JP6086293B2 - Method for producing RTB-based sintered magnet - Google Patents
Method for producing RTB-based sintered magnet Download PDFInfo
- Publication number
- JP6086293B2 JP6086293B2 JP2012215351A JP2012215351A JP6086293B2 JP 6086293 B2 JP6086293 B2 JP 6086293B2 JP 2012215351 A JP2012215351 A JP 2012215351A JP 2012215351 A JP2012215351 A JP 2012215351A JP 6086293 B2 JP6086293 B2 JP 6086293B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered magnet
- rtb
- based sintered
- diffusion source
- auxiliary member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000009792 diffusion process Methods 0.000 claims description 170
- 239000000463 material Substances 0.000 claims description 84
- 238000003756 stirring Methods 0.000 claims description 72
- 239000000203 mixture Substances 0.000 claims description 52
- 238000011282 treatment Methods 0.000 claims description 36
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 29
- 238000002156 mixing Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 14
- 239000011261 inert gas Substances 0.000 description 7
- 238000013019 agitation Methods 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- 229910017110 Fe—Cr—Co Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Description
本発明は、R−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB-based sintered magnet.
R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種、Tは遷移金属元素のうち少なくとも一種であり、Feを必ず含む)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車載用モータ等の各種モータに使用されている。 R-T-B sintered magnets (R is at least one of rare earth elements, T is at least one of transition metal elements, and must contain Fe) are known as the most powerful magnets among permanent magnets. It is used for various motors such as a voice coil motor (VCM) of a hard disk drive and a hybrid in-vehicle motor.
R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という場合がある)が低下し、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 The RTB -based sintered magnet has a reduced coercive force H cJ (hereinafter sometimes simply referred to as “H cJ ”) at high temperatures, causing irreversible thermal demagnetization. In order to avoid irreversible thermal demagnetization, when used for motors, etc., it is required to maintain a high HcJ even at high temperatures.
近年、R−T−B系焼結磁石のHcJ向上を目的として、R−T−B系焼結磁石表面にDy、Tb等の重希土類元素RHを供給し、その重希土類元素RHを磁石内部へ拡散することによって、残留磁束密度Br(以下、単に「Br」という場合がある)の低下を抑制しつつ、HcJを向上させる方法が提案されている。 In recent years, for the purpose of improving HcJ of RTB-based sintered magnets, heavy rare earth elements RH such as Dy and Tb are supplied to the surface of RTB-based sintered magnets, and the heavy rare earth elements RH are magnetized. There has been proposed a method for improving H cJ while suppressing a decrease in residual magnetic flux density B r (hereinafter, simply referred to as “B r ”) by diffusing inside.
特許文献1は、複数個のR−T−B系焼結磁石体と重希土類元素RHを含有する複数個のRH拡散源とを相対的に移動可能かつ近接または接触可能に処理室内に装入し、前記R−T−B系焼結磁石体と前記RH拡散源とを前記処理室内にて連続的にまたは断続的に移動させながら、加熱することにより、前記RH拡散源から重希土類元素RHを前記R−T−B系焼結磁石体の表面に供給しつつ、内部に拡散させる方法を開示している。
In
しかし、特許文献1の拡散処理は、R−T−B系焼結磁石体とRH拡散源とを処理室内にて連続的にまたは断続的に移動させるために、これらが装入された処理室は、回転、揺動等(以下、「回転等」という場合がある)を行うため、R−T−B系焼結磁石体同士の接触による衝撃で、R−T−B系焼結磁石体に欠けが発生する場合がある。
However, in the diffusion process of
特許文献1には、R−T−B系焼結磁石体とRH拡散源に加えて、撹拌補助部材を処理室内に導入することが好ましい、と記載されている。撹拌補助部材はRH拡散源とR−T−B系焼結磁石体との接触を促進し、また撹拌補助部材に付着した重希土類元素RHをR−T−B系焼結磁石体へ間接的に供給する役割をする。さらに、撹拌補助部材は、処理室内において、R−T−B系焼結磁石体同士やR−T−B系焼結磁石体とRH拡散源との接触による欠けを防ぐ役割もある、と記載されている。
特許文献1の拡散処理において、R−T−B系焼結磁石体、RH拡散源、撹拌補助部材を処理室内に装入する方法として、例えば、R−T−B系焼結磁石体、RH拡散源、撹拌補助部材のそれぞれを、前記処理室内に一括して装入する方法(以下、「一括装入処理」という場合がある。)が考えられる。
In the diffusion process of
しかし、前記一括装入処理を行うと、撹拌補助部材を入れない場合(R−T−B系焼結磁石体とRH拡散源のみの場合)と比べて、特許文献1の拡散処理後におけるR−T−B系焼結磁石の磁気特性にばらつきが生じるという問題点があった。本発明者らは、この問題点に対し、詳細に検討した結果、従来、撹拌補助部材は、RH拡散源とR−T−B系焼結磁石体との接触を促進するため等に用いられるものであるため、撹拌に悪影響を与えるものではないと考えられてきたが、実際に撹拌補助部材を使用すると、R−T−B系焼結磁石体とRH拡散源とが均一に撹拌し難くなる場合があることが判明した。すなわち、本発明者らは、撹拌補助部材を使用して前記一括装入処理を行うと、R−T−B系焼結磁石体とRH拡散源との均一な撹拌が阻害される場合があるという問題を知見した。R−T−B系焼結磁石体とRH拡散源とが均一に撹拌されていないと、重希土類元素RHのR−T−B系焼結磁石体への供給がばらつくこととなり、その結果、特許文献1の拡散処理後におけるR−T−B系焼結磁石の磁気特性がばらつくことになる。
However, when the batch charging process is performed, the R after the diffusion process of
前記問題を解決するために、例えば、R−T−B系焼結磁石体、RH拡散源、撹拌補助部材が装入された処理室の回転等の速度を変更せずに、回転等の時間を長くすることが考えられるが、特許文献1の拡散処理時間が長くなり量産性が大幅に悪化してしまう。そのため、前記処理室の回転等の時間は変更せずに、回転等の速度を変更する方法が考えられる。しかし、例えば、回転等の速度を速めると、R−T−B系焼結磁石体とRH拡散源は均一に撹拌されるものの、R−T−B系焼結磁石体同士の接触による衝撃が大きくなり、撹拌補助部材によるR−T−B系焼結磁石体の欠け防止機能が十分に発揮せず、欠けが多く発生する場合があるという問題を生じる。一方、回転等の速度を遅くすると、R−T−B系焼結磁石体とRH拡散源とが均一に撹拌しないために処理時間を長くする必要があり、量産効率が悪化するという問題があった。
In order to solve the above-mentioned problem, for example, without changing the speed of rotation of the processing chamber in which the RTB-based sintered magnet body, the RH diffusion source, and the stirring auxiliary member are charged, the time of rotation, etc. However, the diffusion processing time of
また、特許文献1において、R−T−B系焼結磁石体、RH拡散源、撹拌補助部材を処理室内に装入する別の方法として、例えば、前もってR−T−B系焼結磁石体、RH拡散源、撹拌補助部材を処理室外で均一に混合してから前記処理室内に装入する方法(以下、「事前一括混合処理」という場合がある)が考えられる。前記事前一括混合処理は、例えば、R−T−B系焼結磁石体、RH拡散源、撹拌補助部材を容器等に装入し、前記容器を回転等させる方法で行うことができる。しかし、このように外で混合した場合においても、上記処理室の回転等の時間を長くする、あるいは速度を変更する場合と同様に、欠けが多く発生したり、処理時間が長くなり量産効率が悪化するという問題があった。
Further, in
本発明は、上記問題点を解決するためになされたものであり、特許文献1の拡散処理において、R−T−B系焼結磁石素材(特許文献1のR−T−B系焼結磁石体に相当)とRH拡散源とを均一に撹拌させ、磁気特性のばらつきを防止するに際し、R−T−B系焼結磁石素材の欠けの発生を低減し、量産効率を悪化させないR−T−B系焼結磁石の製造方法の提供を目的とする。
The present invention has been made to solve the above problems, and in the diffusion treatment of
請求項1に記載の本発明によるR−T−B系焼結磁石の製造方法は、複数個のRH拡散源(重希土類元素RHを30質量%以上80質量%以下含む合金、ただし、重希土類元素RHは、DyおよびTbの少なくとも一種)を準備する工程と、複数個の撹拌補助部材を準備する工程と、複数個のR−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種、Tは遷移金属元素のうち少なくとも一種であり、Feを必ず含む)を準備する工程と、前記RH拡散源と前記撹拌補助部材とを混合し、拡散源‐補助部材混合物を準備する工程と、前記拡散源‐補助部材混合物と前記R−T−B系焼結磁石素材とを処理室内に装入する工程と、前記処理容器を加熱すると共に回転及び/又は揺動させることで、前記RH拡散源と前記撹拌補助部材と前記R−T−B系焼結磁石素材を連続的にまたは断続的に移動させてRH拡散処理を行う工程と、を含むことを特徴とする。
The method for producing an RTB-based sintered magnet according to
請求項2に記載の本発明は、請求項1に記載のR−T−B系焼結磁石の製造方法において、前記拡散源‐補助部材混合物におけるRH拡散源と撹拌補助部材との重量比が0.8〜1.2:1の範囲にあることを特徴とする。
請求項3に記載の本発明は、請求項1に記載のR−T−B系焼結磁石の製造方法において、R−T−B系焼結磁石素材と前記拡散源‐補助部材混合物との重量比が0.4〜0.7:1の範囲にあることを特徴とする。
The present invention according to
According to a third aspect of the present invention, there is provided the method for producing an RTB-based sintered magnet according to the first aspect, wherein the RTB-based sintered magnet material and the diffusion source-auxiliary member mixture are mixed. The weight ratio is in the range of 0.4 to 0.7: 1.
本発明によれば、前記RH拡散処理において、R−T−B系焼結磁石素材とRH拡散源とを均一に撹拌させ、磁気特性のばらつきを防止するに際し、R−T−B系焼結磁石素材の欠けの発生を低減し、量産効率を悪化させないR−T−B系焼結磁石の製造方法を提供することができる。 According to the present invention, in the RH diffusion treatment, the RTB-based sintered magnet material and the RH diffusion source are uniformly stirred to prevent variation in magnetic properties. The production | generation method of the RTB type | system | group sintered magnet which reduces generation | occurrence | production of the chip | tip of a magnet raw material and does not deteriorate mass production efficiency can be provided.
本発明において、RH拡散処理とは、拡散源‐補助部材混合物とR−T−B系焼結磁石素材とを装入した処理室を加熱すると共に回転及び/又は揺動させることで、前記拡散源‐補助部材混合物により装入されたRH拡散源と撹拌補助部材、およびR−T−B系焼結磁石素材を連続的にまたは断続的に移動させることにより、RH拡散源から重希土類元素RHをR−T−B系焼結磁石素材の表面に供給しつつ、内部に拡散させることをいう。 In the present invention, the RH diffusion treatment refers to the diffusion by heating and rotating and / or swinging the treatment chamber charged with the diffusion source-auxiliary member mixture and the RTB-based sintered magnet material. By moving the RH diffusion source and the stirring auxiliary member charged with the source-auxiliary member mixture and the R-T-B system sintered magnet material continuously or intermittently, the heavy rare earth element RH is removed from the RH diffusion source. Is diffused inside while supplying the surface of the RTB-based sintered magnet material.
本発明において、RH拡散処理前およびRH拡散処理中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」とし、RH拡散処理後のR−T−B系焼結磁石を「R−T−B系焼結磁石」として、それぞれ区別して表記する。前記R−T−B系焼結磁石素材は、特許文献1のR−T−B系焼結磁石体に相当する。また、複数個のRH拡散源と複数個の撹拌補助部材とを混合した混合物のことを「拡散源‐補助部材混合物」と表記する。
In the present invention, the RTB-based sintered magnet before RH diffusion treatment and during the RH diffusion treatment is referred to as an “RTB-based sintered magnet material”, and the RTB-based sintered magnet after the RH diffusion treatment is used. The binding magnets are indicated separately as “RTB-based sintered magnets”. The RTB-based sintered magnet material corresponds to the RTB-based sintered magnet body of
本発明のR−T−B系焼結磁石の製造方法の実施形態を図1に示す工程図に基づいて説明する。。
本発明は、RH拡散処理(S6)を行うに際して、複数個のRH拡散源を準備する工程(S1)にて準備した前記RH拡散源と、複数個の撹拌補助部材を準備する工程(S2)にて準備した前記撹拌補助部材とを混合して拡散源‐補助部材混合物を準備する工程(S4)を実施し、次に、前記拡散源‐補助部材混合物と複数個のR−T−B系焼結磁石素材を準備する工程(S3)にて準備した前記R−T−B系焼結磁石素材とを処理室内に装入する工程(S5)を実施することを特徴とする。すなわち、本発明においては、前記一括装入処理を行わない。本発明は、RH拡散源と撹拌補助部材とを混合して拡散源‐補助部材混合物を準備する工程(S4)を実施した後、前記拡散源‐補助部材混合物とR−T−B系焼結磁石素材とを処理室内に装入する工程(S5)を実施することで、前記一括装入処理と比べ、R−T−B系焼結磁石素材の欠けの発生を招くことなく、R−T−B系焼結磁石素材とRH拡散源とを均一に撹拌することができる。すなわち、本発明は、R−T−B系焼結磁石素材とRH拡散源とを均一に撹拌するために前記一括装入処理と異なり、処理室の回転等の速度を速めたり、遅くしたりする必要がない。よって、処理室の回転等の速度を速めることによるR−T−B系焼結磁石素材の欠けの発生や処理室の回転等の速度を遅くすることによる量産効率の悪化を招くことなく、磁気特性のばらつきを防止することができる。また、本発明は、R−T−B系焼結磁石素材は混合せず、RH拡散源と撹拌補助部材のみを前もって混合し、拡散源‐補助部材混合物を作製するため、前もってR−T−B系焼結磁石素材、RH拡散源、撹拌補助部材を混合する場合(前記事前一括混合処理)と比べて、R−T−B系焼結磁石素材の欠けを考慮することなく、RH拡散源と撹拌補助部材とを短時間で混合することができ、結果としてこの混合物とR−T−B系焼結磁石素材との良好な撹拌を長時間を要することなく実現できる。
なお、前記工程(S1)と工程(S2)は、少なくとも工程(S4)の前に実施されていればその順序は問わない。例えば、前記工程(S2)の後に前記工程(S1)を実施してもよい。また、前記工程(S3)は少なくとも前記工程(S5)の前に実施されていればその順序は問わない。例えば、前記工程(S4)の前に実施してもよいし、前記工程(S4)の後に実施してもよい。
以下、各工程の詳細について説明する
An embodiment of the method for producing an RTB-based sintered magnet of the present invention will be described based on the process chart shown in FIG. .
In the present invention, when the RH diffusion process (S6) is performed, the RH diffusion source prepared in the step (S1) of preparing a plurality of RH diffusion sources and the step of preparing a plurality of stirring auxiliary members (S2). The step (S4) of preparing the diffusion source-auxiliary member mixture by mixing the stirring auxiliary member prepared in step S4 is performed, and then the diffusion source-auxiliary member mixture and a plurality of RTB systems A step (S5) of charging the RTB-based sintered magnet material prepared in the step (S3) of preparing the sintered magnet material into the processing chamber is performed. That is, in the present invention, the batch charging process is not performed. In the present invention, after the step (S4) of preparing the diffusion source-auxiliary member mixture by mixing the RH diffusion source and the stirring auxiliary member, the diffusion source-auxiliary member mixture and the RTB-based sintering are performed. By carrying out the step (S5) of charging the magnet material into the processing chamber, the R-T-B system sintered magnet material is not chipped as compared with the batch charging process, without causing the occurrence of chipping in the R-T The B-based sintered magnet material and the RH diffusion source can be uniformly stirred. That is, in the present invention, in order to uniformly stir the RTB-based sintered magnet material and the RH diffusion source, the speed of the rotation of the processing chamber is increased or decreased unlike the batch charging process. There is no need to do. Therefore, without causing the deterioration of mass production efficiency due to the occurrence of chipping of the RTB-based sintered magnet material by increasing the speed of rotation of the processing chamber or the speed of rotation of the processing chamber, etc. Variations in characteristics can be prevented. In the present invention, since the RTB-based sintered magnet material is not mixed, only the RH diffusion source and the stirring auxiliary member are mixed in advance to prepare the diffusion source-auxiliary member mixture. Compared to the case of mixing a B-based sintered magnet material, RH diffusion source, and stirring auxiliary member (preliminary batch mixing process), RH diffusion can be performed without considering chipping of the RTB-based sintered magnet material. The source and the stirring auxiliary member can be mixed in a short time, and as a result, good stirring of the mixture and the R-T-B system sintered magnet material can be realized without requiring a long time.
Note that the order of the step (S1) and the step (S2) is not limited as long as it is performed at least before the step (S4). For example, the step (S1) may be performed after the step (S2). The order of the step (S3) is not limited as long as it is performed at least before the step (S5). For example, it may be performed before the step (S4) or after the step (S4).
Details of each process will be described below.
[複数個のRH拡散源を準備する工程(S1)]
複数個のRH拡散源を準備する工程(S1)において、RH拡散源は、重希土類元素RH(重希土類元素RHは、Dy、Tbのうち少なくとも一種)を30質量%以上80質量%以下含む合金であり、例えば、DyFe合金、TbFe合金などである。重希土類元素RHが30質量%未満であると、重希土類元素RHの供給量が小さくなり、処理時間が非常に長くなるため量産に適さない。また、重希土類元素RHが80質量%を超えるとR−T−B系焼結磁石素材と溶着する恐れがある。RH拡散源は、Dy、Tb、Fe以外に本発明の効果を損なわない限りにおいて、Nd、Pr、La、Ce、Zn、Zr、SmおよびCoの少なくとも一種を含有してもよい。
[Step of preparing a plurality of RH diffusion sources (S1)]
In the step of preparing a plurality of RH diffusion sources (S1), the RH diffusion source is an alloy containing 30% by mass to 80% by mass of heavy rare earth element RH (heavy rare earth element RH is at least one of Dy and Tb). For example, DyFe alloy, TbFe alloy and the like. When the heavy rare earth element RH is less than 30% by mass, the supply amount of the heavy rare earth element RH becomes small and the treatment time becomes very long, which is not suitable for mass production. Moreover, when heavy rare earth element RH exceeds 80 mass%, there exists a possibility of welding with a RTB system sintered magnet raw material. The RH diffusion source may contain at least one of Nd, Pr, La, Ce, Zn, Zr, Sm, and Co as long as the effects of the present invention are not impaired other than Dy, Tb, and Fe.
さらに不可避的不純物として、Al、Ti、V、Cr、Mn、Ni、Cu、Ga、Nb、Mo、Ag、In、Hf、Ta、W、Pb、SiおよびBiの少なくとも一種を含んでもよい。 Furthermore, as an inevitable impurity, at least one of Al, Ti, V, Cr, Mn, Ni, Cu, Ga, Nb, Mo, Ag, In, Hf, Ta, W, Pb, Si, and Bi may be included.
RH拡散源の形状は、例えば、球状、線状、板状、ブロック状、粉末など任意である。球状、線状、板状、ブロック状の場合、その直径は、例えば、球状の場合は、直径1.5mm〜10mmに設定され得る。粉末の場合、その粒径は、例えば0.05mm〜1mmの範囲に設定され得る。 The shape of the RH diffusion source is arbitrary such as a spherical shape, a linear shape, a plate shape, a block shape, and a powder. In the case of a spherical shape, a linear shape, a plate shape, or a block shape, the diameter can be set to 1.5 mm to 10 mm in the case of a spherical shape, for example. In the case of powder, the particle size can be set in the range of 0.05 mm to 1 mm, for example.
[複数個の撹拌補助部材を準備する工程(S2)]
撹拌補助部材は、処理室内において、R−T−B系焼結磁石素材同士の接触による欠けの発生を低減する役割がある。また、撹拌補助部材は、RH拡散源から撹拌補助部材に付着した重希土類元素RHをR−T−B系焼結磁石素材へ間接的に供給する役割もある。特に、本発明においては、処理室内に装入する前にあらかじめ上記RH拡散源と混合して、拡散源‐補助部材混合物を構成することから、RH拡散処理時に上記撹拌補助部材としての本来の役割を十分に発揮することが可能となる。
[Step of preparing a plurality of stirring assisting members (S2)]
The stirring assisting member has a role of reducing the occurrence of chipping due to contact between the R-T-B type sintered magnet materials in the processing chamber. The stirring assisting member also serves to indirectly supply the heavy rare earth element RH attached to the stirring assisting member from the RH diffusion source to the RTB-based sintered magnet material. In particular, in the present invention, since the mixture is mixed with the RH diffusion source in advance before charging into the processing chamber to form a diffusion source-auxiliary member mixture, the original role as the stirring auxiliary member during the RH diffusion treatment. Can be fully exhibited.
複数個の撹拌補助部材を準備する工程(S2)において、撹拌補助部材は、ジルコニア、窒化ケイ素、炭化ケイ素並びに窒化ホウ素のうち少なくとも一種、あるいは、Mo、W、Ta、Hf、Zrのうち少なくとも一種からなる。また、撹拌補助部材は、処理室内で移動しやすい形状にすることが好ましく、例えば、直径0.5mm〜3mmの球状、楕円状、円柱状等が挙げられる。 In the step (S2) of preparing a plurality of stirring assisting members, the stirring assisting member is at least one of zirconia, silicon nitride, silicon carbide, and boron nitride, or at least one of Mo, W, Ta, Hf, and Zr. Consists of. Moreover, it is preferable that the stirring auxiliary member has a shape that is easy to move in the processing chamber, and examples thereof include a spherical shape, an elliptical shape, and a cylindrical shape having a diameter of 0.5 mm to 3 mm.
[複数個のR−T−B系焼結磁石素材を準備する工程(S3)]
複数個のR−T−B系焼結磁石素材を準備する工程(S3)において、R−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種、Tは遷移金属のうち少なくとも一種であり、Feを必ず含む)は、公知の組成、製造方法によって製造されたR−T−B系焼結磁石を用いることができる。
[Step of preparing a plurality of RTB-based sintered magnet materials (S3)]
In the step of preparing a plurality of RTB-based sintered magnet materials (S3), an RTB-based sintered magnet material (R is at least one of rare earth elements, and T is at least one of transition metals) Rt-B-based sintered magnet manufactured by a known composition and manufacturing method can be used.
[拡散源‐補助部材混合物を準備する工程(S4)]
複数個のRH拡散源と複数個の撹拌補助部材とを混合し、拡散源‐補助部材混合物を準備する。混合方法としては、公知の方法を用いればよく、その方法は、特に問わない。例えば複数個のRH拡散源と撹拌補助部材を混合タンクに投入し、混合タンクを毎秒0.1〜2mにて10分〜8時間回転させて混合すればよい。
[Step of preparing a diffusion source-auxiliary member mixture (S4)]
A plurality of RH diffusion sources and a plurality of stirring auxiliary members are mixed to prepare a diffusion source-auxiliary member mixture. As a mixing method, a known method may be used, and the method is not particularly limited. For example, a plurality of RH diffusion sources and an agitation auxiliary member may be charged into the mixing tank, and the mixing tank may be rotated at 0.1 to 2 m per second for 10 minutes to 8 hours for mixing.
前記拡散源‐補助部材混合物は、RH拡散源と撹拌補助部材との重量比が0.8〜1.2:1の範囲にあることが好ましい。0.8未満であると、RH拡散源の装入量が少ないため、重希土類元素RHのR−T−B系焼結磁石素材への供給量が少なくなる場合がある。その結果、RH拡散処理後におけるR−T−B系焼結磁石の磁気特性が低下する場合がある。また、1.2を超えると撹拌補助部材の装入量が少ないため、次の工程であるRH拡散処理時にR−T−B系焼結磁石素材同士の接触による欠けが多く発生する場合がある。 In the diffusion source-auxiliary member mixture, the weight ratio of the RH diffusion source and the stirring auxiliary member is preferably in the range of 0.8 to 1.2: 1. If it is less than 0.8, the amount of RH diffusion source charged is small, so the amount of heavy rare earth element RH supplied to the R-T-B system sintered magnet material may be small. As a result, the magnetic properties of the RTB-based sintered magnet after the RH diffusion treatment may deteriorate. Moreover, since the charging amount of the stirring auxiliary member is small when it exceeds 1.2, there may be a lot of chipping due to the contact between the RTB-based sintered magnet materials during the RH diffusion treatment which is the next step. .
[前記拡散源‐補助部材混合物と前記R−T−B系焼結磁石素材とを処理室内に装入する工程(S5)]
前記工程(S4)によって前もって準備した前記拡散源‐補助部材混合物と前記工程(S3)によって準備したR−T−B系焼結磁石素材とを処理室内へ装入する。前記処理室内には、前記R−T−B系焼結磁石素材と前記拡散源‐補助部材混合物とを、重量比で0.4〜0.7:1の範囲で装入することが好ましい。0.4未満であると、R−T−B系焼結磁石素材の装入量が少ないため、処理量が少なくなり量産性が悪化する場合がある。また、0.7を超えると拡散源‐補助部材混合物の装入量が少ないため、重希土類元素RHのR−T−B系焼結磁石素材への供給量が少なくなる場合がある。その結果、RH拡散処理後におけるR−T−B系焼結磁石の磁気特性が低下する場合がある。
[Step of charging the diffusion source-auxiliary member mixture and the RTB-based sintered magnet material into the processing chamber (S5)]
The diffusion source-auxiliary member mixture prepared in advance in the step (S4) and the RTB-based sintered magnet material prepared in the step (S3) are charged into a processing chamber. It is preferable that the RTB-based sintered magnet material and the diffusion source-auxiliary member mixture are charged into the processing chamber in a weight ratio of 0.4 to 0.7: 1. If it is less than 0.4, the amount of R-T-B system sintered magnet material charged is small, so that the processing amount decreases and mass productivity may deteriorate. On the other hand, if it exceeds 0.7, the amount of the diffusion source-auxiliary member mixture charged is small, so that the amount of heavy rare earth element RH supplied to the RTB-based sintered magnet material may be small. As a result, the magnetic properties of the RTB-based sintered magnet after the RH diffusion treatment may deteriorate.
〔RH拡散処理を行う工程(S6)〕
前記工程(S5)によって前記拡散源‐補助部材混合物とR−T−B系焼結磁石素材とを装入した処理室を加熱すると共に回転及び/又は揺動させることで、前記拡散源‐補助部材混合物により装入されたRH拡散源と撹拌補助部材、およびR−T−B系焼結磁石素材を連続的にまたは断続的に移動させることにより、RH拡散源から重希土類元素RHをR−T−B系焼結磁石素材の表面に供給しつつ、内部に拡散させるRH拡散処理を実施する。図2は、本発明のRH拡散処理を行う際に使用される装置の一例を模式的に示す断面図である。まず、図2の蓋5を処理室4から取り外し、前記拡散源‐補助部材混合物と複数個のR−T−B系焼結磁石素材1を処理室4に装入し、蓋5を再び処理室4に取り付ける。次に、排気装置6により、処理室4の内部を減圧する。そして、処理室4の内部圧力が十分に低下した後、モータ8によって処理室4を回転させながら、ヒータ7による加熱を実行する。この処理室4の回転によって前記拡散源‐補助部材混合物により装入されたRH拡散源2と撹拌補助部材3、およびR−T−B系焼結磁石素材1が図示のごとく均一に撹拌されることになり、円滑に目的とする前記RH拡散処理を行うことができる。
[Step of performing RH diffusion treatment (S6)]
By heating and rotating and / or swinging the processing chamber charged with the diffusion source-auxiliary member mixture and the RTB-based sintered magnet material in the step (S5), the diffusion source-auxiliary By continuously or intermittently moving the RH diffusion source, the stirring auxiliary member, and the RTB-based sintered magnet material charged by the member mixture, the heavy rare earth element RH is transferred from the RH diffusion source to the R- While supplying the surface of the TB-based sintered magnet material, an RH diffusion treatment is performed to diffuse the inside. FIG. 2 is a cross-sectional view schematically showing an example of an apparatus used when performing the RH diffusion treatment of the present invention. First, the
処理室4は、ステンレス製であるが、これに限定されず、1000℃以上の耐熱性を有し、R−T−B系焼結磁石素材1、RH拡散源2、撹拌補助部材3と反応しにくい材料であれば任意である。例えば、Nb、Mo、Wの少なくとも一種を含む合金を用いてもよい。さらに、Fe−Cr−Al系合金、Fe−Cr−Co系合金を用いてもよい。処理室4には開閉または取り外し可能な蓋5が設けられている。また処理室4の内壁には、R−T−B系焼結磁石素材1、RH拡散源2、撹拌補助部材3が効率的に移動を行い得るように、突起物を設置している。さらに処理室4の筒形状は、断面が楕円形または多角形であってもよい。処理室4は、排気装置6と連結されている。排気装置6により、処理室4の内部は減圧または加圧することができる。処理室4の内部には、図示しないガス供給装置から不活性ガスを挿入することができる。
The
処理室4は、その外周部に配置されたヒータ7によって加熱される。処理室4の加熱により、その内部に収納されたR−T−B系焼結磁石素材1、RH拡散源2、撹拌補助部材3も加熱される。処理室4は、回転可能に支持されており、ヒータ7による加熱中もモータ8によって回転することができる。処理室4の回転速度は、R−T−B系焼結磁石素材1とRH拡散源2とが溶着しないように、例えば処理室4の内壁面の周速度を毎秒0.01m以上に設定することが好ましい。また、回転により処理室内のR−T−B系焼結磁石素材同士が激しく接触しないように、毎秒0.5m以下に設定することが好ましい。
The
加熱時における処理室4の内部は不活性雰囲気中であることが好ましい。本発明における「不活性雰囲気」とは、真空中、または不活性ガス雰囲気を含むものとする。また、「不活性ガス」は、例えばアルゴン(Ar)などの希ガスであるが、R−T−B系焼結磁石素材1およびRH拡散源2、撹拌補助部材3との間で化学的に反応しないガスであれば、本発明においては、「不活性ガス」に含まれる。処理室4内の圧力は、1kPa以下が好ましい。本発明においては、R−T−B系焼結磁石素材1とRH拡散源2とが近接または接触しているため、重希土類元素RHの拡散量を大きくできるので、1kPa以下であれば充分である。
The inside of the
本発明のRH拡散処理においては、R−T−B系焼結磁石素材1およびRH拡散源2の温度を500℃以上850℃以下の範囲内に保持することが好ましく、700℃以上850℃以下の範囲内がさらに好ましい。前記温度範囲は、処理室内でR−T−B系焼結磁石素材1およびRH拡散源2とが相対的に移動し近接または接触しながら、重希土類元素RHがR−T−B系焼結磁石素材内部組織の粒界層を伝わって内部へ拡散する好ましい温度範囲であり、前記R−T−B系焼結磁石素材内部への拡散が効率的に行われることになる。本発明におけるRH拡散処理の保持時間は、R−T−B系焼結磁石素材1、RH拡散源2、撹拌補助部材3の装入量や形状などを考慮して決めることができる。保持時間は10分から72時間であり、好ましくは1時間から14時間である。
In the RH diffusion treatment of the present invention, it is preferable to maintain the temperature of the RTB-based
図2では、処理室4は回転する構成を示しているが、本発明ではR−T−B系焼結磁石素材1とRH拡散源2とがRH拡散処理中に溶着しないように、処理室4内で前記R−T−B系焼結磁石素材1と前記RH拡散源2とが連続的にまたは断続的に移動可能であるなら、処理室4は回転ではなく揺動させてもいいし、回転、揺動の動作を併わせて行ってもよい。
In FIG. 2, the
RH拡散処理後にRH拡散源2と撹拌補助部材3とR−T−B系焼結磁石素材1を分離する際は、RH拡散源2と撹拌補助部材3は分離せず、RH拡散源2、撹拌補助部材3とR−T−B系焼結磁石素材1とを分離することが好ましい。これにより、次のRH拡散処理時に、分離しなかったRH拡散源2と撹拌補助部材3は、拡散源‐補助部混合物として使用することができる。分離方法は、公知の方法で行えばよく、特にその方法は問わない。例えばパンチングメタルで振動により分離すればよい。
When the
前記工程(S6)の後に、前記RH拡散処理後のR−T−B系焼結磁石に対し、拡散された重希土類元素RHをより均質化するための処理(以下、「均質化熱処理」という場合がある)を追加してもよい。前記均質化熱処理は、重希土類元素RHがRH拡散源2からR−T−B系焼結磁石に供給されない状況で、R−T−B系焼結磁石を700℃以上1000℃以下の範囲内で加熱する。さらに好ましくは、850℃以上1000℃以下の範囲内で行う。これにより、R−T−B系焼結磁石内において重希土類元素RHの拡散が生じるため、R−T−B系焼結磁石の表面側から奥深くに重希土類元素RHが拡散し、磁石全体としてHcJを高めることが可能である。前記均質化熱処理を行う時間は、例えば10分から72時間である。好ましくは1時間から12時間である。
After the step (S6), for the RTB-based sintered magnet after the RH diffusion treatment, a treatment for homogenizing the diffused heavy rare earth element RH (hereinafter referred to as “homogenization heat treatment”). May be added). The homogenization heat treatment is performed within a range of 700 ° C. or more and 1000 ° C. or less of the RTB-based sintered magnet in a situation where the heavy rare earth element RH is not supplied from the
さらに、前記工程(S6)の後に、あるいは、前記均質化処理の後に、R−T−B系焼結磁石の磁気特性向上を目的として行う熱処理を施してもよい。この熱処理は、公知のR−T−B系焼結磁石素材の製造方法において、焼結後に実施される熱処理と同様である。熱処理雰囲気、熱処理温度などは、公知の条件を採用すればよい。 Furthermore, after the step (S6) or after the homogenization treatment, a heat treatment may be performed for the purpose of improving the magnetic properties of the RTB-based sintered magnet. This heat treatment is the same as the heat treatment performed after sintering in a known method for producing a R-T-B sintered magnet material. Known conditions may be employed for the heat treatment atmosphere, the heat treatment temperature, and the like.
本発明を実施例によりさらに詳細に説明するが、本発明は実施例に限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
実施例1
RH拡散源として、Dyを60質量%含む複数個のDyFe合金を用意した。前記DyFe合金の形状は、球状で粒径は、1.5mm〜2.5mmであった。また、撹拌補助部材として、直径5mmのジルコニアの球を複数個用意した。さらに、Nd22.3%、Pr6.2%、Dy4.0%、B1.0%、Co0.9%、Cu0.1%、Al0.2%、Ga0.1%、残部Fe(単位は質量%)の組成を有するR−T−B系焼結磁石素材を公知の方法で作製し用意した。R−T−B系焼結磁石素材の寸法は、7mm×7mm×20mmで、前記R−T−B系焼結磁石素材に対し、500℃1時間の熱処理を行った物の磁気特性は、Br=1.35T、HcJ=1730kA/mであった。
Example 1
A plurality of DyFe alloys containing 60% by mass of Dy were prepared as RH diffusion sources. The DyFe alloy had a spherical shape and a particle size of 1.5 mm to 2.5 mm. In addition, a plurality of zirconia balls having a diameter of 5 mm were prepared as stirring assist members. Further, Nd 22.3%, Pr 6.2%, Dy 4.0%, B 1.0%, Co 0.9%, Cu 0.1%, Al 0.2%, Ga 0.1%, balance Fe (unit: mass%) An RTB-based sintered magnet material having the following composition was prepared and prepared by a known method. The dimensions of the RTB-based sintered magnet material are 7 mm × 7 mm × 20 mm, and the magnetic properties of the product obtained by heat-treating the RTB-based sintered magnet material at 500 ° C. for 1 hour are: B r = 1.35T and H cJ = 1730 kA / m.
まず、前記RH拡散源と前記撹拌補助部材とを、処理室と同じ直径の円筒状の混合タンクに投入し、毎秒0.2mで30分混合し、拡散源‐補助部材混合物を作製した。混合した割合は、重量比で、1:1の割合であった。 First, the RH diffusion source and the stirring auxiliary member were put into a cylindrical mixing tank having the same diameter as that of the processing chamber, and mixed at 0.2 m per second for 30 minutes to prepare a diffusion source-auxiliary member mixture. The mixing ratio was 1: 1 by weight.
次に、前記R−T−B系焼結磁石素材と前記拡散源‐補助部材混合物とを重量比で、0.5:1の割合で処理室内へ装入し、処理室内を真空排気した後不活性ガス(Arガス)を導入した。不活性ガスの圧力は1Paであった。処理室内を加熱すると共に回転させ、前記RH拡散処理を行った。処理室は、毎秒0.03mの周速度で回転させた。前記R−T−B系焼結磁石素材と前記拡散源‐補助部材混合物の温度を850℃に加熱し、4時間保持した。前記RH拡散処理後のR−T−B系焼結磁石に対し、不活性ガスの圧力を10kPa、温度を850℃にし、均質化熱処理を行い、R−T−B系焼結磁石を作製した。 Next, the RTB-based sintered magnet material and the diffusion source-auxiliary member mixture are charged into the processing chamber at a weight ratio of 0.5: 1, and the processing chamber is evacuated. Inert gas (Ar gas) was introduced. The pressure of the inert gas was 1 Pa. The treatment chamber was heated and rotated to perform the RH diffusion treatment. The processing chamber was rotated at a peripheral speed of 0.03 m per second. The temperature of the RTB-based sintered magnet material and the diffusion source-auxiliary member mixture was heated to 850 ° C. and held for 4 hours. The RTB-based sintered magnet after the RH diffusion treatment was subjected to a homogenization heat treatment with an inert gas pressure of 10 kPa and a temperature of 850 ° C., to prepare an RTB-based sintered magnet. .
実施例2
RH拡散源と撹拌補助部材とを重量比で、0.8:1の割合で混合し、拡散源‐補助部材混合物を作製したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 2
R-T-B system in the same manner as in Example 1 except that the RH diffusion source and the stirring auxiliary member were mixed at a weight ratio of 0.8: 1 to prepare a diffusion source-auxiliary member mixture. A sintered magnet was produced.
実施例3
RH拡散源と撹拌補助部材とを重量比で、1.2:1の割合で混合し、拡散源‐補助部材混合物を作製したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 3
R-T-B system in the same manner as in Example 1 except that the RH diffusion source and the stirring auxiliary member were mixed at a weight ratio of 1.2: 1 to prepare a diffusion source-auxiliary member mixture. A sintered magnet was produced.
実施例4
R−T−B系焼結磁石素材と拡散源‐補助部材混合物とを重量比で、0.4:1の割合で混合したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 4
The RTB system is the same as that of Example 1 except that the RTB system sintered magnet material and the diffusion source-auxiliary member mixture are mixed at a weight ratio of 0.4: 1. A sintered magnet was produced.
実施例5
R−T−B系焼結磁石素材と拡散源‐補助部材混合物とを重量比で、0.7:1の割合で混合したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 5
The RTB system is the same as that of Example 1 except that the RTB system sintered magnet material and the diffusion source-auxiliary member mixture are mixed at a weight ratio of 0.7: 1. A sintered magnet was produced.
実施例6
RH拡散源と撹拌補助部材とを重量比で、0.7:1の割合で混合し、拡散源‐補助部材混合物を作製したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 6
R-T-B system in the same manner as in Example 1 except that the RH diffusion source and the stirring auxiliary member were mixed at a weight ratio of 0.7: 1 to prepare a diffusion source-auxiliary member mixture. A sintered magnet was produced.
実施例7
RH拡散源と撹拌補助部材とを重量比で、1.3:1の割合で混合し、拡散源‐補助部材混合物を作製したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 7
R-T-B system in the same manner as in Example 1 except that the RH diffusion source and the stirring auxiliary member were mixed at a weight ratio of 1.3: 1 to produce a diffusion source-auxiliary member mixture. A sintered magnet was produced.
実施例8
R−T−B系焼結磁石素材と拡散源‐補助部材混合物とを重量比で、0.3:1の割合で混合したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 8
The RTB system is the same as that of Example 1 except that the RTB system sintered magnet material and the diffusion source-auxiliary member mixture are mixed at a weight ratio of 0.3: 1. A sintered magnet was produced.
実施例9
R−T−B系焼結磁石素材と拡散源‐補助部材混合物とを重量比で、0.8:1の割合で混合したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Example 9
The RTB system is the same as that of Example 1 except that the RTB system sintered magnet material and the diffusion source-auxiliary member mixture are mixed at a weight ratio of 0.8: 1. A sintered magnet was produced.
比較例1
R−T−B系焼結磁石素材、RH拡散源、撹拌補助部材を重量比で、1:1:1の割合でそれぞれ一括して処理室内に装入(前記一括装入処理)したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Comparative Example 1
Except that the RTB-based sintered magnet material, RH diffusion source, and stirring assisting member are collectively charged into the processing chamber at a weight ratio of 1: 1: 1 (the batch charging process). Produced an RTB-based sintered magnet in the same manner as in Example 1.
比較例2
処理室を毎秒0.05mの周速度で回転させたこと以外は、比較例1と同じ方法でR−T−B系焼結磁石を作製した。
Comparative Example 2
An RTB-based sintered magnet was produced in the same manner as in Comparative Example 1 except that the processing chamber was rotated at a peripheral speed of 0.05 m per second.
比較例3
前もってR−T−B系焼結磁石素材、RH拡散源、撹拌補助部材を重量比で、1:1:1の割合で混合タンクに投入し、毎秒0.2mで30分混合してから一度に処理室内に装入(前記事前一括混合処理)したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Comparative Example 3
R-T-B system sintered magnet material, RH diffusion source, and stirring auxiliary member are added to the mixing tank at a ratio of 1: 1: 1 by weight, and mixed at 0.2 m per second for 30 minutes. An R-T-B system sintered magnet was produced in the same manner as in Example 1 except that it was charged into the treatment chamber (preliminary batch mixing treatment).
比較例4
R−T−B系焼結磁石素材と撹拌補助部材とを重量比で、1:1の割合で混合し、混合物を作製し、RH拡散源と当該混合物とを重量比で、0.5:1の割合で、処理室内へ装入したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Comparative Example 4
The RTB-based sintered magnet material and the stirring auxiliary member are mixed at a weight ratio of 1: 1 to prepare a mixture, and the RH diffusion source and the mixture are mixed at a weight ratio of 0.5: An RTB-based sintered magnet was produced in the same manner as in Example 1 except that it was charged into the processing chamber at a rate of 1.
比較例5
R−T−B系焼結磁石素材とRH拡散源とを重量比で、1:1の割合で混合し、混合物を作製し、撹拌補助部材と当該混合物とを重量比で、0.5:1の割合で、処理室内へ装入したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した。
Comparative Example 5
The RTB-based sintered magnet material and the RH diffusion source are mixed at a weight ratio of 1: 1 to prepare a mixture, and the stirring auxiliary member and the mixture are mixed at a weight ratio of 0.5: An RTB-based sintered magnet was produced in the same manner as in Example 1 except that it was charged into the processing chamber at a rate of 1.
比較例6
撹拌補助部材を使用せず、R−T−B系焼結磁石素材とRH拡散源とを重量比で、1:1の割合で、処理室内へ装入したこと以外は、実施例1と同じ方法でR−T−B系焼結磁石を作製した
Comparative Example 6
The same as Example 1 except that the R-T-B system sintered magnet material and the RH diffusion source were charged into the processing chamber at a weight ratio of 1: 1 without using the stirring auxiliary member. An RTB-based sintered magnet was produced by this method.
実施例1〜実施例9、比較例1〜比較例6の結果を表1に示す。「欠けの発生」は、前記RH拡散処理後のR−T−B系焼結磁石における欠けが発生した数を示す。欠けにより欠落した部分が1mm角相当の場合に、欠けが発生しているものとしてカウントした。なお、前記RH拡散処理前のR−T−B系焼結磁石素材には欠けがないことを予め確認している。「HcJばらつき」は、処理後の複数個のR−T−B系焼結磁石において、ランダムに20個測定を行った最大のHcJの値と最小のHcJの値との差分を示す。「処理数」は、実施例1〜9、比較例1〜6それぞれに使用した、R−T−B系焼結磁石素材の数を示す。「HcJ」は、前記RH拡散処理後のR−T−B系焼結磁石をランダムに20個測定を行ったHcJの平均値を示す。「Br」は、前記RH拡散処理後のR−T−B系焼結磁石をランダムに20個測定を行ったBrの平均値を示す。 Table 1 shows the results of Examples 1 to 9 and Comparative Examples 1 to 6. “Occurrence of chipping” indicates the number of chipping in the RTB-based sintered magnet after the RH diffusion treatment. When the part missing due to the chip was equivalent to 1 mm square, the chip was counted as having a chip. In addition, it has been confirmed in advance that there is no chip in the RTB-based sintered magnet material before the RH diffusion treatment. “H cJ variation” indicates the difference between the maximum H cJ value and the minimum H cJ value obtained by randomly measuring 20 pieces in a plurality of R-T-B sintered magnets after processing. . “Number of treatments” indicates the number of RTB-based sintered magnet materials used in Examples 1 to 9 and Comparative Examples 1 to 6, respectively. “H cJ ” indicates an average value of H cJ obtained by randomly measuring 20 R-T-B sintered magnets after the RH diffusion treatment. “B r ” represents an average value of Br obtained by measuring 20 R-T-B sintered magnets after the RH diffusion treatment at random.
表1に示す通り、本発明である、RH拡散源と撹拌補助部材とを混合して拡散源‐補助部材混合物を準備し、前記拡散源‐補助部材混合物とR−T−B系焼結磁石素材とを処理室内に装入してRH拡散処理を行った、実施例1〜9は、いずれも「欠けの発生」がほとんどなく、かつ、「HcJばらつき」が小さい。これに対し、RH拡散源、撹拌補助部材、R−T−B系焼結磁石素材のそれぞれを、前記処理室内に一括して装入(前記一括装入処理)した比較例1は、「欠けの発生」はないものの、「HcJばらつき」が大きい。処理室内の回転数を変更した比較例2は、「HcJばらつき」が改善されたが、回転速度を速めたために、「欠けの発生」が多く確認された。また、R−T−B系焼結磁石素材、RH拡散源、撹拌補助部材を混合タンクで混合してから処理室内に装入(前記事前一括混合処理)した比較例3は、「欠けの発生」が多く確認された。比較例3の欠けは、混合タンクで混合物を作製する時点で、R−T−B系焼結磁石素材同士の接触による衝撃により、発生したもので、RH拡散処理工程において発生したものではない。そのため、混合タンクの回転速度を遅くすることで「欠けの発生」を低減させることが考えられるが、生産効率が大きく低下するため好ましくない。さらに、R−T−B系焼結磁石素材と撹拌補助部材、または、R−T−B系焼結磁石素材とRH拡散源とを処理室装入前に混合して、混合物を作製した比較例4、5は、「欠けの発生」が多く確認された。これらも前記混合物を作製する時点で、R−T−B系焼結磁石素材同士の接触による衝撃により、欠けが発生していた。さらに、比較例6は、撹拌補助部材がないため、R−T−B系焼結磁石素材同士の接触による衝撃により「欠けの発生」が多く確認された。 As shown in Table 1, a diffusion source-auxiliary member mixture is prepared by mixing the RH diffusion source and the stirring auxiliary member according to the present invention, and the diffusion source-auxiliary member mixture and the RTB-based sintered magnet are prepared. In each of Examples 1 to 9, in which the raw material was charged into the processing chamber and subjected to the RH diffusion treatment, there was almost no “ breakage ” and “H cJ variation” was small. On the other hand, Comparative Example 1 in which each of the RH diffusion source, the stirring auxiliary member, and the R-T-B system sintered magnet material was collectively charged into the processing chamber (the batch charging process) " HcJ variation" is large, although there is no "occurrence". In Comparative Example 2 in which the number of revolutions in the processing chamber was changed, “H cJ variation” was improved. However, since the rotational speed was increased, many “occurrence of chipping” were confirmed. In addition, Comparative Example 3 in which the RTB-based sintered magnet material, the RH diffusion source, and the stirring auxiliary member were mixed in the mixing tank and then charged into the processing chamber (preliminary batch mixing process) Many occurrences were confirmed. The chipping of Comparative Example 3 occurred due to the impact caused by the contact between the RTB-based sintered magnet materials at the time of preparing the mixture in the mixing tank, and was not generated in the RH diffusion treatment process. Therefore, it is conceivable to reduce “occurrence of chipping” by slowing the rotation speed of the mixing tank, but this is not preferable because the production efficiency is greatly reduced. Furthermore, a comparison was made by mixing the R-T-B system sintered magnet material and the stirring auxiliary member, or the R-T-B system sintered magnet material and the RH diffusion source before charging the processing chamber. In Examples 4 and 5, many occurrences of chipping were confirmed. These also had chipping due to the impact caused by the contact between the RTB-based sintered magnet materials at the time of producing the mixture. Furthermore, in Comparative Example 6, since there was no stirring auxiliary member, many “occurrence of chipping” was confirmed due to the impact caused by the contact between the RTB-based sintered magnet materials.
1 R−T−B系焼結磁石素材
2 RH拡散源
3 撹拌補助部材
4 処理室
5 蓋
6 排気装置
7 ヒータ
8 モータ
DESCRIPTION OF
Claims (1)
複数個の撹拌補助部材を準備する工程と、
複数個のR−T−B系焼結磁石素材(Rは希土類元素のうち少なくとも一種、Tは遷移金属元素のうち少なくとも一種であり、Feを必ず含む)を準備する工程と、
前記RH拡散源と前記撹拌補助部材とを混合し、RH拡散源と撹拌補助部材との重量比が0.8〜1.2:1の範囲にある、拡散源‐補助部材混合物を準備する工程と、
前記拡散源‐補助部材混合物と前記R−T−B系焼結磁石素材とを重量比で1:0.4〜0.7の範囲で処理室内に装入する工程と、
前記処理室を加熱すると共に回転及び/又は揺動させることで、前記RH拡散源と前記撹拌補助部材と前記R−T−B系焼結磁石素材を連続的にまたは断続的に移動させてRH拡散処理を行う工程と、
を含む、R−T−B系焼結磁石の製造方法。 Preparing a plurality of RH diffusion sources (an alloy containing heavy rare earth element RH 30% by mass or more and 80% by mass or less, wherein heavy rare earth element RH is at least one of Dy and Tb);
Preparing a plurality of stirring auxiliary members;
Preparing a plurality of RTB-based sintered magnet materials (R is at least one kind of rare earth elements, T is at least one kind of transition metal elements, and necessarily contains Fe);
Mixing the RH diffusion source and the stirring auxiliary member, and preparing a diffusion source-auxiliary member mixture in which the weight ratio of the RH diffusion source and the stirring auxiliary member is in the range of 0.8 to 1.2: 1. When,
Charging the diffusion source-auxiliary member mixture and the RTB -based sintered magnet material into a processing chamber in a weight ratio of 1: 0.4 to 0.7 ;
By heating and rotating and / or swinging the processing chamber , the RH diffusion source, the stirring auxiliary member, and the RTB-based sintered magnet material are moved continuously or intermittently to cause the RH to move. A step of performing a diffusion treatment;
The manufacturing method of the RTB type | system | group sintered magnet containing this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012215351A JP6086293B2 (en) | 2012-09-28 | 2012-09-28 | Method for producing RTB-based sintered magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012215351A JP6086293B2 (en) | 2012-09-28 | 2012-09-28 | Method for producing RTB-based sintered magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014072259A JP2014072259A (en) | 2014-04-21 |
JP6086293B2 true JP6086293B2 (en) | 2017-03-01 |
Family
ID=50747237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012215351A Active JP6086293B2 (en) | 2012-09-28 | 2012-09-28 | Method for producing RTB-based sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6086293B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106716573B (en) * | 2015-02-27 | 2018-05-25 | 日立金属株式会社 | The manufacturing method of R-T-B systems sintered magnet |
JP6780646B2 (en) * | 2015-08-24 | 2020-11-04 | 日立金属株式会社 | Diffusion processing device and manufacturing method of RTB-based sintered magnet using it |
CN106876072A (en) * | 2015-12-11 | 2017-06-20 | 中国科学院宁波材料技术与工程研究所 | The method for improving neodymium-iron-boron magnetic material magnetic property |
JP6512146B2 (en) * | 2016-03-25 | 2019-05-15 | 日立金属株式会社 | Diffusion treatment apparatus and manufacturing method of RTB-based sintered magnet using the same |
JP6512150B2 (en) * | 2016-03-28 | 2019-05-15 | 日立金属株式会社 | Method of manufacturing RTB based sintered magnet |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3389193B2 (en) * | 1999-04-26 | 2003-03-24 | 住友特殊金属株式会社 | Method for Sealing Holes in Ring-Shaped Bonded Magnet and Ring-Shaped Bonded Magnet Sealed by the Method |
CA2685790C (en) * | 2007-05-01 | 2015-12-08 | Intermetallics Co., Ltd. | Method for making ndfeb system sintered magnet |
JP5510457B2 (en) * | 2009-07-15 | 2014-06-04 | 日立金属株式会社 | Method for producing RTB-based sintered magnet |
JP5747543B2 (en) * | 2011-02-14 | 2015-07-15 | 日立金属株式会社 | RH diffusion source and method for producing RTB-based sintered magnet using the same |
-
2012
- 2012-09-28 JP JP2012215351A patent/JP6086293B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014072259A (en) | 2014-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5999106B2 (en) | Method for producing RTB-based sintered magnet | |
JP5831451B2 (en) | Method for producing RTB-based sintered magnet | |
JP5929766B2 (en) | R-T-B sintered magnet | |
JP5510457B2 (en) | Method for producing RTB-based sintered magnet | |
CN102768898B (en) | Rare-earth permanent magnet and preparation method thereof | |
EP2511916B1 (en) | Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet | |
JP6086293B2 (en) | Method for producing RTB-based sintered magnet | |
WO2007102391A1 (en) | R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME | |
CN103620707A (en) | Rare earth sintered magnet, method for manufacturing rare earth sintered magnet and rotary machine | |
JP6503960B2 (en) | Method of manufacturing RTB based sintered magnet | |
CN1842385A (en) | Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet | |
WO2008075709A1 (en) | Permanent magnet and method for producing permanent magnet | |
JP6443179B2 (en) | Method for producing RTB-based sintered magnet | |
US9613748B2 (en) | RH diffusion source, and method for producing R-T-B-based sintered magnet using same | |
JP2012204696A (en) | Production method of powder for magnetic material and permanent magnet | |
US10217562B2 (en) | Method for manufacturing R-T-B based sintered magnet | |
JP2014177660A (en) | R-t-b type rare earth magnet powder, method of producing r-t-b type rare earth magnet powder and bond magnet | |
JP2013225533A (en) | Method of manufacturing r-t-b-based sintered magnet | |
JP2012079726A (en) | Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet | |
JP6432418B2 (en) | Diffusion treatment apparatus and method for producing RTB-based sintered magnet using the same | |
JP2012199423A (en) | Production method of anisotropic magnetic powder and anisotropic bond magnet | |
JP6512150B2 (en) | Method of manufacturing RTB based sintered magnet | |
JP5854304B2 (en) | Method for producing RTB-based sintered magnet | |
JP5887705B2 (en) | Manufacturing method and manufacturing apparatus for RTB-based sintered magnet | |
JP2016127247A (en) | Method of producing rare earth-iron-nitrogen based alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6086293 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |