of individual alloy powder particles may be 2% or less, it is preferable to charge 2.2% or more by weight ratio.

前記水素粉砕を行う場合、重希土類元素RHを35質量%以上50質量%以下含有する合金を準備する。重希土類元素RHの含有量が35質量%未満では、大きさが90μm以下に合金を水素粉砕することができない恐れがある。一方、重希土類元素RHの含有量が50質量%を超えると、水素が多く残存する恐れがある。従って、重希土類元素RHの含有量は、35質量%以上50質量%以下が好ましい。前記合金に対して水素粉砕を行う。水素粉砕は、前記合金に水素を一旦吸蔵させ、その後に水素を放出させることにより行う。そのため、水素粉砕は水素吸蔵工程と脱水素工程がある。本発明の水素粉砕における水素吸蔵工程は公知の方法で行えばよい。例えば、前記合金を水素炉内に装入した後、室温で、水素炉内へ水素供給を開始し、水素の絶対圧を0.3MPa程度に保持する水素吸蔵工程を90分間行う。本工程では、合金粉末の水素吸蔵反応に伴い炉内の水素が消費され、水素の圧力が低下するため、その低下を補うように追加で水素を供給し、0.3MPa程度に制御する。脱水素工程は、水素吸蔵工程後の合金を真空中で400℃以上550℃以下に加熱する。これにより、水素をほとんど残存させずに、大きさが90μm以下に粉砕することができる。加熱温度が400℃未満及び550℃を超えると、複数個の合金粉末粒子に水素が残存(数百ppm程度)することとなる。水素が残存すると、その後のRH供給拡散処理時に、複数個の合金粉末粒子からR−T−B系焼結磁石素材に水素が供給され、最終的に得られるR−T−B系焼結磁石が水素脆化して製品として使用することが不可能となる。従って、脱水素工程における加熱温度は400℃以上550℃以下が好ましい。   When the hydrogen pulverization is performed, an alloy containing 35 to 50 mass% of the heavy rare earth element RH is prepared. If the content of the heavy rare earth element RH is less than 35% by mass, there is a possibility that the alloy can not be pulverized to a size of 90 μm or less. On the other hand, when the content of the heavy rare earth element RH exceeds 50% by mass, a large amount of hydrogen may be left. Therefore, the content of the heavy rare earth element RH is preferably 35% by mass or more and 50% by mass or less. Hydrogen grinding is performed on the alloy. Hydrogen grinding is performed by causing the alloy to temporarily store hydrogen and then releasing hydrogen. Therefore, hydrogen grinding has a hydrogen storage step and a dehydrogenation step. The hydrogen storage step in the hydrogen pulverization of the present invention may be performed by a known method. For example, after the alloy is charged into the hydrogen furnace, hydrogen supply into the hydrogen furnace is started at room temperature, and a hydrogen storage process for maintaining the absolute pressure of hydrogen at about 0.3 MPa is performed for 90 minutes. In this process, hydrogen in the furnace is consumed along with the hydrogen storage reaction of the alloy powder, and the pressure of hydrogen is lowered. Therefore, additional hydrogen is supplied to control the pressure to about 0.3 MPa to compensate for the decrease. In the dehydrogenation step, the alloy after the hydrogen absorption step is heated to 400 ° C. or more and 550 ° C. or less in vacuum. By this, it is possible to grind to a size of 90 μm or less with almost no hydrogen remaining. When the heating temperature is lower than 400 ° C. and higher than 550 ° C., hydrogen will remain (about several hundred ppm) in the plurality of alloy powder particles. When hydrogen remains, hydrogen is supplied from the plurality of alloy powder particles to the RTB-based sintered magnet material during the subsequent RH feed diffusion processing, and the RTB-based sintered magnet finally obtained However, hydrogen embrittlement makes it impossible to use as a product. Therefore, the heating temperature in the dehydrogenation step is preferably 400 ° C. or more and 550 ° C. or less.

好ましくは、前記合金粉末粒子の大きさは38μm以上75μm以下であり、さらに好ましくは、前記合金粉末粒子の大きさは38μm以上63μmである。さらに安定して高いHcJを得ることができるからである。また、38μm未満の合金粉末粒子を多く含有すると、合金粉末粒子が小さすぎるためRH拡散源が発火する恐れがある。合金粉末粒子は、Tb、Dy、Fe以外に本発明の効果を損なわない限りにおいて、Nd、Pr、La、Ce、Zn、Zr、SmおよびCoの少なくとも一種を含有してもよい。さらに不可避的不純物として、Al、Ti、V、Cr、Mn、Ni、Cu、Ga、Nb、Mo、Ag、In、Hf、Ta、W、Pb、SiおよびBiなどを含んでもよい。 Preferably, the size of the alloy powder particles is 38 μm or more and 75 μm or less, and more preferably, the size of the alloy powder particles is 38 μm or more and 63 μm. It is because high H cJ can be obtained more stably. In addition, when the alloy powder particles smaller than 38 μm are contained in a large amount, the alloy powder particles are too small, which may cause the RH diffusion source to ignite. The alloy powder particles may contain at least one of Nd, Pr, La, Ce, Zn, Zr, Sm and Co in addition to Tb, Dy and Fe, as long as the effects of the present invention are not impaired. Further, as unavoidable impurities, Al, Ti, V, Cr, Mn, Ni, Cu, Ga, Nb, Mo, Ag, In, Hf, Ta, W, Pb, Si, Bi and the like may be included.

前記複数個の合金粉末粒子は、少なくとも一部に新生表面が露出している合金粉末粒子を含有していることが好ましい。本発明において、新生表面が露出しているとは、前記合金粉末粒子の表面にRH拡散源以外の異物、例えば、R酸化物やR−T−B化合物(主相に近い組成の化合物)などが存在していない状態をいう。上述したように前記複数個の合金粉末粒子は、重希土類元素RHを20質量%以上80質量%以下含有する合金を粉砕して準備するため、これより得られた複数個の合金粉末粒子は少なくとも一部に新生表面が露出している合金粉末粒子を有している。しかし、繰り返してRH供給拡散処理を行う場合、すなわち、RH供給拡散処理後のR−T−B系焼結磁石に変えて、新たな複数個のR−T−B系焼結磁石素材を準備し、その複数個のR−T−B系焼結磁石素材と、RH供給拡散処理後の(使用済みの)複数個の合金粉末粒子とを用いて、再度RH供給拡散処理を行う場合、RH供給拡散処理後に大きさが90μm以下の複数個の合金粉末粒子が存在していても、RH供給拡散処理後の合金粉末粒子は、合金粉末粒子の表面全体が異物やR酸化物等で覆われて新生表面が露出していない場合がある。そのため、処理後の合金粉末粒子を用いて繰り返しRH供給拡散処理を行った場合、異物やR酸化物等によりR−T−B系焼結磁石素材への重希土類元素RHの供給が少なくなる場合がある。よって、処理後の複数個の合金粉末粒子に対して公知の粉砕機等により粉砕し、合金粉末粒子の破断面を露出させた状態、すなわち新生表面が露出した状態にしておくことが好ましい。   It is preferable that the plurality of alloy powder particles contain alloy powder particles in which a new surface is exposed at least in part. In the present invention, the fact that the new surface is exposed means a foreign substance other than the RH diffusion source on the surface of the alloy powder particle, such as R oxide or R-T-B compound (compound having a composition close to the main phase) States that do not exist. As described above, since the plurality of alloy powder particles are prepared by crushing an alloy containing the heavy rare earth element RH in the range of 20% by mass to 80% by mass, the plurality of alloy powder particles obtained therefrom is at least It has alloy powder particles in which a new surface is exposed in part. However, when performing the RH supply diffusion process repeatedly, that is, changing to the RTB-based sintered magnet after the RH supply diffusion process, and preparing a plurality of new RTB-based sintered magnet materials When performing the RH supply diffusion process again using the plurality of RTB-based sintered magnet materials and the (used) alloy powder particles after the RH supply diffusion process, Even if a plurality of alloy powder particles having a size of 90 μm or less are present after the supply diffusion process, the entire surface of the alloy powder particles is covered with foreign matter, R oxide, etc. after the RH supply diffusion process. Surface may not be exposed. Therefore, in the case where the RH supply and diffusion process is repeated using the alloy powder particles after the treatment, when the supply of the heavy rare earth element RH to the RTB-based sintered magnet material is reduced due to foreign substances, R oxides, etc. There is. Therefore, it is preferable to grind | pulverize with respect to the several alloy powder particle | grains after a process by a well-known grinder etc., and to make the fracture | rupture surface of alloy powder particle | grains exposed, ie, the state in which the new surface was exposed.

[R−T−B系焼結磁石素材と、合金粉末粒子とを処理容器内に装入する工程]
前記複数個のR−T−B系焼結磁石素材と、前記複数個のR−T−B系焼結磁石素材に対して重量比率で2%以上15%以下の複数個の合金粉末粒子とを処理容器内に装入する。これにより、後述するRH供給拡散処理を行う工程を実施することにより安定して高いHcJを得ることができる。大きさが90μm以下の複数個の合金粉末粒子がR−T−B系焼結磁石素材に対して重量比率で2%未満であると、90μm以下の合金粉末粒子が少なすぎるため、安定して高いHcJを得ることができない。また、15%を超えると、合金粉末粒子がR−T−B系焼結磁石素材から浸み出した液相と過剰に反応し、R−T−B系焼結磁石素材の表面に異常付着するという現象が発生する。この現象により新たな重希土類元素RHがR−T−B系焼結磁石素材へ供給されにくい状態が形成されるため、安定して高いHcJを得ることができない。そのため、90μm以下の合金粉末粒子は安定して高いHcJを得るために必要であるが、その量を特定範囲(2%以上15%以下)にする必要がある。好ましくは、前記複数個の合金粉末粒子の装入量は前記複数個のR−T−B系焼結磁石素材に対して重量比率で3%以上7%以下である。さらに安定して高いHcJを得ることができるからである。
[Step of charging RTB-based sintered magnet material and alloy powder particles into processing chamber]
A plurality of alloy powder particles having a weight ratio of 2% to 15% by weight based on the plurality of RTB-based sintered magnet materials and the plurality of RTB-based sintered magnet materials; Into the processing vessel. Thereby, high HcJ can be stably obtained by performing the process of performing the RH supply diffusion process described later. When the weight ratio of the plurality of alloy powder particles having a size of 90 μm or less is less than 2% with respect to the RTB-based sintered magnet material, the amount of the alloy powder particles having a size of 90 μm or less is too small. It is not possible to obtain high H cJ . Also, if it exceeds 15%, the alloy powder particles react excessively with the liquid phase exuded from the RTB based sintered magnet material, and abnormally adhere to the surface of the RTB based sintered magnet material Phenomenon occurs. Since a state where new heavy rare earth element RH is difficult to be supplied to the RTB-based sintered magnet material is formed by this phenomenon, it is not possible to stably obtain high HcJ . Therefore, although alloy powder particles of 90 μm or less are necessary to stably obtain high H cJ , the amount thereof needs to be in a specific range (2% or more and 15% or less). Preferably, the charged amount of the plurality of alloy powder particles is 3% or more and 7% or less by weight ratio with respect to the plurality of RTB-based sintered magnet materials. It is because high H cJ can be obtained more stably.

大きさが90μm以下の複数個の合金粉末粒子を複数個のR−T−B系焼結磁石素材に対して2%以上15%以下装入すれば、すなわち、前記の本発明の実施形態を満たしていれば、それら以外に、例えば大きさが90μmを超える複数個の合金粉末粒子を処理容器内へ装入しても構わない。ただし、重希土類元素RHは希少金属であり、使用量削減が求められているため、大きさが90μmを超える複数個の合金粉末粒子は使用しない方が好ましい。また、大きさが90μmを超える合金粉末粒子が多すぎると一回に処理できるRT−B系焼結磁石素材の装入量が減ってしまうため、R−T−B系焼結磁石素材と合金粉末粒子(大きさが90μm以下と90μmを超える合金粉末粒子の合計)は重量比率で1:0.02〜2の割合になるように処理容器内に装入することが好ましい。   If a plurality of alloy powder particles having a size of 90 μm or less are charged to a plurality of R-T-B sintered magnet materials by 2% or more and 15% or less, that is, the embodiment of the present invention described above In addition to the above, for example, a plurality of alloy powder particles having a size of more than 90 μm may be charged into the processing container as long as the conditions are satisfied. However, since the heavy rare earth element RH is a rare metal and a reduction in the amount used is required, it is preferable not to use a plurality of alloy powder particles having a size of more than 90 μm. In addition, if the amount of alloy powder particles exceeding 90 μm is too large, the amount of RT-B-based sintered magnet material that can be processed at one time decreases, so the RTB-based sintered magnet material and alloy The powder particles (total of alloy powder particles having a size of 90 μm or less and more than 90 μm) are preferably loaded into the processing vessel in a weight ratio of 1: 0.02 to 2.

本発明の実施形態では、前記処理容器内にさらに複数個の攪拌補助部材を装入する。攪拌補助部材は合金粉末粒子とR−T−B系焼結磁石素材との接触を促進し、また攪拌補助部材に一旦付着した重希土類元素RHをR−T−B系焼結磁石素材へ間接的に供給する役割をする。さらに、攪拌補助部材は、処理容器内において、R−T−B系焼結磁石素材同士の接触による欠けを防ぐ役割もある。   In the embodiment of the present invention, a plurality of stirring assisting members are further charged into the processing vessel. The agitation assisting member promotes the contact between the alloy powder particles and the RTB-based sintered magnet material, and indirectly to the RTB-based sintered magnet material, the heavy rare earth element RH once attached to the agitation assisting member. Play a role in Furthermore, the stirring assisting member also has a role of preventing chipping due to contact between RTB-based sintered magnet materials in the processing container.

本開示の実施形態では、複数個の撹拌補助部材であって、重量比率で前記複数個の撹拌補助部材の全体の65%以上の撹拌補助部材が0.5mm以上4mm以下の撹拌補助部材を用いる。撹拌補助部材の直径φは、好ましくは1mm以上3mm以下、さらに好ましくは2mm以上3mm以下である。尚、撹拌補助部材は、上述した本発明の条件(直径が0.5mm以上4mm以下の撹拌補助部材が65%以上)を満たしていれば、それら以外に、0.5mm未満や4mmを超えるの直径を有する撹拌補助部材を有していてもよい。但し、あまりに大きすぎたり、小さすぎたりすると、量産上の取り扱いが困難になる恐れがあるので、撹拌補助部材は、直径が0.3mm以上20mm以下であることが好ましい。   In an embodiment of the present disclosure, a plurality of agitation assisting members, in which 65% or more of the entire agitation assisting members by weight ratio use the agitation assisting member of 0.5 mm or more and 4 mm or less . The diameter φ of the stirring assisting member is preferably 1 mm or more and 3 mm or less, more preferably 2 mm or more and 3 mm or less. In addition, as long as the stirring auxiliary member satisfies the above-mentioned conditions of the present invention (the stirring auxiliary member having a diameter of 0.5 mm or more and 4 mm or less is 65% or more), other than these, it is less than 0.5 mm or more than 4 mm. You may have the stirring auxiliary member which has a diameter. However, if the size is too large or too small, it may be difficult to handle in mass production, so the stirring assist member preferably has a diameter of 0.3 mm or more and 20 mm or less.

撹拌補助部材の機能を充分に発揮させるため、処理容器内に装入される撹拌補助部材の量は、挿入される複数個のR−T−B系焼結磁石素材に対して重量比率で100%以上500%以下、好ましくは200%以上300%以下である。   The amount of the stirring auxiliary member charged into the processing vessel is 100 by weight ratio with respect to the plurality of R-T-B-based sintered magnet materials inserted in order to fully exhibit the function of the stirring auxiliary member. % Or more and 500% or less, preferably 200% or more and 300% or less.

攪拌補助部材は処理容器内で運動しやすい形状を有することが好ましい。ここで運動しやすい形状の例として、球状、円柱状等が挙げられる。攪拌補助部材は、RH供給拡散処理中にR−T−B系焼結磁石素材および合金粉末粒子と接触しても、反応しにくい材質から形成されることが好ましい。攪拌補助部材の材料としてはジルコニア、窒化ケイ素、炭化ケイ素並びに窒化硼素、または、これらの混合物のセラミックス等が好ましい。Mo、W、Nb、Ta、Hf、Zrを含む族の元素、または、これらの混合物等であってもよい。   The agitation assisting member preferably has a shape that facilitates movement in the processing container. Here, examples of the shape that is easy to move include a spherical shape and a cylindrical shape. The stirring assisting member is preferably made of a material that is difficult to react even when coming into contact with the RTB-based sintered magnet material and the alloy powder particles during the RH supply diffusion process. As a material of the stirring assisting member, zirconia, silicon nitride, silicon carbide and boron nitride, or a ceramic of a mixture of these, etc. are preferable. It may be an element of a group including Mo, W, Nb, Ta, Hf, Zr, or a mixture of these.

[RH供給拡散処理を行う工程]
前記工程によって複数個のR−T−B系焼結磁石素材と複数個の合金粉末粒子を装入した処理容器を加熱すると共に回転および/または揺動させることで、前記R−T−B系焼結磁石素材と前記合金粉末粒子を連続的にまたは断続的に移動させることにより、前記合金粉末粒子から重希土類元素RHをR−T−B系焼結磁石素材の表面に供給しつつ、その重希土類元素RHを磁石内部に拡散させるRH供給拡散処理を実施する。これにより、Brの低下を抑制しつつ、安定して高いHcJを得ることができる。本発明のRH供給拡散処理は、特許文献3に記載されている公知の方法で行えばよい。図2は、本発明のRH供給拡散処理に使用される装置の一例を模式的に示す断面図である。装置の使用方法を図2に基づいて説明する。まず、図2の蓋5を処理容器4から取り外し複数個のR−T−B系焼結磁石素材1と複数個の合金粉末粒子2と複数個の撹拌補助部材3を処理容器4に装入し、蓋5を再び処理容器4に取り付ける。R−T−B系焼結磁石素材1、合金粉末粒子2、撹拌補助部材3の装入量の割合は、上述した所定範囲内になるように設定される。
[Step of performing RH supply diffusion processing]
The R-T-B system is obtained by heating and rotating and / or rocking a processing container in which a plurality of R-T-B sintered magnet materials and a plurality of alloy powder particles are charged in the above process. The heavy rare earth element RH is supplied from the alloy powder particles to the surface of the R-T-B based sintered magnet material by moving the sintered magnet material and the alloy powder particles continuously or intermittently. An RH supply diffusion process is performed to diffuse the heavy rare earth element RH inside the magnet. This makes it possible to stably obtain high H cJ while suppressing the decrease in B r . The RH supply diffusion process of the present invention may be performed by a known method described in Patent Document 3. FIG. 2 is a cross-sectional view schematically showing an example of an apparatus used for the RH supply diffusion process of the present invention. The method of using the device will be described based on FIG. First, the lid 5 of FIG. 2 is removed from the processing container 4 and a plurality of RTB-based sintered magnet materials 1, a plurality of alloy powder particles 2 and a plurality of stirring assisting members 3 are charged into the processing container 4 And attach the lid 5 to the processing container 4 again. The ratio of the loading amount of the RTB-based sintered magnet material 1, the alloy powder particle 2, and the stirring auxiliary member 3 is set to be within the above-described predetermined range.

次に、排気装置6により処理容器4の内部を真空排気し減圧する(減圧後Arガスなどを導入してもよい)。そして、モータ8によって処理容器4を回転させながらヒータ7による加熱を実行する。この処理容器4の回転によってR−T−B系焼結磁石素材1と合金粉末粒子2および撹拌補助部材3が図示のごとく均一に撹拌されることにより、円滑にRH供給拡散処理を行うことができる。   Next, the inside of the processing container 4 is evacuated and depressurized by the exhaust unit 6 (an Ar gas or the like may be introduced after depressurization). Then, while the processing container 4 is rotated by the motor 8, heating by the heater 7 is performed. The RH supply and diffusion process can be smoothly performed by uniformly stirring the R-T-B-based sintered magnet material 1, the alloy powder particles 2 and the stirring assisting member 3 as illustrated by the rotation of the processing container 4. it can.

図2に示す処理容器4は、ステンレス製であるが、材質はこれに限定されず1000℃以上の耐熱性を有しR−T−B系焼結磁石素材1、合金粉末粒子2、撹拌補助部材3のいずれとも反応しにくい材質であれば任意である。例えば、Nb、Mo、Wの少なくとも一種を含む合金、Fe−Cr−Al系合金、Fe−Cr−Co系合金等を用いてもよい。処理容器4には開閉または取り外し可能な蓋5が設けられている。また処理容器4の内壁にはR−T−B系焼結磁石素材1、合金粉末粒子2、撹拌補助部材3が効率的に移動を行えるように突起物を設置してもよい。さらに処理容器4の形状は円形のほか楕円形や多角形であってもよい。処理容器4は排気装置6と連結されており、処理容器4の内部は排気装置6により、減圧または加圧することができる。処理容器4には図示しないガス供給装置が接続されており、ガス供給装置から処理容器内部に不活性ガス等を導入することができる。   The processing container 4 shown in FIG. 2 is made of stainless steel, but the material is not limited to this and has heat resistance of 1000 ° C. or higher, and the RTB-based sintered magnet material 1, alloy powder particles 2, and stirring assist Any material that does not easily react with any of the members 3 may be used. For example, an alloy containing at least one of Nb, Mo, and W, an Fe-Cr-Al alloy, an Fe-Cr-Co alloy, and the like may be used. The processing container 4 is provided with a lid 5 which can be opened and closed or removed. Further, protrusions may be provided on the inner wall of the processing container 4 so that the RTB-based sintered magnet material 1, the alloy powder particles 2 and the stirring assisting member 3 can be moved efficiently. Furthermore, the shape of the processing container 4 may be oval or polygonal in addition to circular. The processing container 4 is connected to the exhaust device 6, and the inside of the processing container 4 can be depressurized or pressurized by the exhaust device 6. A gas supply device (not shown) is connected to the processing container 4 so that an inert gas or the like can be introduced into the processing container from the gas supply device.

処理容器4はその外周部に配置されたヒータ7によって加熱される。ヒータ7の典型例は、電流によって発熱する抵抗加熱器である。処理容器4の加熱により、その内部に装入されたR−T−B系焼結磁石素材1、合金粉末粒子2、撹拌補助部材3も加熱される。処理容器4は回転可能に支持されており、ヒータ7による加熱中もモータ8によって回転することができる。処理容器4の回転速度は、例えば処理容器4の内壁面の周速度を毎分0.1m以上に設定することが好ましい。   The processing container 4 is heated by the heater 7 disposed on the outer peripheral portion thereof. A typical example of the heater 7 is a resistive heater that generates heat by current. By heating the processing container 4, the R-T-B-based sintered magnet material 1, the alloy powder particles 2, and the stirring assisting member 3 charged in the inside thereof are also heated. The processing container 4 is rotatably supported, and can be rotated by the motor 8 even during heating by the heater 7. As for the rotational speed of the processing container 4, it is preferable to set the circumferential speed of the inner wall surface of the processing container 4 to 0.1 m or more per minute, for example.

本実施形態では、処理容器4内におけるR−T−B系焼結磁石素材1、合金粉末粒子2、および撹拌補助部材3の温度が、ほぼ同じレベルに達する。本開示の実施形態では、比較的に気化しにくいDy、Tbを、例えば1000℃以上の高温に加熱する必要がない。このため、R−T−B系焼結磁石素材1の粒界相を介してDyおよび/またはTbをR−T−B系焼結磁石素材1の内部に拡散させるのに適した温度(800℃以上1000℃以下)でRH供給拡散処理を実現できる。   In the present embodiment, the temperatures of the R-T-B-based sintered magnet material 1, the alloy powder particles 2 and the stirring assisting member 3 in the processing container 4 reach substantially the same level. In the embodiment of the present disclosure, it is not necessary to heat Dy and Tb, which are relatively difficult to vaporize, to a high temperature of, for example, 1000 ° C. or higher. Therefore, a temperature (800 suitable for diffusing Dy and / or Tb into the R-T-B-based sintered magnet material 1 through the grain boundary phase of the R-T-B-based sintered magnet material 1 RH supply diffusion processing can be realized at a temperature of not less than ° C and not more than 1000 ° C.

R−T−B系焼結磁石素材1と合金粉末粒子2とが接触したときに合金粉末粒子2からR−T−B系焼結磁石素材1の表面に重希土類元素RHが供給される。この重希土類元素RHは、RH供給拡散処理の工程中に、R−T−B系焼結磁石素材1の粒界相を介してR−T−B系焼結磁石素材1の内部に拡散する。このような方法は、R−T−B系焼結磁石素材1の表面に重希土類元素RHの厚い膜を形成することを必要としないため、合金粉末粒子2の温度がR−T−B系焼結磁石素材1の温度(800℃以上1000℃以下)にほとんど等しい温度(温度差が例えば50℃以下)であっても、重希土類元素RHの供給および拡散を同時に実現できる。   When the R-T-B-based sintered magnet material 1 and the alloy powder particle 2 are in contact with each other, the heavy rare earth element RH is supplied from the alloy powder particle 2 to the surface of the R-T-B-based sintered magnet material 1. The heavy rare earth element RH diffuses into the inside of the RTB-based sintered magnet material 1 through the grain boundary phase of the RTB-based sintered magnet material 1 during the process of RH supply diffusion processing. . Such a method does not require the formation of a thick film of the heavy rare earth element RH on the surface of the R-T-B-based sintered magnet material 1, so that the temperature of the alloy powder particle 2 is R-T-B-based. Even if the temperature (temperature difference is, for example, 50 ° C. or less) almost equal to the temperature (800 ° C. or more and 1000 ° C. or less) of the sintered magnet material 1, the supply and diffusion of the heavy rare earth element RH can be realized simultaneously.

なお、合金粉末粒子2を高温に加熱して、合金粉末粒子2から盛んにDyまたはTbを気化させることにより、R−T−B系焼結磁石素材1の表面に重希土類元素RHの厚い膜を形成するには、RH供給拡散処理中において、合金粉末粒子2を選択的にR−T−B系焼結磁石素材1よりも格段に高い温度に加熱することが必要となる。そのような加熱は、処理容器4の外部に位置するヒータ7によって行うことはできず、例えば、マイクロ波を合金粉末粒子2のみに放射する誘導加熱によって行うことが必要となる。その場合、合金粉末粒子2を、R−T−B系焼結磁石素材1および撹拌補助部材3から離れた位置に置くことが必要になるため、本開示の実施形態のように、R−T−B系焼結磁石素材1、合金粉末粒子2、および撹拌補助部材3を処理容器4の内部に撹拌することはできなくなる。   The alloy powder particle 2 is heated to a high temperature, and the Dy or Tb is actively vaporized from the alloy powder particle 2 to form a thick film of the heavy rare earth element RH on the surface of the R-T-B based sintered magnet material 1 In order to form H, it is necessary to selectively heat the alloy powder particles 2 to a temperature significantly higher than that of the RTB-based sintered magnet material 1 during RH supply diffusion processing. Such heating can not be performed by the heater 7 located outside the processing container 4 and needs to be performed by, for example, induction heating in which microwaves are emitted only to the alloy powder particles 2. In that case, since it is necessary to place the alloy powder particle 2 at a position separated from the R-T-B-based sintered magnet material 1 and the stirring assisting member 3, as in the embodiment of the present disclosure, R-T The B-based sintered magnet material 1, the alloy powder particles 2 and the stirring assisting member 3 can not be stirred into the processing container 4.

加熱時における処理容器4の内部は不活性雰囲気中であることが好ましい。本発明における「不活性雰囲気」とは、真空中、または不活性ガス雰囲気を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、R−T−B系焼結磁石素材1および合金粉末粒子2、撹拌補助部材3との間で化学的に反応しないガスであれば、本発明においては、「不活性ガス」に含まれる。処理容器4内の圧力は、1kPa以下が好ましい。   The inside of the processing container 4 at the time of heating is preferably in an inert atmosphere. The "inert atmosphere" in the present invention includes a vacuum or an inert gas atmosphere. In addition, “inert gas” is, for example, a rare gas such as argon (Ar), but chemically between the R-T-B based sintered magnet material 1 and the alloy powder particles 2 and the stirring assisting member 3 In the present invention, a gas which does not react is included in the "inert gas". The pressure in the processing container 4 is preferably 1 kPa or less.

本発明のRH供給拡散処理は、少なくともR−T−B系焼結磁石素材1および合金粉末粒子2の温度を500℃以上1000℃以下の範囲内に保持することが好ましく、800℃以上1000℃以下の範囲内がさらに好ましい。前記温度範囲は、処理容器内でR−T−B系焼結磁石素材1および合金粉末粒子2とが相対的に移動し近接または接触しながら、重希土類元素RHがR−T−B系焼結磁石素材内部の粒界相を伝わって内部へ拡散する好ましい温度範囲であり、前記R−T−B系焼結磁石素材内部への重希土類元素RHの拡散が効率的に行われることになる。保持時間は、R−T−B系焼結磁石素材1、合金粉末粒子2、撹拌補助部材3の装入量や形状などを考慮して決めればよい。保持時間は例えば10分から72時間であり、好ましくは1時間から14時間である。また、図2では、処理容器4は回転する構成を示しているが、処理容器4は揺動させてもよく、回転、揺動の動作を併わせて行ってもよい。   In the RH supply diffusion process of the present invention, the temperature of at least the RTB-based sintered magnet material 1 and the alloy powder particle 2 is preferably maintained in the range of 500 ° C. or more and 1000 ° C. or less, 800 ° C. or more and 1000 ° C. The following range is more preferable. In the above temperature range, the R-T-B-based sintered magnet material 1 and the alloy powder particles 2 relatively move in the processing container and while being close to or in contact with each other, the heavy rare earth element RH is R-T-B-based It is a preferable temperature range in which the grain boundary phase in the inside of the sintered magnet material is propagated to the inside through the grain boundary phase, and the diffusion of the heavy rare earth element RH into the inside of the RTB-based sintered magnet material is efficiently performed. . The holding time may be determined in consideration of the loading amount, shape, and the like of the RTB-based sintered magnet material 1, the alloy powder particles 2, and the stirring assisting member 3. The holding time is, for example, 10 minutes to 72 hours, preferably 1 hour to 14 hours. Moreover, although the process container 4 has shown the structure which rotates in FIG. 2, the process container 4 may be made to rock | fluctuate, and you may carry out the operation | movement of a rotation and a rocking movement together.

[ヒートパターンの例]
RH供給拡散処理時における処理容器の温度は、例えば図3に示すように変化する。図3は、加熱開始後における処理室温度の変化(ヒートパターン)の一例を示すグラフである。図3の例では、ヒータによる昇温を行いながら、真空排気を実行した。昇温レートは、約5℃/分である。処理室内の圧力が所望のレベルに達するまで、例えば約600℃に温度を保持した。その後、処理室の回転を開始する。拡散処理温度に達するまで昇温を行った。昇温レートは約5℃/分である。拡散処理温度に達した後、所定の時間だけ、その温度に保持する。その後、ヒータによる加熱を停止し、室温程度まで降温させた。その後、図2の装置から取り出したR−T−B系焼結磁石素材を別の熱処理炉に投入し、RH拡散処理(800℃〜950℃×4時間〜10時間)を行い、さらに拡散後の熱処理(450℃〜550℃×3時間〜5時間)が行われる。なお、本開示の拡散処理で実行可能なヒートパターンは、図3に示す例に限定されず、他の多様なパターンを採用することができる。また、真空排気は拡散処理が完了し、焼結磁石素材が充分に冷却されるまで行ってもよい。
[Example of heat pattern]
The temperature of the processing container at the time of RH supply diffusion processing changes, for example, as shown in FIG. FIG. 3 is a graph showing an example of a change (heat pattern) in the process chamber temperature after the start of heating. In the example of FIG. 3, evacuation was performed while performing temperature rise by a heater. The heating rate is about 5 ° C./min. The temperature is maintained, for example, at about 600 ° C. until the pressure in the processing chamber reaches a desired level. After that, the rotation of the processing chamber is started. The temperature was raised until the diffusion treatment temperature was reached. The heating rate is about 5 ° C./min. After reaching the diffusion treatment temperature, the temperature is maintained for a predetermined time. Thereafter, the heating by the heater was stopped and the temperature was lowered to about room temperature. Thereafter, the RTB-based sintered magnet material taken out of the apparatus of FIG. 2 is put into another heat treatment furnace, subjected to RH diffusion processing (800 ° C. to 950 ° C. × 4 hours to 10 hours), and after diffusion Heat treatment (450 ° C. to 550 ° C. × 3 hours to 5 hours) is performed. In addition, the heat pattern which can be performed by the diffusion process of this indication is not limited to the example shown in FIG. 3, Other various patterns are employable. Further, evacuation may be performed until the diffusion treatment is completed and the sintered magnet material is sufficiently cooled.

RH供給拡散処理後のR−T−B系焼結磁石と合金粉末粒子と撹拌補助部材とを分離する方法は、公知の方法で行えばよく、特にその方法は問わない。例えばパンチングメタルを振動するなどして分離すればよい。   The method of separating the R-T-B-based sintered magnet, the alloy powder particles, and the stirring auxiliary member after the RH supply diffusion treatment may be performed by a known method, and the method is not particularly limited. For example, the punching metal may be separated by vibrating or the like.

RH供給拡散処理後、重希土類元素RHの供給を行わずに重希土類元素RHをR−T−B系焼結磁石の内部に拡散させるRH拡散処理を行ってもよい。これにより、R−T−B系焼結磁石内において重希土類元素RHの拡散が生じるため、R−T−B系焼結磁石の表面側から奥深くに重希土類元素RHが拡散し、磁石全体としてHcJを高めることが可能である。RH拡散処理は、重希土類元素RHが合金粉末粒子からR−T−B系焼結磁石に供給されない状況でR−T−B系焼結磁石を700℃以上1000℃以下の範囲内で加熱する。RH拡散処理の時間は、例えば10分から72時間である。好ましくは1時間から12時間である。 After the RH supply diffusion process, the RH diffusion process may be performed to diffuse the heavy rare earth element RH into the interior of the R-T-B-based sintered magnet without supplying the heavy rare earth element RH. As a result, the diffusion of the heavy rare earth element RH occurs in the RTB-based sintered magnet, so the heavy rare earth element RH diffuses deeply from the surface side of the RTB-based sintered magnet, and as a whole magnet It is possible to increase H cJ . The RH diffusion process heats the RTB-based sintered magnet within the range of 700 ° C. or more and 1000 ° C. or less under the condition that the heavy rare earth element RH is not supplied from the alloy powder particles to the RTB-based sintered magnet. . The time of the RH diffusion process is, for example, 10 minutes to 72 hours. Preferably, it is 1 hour to 12 hours.

さらに、前記RH供給拡散処理後に、あるいは前記RH拡散処理後に、R−T−B系焼結磁石の磁気特性向上を目的として行う熱処理を施してもよい。この熱処理は公知のRT−B系焼結磁石の製造方法において焼結後に実施される熱処理と同様である。熱処理雰囲気、熱処理温度などは、公知の条件を採用すればよい。   Furthermore, after the RH supply diffusion treatment or after the RH diffusion treatment, heat treatment may be performed to improve the magnetic properties of the RTB-based sintered magnet. This heat treatment is the same as the heat treatment carried out after sintering in a known method of manufacturing a RT-B based sintered magnet. Known conditions may be adopted for the heat treatment atmosphere, the heat treatment temperature and the like.

本発明の実施形態を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The embodiments of the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

<実施例1>
Ndメタル、Prメタル、Dyメタル、フェロボロン合金、電解Co、Alメタル、Cuメタル、Gaメタルおよび電解鉄を用いて(メタルはいずれも純度99%以上)、表1の素材No.AのR−T−B系焼結磁石素材の組成となるように配合し、それらの原料をそれぞれ溶解してストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素加圧雰囲気で水素脆化させた後、550℃まで真空中で加熱、冷却する脱水素処理を施し、粗粉砕粉を得た。次に、得られた粗粉砕粉に潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量部に対して0.04質量部添加、混合した後、ジェットミル装置を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉を得た。なお、粒径D50は、気流分散式によるレーザー回折法で得られた体積基準メジアン径である。
Example 1
Using Nd metal, Pr metal, Dy metal, ferroboron alloy, electrolytic Co, Al metal, Cu metal, Ga metal and electrolytic iron (all metals have a purity of 99% or more). It mixes so that it may become the composition of RTB-based sintered magnet material of A, those materials are melted respectively and cast by strip casting method, flake-like material of thickness 0.2-0.4 mm Got an alloy. The obtained flake-like raw material alloy was subjected to hydrogen embrittlement in a hydrogen pressurized atmosphere, and then subjected to dehydrogenation treatment of heating and cooling in vacuum to 550 ° C. to obtain roughly crushed powder. Next, 0.04 parts by mass of zinc stearate as a lubricant is added to 100 parts by mass of the roughly pulverized powder and mixed with the roughly pulverized powder thus obtained, and then it is dry-milled in a nitrogen stream using a jet mill apparatus. Thus, a finely pulverized powder with a particle size D 50 of 4 μm was obtained. The particle diameter D 50 is the volume-based median diameter obtained by laser diffraction method using a stream of the dispersion equation.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量部に対して0.05質量部添加、混合した後、磁界中で成形し、成形体を得た。成形装置は、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を真空中、1070℃で4時間焼結して、素材No.AのR−T−B系焼結磁石素材を得た。R−T−B系焼結磁石素材の密度は7.5Mg/m3以上であった。得られたR−T−B系焼結磁石素材の成分の分析結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。また、O(酸素量)は、ガス融解−赤外線吸収法、N(窒素量)は、ガス融解−熱伝導法、C(炭素量)は、燃焼−赤外線吸収法、によるガス分析装置を使用して測定した。得られたR−T−B系焼結磁石素材は、50.5mm×8.5mm×5.5mmのサイズを持ち、全体として長方形状を有している。また、R−T−B系焼結磁石の8つの角は、半径1.0mmの面取りを行っている。 To the finely pulverized powder, 0.05 parts by mass of zinc stearate as a lubricant was added and mixed with 100 parts by mass of the finely pulverized powder, followed by molding in a magnetic field to obtain a molded body. As a forming apparatus, a so-called perpendicular magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction are orthogonal to each other was used. The obtained molded body is sintered at 1070 ° C. for 4 hours in vacuum, and the raw material No. 1 is sintered. The RTB-based sintered magnet material of A was obtained. The density of the RTB-based sintered magnet material was 7.5 Mg / m 3 or more. The analysis results of the components of the obtained RTB-based sintered magnet material are shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectrometry (ICP-OES). In addition, O (oxygen content), gas melting-infrared absorption method, N (nitrogen content), gas melting-heat conduction method, C (carbon content), using a gas analyzer by combustion-infrared absorption method Measured. The resulting RTB-based sintered magnet material has a size of 50.5 mm × 8.5 mm × 5.5 mm, and has a rectangular shape as a whole. Further, eight corners of the RTB-based sintered magnet are chamfered with a radius of 1.0 mm.

Figure 0006512150
Figure 0006512150

次にTbメタル、電解鉄を用いてTbFe3(Tb48.7質量%、Fe51.3質量%)となるように配合した原料合金を用意した。これらの原料合金を溶解してストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状のTbFe3合金を準備した。得られたTbFe3合金をピンミル粉砕した後、表2に示すJIS標準のふるいにかけることにより、No.a〜gの複数個の合金粉末粒子を準備した。より詳細には、表2における合金粉末粒子No.aは、ピンミル粉砕した複数個の合金粉末粒子を1000μmのふるいにかけ、次に、1000μmのふるいを通った合金粉末粒子に対し212μmのふるいにかけて212μmのふるいを通らなかった合金粉末粒子である。また、合金粉末粒子No.gは、38μmのふるいを通った合金粉末粒子である。合金粉末粒子No.b〜f、表5及び表7も同様に記載している。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。 Next, a raw material alloy was prepared by using Tb metal and electrolytic iron so as to be TbFe 3 (Tb 48.7 mass%, Fe 51.3 mass%). Casting and casting to dissolve these raw alloy was prepared flaky TbFe 3 alloy thickness 0.2 to 0.4 mm. The resulting TbFe 3 alloy was pin mill pulverizing, by sieving with JIS standard shown in Table 2, No. A to g of a plurality of alloy powder particles were prepared. More specifically, for alloy powder particle No. 1 in Table 2, a is an alloy powder particle which did not pass through a sieve of 212 micrometers which sieved a plurality of pin milled alloy powder particles through a sieve of 1000 micrometers, and then passed through a sieve of 1000 micrometers through a sieve of 212 micrometers. In addition, alloy powder particle no. g is an alloy powder particle that has passed through a 38 μm sieve. Alloy powder particle no. bf, Table 5 and Table 7 are described similarly. Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

Figure 0006512150
Figure 0006512150

前記R−T−B系焼結磁石素材と、前記R−T−B系焼結磁石素材に対して重量比率で3%の前記複数個の合金粉末粒子と、前記R−T−B系焼結磁石素材に対して重量比率で200%の撹拌補助部材を図2に示す処理容器内へ装入してRH供給拡散処理を行った。具体的には、処理容器の内径(筒の内径):約300mm、筒の長さ:約1000mm、R−T−B系焼結磁石素材の投入重量:約35kg(約2000個)、RH拡散源の投入重量:約1kg、攪拌補助部材の投入量:約70kgであった。前記処理容器内を真空排気した後Arガスを導入した。そして処理容器内を加熱すると共に回転させ、RH供給拡散処理を行った。処理容器は、毎分0.3mの周速度で回転させ、処理容器内の温度を930℃に加熱して6時間保持した。さらにRH供給拡散処理後のR−T−B系焼結磁石を別の熱処理炉に装入し、熱処理炉を500℃に加熱して2時間保持する熱処理を行った。   The RTB-based sintered magnet material, the plurality of alloy powder particles of 3% by weight ratio to the RTB-based sintered magnet material, and the RTB-based sintered material A stirring auxiliary member of 200% by weight ratio to the magnet material was charged into the processing container shown in FIG. 2 to perform RH supply diffusion processing. Specifically, the inner diameter (inner diameter of the cylinder) of the processing container: about 300 mm, the length of the cylinder: about 1000 mm, the input weight of the RTB based sintered magnet material: about 35 kg (about 2000 pieces), RH diffusion The input weight of the source: about 1 kg, the input amount of the stirring auxiliary member: about 70 kg. After evacuating the inside of the processing container, Ar gas was introduced. Then, the inside of the processing container was heated and rotated to perform RH supply diffusion processing. The processing vessel was rotated at a peripheral speed of 0.3 m / min, and the temperature in the processing vessel was heated to 930 ° C. and held for 6 hours. Furthermore, the RTB-based sintered magnet after RH supply diffusion processing was inserted into another heat treatment furnace, and the heat treatment furnace was heated to 500 ° C. and heat treatment was performed for 2 hours.

得られたR−T−B系焼結磁石の磁気特性測定結果を表3に示す。表3に示すBr、HcJの値は、熱処理後のR−T−B系焼結磁石の全面に機械加工を施し、サンプルを5mm(M)×7mm×7mmにして、BHトレーサにより測定した。表3における試料No.1は、合金粉末No.aとR−T−B系焼結磁石素材No.Aを用いてRH供給拡散処理を行ったものである。試料No.2〜7も同様に記載している。 Table 3 shows the measurement results of the magnetic properties of the obtained RTB-based sintered magnet. The values of B r and H cJ shown in Table 3 are measured by a BH tracer by machining the entire surface of the RTB -based sintered magnet after heat treatment to make the sample 5 mm (M) x 7 mm x 7 mm did. Sample No. in Table 3 1 is alloy powder No. 1; a and RTB-based sintered magnet materials No. A is used to perform RH supply diffusion processing. Sample No. 2-7 are described similarly.

Figure 0006512150
Figure 0006512150

表3に示すように、処理容器に大きさが90μm以下の合金粉末粒子をR−T−B系焼結磁石素材に対し重量比率で3%装入し、前記処理容器を加熱すると共に回転させてRH供給拡散処理を行った本発明の実施形態におけるR−T−B系焼結磁石(試料No.4〜7)は、大きさが90μmを超える合金粉末粒子を用いた比較例のR−T−B系焼結磁石(試料No.1〜3)と比べて高いHcJが得られている。また、大きさが90μm以上の合金粉末粒子であると、HcJは大きく変動(試料No.1〜3のように、HcJが1493kA/m〜1747kA/mの範囲で変動)するが、本発明の範囲内であると安定して(試料No.4〜7のように、HcJが1920kA/m〜2014kA/mの範囲であり変動が小さい)高いHcJを得ることができる。また、表3に示すように、大きさが38μm以上75μm以下(本発明の実施形態における試料No.5、6)の方がさらに安定して高いHcJが得られており、さらに大きさが38μm以上63μm以下(本発明の試料No.6)の方が高いHcJが得られている。 As shown in Table 3, 3% by weight ratio of alloy powder particles having a size of 90 μm or less is charged in a treatment container to a sintered RTB based magnet material, and the treatment container is heated and rotated. The RTB-based sintered magnet (samples Nos. 4 to 7) in the embodiment of the present invention subjected to the RH supply and diffusion treatment is R- of the comparative example using alloy powder particles having a size exceeding 90 μm. Higher H cJ is obtained as compared to the T-B based sintered magnets (samples Nos. 1 to 3). Also, if the size is 90 μm or more of alloy powder particles, H cJ greatly fluctuates (H cJ fluctuates in the range of 1493 kA / m to 1747 kA / m as in sample Nos. 1 to 3), but stable to be within the scope of the invention it is possible (as in sample No.4~7, H cJ variation in the range of 1920kA / m~2014kA / m is small) obtain high H cJ. In addition, as shown in Table 3, the size is 38 μm or more and 75 μm or less (samples No. 5 and 6 in the embodiment of the present invention) more stably and high H cJ is obtained, and the size is further smaller. Higher HcJ is obtained in the range of 38 μm or more and 63 μm or less (Sample No. 6 of the present invention).

また、得られた試料No.1〜7のR−T−B系焼結磁石の欠けを評価した。欠けの評価は、R−T−B系焼結磁石を20個抜き取り、大きさが直径1mmの球の体積と同等以上の欠けを生じたR−T−B系焼結磁石の個数比率をカウントし、欠けの発生率が10%以下を本発明として評価する。試料No.1〜7のR−T−B系焼結磁石を各20個ずつ抜き取り、欠けの評価を行った所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。   Moreover, the obtained sample No. The chipping of 1 to 7 RTB-based sintered magnets was evaluated. For evaluation of chipping, 20 pieces of R-T-B sintered magnets were taken out, and the number ratio of R-T-B-based sintered magnets having a chip size equal to or larger than the volume of a sphere of 1 mm in diameter was counted The incidence rate of chipping is evaluated as 10% or less according to the present invention. Sample No. When 20 pieces of 1 to 7 RTB-based sintered magnets were drawn out and evaluation of chipping was conducted, all samples were within the range of the present invention (the incidence of chipping is 10% or less) .

<実施例2>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を準備した。次に実施例1と同様な方法でTbFe3合金を準備し、ピンミル粉砕して90μmのふるい(JIS標準)にかけることにより、90μm以下の複数個の合金粉末粒子を準備した。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。
Example 2
In the same manner as in Example 1, the material No. 1 is obtained. An RTB-based sintered magnet material of A was prepared. Then prepared TbFe 3 alloy in the same manner as in Example 1, by multiplying the 90 [mu] m sieve and a pin mill pulverizing (JIS standard), were prepared following plurality of alloy powder particles 90 [mu] m. Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

前記合金粉末粒子と前記R−T−B系焼結磁石素材と前記撹拌補助部材を図2に示す処理容器内へ装入した。R−T−B系焼結磁石素材に対する合金粉末粒子の重量比率を表4に示す。表4において、例えば試料No.8は、前記合金粉末粒子をR−T−B系焼結磁石素材に対して重量比率で1%装入したことを示す。試料No.9〜19も同様に記載している。前記合金粉末粒子を表4に示す重量比率で前記処理容器内へ装入する以外は実施例1と同じ方法でRH供給拡散処理を行った。さらに実施例1と同じ方法で熱処理を行った。   The alloy powder particles, the RTB-based sintered magnet material, and the stirring auxiliary member were loaded into the processing container shown in FIG. The weight ratio of the alloy powder particles to the RTB-based sintered magnet material is shown in Table 4. In Table 4, for example, sample no. 8 shows that the alloy powder particles were charged at 1% by weight ratio to the RTB-based sintered magnet material. Sample No. 9 to 19 are described in the same manner. The RH supply diffusion process was performed in the same manner as in Example 1 except that the alloy powder particles were charged into the processing vessel at a weight ratio shown in Table 4. Furthermore, heat treatment was performed in the same manner as in Example 1.

得られたR−T−B系焼結磁石の磁気特性測定結果を表4に示す。表4に示すBr、HcJの値は、実施例1と同様な方法により測定した。 Table 4 shows the measurement results of the magnetic properties of the obtained RTB-based sintered magnet. The values of B r and H cJ shown in Table 4 were measured by the same method as in Example 1.

Figure 0006512150
Figure 0006512150

表4に示すように、前記合金粉末粒子をR−T−B系焼結磁石素材に対して重量比率で2%以上15%以下装入することによって得られた本発明のR−T−B系焼結磁石(試料No.9〜14)は、重量比率が本発明の範囲外である比較例のR−T−B系焼結磁石(試料No.8、15〜19)と比べて高いHcJが得られている。さらに、表4に示すように、前記合金粉末粒子のR−T−B系焼結磁石素材に対する重量比率が3%以上7%以下(試料No.10〜12)の方がさらに高いHcJが得られている。また、得られた試料No.8〜19のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。 As shown in Table 4, the R-T-B of the present invention obtained by charging the alloy powder particles in a proportion by weight of 2% to 15% with respect to the R-T-B sintered magnet material The sintered sintered magnet (samples No. 9 to 14) has a weight ratio higher than that of the R-T-B sintered magnet (samples No. 8 and 15 to 19) of the comparative example whose weight ratio is out of the range H cJ has been obtained. Furthermore, as shown in Table 4, the weight ratio of the alloy powder particles to the RTB -based sintered magnet material is 3% or more and 7% or less (samples Nos. 10 to 12), in which H cJ is higher. It is obtained. Moreover, the obtained sample No. When the chip of the RTB-based sintered magnet of 8 to 19 was evaluated under the same conditions as in Example 1, all the samples were within the range of the present invention (the incidence of chipping is 10% or less).

<実施例3>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を複数ロット分準備した。次に実施例1と同様な方法でTbFe3合金を準備し、ピンミル粉砕して表5に示すJIS標準のふるいにかけることにより、No.h〜jの複数個の合金粉末粒子を複数ロット分準備した。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。
Example 3
In the same manner as in Example 1, the material No. 1 is obtained. A plurality of lots of RTB based sintered magnet materials of A were prepared. Then prepared TbFe 3 alloy in the same manner as in Example 1, by sieving with JIS standard shown in Table 5 by a pin mill pulverizing, No. Several lots of alloy powder particles h to j were prepared. Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

Figure 0006512150
Figure 0006512150

前記合金粉末粒子と前記R−T−B系焼結磁石素材と前記撹拌補助部材を実施例1と同じ条件でRH供給拡散処理を複数ロット分行った。前記RH供給拡散処理後に残った合金粉末粒子(h〜j)を各ロット毎に電界放出型走査電子顕微鏡(FE−SEM)により観察したところ、いずれのロットも表面全体にRH拡散源以外の異物(例えば、R酸化物やR−T−B化合物)が存在していた。さらに、前記RH供給拡散処理後に残った各ロットの合金粉末粒子をそれぞれ集め、集めた合金粉末粒子(h〜j)と前記R−T−B系焼結磁石素材の他のロットと前記撹拌補助部材を用いて実施例1と同様な方法でRH供給拡散処理を行った。さらに、実施例1と同じ方法で熱処理を行った。なお、合金粉末(h〜j)の大きさは、前記RH供給拡散処理前後でほとんど変化がなかった。   A plurality of lots of RH supply and diffusion treatments were performed under the same conditions as in Example 1 for the alloy powder particles, the RTB-based sintered magnet material, and the stirring auxiliary member. The alloy powder particles (h to j) remaining after the RH supply diffusion treatment are observed for each lot by a field emission scanning electron microscope (FE-SEM), and any lot is a foreign matter other than the RH diffusion source over the entire surface. (For example, R oxide and R-T-B compound) were present. Furthermore, the alloy powder particles of each lot remaining after the RH supply diffusion process are respectively collected, and the collected alloy powder particles (h to j) and the other lots of the RTB-based sintered magnet material and the stirring assist The RH supply diffusion process was performed in the same manner as in Example 1 using the members. Furthermore, heat treatment was performed in the same manner as in Example 1. The size of the alloy powder (h to j) hardly changed before and after the RH supply diffusion process.

得られたR−T−B系焼結磁石の磁気特性測定結果を表6に示す。表6に示すBr、HcJの値は、実施例1と同様な方法により測定した。 Table 6 shows the measurement results of the magnetic properties of the obtained RTB-based sintered magnet. The values of B r and H cJ shown in Table 6 were measured by the same method as in Example 1.

Figure 0006512150
Figure 0006512150

表6に示すように、一度RH供給拡散処理を行った合金粉末粒子を使用して繰り返しRH供給拡散処理を行った場合においても、本発明のR−T−B系焼結磁石(試料No.21及び22)は、大きさが90μmを超える合金粉末粒子を用いた比較例のR−T−B系焼結磁石(試料No.20)と比べて高いHcJが得られている。また、本発明の範囲内であると安定して(1881kA/m及び1890kA/m)高いHcJ が得られている。また、得られた試料No.20〜22のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。 As shown in Table 6, the RTB-based sintered magnet of the present invention (Sample No. 1) was obtained even when the RH supply and diffusion process was repeated using alloy powder particles that had been subjected to the RH supply and diffusion process once. In the samples 21 and 22), a high HcJ is obtained as compared with the RTB -based sintered magnet (sample No. 20) of the comparative example using alloy powder particles having a size of more than 90 μm. Moreover, stable as being within the scope of the present invention (1881kA / m and 1890kA / m) high H cJ are achieved. Moreover, the obtained sample No. When the chip of the RTB-based sintered magnet of 20 to 22 was evaluated under the same conditions as in Example 1, all the samples were within the range of the present invention (the incidence of chipping is 10% or less).

<実施例4>
実施例3と同様な方法でR−T−B系焼結磁石素材及び複数個の合金粉末粒子h〜jを複数ロット分準備し、実施例3と同様な方法でRH供給拡散処理を複数ロット分行った。そして、RH供給拡散後に残った各ロットの合金粉末粒子を集めてピンミル粉砕(合金粉末粒子が小さくなり過ぎない程度に粉砕)を行い、再度表7に示すJIS標準のふるいにかけることによりNo.h´〜j´の複数個の合金粉末粒子を準備した。前記合金粉末粒子(h´〜j´)は、電界放出型走査電子顕微鏡(FE−SEM)により観察したところ、表面にRH拡散源以外の異物(例えば、R酸化物物やR−T−B化合物)が存在していない部分があることを確認した(新生表面が露出している部分を確認した)。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。
Example 4
A plurality of R-T-B sintered magnet materials and a plurality of alloy powder particles h to j are prepared in the same manner as in Example 3, and a plurality of RH supply diffusion treatments are performed in the same manner as in Example 3. I went for a minute. Then, the alloy powder particles of each lot remaining after RH supply diffusion are collected, subjected to pin mill grinding (grind to such an extent that the alloy powder particles do not become too small), and again passed through a sieve according to JIS standard shown in Table 7. Several alloy powder particles of h'-j 'were prepared. When the alloy powder particles (h 'to j') are observed by a field emission scanning electron microscope (FE-SEM), foreign matter other than the RH diffusion source (for example, R oxide or RTB) is observed on the surface. It was confirmed that there was a portion where the compound was not present (a portion where the nascent surface was exposed was confirmed). Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

Figure 0006512150
Figure 0006512150

次に実施例3と同様な方法でR−T−B系焼結磁石素材を準備し、前記R−T−B系焼結磁石素材と前記合金粉末粒子(h´〜j´)と前記撹拌補助部材を用いて実施例1と同じ方法でRH供給拡散処理を行った。さらに、実施例1と同じ方法で熱処理を行った。   Next, an RTB-based sintered magnet material is prepared in the same manner as in Example 3, and the RTB-based sintered magnet material, the alloy powder particles (h 'to j'), and the stirring are prepared. The RH supply diffusion process was performed in the same manner as in Example 1 using the auxiliary member. Furthermore, heat treatment was performed in the same manner as in Example 1.

得られたR−T−B系焼結磁石の磁気特性測定結果を表8に示す。表8に示すBr、HcJの値は、実施例1と同様な方法により測定した。 Table 8 shows the results of measuring the magnetic properties of the obtained RTB-based sintered magnet. The values of B r and H cJ shown in Table 8 were measured by the same method as in Example 1.

Figure 0006512150
Figure 0006512150

表8に示すように、RH供給拡散処理後の合金粉末粒子を粉砕し前記合金粉末粒子の少なくとも一部に新生表面を露出させた本発明のR−T−B系焼結磁石(No.24及び25)は、前記合金粉末粒子の少なくとも一部に新生表面が露出していない実施例3の本発明のR−T−B系焼結磁石(No.21及び22)と比較してさらに高いHcJが得られている。また、得られた試料No.23〜25のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。 As shown in Table 8, the R-T-B-based sintered magnet of the present invention (No. 24) according to the present invention in which the alloy powder particles after RH supply diffusion treatment are ground to expose the nascent surface to at least a part of the alloy powder particles. And 25) are even higher compared to the RTB based sintered magnet (Nos. 21 and 22) of the present invention of Example 3 in which the nascent surface is not exposed to at least a part of the alloy powder particles. H cJ has been obtained. Moreover, the obtained sample No. When the chip of the RTB-based sintered magnet of 23 to 25 was evaluated under the same conditions as in Example 1, all samples were within the range of the present invention (the incidence of chipping is 10% or less).

<実施例5>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を複数ロット分準備した。次に、Tbメタル、電解鉄を用いて表9の合金粉末No.w−1〜w−5に示す組成となるように配合して実施例1と同じ方法で合金を作製した。得られた合金に対してピンミル粉砕を行い、90μmのふるい(JIS標準)にかけることにより、90μm以下の複数個の合金粉末粒子をそれぞれ(合金粉末No.w−1〜w−5)準備した。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。
Example 5
In the same manner as in Example 1, the material No. 1 is obtained. A plurality of lots of RTB based sintered magnet materials of A were prepared. Next, using Tb metal and electrolytic iron, alloy powder No. 1 in Table 9 is used. The alloys were prepared in the same manner as in Example 1 by blending so as to have the compositions shown in w-1 to w-5. The obtained alloy was subjected to pin mill pulverization and applied to a sieve of 90 μm (JIS standard) to prepare a plurality of alloy powder particles of 90 μm or less (alloy powders No. w-1 to w-5). . Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

Figure 0006512150
Figure 0006512150

次に表10に示す条件で前記複数個の合金粉末粒子と前記R−T−B系焼結磁石素材と前記撹拌補助部材を用いて実施例1と同じ条件でRH供給拡散処理を行った。さらに実施例1と同じ方法で熱処理を行った。得られたR−T−B系焼結磁石の磁気特性を実施例1と同じ方法で測定した。測定結果を表10の試料No.26〜30に示す。表10における試料No.26は、合金粉末No.w−1とR−T−B系焼結磁石素材No.Aを用いてRH供給拡散処理を行ったものである。試料No.27〜30も同様に記載している。   Next, RH supply diffusion processing was performed under the same conditions as Example 1 using the plurality of alloy powder particles, the RTB-based sintered magnet material, and the stirring auxiliary member under the conditions shown in Table 10. Furthermore, heat treatment was performed in the same manner as in Example 1. The magnetic properties of the resulting RTB-based sintered magnet were measured in the same manner as in Example 1. The measurement results are shown in Table 10. 26-30. Sample No. in Table 10 No. 26, alloy powder No. w-1 and RTB sintered magnet materials No. 1 A is used to perform RH supply diffusion processing. Sample No. 27-30 are described similarly.

Figure 0006512150
Figure 0006512150

表10に示す様に、重希土類元素RH(Tb)を35質量%未満含有する複数個の合金粉末粒子を用いた試料No.30よりも、重希土類元素RHを35質量%以上含有する複数個の合金粉末粒子を用いた試料No.26〜29の方が高いHcJが得られている。さらに、重希土類元素RHを40質量%以上60質量%以下含有する複数個の合金粉末粒子を用いた試料No.26〜28の方がより高いHcJが得られている。よって、複数個の合金粉末粒子は、重希土類元素RHを35質量%以上含有することが好ましく、40質量%以上60質量%以下含有することがさらに好ましい。また、得られた試料No.26〜30のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。 As shown in Table 10, Sample No. 1 using a plurality of alloy powder particles containing less than 35% by mass of heavy rare earth element RH (Tb). Sample No. 1 using a plurality of alloy powder particles containing 35 mass% or more of heavy rare earth element RH rather than 30 The higher HcJ is obtained at 26-29 . Furthermore, sample No. 1 using a plurality of alloy powder particles containing 40 to 60 mass% of heavy rare earth element RH. Higher H cJ is obtained at 26-28. Therefore, the plurality of alloy powder particles preferably contain the heavy rare earth element RH at 35% by mass or more, and more preferably 40% by mass to 60% by mass. Moreover, the obtained sample No. When the chip of the RTB-based sintered magnet of 26 to 30 was evaluated under the same conditions as in Example 1, all the samples were within the range of the present invention (the incidence of chipping is 10% or less).

<実施例6>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を準備した。次に実施例1と同様な方法でTbFe3合金を準備した。次に、TbFe3合金に対して水素粉砕を行うことにより複数個の合金粉末粒子を準備した。水素粉砕は、まず、TbFe3を水素炉内に装入した後、室温で、水素炉内へ水素供給を開始し、水素の絶対圧を0.3MPa程度に保持する水素吸蔵工程を90分間行った。本工程では、合金粉末の水素吸蔵反応に伴い炉内の水素が消費され、水素の圧力が低下するため、その低下を補うように追加で水素を供給し、0.3MPa程度に制御した。
Example 6
In the same manner as in Example 1, the material No. 1 is obtained. An RTB-based sintered magnet material of A was prepared. Was prepared TbFe 3 alloy and then at the same manner as in Example 1. It was then prepared a plurality of alloy powder particles by performing a hydrogen pulverization against TbFe 3 alloy. Hydrogen pulverization is carried out by first charging TbFe 3 into the hydrogen furnace, then starting the hydrogen supply into the hydrogen furnace at room temperature, and performing a hydrogen storage process for 90 minutes maintaining the absolute pressure of hydrogen at about 0.3 MPa. The In this process, hydrogen in the furnace is consumed along with the hydrogen storage reaction of the alloy powder, and the pressure of hydrogen is reduced. Therefore, additional hydrogen is supplied to control the reduction to about 0.3 MPa.

次に、表11に示す脱水素温度にてそれぞれ真空中で8時間加熱する脱水素工程を行った。水素粉砕後の複数個の合金粉末粒子をAr雰囲気中で加熱・溶解カラム分離―熱伝導度法(TCD)により水素量を測定した。測定結果を表11に示す。さらに、撹拌補助部材として、直径3mmのジルコニアの球を複数個用意した。   Next, a dehydrogenation step was carried out by heating each in vacuum at a dehydrogenation temperature shown in Table 11 for 8 hours. The amount of hydrogen was measured by heating / dissolving column separation-thermal conductivity method (TCD) of a plurality of alloy powder particles after hydrogen grinding in an Ar atmosphere. The measurement results are shown in Table 11. Furthermore, a plurality of zirconia balls having a diameter of 3 mm were prepared as a stirring aid member.

目開きが90μmのふるいを用いる分級を行っていない前記水素粉砕後の複数個の合金粉末粒子と前記R−T−B系焼結磁石素材と前記撹拌補助部材を用いて実施例1と同じ方法でRH供給拡散処理を行った。さらに実施例1と同じ方法で熱処理を行った。尚、確認のため、水素粉砕後の複数個の合金粉末粒子を90μmのふるいにかけた所、いずれも重量比率で90%以上が90μm以下の複数個の合金粉末粒子であった。   The same method as in Example 1 using a plurality of the alloy powder particles after the hydrogen grinding, the RTB-based sintered magnet material, and the stirring auxiliary member without classification using a sieve with an opening of 90 μm The RH supply diffusion process was performed. Furthermore, heat treatment was performed in the same manner as in Example 1. In addition, when a plurality of alloy powder particles after hydrogen pulverization were sieved with a 90 μm for confirmation, they were a plurality of alloy powder particles having a weight ratio of 90% or more and 90 μm or less.

得られたR−T−B系焼結磁石の磁気特性を実施例1と同じ方法で測定した。測定結果を表11に示す。   The magnetic properties of the resulting RTB-based sintered magnet were measured in the same manner as in Example 1. The measurement results are shown in Table 11.

Figure 0006512150
Figure 0006512150

表11に示す様に、水素粉砕を行うことにより複数個の合金粉末粒子を得る場合、脱水素工程において、400℃以上550℃以下に加熱する(脱水素温度が400℃以上550℃以下である)水素粉砕を行った本発明(試料No.32〜34)はいずれも高いHcJが得られている。また、発明の範囲内であると安定して(1998kA/m〜2013kA/m)高いHcJ が得られている。これに対し、脱水素熱温度が本発明の範囲外である試料No.31及び35は、RH供給拡散処理後にR−T−B系焼結磁石が水素脆化したため、磁気特性を測定することができなかった。これは、表11に示す通り、本発明の水素粉砕条件で作製した複数個の合金粉末粒子(試料No.32〜34)の水素量は数十ppmと、水素がほとんど残存していないのに対し、脱水素温度が本発明の範囲外である複数個の合金粉末粒子(試料No.31及び35)の水素量は数百ppmと、水素が多く残存している。そのため、RH供給拡散処理時において、複数個の合金粉末粒子からR−T−B系焼結磁石素材に水素が供給されたため、最終的に得られたR−T−B系焼結磁石が水素脆化したと考えられる。また、得られた試料No.32〜34のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した所、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。 As shown in Table 11, in the case of obtaining a plurality of alloy powder particles by performing hydrogen grinding, heating is performed at 400 ° C. or more and 550 ° C. or less in the dehydrogenation step (dehydrogenation temperature is 400 ° C. or more and 550 ° C. or less The invention (samples Nos. 32 to 34) subjected to hydrogen grinding all gave high HcJ . Moreover, stable as being within the scope of the invention (1998kA / m~2013kA / m) high H cJ are achieved. On the other hand, sample No. 1 whose dehydrogenation heat temperature is out of the range of the present invention. In No. 31 and 35, the magnetic characteristics could not be measured because the RTB-based sintered magnet was hydrogen-embrittled after the RH supply diffusion treatment. This is because, as shown in Table 11, the hydrogen content of the plurality of alloy powder particles (samples No. 32 to 34) manufactured under the hydrogen pulverizing conditions of the present invention is several tens ppm and almost no hydrogen remains. On the other hand, the hydrogen content of several alloy powder particles (samples No. 31 and 35) whose dehydrogenation temperature is out of the range of the present invention is as large as several hundreds ppm and hydrogen remains. Therefore, since hydrogen is supplied from the plurality of alloy powder particles to the R-T-B-based sintered magnet material during RH supply diffusion processing, the finally obtained R-T-B-based sintered magnet is hydrogen It is considered to be embrittled. Moreover, the obtained sample No. When the chipping of the RTB-based sintered magnet of 32-34 was evaluated under the same conditions as in Example 1, all the samples were within the range of the present invention (the incidence of chipping is 10% or less).

<参考例1>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を準備した。次に実施例1と同様な方法でTbFe3合金を準備しピンミル粉砕し、63μmのふるいにかけ、次に63μmのふるいを通った合金粉末粒子に対し38μmのふるいにかけて38μmのふるいを通らなかった合金粉末粒子を準備した。R−T−B系焼結磁石素材の重量に対し3%の前記合金粉末粒子を準備し、準備した前記合金粉末粒子を質量分率50%でアルコールと混合した混濁液を用意した。前記混濁液をR−T−B系焼結磁石素材の表面(全面)に塗布し、温風で乾燥させた。
Reference Example 1
In the same manner as in Example 1, the material No. 1 is obtained. An RTB-based sintered magnet material of A was prepared. Then prepared a pin mill pulverizing the TbFe 3 alloy in the same manner as in Example 1 and sieved with 63 .mu.m, then to the alloy powder particles through the sieve of 63 .mu.m did not pass the sieve of 38μm sieved with 38μm alloy Powder particles were prepared. The said alloy powder particle of 3% with respect to the weight of the RTB type | system | group sintered magnet raw material was prepared, and the turbid liquid which mixed the prepared said alloy powder particle with alcohol with a mass fraction of 50% was prepared. The turbid solution was applied to the surface (entire surface) of the RTB-based sintered magnet material and dried with warm air.

TbFe3により覆われたR−T−B系焼結磁石素材に対し、Ar雰囲気中で930℃に加熱して6時間保持するRH供給拡散処理工程を行った。さらに、実施例1と同じ方法で熱処理を行った。 An RH supply and diffusion treatment step of heating to 930 ° C. in an Ar atmosphere and holding for 6 hours was performed on the RTB-based sintered magnet material covered with TbFe 3 . Furthermore, heat treatment was performed in the same manner as in Example 1.

得られたR−T−B系焼結磁石の磁気特性を実施例1と同じ方法で測定した。測定結果を表12に示す。   The magnetic properties of the resulting RTB-based sintered magnet were measured in the same manner as in Example 1. The measurement results are shown in Table 12.

Figure 0006512150
Figure 0006512150

参考例1は、本発明のRH供給拡散処理ではなく、特許文献2に記載の方法でRH供給拡散処理を行ったものである。表9の試料No.36は、RH供給拡散処理が異なる以外は、実施例1の試料No.6と同じ組成、方法で作製したものである。表12に示すように、試料No.36は試料No.6と比べてHcJ が大きく低下している。すなわち、特許文献2に記載のRH供給拡散処理では、本発明の特定の大きさの合金粉末粒子を用い、前記特定の大きさの合金粉末粒子の装入量をR−T−B系焼結磁石素材の重量比率に対して本発明の特定の割合としても高いHcJを得ることができない。 The reference example 1 is not the RH supply diffusion process of the present invention, but the RH supply diffusion process is performed by the method described in Patent Document 2. The sample numbers in Table 9 Sample No. 36 is the same as sample No. 1 of Example 1 except that the RH supply diffusion process is different. It is produced by the same composition and method as No. 6. As shown in Table 12, sample nos. 36 is the sample No. H cJ is significantly reduced compared to 6. That is, in the RH supply diffusion process described in Patent Document 2, the alloy powder particle of the specific size of the present invention is used, and the charging amount of the alloy powder particle of the specific size is R-T-B based sintering Even high H cJ can not be obtained as a specific ratio of the present invention to the weight ratio of the magnet material.

<実施例7>
実施例1と同様な方法で素材No.AのR−T−B系焼結磁石素材を準備した。次に実施例1と同様な方法でTbFe3合金を準備し、ピンミル粉砕して90μmのふるい(JIS標準)にかけることにより、90μm以下の複数個の合金粉末粒子を準備した。また、撹拌補助部材として、直径1〜7mmのジルコニアの球を複数個用意した。
Example 7
In the same manner as in Example 1, the material No. 1 is obtained. An RTB-based sintered magnet material of A was prepared. Then prepared TbFe 3 alloy in the same manner as in Example 1, by multiplying the 90 [mu] m sieve and a pin mill pulverizing (JIS standard), were prepared following plurality of alloy powder particles 90 [mu] m. In addition, a plurality of zirconia balls having a diameter of 1 to 7 mm were prepared as a stirring assisting member.

前記合金粉末粒子と前記R−T−B系焼結磁石素材と前記撹拌補助部材を用いて、RH供給拡散処理を行った。RH供給拡散処理は、表13に示す大きさの撹拌補助部材を使用する以外は実施例1と同じ方法でRH供給拡散処理を行った。表13における試料No.41は、重量比率で複数個の撹拌補助部材の全体の70%を直径2mmの撹拌補助部材を使用し、30%を直径7mmの撹拌補助部材を使用したこと以外は実施例1と同じ方法でRH供給拡散処理を行ったものである。試料No.37〜40及び42、43も同様に記載している。さらに実施例1と同じ方法で熱処理を行った。   An RH supply diffusion process was performed using the alloy powder particles, the RTB-based sintered magnet material, and the stirring auxiliary member. RH supply diffusion processing performed RH supply diffusion processing by the same method as Example 1 except using the stirring auxiliary member of the magnitude | size shown in Table 13. Sample No. in Table 13 41 is the same method as in Example 1 except that 70% of the total of a plurality of stirring assistants in weight ratio is using a 2 mm diameter stirring assistant and 30% is using a 7 mm diameter stirring assistant. RH supply diffusion processing was performed. Sample No. 37-40 and 42, 43 are likewise described. Furthermore, heat treatment was performed in the same manner as in Example 1.

得られたR−T−B系焼結磁石の磁気特性を実施例1と同じ方法で測定した。測定結果を表13に示す。また、得られた試料No.37〜43のR−T−B系焼結磁石の欠けを実施例1と同じ条件で評価した。評価結果を表13に示す。表13において、欠けの評価が本発明の範囲内(欠けの発生率が10%以下)である場合は○と、範囲外(欠けの発生率が10%超)である場合は×と記載する。   The magnetic properties of the resulting RTB-based sintered magnet were measured in the same manner as in Example 1. The measurement results are shown in Table 13. Moreover, the obtained sample No. The chipping of the RTB based sintered magnet of 37 to 43 was evaluated under the same conditions as in Example 1. The evaluation results are shown in Table 13. In Table 13, when the evaluation of chipping is within the range of the present invention (the incidence of chipping is 10% or less), it is described as ○, and when it is outside the range (the incidence of chipping is more than 10%), it is described as ×. .

Figure 0006512150
Figure 0006512150

表13に示す様に、重量比率で複数個の撹拌補助部材の全体の65%以上の撹拌補助部材が0.5mm以上4mm以下の大きさを有している本発明(試料No.37〜39、41、43)は、いずれの試料も本発明の範囲内(欠けの発生率が10%以下)であった。一方、撹拌補助部材の大きさが本発明の範囲外(試料No.40及び42)であると、欠けが多く発生した。   As shown in Table 13, the present invention (Sample Nos. 37 to 39) in which 65% or more of the stirring aid members in the weight ratio by weight ratio have a size of 0.5 mm or more and 4 mm or less. 41, and 43) were all within the scope of the present invention (the incidence of chipping was 10% or less). On the other hand, when the size of the stirring assisting member was out of the range of the present invention (samples No. 40 and 42), many chips occurred.

本発明によれば、高残留磁束密度、高保磁力のR−T−B系焼結磁石を作製することができる。本発明の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。   According to the present invention, an RTB-based sintered magnet having a high residual magnetic flux density and a high coercive force can be manufactured. The sintered magnet of the present invention is suitable for various motors such as a motor for hybrid vehicle mounting exposed to high temperature, home appliances, and the like.

1 R−T−B系焼結磁石素材
2 合金粉末粒子
3 撹拌補助部材
4 処理容器
5 蓋
6 排気装置
7 ヒータ
8 モータ
1 RTB-based sintered magnet material 2 alloy powder particle 3 stirring auxiliary member 4 processing vessel 5 lid 6 exhaust device 7 heater 8 motor

Claims (12)

複数個のR−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種であり、NdおよびPrの少なくとも一方を必ず含む、Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む)を準備する工程と、
重希土類元素RH(重希土類元素RHはTbおよびDyの少なくとも一方)を20質量%以上80質量%以下含有する、大きさが90μm以下の複数個の合金粉末粒子を準備する工程と、
複数個の撹拌補助部材であって、重量比率で前記複数個の撹拌補助部材の全体の65%以上の撹拌補助部材が0.5mm以上4mm以下の直径を有する撹拌補助部材を準備する工程と、
前記複数個のR−T−B系焼結磁石素材と、前記複数個のR−T−B系焼結磁石素材に対して重量比率で2%以上15%以下の前記合金粉末粒子と、前記複数個のR−T−B系焼結磁石素材に対して重量比率で100%以上500%以下の前記撹拌補助部材とを処理容器内に装入する工程と、
前記処理容器を加熱すると共に回転および/または揺動させることで、前記R−T−B系焼結磁石素材と前記合金粉末粒子と前記撹拌補助部材を連続的にまたは断続的に移動させてRH供給拡散処理を行う工程と、
を含むR−T−B系焼結磁石の製造方法。
Several R-T-B sintered magnet materials (R is at least one of rare earth elements and always includes at least one of Nd and Pr. T is at least one of transition metal elements and necessarily includes Fe. Step of preparing
Preparing a plurality of alloy powder particles having a size of 90 μm or less, containing 20 to 80 mass% of heavy rare earth element RH (heavy rare earth element RH is at least one of Tb and Dy);
Preparing a plurality of agitation assisting members, wherein the agitation assisting members having a weight ratio of at least 65% of the total agitation assisting members have a diameter of 0.5 mm or more and 4 mm or less;
The plurality of RTB-based sintered magnet materials, and the alloy powder particles having a weight ratio of 2% to 15% with respect to the plurality of RTB-based sintered magnet materials, 100% or more and 500% or less by weight ratio with respect to a plurality of RTB-based sintered magnet materials;
The R-T-B-based sintered magnet material, the alloy powder particles, and the stirring auxiliary member are moved continuously or intermittently by heating and rotating and / or rocking the processing container to thereby rotate the RH. Performing a supply diffusion process;
The manufacturing method of the RTB-based sintered magnet containing
前記RH供給拡散処理を行う工程において、前記処理容器を800℃以上1000℃以下の処理温度に加熱する、請求項1に記載のR−T−B系焼結磁石の製造方法。   The manufacturing method of the RTB-type sintered magnet of Claim 1 which heats the said processing container to the processing temperature of 800 degreeC or more and 1000 degrees C or less in the process of performing the said RH supply diffusion process. 前記複数個の合金粉末粒子の大きさは、それぞれ、38μm以上75μm以下である、請求項1または2に記載のR−T−B系焼結磁石の製造方法。   The method of manufacturing an RTB-based sintered magnet according to claim 1, wherein the size of each of the plurality of alloy powder particles is 38 μm or more and 75 μm or less. 前記処理容器内に装入する前記複数個の合金粉末粒子の前記R−T−B系焼結磁石素材に対する重量比率が3%以上7%以下である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。   The weight ratio with respect to the said RTB type | system | group sintered magnet raw material of several said alloy powder particle | grains charged in the said processing container is 3%-7% in any one of Claim 1 to 3 The manufacturing method of the RTB-based sintered magnet. 前記複数個の合金粉末粒子は、少なくとも一部に新生表面が露出している合金粉末粒子を含有している、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。   5. The R-T-B-based sintered magnet according to any one of claims 1 to 4, wherein the plurality of alloy powder particles contain alloy powder particles in which a new surface is exposed at least in part. Production method. 前記複数個の合金粉末粒子は、前記重希土類元素RHを35質量%以上65質量%以下含有する、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。   The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 5, wherein the plurality of alloy powder particles contain the heavy rare earth element RH in a range of 35% by mass to 65% by mass. 前記重希土類元素RHはTbである、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。   The method for producing an R-T-B-based sintered magnet according to any one of claims 1 to 6, wherein the heavy rare earth element RH is Tb. 前記複数個のR−T−B系焼結磁石素材は、1000mm3以上の体積を有し、直交する3方向における3つのサイズの最大のサイズが最小のサイズの2倍以上である、請求項1から7のいずれかに記載のR−T−B系焼結磁石の製造方法。 The plurality of RTB-based sintered magnet materials have a volume of 1000 mm 3 or more, and the maximum size of three sizes in three orthogonal directions is twice or more the minimum size. The manufacturing method of the RTB-based sintered magnet according to any one of 1 to 7. 前記複数個の焼結磁石素材の各々は、1辺の長さが40mm以上、他の2辺の長さがそれぞれ10mm以下の直方体の形状、または各頂点位置で面取りされている概略直方体の形状を有している、請求項8に記載のR−T−B系焼結磁石の製造方法。   Each of the plurality of sintered magnet materials has a shape of a rectangular solid having a length of 40 mm or more on one side and a length of 10 mm or less on the other 2 sides, or a shape of a substantially rectangular solid chamfered at each vertex position The manufacturing method of the RTB-type sintered magnet of Claim 8 which has these. 前記複数個の撹拌補助部材のそれぞれは、ジルコニア、窒化ケイ素、炭化ケイ素、窒化硼素、または、これらの混合物のセラミックスから形成されている、請求項1から9のいずれかに記載のR−T−B系焼結磁石の製造方法。   10. The R-T- according to any one of claims 1 to 9, wherein each of the plurality of stirring assisting members is formed of a ceramic of zirconia, silicon nitride, silicon carbide, boron nitride, or a mixture thereof. Method of producing a B-based sintered magnet 前記RH供給拡散処理の工程によって前記複数個の合金粉末粒子のいずれかから前記重希土類元素RHが供給された前記R−T−B系焼結磁石素材を、前記合金粉末粒子に非接触の状態で、加熱してRH拡散処理を行う工程を含む、請求項1から10のいずれかに記載のR−T−B系焼結磁石の製造方法。   The R-T-B-based sintered magnet material to which the heavy rare earth element RH is supplied from any of the plurality of alloy powder particles in the step of the RH supply diffusion process is in a non-contact state with the alloy powder particles The manufacturing method of the RTB-based sintered magnet according to any one of claims 1 to 10, comprising the step of heating to perform RH diffusion processing. 前記複数個の合金粉末粒子は、重希土類元素RH(重希土類元素RHはTb及び/又はDy)を35質量%以上50質量%以下含有する合金を水素粉砕することにより作製され、前記水素粉砕における脱水素工程において、前記合金を400℃以上550℃以下に加熱する、請求項1から11のいずれかに記載のR−T−B系焼結磁石の製造方法。   The plurality of alloy powder particles are produced by hydrogen-pulverizing an alloy containing heavy rare earth element RH (heavy rare earth element RH is Tb and / or Dy) in an amount of 35% by mass to 50% by mass. The method for producing an RTB-based sintered magnet according to any one of claims 1 to 11, wherein the alloy is heated to 400 ° C to 550 ° C in the dehydrogenation step.
JP2016064190A 2016-03-28 2016-03-28 Method of manufacturing RTB based sintered magnet Active JP6512150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064190A JP6512150B2 (en) 2016-03-28 2016-03-28 Method of manufacturing RTB based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064190A JP6512150B2 (en) 2016-03-28 2016-03-28 Method of manufacturing RTB based sintered magnet

Publications (2)

Publication Number Publication Date
JP2017183348A JP2017183348A (en) 2017-10-05
JP6512150B2 true JP6512150B2 (en) 2019-05-15

Family

ID=60007661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064190A Active JP6512150B2 (en) 2016-03-28 2016-03-28 Method of manufacturing RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP6512150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473684B (en) * 2019-08-19 2020-09-01 中国计量大学 Preparation method of high-coercivity sintered neodymium-iron-boron magnet
CN110849453B (en) * 2019-11-29 2021-03-12 上海交通大学 High-precision powder distribution device and method
CN112509775A (en) * 2020-12-15 2021-03-16 烟台首钢磁性材料股份有限公司 Neodymium-iron-boron magnet with low-amount heavy rare earth addition and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667391B1 (en) * 2011-01-19 2019-03-13 Hitachi Metals, Ltd. Method of producing r-t-b sintered magnet
JP5747543B2 (en) * 2011-02-14 2015-07-15 日立金属株式会社 RH diffusion source and method for producing RTB-based sintered magnet using the same
JP2012204696A (en) * 2011-03-25 2012-10-22 Tdk Corp Production method of powder for magnetic material and permanent magnet
JP6086293B2 (en) * 2012-09-28 2017-03-01 日立金属株式会社 Method for producing RTB-based sintered magnet
US10639720B2 (en) * 2015-08-24 2020-05-05 Hitachi Metals, Ltd. Diffusion treatment device and method for manufacturing R-T-B system sintered magnet using same

Also Published As

Publication number Publication date
JP2017183348A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6037093B1 (en) Method for producing RTB-based sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP5510457B2 (en) Method for producing RTB-based sintered magnet
JP5999106B2 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
CN110265201B (en) R-T-B permanent magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP2019102708A (en) R-t-b based permanent magnet
JP6512150B2 (en) Method of manufacturing RTB based sintered magnet
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
JP2009032742A (en) Manufacturing method of rare earth permanent sintered magnet
CN109671547B (en) R-T-B sintered magnet and method for producing same
JP6146269B2 (en) Method for producing rare earth-transition metal-nitrogen based magnet powder
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
CN115315764A (en) R-T-B permanent magnet, method for producing same, motor, and automobile
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2021150547A (en) Method for manufacturing r-t-b based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP7059995B2 (en) RTB-based sintered magnet
JP7188202B2 (en) RTB system permanent magnet
JP2018060931A (en) Method for producing r-t-b based magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP7408921B2 (en) RTB series permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350