JP6510449B2 - 鉄道車両の製造方法 - Google Patents

鉄道車両の製造方法 Download PDF

Info

Publication number
JP6510449B2
JP6510449B2 JP2016050359A JP2016050359A JP6510449B2 JP 6510449 B2 JP6510449 B2 JP 6510449B2 JP 2016050359 A JP2016050359 A JP 2016050359A JP 2016050359 A JP2016050359 A JP 2016050359A JP 6510449 B2 JP6510449 B2 JP 6510449B2
Authority
JP
Japan
Prior art keywords
adjustment
information
measurement result
floor
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016050359A
Other languages
English (en)
Other versions
JP2016203967A5 (ja
JP2016203967A (ja
Inventor
大輔 堤
大輔 堤
啓晃 笠井
啓晃 笠井
岡田 智仙
智仙 岡田
利光 野口
利光 野口
俊一 川邊
俊一 川邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JP2016203967A publication Critical patent/JP2016203967A/ja
Publication of JP2016203967A5 publication Critical patent/JP2016203967A5/ja
Application granted granted Critical
Publication of JP6510449B2 publication Critical patent/JP6510449B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D25/00Window arrangements peculiar to rail vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、艤装品施工指示を含む鉄道車両の製造方法に関する。
本技術分野の背景技術として、特許第5228145号公報(特許文献1)がある。
特許文献1には、「計測場所に設置したレールを挟むように配置した少なくとも四箇所の所定位置に少なくとも四台の一部撮影用デジタルカメラをそれぞれ固定し、前記レール上の所定位置に計測対象の鉄道車両を配置した際および、その後前記鉄道車両を前記レール上で所定距離移動させる毎に、前記レール上の前記鉄道車両の一部を、前記少なくとも四台の一部撮影用デジタルカメラでその鉄道車両の長手方向の斜め方向から撮影して、その鉄道車両の前記一部の複数箇所の所定位置に設けたターゲットを撮像し、前記各ターゲットについて前記少なくとも四台のうちの少なくとも二台の一部撮影用デジタルカメラの画像データを基に画像処理および幾何学的演算処理をすることによって、前記鉄道車両全体に設けた複数の前記ターゲットの各々の、前記撮影位置での3次元座標値を算出し、前記各ターゲットの前記撮影位置での3次元座標値と、前記鉄道車両の移動距離との組み合わせから前記鉄道車両の出来形寸法を算出することを特徴とする、鉄道車両用出来形寸法計測方法」が記載されている(請求項1、参照)。
特許第5228145号公報
鉄道車両は、「台車」とその台車上に搭載された「車体」からなる、幅および高さが3000mm(3m)前後で、長さが20000mm(20m)前後の大型構造物である。鉄道車両の車体において、座席などの室内設備、照明および制御機器を除いた車体の強度を担う部分を「構体」と呼ぶ。鉄道車両における車体の製造工程は、大別して、アルミニウムやステンレスなどの金属材料を溶接することで構体を形成する製缶工程と、この構体に内装品や電装品など各種部材を取り付ける艤装工程からなる。
鉄道車両の構体は、大型の溶接構造物であるため溶接変形が生じ、溶接後処理として機械的あるいは熱的な矯正を行う。矯正しきれない微量の変形については、艤装工程で部品を取り付ける際、変形量に合わせた調整作業が不可避である。
艤装工程の一つに構体の土台となる台枠に設けた床受けに、内装床板を施工する工程がある。この工程において、床受けと床板との間に床高さ調整部材を挿入することで床面のレベル調整をしている。
床板施工では、長さ2〜3mの金属製直定規などを用いて床受け間の高さの差を計測し、調整部材の調整量を決定した後に、調整部材の製作、仮設置および床板の搬入、仮設置を行う。しかし、台枠製造では枕梁や床受けなど溶接箇所が多く、溶接歪による高さ方向のばらつきが大きい。そのため、その仮設置した状態で浮きの有無などを確認し、再度、調整部材の調整と床板の設置の作業を繰り返すことになる。この工程は、床面をキャンバーに沿わせる必要があるため、台枠以外の箇所にキャンバー基準を求める必要があること、また、構体は6つの面からなる6面体構造であり、6つの面の各辺を溶接する際にねじれが生じること、出入口用の開口部下面や妻貫通路用の開口部下面など、床板上面と面合わせ(高さ合わせ)する箇所がある場合、対象面側に調整代がなければ、床板側を調整し面合わせをする必要があることなどから、相当難易度が高い。
そのため、床板施工時に調整と設置の作業が繰り返されるため、施工時間が長くなる。さらに、解消できなかった床板の浮きは、乗客が床面を歩いた際に軋むような音が発生する床鳴り現象の要因の1つともいわれている。
艤装工程の異なる例として、先頭構体に前面窓ガラスを取り付ける工程がある。車両の先頭にあたる先頭構体は、空気抵抗の低減や衝突安全性の観点から複雑な曲面形状を有する溶接構造物である。また、前面窓ガラスは、およそ2m四方の大型曲面を有し、調整量に対して無視できない成形誤差を含んでいる。
溶接構造物である構体だけでなく、艤装品の一つである前面窓ガラスも設計値に対して誤差を持つため、艤装工程において現物合わせが必要となる。しかし、大型のガラス製品を取り扱う工程であるため、多くの作業員と作業工数がかかるうえ、調整作業時間が事前に見積もりづらいという問題がある。
さらに、先頭構体、前面窓ガラスの出来具合によっては、調整代だけでは調整しきれず、最悪の場合、先頭構体を切断、再溶接するなど、大幅な工程遅延を招く工程の一つとなっている。
艤装工程の異なる例として、先頭構体内部へ運転台を取り付ける工程がある。運転台は板金の溶接構造物であり、構体同様に溶接変形を有する。
運転台下面に調整部材を挿入することで高さを調整するが、先頭構体内部の狭小部に設置するため、調整箇所ではない運転台上面が先頭構体と干渉してしまう可能性がある。狭い作業スペースで干渉を考慮しながら調整高さを決定する必要があり、作業工数の大きな工程の一つである。
前記特許文献1の技術は、鉄道車両の出来形寸法を算出する点では一致するが、あくまでも車外からの測定であるため、車内作業である床板施工や運転台の調整材調整には利用できない。また、この特許文献1の技術は、あくまでも車両完成時の出来形寸法を測定する方法であって、測定結果に基づき調整作業を円滑化しようとするものでもない。このように、特許文献1の技術は、測定を行う場所とタイミングが異なるため、測定結果に基づく調整作業には使用できない。
本発明の目的は、製造時間を短縮する鉄道車両の製造方法を提供することにある。
そこで、本発明は、車両製造上の特徴を考慮し、鉄道車両の艤装品施工指示を含めた鉄道車両の製造方法を提供する。本発明は、艤装品施工前に3次元計測(対象物の表面形状を3次元の座標データとして取得する計測方法)を実施し、この計測データを活用することで、現物合わせとなっている艤装品施工を短時間で実施する構想に基づくものである。
本発明は、上記課題を解決するための鉄道車両の製造方法であって、車両の構体および艤装品に関する車両設計情報と、艤装品を設置する構体上の調整箇所を3次元計測して得た第1の測定結果情報とに基づいて、構体に設置する艤装品の理想の設置位置を算出する第1のステップと、算出した艤装品の理想の設置位置と第1の測定結果情報とから算出した調整箇所における差分の調整量と、艤装品設置時に当該差分の調整用に用いる調整部材の情報とに基づき、当該調整箇所に配置する調整部材の選択および配置位置を指示する指示情報を出力する第2のステップと、指示情報に基づいて艤装品を施工する第3のステップとを有することを特徴とする。
本発明によれば、鉄道車両を短時間に製造することができる。特に、艤装品の施工を短時間で実施することができる。
また、上記以外の課題、構成及び効果については、以下の実施形態の説明により明らかにされるものである。
図1は、艤装品施工指示手法に係るフローチャートの一例である。 図2は、図1の入力10の分類を示す表である。 図3は、測定結果情報102の要否による場合分けと、本発明における実施例の対応を示す表である。 図4は、艤装品施工指示装置の構成の一例である。 図5は、艤装品施工指示装置による処理と入出力に係るフローの一例である。 図6は、入出力情報の関連を例示する図である。 図7は、入出力情報が有するデータテーブルの関連を例示する図である。 図8は、床受けテーブル311のデータ例である。 図9は、エリアテーブル312のデータ例である。 図10は、鉄道車両の床構造を説明する図である。 図11は、客室部の床受けおよび床受け測定点を例示する図である。 図12は、床の断面構造を説明する図である。 図13は、床受けの始点および終点を例示する図である。 図14は、調整部材種類テーブル313のデータ例である。 図15は、床受け測定テーブル321のデータ例である。 図16は、艤装品調整量算出処理部104の処理を説明するフローチャートの一例である。 図17は、艤装品施工指示装置の入力画面の一例である。 図18は、キャンバーを説明する図である。 図19は、床構造の断面キャンバー式を説明する図である。 図20は、床構造の断面図の一例である。 図21は、床構造の断面図における測定基準座標を説明する図である。 図22は、床構造の断面図における測定結果を反映した座標を説明する図ある。 図23は、床構造の断面図における床受けと床板を定義する式を説明するである。 図24は、床構造の断面図における算出した調整部材厚さを説明する図である。 図25は、床構造の断面図における床受けと床板を定義する式の別例を説明する図である。 図26は、調整部材テーブル331のデータの始点および終点を説明する図である。 図27は、調整部材の始点および終点を説明する図である。 図28は、調整部材指示生成処理部105の処理を説明するフローチャートの一例である。 図29は、調整部材製作指示書201の一例である。 図30は、調整部材配置指示書202の一例である。 図31は、実施例3に係る構体の側面図である。 図32は、実施例3に係る入出力情報の関連を例示する図である。 図33は、実施例3に係るキャンバー基準測定テーブルのデータ例である。 図34は、実施例3に係る艤装品施工指示装置の入力画面の一例である。 図35は、実施例3に係るキャンバー基準の測定結果に基づくキャンバー式補正を説明する図である。 図36は、実施例4に係る入出力情報の関連を例示する図である。 図37は、実施例4に係る面合わせ基準の測定結果に基づくキャンバー式補正を説明する図である。 図38は、実施例5に係る入出力情報の関連を例示する図である。 図39は、鉄道車両の先頭構体B303および前面窓ガラスB302の構造を説明する図である。 図40は、図39を真上から見た模式図である。 図41は、図40中の断面AAおよび断面BBを示す図である。 図42は、断面AAの拡大図である。 図43は、艤装品施工指示装置111の艤装品調整量算出処理部104による前面窓ガラス調整量算出処理に係るフローチャートの一例である。 図44は、前面窓ガラス施工における調整部材配置指示書202の一例である。 図45は、実施例6に係る入出力情報の関連を例示する図である。 図46は、鉄道車両の先頭構体内部および運転台の構造を説明する図である。 図47は、図46中の断面Cを示す図である。 図48は、艤装品施工指示装置111の艤装品調整量算出処理部104による運転台調整量算出処理に係るフローチャートの一例である。 図49は、運転台施工における調整部材配置指示書202の一例である。 図50は、実施例7に係る調整部材種類テーブル313のデータ例である。 図51は、実施例7に係る調整部材指示生成処理部105における調整部材製作指示書および配置指示書の出力処理を説明するフローチャートの一例である。 図52は、実施例7に係る調整部材厚さの組合せを説明する図である。
以下、本発明の実施形態として、鉄道車両の製造方法にあって、特に鉄道車両の艤装品施工指示のための実施例1〜実施例7について、図面を用いて順に説明する。
実施例1は、鉄道車両の製造方法にあって、本発明の包括概念として、測定結果情報に基づく艤装品施工指示方法について説明する。
図1は、艤装品施工指示方法に係るフローチャートの一例である。図1に基づき、艤装品施工指示方法による処理の流れを以下に説明する。このフローチャートに係る処理を実行する主体は、艤装品施工指示を司る装置の処理部、具体的には、実施例2以降で示す艤装品施工指示装置111における艤装品調整量算出処理部104が該当する。
入力10は、車両設計情報101と測定結果情報102からなる。車両設計情報101は、(A)構体の設計情報11、(B)艤装品の設計情報12、(C)調整部材の設計情報13であり、例えば、設計図面や2次元および3次元のCADデータ、設計仕様書などを含む。
測定結果情報102は、(A)構体の測定データ14、(B)艤装品の測定データ15であり、例えば、3次元測定による座標点群データ、コンベックスや直尺などアナログ測定による2点間距離、専用治具との誤差測定結果などを含む。
車両設計情報101、測定結果情報102とも、処理上必要な情報を抽出し、データテーブル形式で保持してもよい。
また、(C)調整部材の設計情報13は、各工程において適切な調整方法が選択される場合、調整量に対して十分な精度を有するため、調整部材自体の測定は不要である。ただし、3次元プリンタなどによる造形物を使用することも可能であり、必要に応じて測定を行い、測定結果情報102に加えても構わない。
処理20では、まず、入力データに基づき、ステップS21において、構体と艤装品の仮想組立を行い、理想的な位置を算出する。
ステップS22において、ステップS21で算出した構体と艤装品の位置関係から差分を抽出し、その差分を調整する調整量を調整部材の設計情報13の入力データに基づき決定する。
ステップS23において、ステップS22で算出した調整量が、車両設計情報101が持つ制約条件を満足するかを評価する。
満足する場合(OK)は、ステップS24に進む。満足しない場合(NG)は、ステップS25に進む。
ステップS24において、調整部材の事前製作手配を可能とする調整部材製作指示書201、および、算出した調整量に基づく艤装品施工指示を可能とする調整部材配置指示書202を出力する。
そして、艤装品の施工の工程においては、調整部材配置指示書202に基づいて、調整部材製作指示書201に従って製作した調整部材を用いながら、所定の艤装品を施工することとなる。
ステップS25において、現状の入力条件では調整不可である旨を通知する調整不可通知書203を出力する。調整不可通知書203は、例えば、制約条件を満たさない箇所や満たさない理由を定量的に提示する。本通知書は、構体や艤装品の変形が大きい場合に出力される可能性が高く、艤装品施工前に対策を講じることで大幅な工程遅延を防ぐ効果が見込まれる。この場合、構体や艤装品の形状修正などの対策を講じた後、再測定を実施し測定結果情報102を更新し、再度本フローチャートの処理を実行することで、艤装品施工指示を出力することも可能である。また、変形が軽微な場合、制約条件を緩和することで調整可能となる場合がある。調整不可通知書203に基づき車両設計情報101の持つ制約条件を変更し、再度本フローチャートの処理を実行することで、艤装品施工指示を出力することも可能である。
図2は、図1の入力10の分類を示す表である。
(A)構体は(A1)調整箇所と(A2)非調整箇所とに分類される。(A1)調整箇所は、艤装品と調整部材を介して接触する箇所である。(A2)非調整箇所は、調整部材を配置する箇所ではないが、艤装品の配置に影響を与える箇所である。
車両設計情報101は、設計時に用意されるもので、入力として常に必要な情報である(図では、“○”と記す)。ただし、(A2)非調整箇所については、調整時の制約条件として機能する。
測定結果情報102は、測定行為を必要とするため、可能な限り少ないことが望ましい。(A1)調整箇所は、溶接構造物であるため変形量が大きく、常に必要となる。(A2)非調整箇所および(B)艤装品の測定結果情報は、工程によって要否が異なる。この工程によって異なる測定結果情報の要否を、図2に示す(i)および(ii)に場合分けし、その場合分けに対応する具体的な工程の例を図3で説明する。
図3は、測定結果情報102の要否による場合分けと、対応する工程の例(そのための本発明における実施例)を示す表である。図に示すように、非調整箇所および艤装品に対する測定結果情報102の要否の組み合わせから、以下の4つに類型化する。
(類型1)は、(A2)非調整箇所の測定結果情報(以下、(i)と略称)が不要(図では、“×”と記す)、かつ、(B)艤装品の測定結果情報(以下、(ii)と略称)が不要な場合であり、床板施工の工程を実施例2とし、詳細は後述する。
(類型2)は、(i)が必要(図中の“○”)、かつ(ii)が不要な場合であり、キャンバーを考慮した床板施工の工程を実施例3とし、また、出入り台を考慮した床板施工の工程を実施例4とし、それぞれの詳細は後述する。
(類型3)は、(i)が不要、かつ(ii)が必要な場合であり、前面窓ガラスの取り付け(施工)の工程を実施例5とし、詳細は後述する。
(類型4)は、(i)が必要、かつ(ii)が必要な場合であり、運転台の取り付け(施工)の工程を実施例6とし、詳細は後述する。
前述した4つの類型化により、以下で説明する実施例以外の艤装品施工においても、いずれかに分類可能であり、車両における艤装品施工を包括する製造方法を提供することができる。
実施例2は、(類型1)に該当する、(A2)非調整箇所の測定結果情報が不要、かつ、(B)艤装品の測定結果情報が不要な場合の例として、床板施工時の艤装品施工指示方法である。
図4は、本実施例の艤装品施工指示装置の構成の一例を示す図である。
艤装品施工指示装置111は、入出力部121、プロセッサ122およびメモリ123を有する。
メモリ123は、車両設計情報101、測定結果情報102および調整部材情報103から成るデータ部と、艤装品調整量算出処理部104および調整部材指示生成処理部105から成る処理部(プログラム)を有する。
すなわち、艤装品調整量算出処理部104および調整部材指示生成処理部105は、それぞれプロセッサ122によって実行され、プログラミングされた所定の処理を行うものである。してみると、プロセッサ122、艤装品調整量算出処理部104および調整部材指示生成処理部105)を併せて、一つの処理部とみなすことができる。
図5は、艤装品施工指示装置による処理と入出力に係るフローの一例である。プロセッサ122により、艤装品調整量算出処理部104は、車両設計情報101および測定結果情報102の入力を受けて処理を実行し、調整部材情報103を出力すると共にメモリ123に格納する。この調整部材情報103は、床板施工時に使用する調整部材の指示情報に含められる。続いて、プロセッサ122により、調整部材指示生成処理部105は、車両設計情報101および調整部材情報103の入力を受けて処理を実行し、調整部材製作指示書201および調整部材配置指示書202を入出力部121を用いて出力する。
各処理部の詳細については、各々フローチャートを用いて後述する。
図6は、入出力情報の関連を例示する図である。車両設計情報101、測定結果情報102および調整部材情報103は、それぞれが有するデータテーブル間で関連を持っている。車両設計情報101は、床受けテーブル311、エリアテーブル312、調整部材種類テーブル313およびキャンバー式314を有する。測定結果情報102は、床受け測定テーブル321を有する。調整部材情報103は、調整部材テーブル331を有する。
各テーブルの詳細については、データ例を用いて後述する。
図7は、入出力情報を有するデータテーブルの関連を例示する図である。各テーブルは、共通のフィールド名を介して関連を持つ。なお、各テーブルは、図に記載のないフィールドを有しても構わない。また、座標のフィールドは、X、Y、Zそれぞれ別のフィールドとして有しても構わない。
図8は、床受けテーブル311のデータ例である。床受けテーブル311は、床受けを特定する床受けIDをキーとして、床受けの大まかな位置を示すエリアID、床受けの詳細位置を示す始点と終点の座標、床受けの上に設置される調整部材の規定値をフィールドとして有する。ここで、調整部材の規定値とは、設計図面で規定されている調整部材の長さ、幅および厚さ、設計上の床板上面高さ、製造条件として規定されている調整部材の厚さの上限値、下限値およびピッチである。調整部材の厚さピッチは調整部材の種類によっても変化するので、床受けテーブル311は調整部材種類IDも併せて有する。
図9は、エリアテーブル312のデータ例である。エリアテーブル312は、エリアを特定するエリアIDをキーとして、車両を特定する車種と号車の情報を持つ。また、車両によって台枠の構造が異なるため、車両ごとに床受けの特徴を示すエリアの分類を定義し、エリアテーブル312は、そのデータを大エリアと小エリアのフィールドに分けて持つ。
図10は、鉄道車両の床構造を説明する図である。
側面図701は、車両構体が台枠、側および屋根を有し、側には出入り口および窓が存在することを示している。
上面図(床受け配置)702は、床受けの配置を例示している。図6のエリアテーブル312のデータ例に示すように、客室部、前位車端部、後位車端部、前位内妻仕切り部および後位内妻仕切り部などの大エリアで分類される。そして、例えば客室部は、1−3位側の窓の下(13側窓下)、車両中央の2−4位側(24中央)などの小エリアで詳細に分類される。なお、1は前位右側、2は前位左側、3は後位右側、4は後位左側を意味している。
上面図(床板配置)703は、床板配置の例である。床板は複数の床受けにより支えられていることが分かる。
図11は、客室部の床受けおよび床受け測定点を例示する図である。
床受けID図801は、図8に示す床受けテーブル311の床受けIDの配置を示している。床受け測定点ID図802は、図15に示す床受け測定テーブル321の床受け測定点IDの配置を示している。また、図中にXY座標軸を記し、各種データテーブル(床受けテーブル311、床受け測定テーブル321)のデータ例におけるXY座標の基準例を示している。
図12は、床の断面構造を説明する図であり、図10の上面図(床板配置)703のA−A断面を示している。新幹線のような高速車両など、床下に多くの機器を設置する構造の車両においては、台枠と床板の間に空間を作り、配線やダクトを通す浮き床構造を取ることが多い。構体の土台となる台枠上面901に床受け902が設けられている。床板905の高さを調整するために、床受け902の上に、床高さを調整するための調整部材903が設置される。調整部材と床板の間に、調整代を持たない無調整部材904の設置が必要な個所もあり、無調整部材904を考慮したうえで、調整部材903の調整量を決定する必要がある。
調整部材の拡大図(図12の下図)より、床板上面高さ(Hf)は、床受け上面高さ(Hs)、調整部材厚さ(Da)、無調整部材厚さ(Dn)および床板厚さ(Df)の合計値と同値であることが分かる。それを式1として以下に示す。
Hf=Hs+Da+Dn+Df … (式1)
車両構体は、溶接構造物であるところ、特に台枠は溶接量が多く、台枠に設置される床受けの上面高さは変化が生じ易い。ここで、実際の床受け上面高さを(Hs´)とする。床板上面は、キャンバー等を考慮した場合に理想的には曲面となることがあり、理想の床板上面高さを(Hf´)とする。無調整部材厚さ(Dn)および床板厚さ(Df)は、独立した部材として製作されるため、車両構体に比べ寸法精度が十分高く、設計値と実物の値との差は、床板施工の調整量算出においては無視することができる。設計上の値と、実際の製作上での差を解消するために、調整部材には調整代があり、調整後の調整部材厚さを(Da´)とする。そうすると、以下の式2が成り立つ。
Hf´=Hs´+Da´+Dn+Df … (式2)
さらに、式2と式1の差分から、以下の式3が成り立つ。
Da´=(Hf´−Hf)−(Hs´−Hs)+Da … (式3)
図13は、床受けの始点および終点を例示する図である。床受けは、構造上、上面図から見て、長方形の形状を採用することが一般的である。床受け位置を定義する方法の一例として、長方形の長い辺を長さ、短い辺を幅とし場合に、短い辺における幅の中点2点を求め、X、Y座標の小さい方を始点(x1、y1)、大きい方を終点(x2、y2)として表現できる。この方法によれば、図13に示すように、どのような床受け向きでも始点と終点を一意に定義できる。図13の(a)はx軸沿って長い辺を配置した場合、図13の(a)はy軸沿って長い辺を配置した場合、図13の(a)はx軸とy軸の間に長い辺を配置した場合を示している。床受けが長方形でない場合には、全頂点の座標を保持する方法や、各辺を多項式で定義する方法を用いても構わない。
図14は、調整部材種類テーブル313のデータ例である。調整部材種類テーブル313は、調整部材の種類を特定する調整部材種類IDをキーとして、部材の名称、材質および部材を用いた高さの調整方法をフィールドとして有する。高さの調整方法としては、安価で成形が容易な塩化ビニルのライナーを積層する方法や、防音・防振効果を狙ってゴムシートを積層する方法などがある。
また、床受け全面に積層するのではなく、数ヵ所に調整ネジを設置して高さを調整する方法や、四方を板などでせき止め液体のシール材などを充填する方法も考えられる。更にまた、3Dプリンタを用いて造形することも可能である。積層以外の調整方法においては、調整部材の厚さピッチは無段階に設定できる。
図15は、床受け測定テーブル321のデータ例である。床受け測定テーブル321は、床受け上の測定点を特定する床受け測定点IDをキーとして、設計図面をもとに測定前に定義する測定の基準座標、基準座標近傍で測定した測定結果の座標、基準座標と測定座標との偏差、床受け測定点IDが属する床受けを特定する床受けID、同一の床受けID内での測定数および測定に用いた測定プローブの半径、をフィールドとして有している。
床受けの測定は、床板施工前に、3次元計測(対象物の表面形状を3次元の座標データとして取得する計測方法)により実施される。3次元測定機としては、例えば、接触式の測定プローブの先端球の中心座標を取得するレーザトラッカや、非接触式の測定機から照射したレーザの反射から表面座標を取得するレーザスキャナ、などを用いることができる。
接触式の測定機を用いた場合には、測定プローブの先端球の半径分をオフセットする必要があるため、プローブ半径の値が必要となる。図16以下の説明では、オフセットが必要な場合にはオフセット処理を施し、表面上の点として処理を行うこととする。非接触式の測定機を用いた場合には、オフセットの考慮は不要だが、取得される測定点が膨大となるため、代表点を選択することで処理を簡易化することができる。
また、3次元計測の方法として、レーザレベルなど、水平に照射したレーザに対して垂直方向の距離を測定する測定器を、平面方向の測定位置をメジャーなどで測定しながら使用することで、簡易的に3次元座標を取得する方法を用いてもよい。
図16は、艤装品施工指示装置111の艤装品調整量算出処理部104による床受け高さ調整量算出処理に係るフローチャートの一例である。
図16のフローチャートに基づく動作を以下に説明する。
ステップS101において、艤装品施工指示装置111の艤装品調整量算出処理部104(以下、単に「艤装品調整量算出処理部104」という)は、メモリ123から、必要な車両設計情報101および測定結果情報102を入力データとして受け付ける(図5)。その入力に際しては、対象車両の選択が必要となる。
例えば、図17に示すように、艤装品施工指示装置111の入出力部121の入力画面上に表示される「対象車両の検索」欄が入力待ちとなっている。検索項目にキーワードが入力され、検索ボタンが押されると、入力した対象車両の一覧が出力される。その一覧から対象車両が選択されると、選択された車両に関する車両設計情報101および測定結果情報102の各種データに基づき、艤装品調整量算出処理部104は、処理に必要な情報を選択的に受け付ける。
ステップS102において、艤装品調整量算出処理部104は、入出力部121を介して、理想の床板上面の選択入力を受け付ける。
例えば、図17に示すように、入出力部121の入力画面上に表示される「理想の床板上面の選択」欄において、設計上の床板上面高さをそのまま基準とするか、キャンバー式を考慮するかを選択する。
図18は、キャンバーを説明する図である。鉄道車両は、設計図面上は側面図(キャンバーなし)のようにフラットな状態となっている。一方、構体製作時には、側面図(キャンバーあり)に示すようにキャンバーを有している(ただし、図では、キャンバーを誇張して示している)。キャンバーは、艤装工程で車体に取り付けられる各種機器の荷重や乗客の荷重により構体がたわんでも、強度低下を起こさず、かつ車両の底部が車両の限界寸法を超えないようにするために施される車両製作上のノウハウの一つである。キャンバーは、曲率を定義するキャンバー式で定義される。キャンバー式を考慮することで、床板施工時の理想的な床板上面位置を元に、床受け高さ調整量を算出できる。
ステップS103において、艤装品調整量算出処理部104は、ステップS102で受け付けた理想の床板上面の選択に基づき、理想の床板上面を算出する。キャンバー式を考慮しない場合は平面が、考慮する場合は曲面が、それぞれ算出される。このステップS103以降の処理は、図17に示す入力画面上の実行ボタンを押すことにより実行される調整部材情報の算出処理である。
図19は、キャンバー式を説明する図である。キャンバー式は、例えば、台車を支える枕梁の中心を基準とし、枕梁間のX方向の距離X1、枕梁から台枠端面までのX方向の距離X2、台枠中心における設計上の床板上面からのZ方向の距離Z1、台枠端面における設計上の床板上面からのZ方向の距離Z2、および、曲率半径Rとr、をパラメータとする二次以上の多項式で定義することができる。
ステップS104において、艤装品調整量算出処理部104は、対象車両の床受けテーブル311(図8)から床受けIDを1つ選択する。選択の順番は処理に影響を与えず、最終的には、対象となる全ての床受けIDが選択されて各々処理されることになる。
ステップS105において、艤装品調整量算出処理部104は、ステップS104で選択した床受けID内の全床受け測定点IDを選択する。選択する床受け測定点IDの数は、床受け測定テーブル321(図15)の同一床受けID内での測定数の数と一致する。
ステップS106において、艤装品調整量算出処理部104は、ステップS105で選択した床受け測定点IDに基づき、実際の床受け上面の式Hs´(x)を算出する。
ステップS107において、艤装品調整量算出処理部104は、ステップS105で選択した床受け測定点IDに基づき、床受け測定点と対応する理想の床受け上面上の点を算出し、理想の床板上面の式Hf´(x)を算出する。
以下では、図11に示す床受けID「FS001」を例に、図20から図25を用いて説明する。床受けID「FS001」は、図11の床受け測定点ID図802に示す通り、測定点を2つ(M001、M002)有する。
図20は、床構造の断面図(Y−Z断面およびX−Z断面)の一例である。以下、図21から図25に示す断面は、X−Z断面である。
図21は、床構造の断面図における基準座標を説明する図である。床受け測定テーブル321(図15)の基準座標は、設計上の床受け上面上に定義される。また、床受けテーブル311(図8)の設計上の床板上面高さを用いて設計上の床板上面高さが算出でき、床受け測定点直上における設計上の床板上面を算出できる。
図22は、床構造の断面図における測定結果を反映した座標を説明する図である。実際の床受け上面が設計上の床受け上面とずれている場合、測定点の高さ(Hs1´およびHs2´)は、基準座標の高さ(Hs1およびHs2)と異なる。同様に、ステップS103で算出した理想の床板上面と設計上の床板上面とがずれている場合、理想の床板上面高さ(Hf1´およびHf2´)は、設計上の床板上面高さ(Hf1およびHf2)と異なる。
図23は、床構造の断面図における床受けと床板を定義する式を説明する図である。x方向の実際の床受け上面の式Hs´(x)は、ステップS106において、高さがHs1´およびHs2´の点を通る直線として算出される。
同様に、x方向の理想の床板上面の式Hf´(x)は、ステップS107において、高さがHf1´およびHf2´の点を通る直線として算出される。
ステップS108において、艤装品調整量算出処理部104は、先に示した式3を一般化した以下の式4を用いて、理想の調整部材厚さの式Da´(x)を算出する。
Da´(x)=(Hf´(x)−Hf)−(Hs´(x)−Hs)+Da … (式4)
ステップS109において、艤装品調整量算出処理部104は、床受けテーブル311(図8)の項目である調整部材厚さピッチが規定されているかどうかを判定する。
調整部材厚さピッチが規定値として設定されている場合(YES)には、艤装品調整量算出処理部104は、調整部材厚さピッチを満たすように同一の床受けID内で調整部材を分割し、分割した各調整部材の位置、長さ、幅および厚さを算出する必要がある。この場合、艤装品調整量算出処理部104は、ステップS110からステップS112の処理を行う。
調整部材厚さピッチが規定されておらず無段階調整が可能であれば(NO)、ステップS108で算出した式Da´(x)により求めた値をそのまま調整部材厚さとして採用することができる。例えば、3Dプリンタなどを用いる場合、算出した式Da´(x)により造形が可能である。この場合には、ステップS110からステップS112の処理を行う必要はない。
ステップS110において、艤装品調整量算出処理部104は、内部変数として整数値Nを定義し、N=1を代入する。
ステップS111において、後述する式5から内部変数Nを満たす調整部材の位置、長さ、幅および厚さを算出する。
ステップS112において、艤装品調整量算出処理部104は、ステップS104で選択した床受けIDの全面の調整部材厚さを算出したかを判定する。その全面が、算出されていれば(YES)、ステップS114へ、まだ算出されていなければ(NO)、ステップS113に進む。
ステップS113において、艤装品調整量算出処理部104は、内部変数Nに1を加算し、ステップS111を再実行する。
ここでまず、以下の式5について説明する。式5は、調整部材厚さピッチPに合わせてDa´(x)が何倍のピッチ数NP(調整部材厚さ)を取り得るかを表すものである。
Da´(x)<P/2のとき
Da´(x)=0
NP−P/2≦Da´(x)<NP+P/2のとき(但し、N≧1の整数)
Da´(x)=NP … (式5)
図24は、床構造の断面図において、ステップS110からステップS113までの処理によって算出した調整部材厚さを説明する図である。床受けID「FS001」は、X方向に−7500から−4500の範囲を持つ。先の式4と式5から、この範囲内にあって、N=1を満たすDa´(x)は存在しない(すなわち、P/2≦Da´(x)<3P/2となるDa´(x)は存在しない)。N=2、3、4の場合には、それぞれを満たすDa´(x)が存在し、N=4で、Xが−7500から−4500の全範囲の調整部材厚さが算出される。
ただし、式5において、Da´(x)<P/2のとき Da´(x)=0と定義している(すなわち、調整部材厚さが0となる)ところ、床受けと床板が直接触れることが設計上好ましくない場合には、専用の調整部材を用意して、例えばDa´(x)=P/2と定義しても構わない。また、範囲の指定方法として、調整部材厚ピッチPの1桁下で四捨五入しているが、切り上げや切り下げで範囲指定を定義しても構わない。
ステップS114において、艤装品調整量算出処理部104は、ステップS111で算出した調整部材厚さが、床受けテーブル311で定義されている調整部材の厚さの上限値および下限値を満たしているかを判定する。全て満たしている場合(YES)は、ステップS116へ、満たしていない調整部材がある場合(NO)は、ステップS115へ進む。
ステップS115において、艤装品調整量算出処理部104は、ステップS114の条件を満たしていない調整部材のリストをエラーログとして出力し、ステップS116へ進む。エラーログが出力される場合に、艤装品調整量算出処理部104は、メッセージを出力する機能や、処理を強制的に終了する機能を有してもよい。このように、エラーログの出力有無により、床板の施工前に床受けの変形量が調整部材の調整代の範囲内か否かを判断できる。よって、床板施工中に問題が発覚した際に発生する工程遅延を事前に防ぐことができる。また、エラーの内容を定量的に評価でき、床受けの再溶接などの適切な処置を施すことができる。
ステップS116において、艤装品調整量算出処理部104は、対象となる全ての床受けIDに対する処理が終了したかを判定する。終了した場合(YES)は、ステップS117へ、終了していない場合(NO)は、ステップS104に戻る。
ステップS117において、艤装品調整量算出処理部104は、上記ステップS111で算出した調整部材情報103を出力し、床高さ調整量の算出に係る全処理を終了する。
図25は、床構造の断面図において、ステップS106およびステップS107で算出する床受け上面の式および床板上面の式が別の例を説明する図である。
床受け上面の長さが短く、その範囲内での傾きが十分小さいと考えられる場合には、床受け上面内に測定点を1つだけ定義することにより測定時間の短縮を図ることができる。同一床受け上面内の測定点が1つの場合として、図25の(a)に示すように、測定点を通るX軸に平行な直線として式を定義する。
他方、床受け上面の長さが長い場合には、床受け上面内の測定点を増やすことで、実態と算出式との誤差を小さくすることができる。例えば、同一床受け上面内の測定点が3つ以上の場合、図25の(b)に示すように、隣り合う測定点間を結んだ折れ線として式を算出する。この方法では、X軸の範囲で場合分けされた一次式で定義できるため、計算量を抑えることができる。また、測定点を通る二次以上の多項式で定義することも可能であり、実態と式との誤差をより小さくすることができる。
図26は、調整部材テーブル331のデータ例である。調整部材テーブル331は、算出された調整部材を特定する調整部材IDをキーとして、調整部材を設置する床受けID、同じ床受けIDの中での調整部材番号 調整部材の始点と終点の座標、調整部材の長さ、幅および厚さ、並びに調整部材種類IDをフィールドとして有する。
図27は、調整部材の始点および終点を説明する図である。図26において、同じ床受けID内で隣り合う調整部材ID「AD004」および「AD005」の例からもわかるように、調整部材ID「AD004」の終点(x4、y4)と、調整部材ID「AD005」の始点(x3、y3)とは、同じ座標値を取ることになる。
図28は、艤装品施工指示装置111の調整部材指示生成処理部105による調整部材製作指示書および調整部材配置指示書の出力処理に係るフローチャートの一例である。
図28のフローチャートに基づく動作を以下に説明する。
ステップS201において、艤装品施工指示装置111の調整部材指示生成処理部105(以下、単に「調整部材指示生成処理部105」という)は、メモリ123から、必要な車両設計情報101および艤装品調整量算出処理部104の出力結果である調整部材情報103を入力データとして受け付ける(図5)。
ステップS202において、調整部材指示生成処理部105は、入出力部121を介して、調整部材に対する指示情報の入力を受け付ける。ここで、指示情報とは、調整部材製作の発注番号、発注者、発注日および納期などの情報、並びに、調整部材を配置する施工日などの情報である。この指示情報の入力は、例えば、入出力部121の入力画面を使用して入力すればよい。
ステップS203において、調整部材指示生成処理部105は、パッキング番号を算出する。ここで、パッキング番号とは、製作した調整部材を梱包したり並べたりするために使用する番号である。例えば、パッキング番号に従い床受けIDごとに調整部材を梱包することで、床板施工時の調整部材の選択を容易化することできる。また、例えば、専用トレーなどを用意し、パッキング番号に従いトレーの分割およびトレー内での並び順を定義することで、車両内への搬入および作業が容易となる。
ステップS204において、調整部材指示生成処理部105は、調整部材製作指示書201を入出力部121を用いて出力する(図5)。図29は、調整部材製作指示書201の一例である。発注番号などの指示情報に続き、製作する調整部材の一覧情報が出力される。
前記出力される調整部材製作指示書201に従って調整部材を製作することで、従来のように床板施工時に調整部材を都度作成する方法に比べ、製作指示の明確化による工数削減、作業ミス低減などの効果がある。
また、調整部材の製作に関し外段取り化による事前製作が可能となる。これにより、3次元測定を調整部材の製作に必要な日数より前に行うことで、床板施工時には必要となる調整部材が全て揃っている状態が実現でき、車両製造工程のリードタイムを短縮する効果がある。
そしてまた、従来の床板施工では、床高さの調整量が事前に把握できないため、必要となる可能性がある全ての調整部材を最大限手配して保持しておく必要があった。ところが、前記出力される調整部材製作指示書201により、必要な分だけの手配で済み、調整部材の調達費を低減させる効果がある。
ステップS205において、調整部材指示生成処理部105は、調整部材配置指示書202を入出力部121を用いて出力する(図5)。図30は、調整部材配置指示書202の一例である。対象となる車両、施工日の指示に続き、調整部材の配置図および調整部材の一覧表が出力される。調整部材の配置図は、調整部材テーブル331が持つ、各調整部材の始点と終点の座標および調整部材の長さや幅から生成可能である。この配置図により施工作業が明確となり、床板施工の工数削減の効果がある。また、調整部材の一覧表には、図示の情報の他にも、調整部材テーブル331が持つ、調整部材の始点と終点の座標などを併せて表示しても構わない。
床板施工の次の工程としては、調整部材製作指示書201(図29)に基づいて調整部材が製作されると、調整部材配置指示書202(図30)に従ってその調整部材を配置し床高さの調整を行って床板の施工作業が行われることになる。
実施例3は、実施例2に対して、キャンバーの基準となる測定結果情報を追加反映する処理を含む実施形態である。すなわち、(類型2)に該当し、(A2)非調整箇所の測定結果情報が必要、かつ、(B)艤装品の測定結果情報が不要な場合の1例である。
図31は、実施例3に係る構体の側面図である。車両構体を構成する各要素のうち、構体を支える台枠は溶接量が多く、歪を生じやすい。この歪量が、調整部材の厚さピッチよりも大きい場合には、その影響を無視できない。
理想の床板上面を定義する際に、台枠上の測定点や設計上のキャンバー式をそのまま用いるよりも、台枠以外の構成要素、例えば、図31に示す側の開口窓下などの3次元測定結果を用いてキャンバー式を補正することで、製作した構体の現物にならった理想の床板上面を定義することが可能である。例えば、開口窓下などの開口窓の測定点(図示のC001〜C005)をキャンバー基準に採用することで、側の内装パネルの取り付け空間が確保され、取り付け時の調整工数を低減させる効果がある。また、例えば、屋根裏の測定点をキャンバー基準として採用することで、室内空間を均一にできるという効果がある。その他、側や屋根の特徴的な部分を測定し、キャンバー基準に採用しても構わない。
そしてまた、例えば、側の両面の測定結果を用いることで、車両構体のねじれを考慮した理想の床板上面を定義することも可能である。
図32は、実施例3に係る入出力情報の関連を例示する図である。実施例2に対して、測定結果情報102に、キャンバー基準測定テーブル322が追加されている。すなわち、キャンバー基準測定テーブル322に格納した測定データが、非調整箇所の測定結果情報に対応する。
図33は、実施例3に係るキャンバー基準測定テーブル322のデータ例である。キャンバー基準測定テーブル322は、キャンバー基準用の測定点を特定するキャンバー基準測定点IDをキーとして(図では、図31の開口窓下の測定点ID(C001〜C005)をキャンバー基準とした場合を示す)、設計図面をもとに測定前に定義する測定の基準座標、基準座標近傍で測定した測定結果の座標、基準座標と測定座標との偏差、基準座標Zの設計上の床板上面高さからの距離および測定に用いた測定プローブの半径、をフィールドとして有している。
図34は、実施例3に係る艤装品施工指示装置111の入出力部121の入力画面の一例である。実施例2に対して、「理想の床板上面の選択」欄の項目として、キャンバー基準測定結果を使用する選択肢3001が追加されている。
艤装品調整量算出処理部104は、実施例2と同様に、図16に示すフローチャートのステップS102において、理想の床板上面の選択入力を受け付ける。実施例3においては、キャンバー基準測定結果を使用することを選択する。
ステップS103において、艤装品調整量算出処理部104は、ステップS102で受け付けた選択に基づき、理想の床板上面を算出する。この際に、実施例3で追加したキャンバー基準測定結果を使用して、測定座標Zを、キャンバー基準測定テーブル322から基準座標Zの設計上の床板上面高さからの距離分だけ移動した位置を基準として、キャンバー式を補正した上で理想の床板上面を算出する。
図35は、実施例3に係るキャンバー基準の測定結果に基づくキャンバー式補正を説明する図である。キャンバー基準測定点の測定基準座標Zと設計上の床板上面高さとの差を補正することで、高さ補正後のキャンバー基準点を算出する。高さ補正後のキャンバー基準点とキャンバー式から、例えば、最小二乗法などを用いてキャンバーを定義する多項式の係数を求め、キャンバー式を補正する。
実施例3に係る艤装品調整量算出処理部104がステップS103以降に実行する処理は、実施例2のステップS104以降の処理フローと同様である。
以上のように、実施例3では、理想の床板上面算出に当たってキャンバー基準測定結果を使用することにより、車両構体の実態に合わせた床高さ調整量の算出処理が可能となる。
実施例4は、実施例2に対して、面合わせの基準となる測定結果情報を追加反映する処理を含む実施形態である。すなわち、(類型2)に該当し、先の実施例1で説明した、(A2)非調整箇所の測定結果情報が必要、かつ、(B)艤装品の測定結果情報が不要な場合の1例である。
出入口用の開口部下面や妻貫通路用の開口部下面など床板上面と面合わせする箇所がある場合、対象面側に調整代がなければ、床板側を調整して面合わせをする必要がある。
実施例4では、出入口用の開口部下面や妻貫通路用の開口部下面など、床板上面と面合わせをする対象面側に、設計上の調整代がない場合、対象面側の面高さを3次元測定で測定して面合わせの基準とし、その測定結果に基づき理想の床板上面を算出する。
図36は、実施例4に係る入出力情報の関連を例示する図である。実施例2に対して、測定結果情報102に、面合わせ基準測定テーブル323が追加されている。すなわち、面合わせ基準測定テーブル323に格納した測定データが、非調整箇所の測定結果情報に対応する。
また、図示しないが、実施例4では、実施例3と同様に、入出力部121の入力画面における「理想の床板上面の選択」欄の項目として、面合わせ基準測定結果を使用する選択肢が追加されている。
艤装品調整量算出処理部104は、実施例2と同様に、図16に示すフローチャートのステップS102において、理想の床板上面の選択入力を受け付ける。実施例4においては、面合わせ基準測定結果を使用することを選択する。
ステップS103において、艤装品調整量算出処理部104は、ステップS102で受け付けた選択に基づき、理想の床板上面を算出する。この際に、実施例4で追加した面合わせ基準測定結果を使用して、キャンバー式が測定した面合わせ基準位置を必ず通るようにキャンバー式を補正した上で理想の床板上面を算出する。
図37は、実施例4に係る、面合わせ基準の測定結果に基づくキャンバー式補正を説明する図である。図37に示すように、測定した2つの面合わせ基準点が補正後のキャンバー式上に位置するように、キャンバー式を補正する。
実施例4に係る艤装品調整量算出処理部104がステップS102以降に実行する処理は、実施例2のステップS104以降の処理フローと同様である。
以上のように、実施例4では、理想の床板上面算出に当たって面合わせ基準測定結果を使用することにより、車両構体の製作上の実態に合わせた床高さ調整量の算出処理が可能となる。
また、図37に示すキャンバー式全体を補正する方法だけでなく、例えば、面合わせ位置が台枠端面付近の場合には、台枠端面から枕梁間のみキャンバー式を補正するなど、面合わせ位置の近傍のみキャンバー式を補正する方法などを用いてもよい。
更に、実施例3に係るキャンバー基準測定結果と合わせる形でキャンバー式を補正する方法などを用いてもよい。
実施例5は、(類型3)に該当する、(A2)非調整箇所の測定結果情報が不要、かつ、(B)艤装品の測定結果情報が必要な場合の例として、前面窓ガラス取り付け施工時の艤装品施工指示方法である。
以下、特に記載がない限り、前述した実施例2、2および3に記載の“床受け”を“艤装品受け”または“艤装品”と読み換えることで、艤装品一般に適用可能である。実施例5においては、 “艤装品”を“前面窓ガラス”とした例について説明する。
装置構成は、実施例2の図4と同様である。処理と入出力に係るフローの一例は、図5と同様である。
図38は、実施例5に係る入出力情報の関連を例示する図である。実施例2の図6との差分として、車両設計情報101は、前面窓ガラス受けテーブル511および前面窓ガラステーブル512を有する。また、測定結果情報102は、前面窓ガラス受け測定テーブル521および前面窓ガラス測定テーブル522を有する。すなわち、前面窓ガラス測定テーブル522に格納した測定データが、艤装品の測定結果情報に対応する。
前面窓ガラス受けテーブル511および前面窓ガラステーブル512は、実施例2の図7の床受けテーブル311と、また、前面窓ガラス受け測定テーブル521および前面窓ガラス測定テーブル522は、床受け測定テーブル321と、それぞれ同等のデータフィールドを有する。
図39は、鉄道車両の先頭構体553および前面窓ガラス552の構造を説明する図である。
図39では、流線形の先頭構体を模しているが、先頭部が垂直で前面窓ガラスが先頭構体の前面を覆う通勤車両や、より鋭い流線形を有し前面窓ガラスの曲率も大きくなる高速車両などでも構わない。
図40は、図39を真上から見た模式図であり、説明に不要な要素は省いている。図中の斜線部で示す調整部材551は、前面窓ガラス552と先頭構体553の間に挟まれる形で配置され、前面窓ガラス552は複数の調整部材551により支えられている。ここで、先頭構体側の調整部材配置箇所を「前面窓ガラス受け部」と呼ぶ。先頭構体や前面窓ガラスの形状、調整部材の大きさや配置および数は、図40に限定されない。
図41は、図40中の断面AAおよび断面BBを示す図である。
断面AAは調整部材がある断面、断面BBは調整部材のない断面の例である。
断面AAでは、先頭構体553の前面窓ガラス受け部に調整部材551が配置され、その上に前面窓ガラス552が配置される。
断面BBは、前面窓ガラス受け部ではないため、調整部材551の代わりにシール材564が充填され、その上に前面窓ガラス552が配置される。側面方向は気密性確保のためにパッキン563が配置される。前面窓ガラス552の上にはシール材562が充填され、ガラス押さえ561により固定される。ガラス押さえ561は、ネジ565などにより先頭構体553に固定される。先頭構体553の最上面とガラス押させ561の上面が面合わせとなる。
前面窓ガラスの中央部が段付きになっておりガラス押さえと上面合わせとなる構造や、ガラス押さえが構体フレームの上部に配置される構造、パッキンの代わりにシール材を充填する構造、シール材の代わりにパッキンを配置する構造などでも構わない。
シール材は、先頭構体の気密性を確保するため、許容最小厚さが車両設計情報101で定義されている。
図42は、断面AAの拡大図である。前面窓ガラス552は曲面形状を有するため、各断面は曲面の法線方向として定義する。
基準面(たとえば前面窓ガラス552と同率の曲面を有する先頭構体553の前面窓ガラス受け部上面)からの最上面の高さ(Ht)は、調整部材厚さ(Da)、前面窓ガラス厚さ(Dg)、シール材厚さ(Ds)およびガラス押さえ厚さ(Dp)の和と同値であることが分かる。それを式6として以下に示す。
Ht=Da+Dg+Ds+Dp … (式6)
基準面からの最上面の高さ(Ht)は、図42で図示した範囲の先頭構体の段付き部に相当し、機械加工などにより成形されるため製造精度は十分高い。
ガラス押さえ561は、金属や樹脂のプレートが用いられるため、ガラス押さえ厚さ(Dp)の製造精度は十分高い。
前面窓ガラス厚さ(Dg)は、設計値からの変形量が十分小さい。しかし、前面窓ガラス全体としての形状変形は、調整において無視できない大きさであり、調整箇所間の調整量が前面窓ガラス552の位置に対して互いに影響を与えることに留意する必要がある。各調整箇所における基準面からの実際の前面窓ガラス高さを(Hg(i)´)とする。ここで添え字(i)は、調整箇所の位置を示す。
調整部材厚さ(Da)およびシール材厚さ(Ds)は調整代を有するため、実際の値をそれぞれ(Da´)、(Ds´)とする。以上より式7が成り立つ。
Ht=Da´+Dg+Ds´+Dp … (式7)
各調整箇所(i)において、(Ht)、(Dg)および(Dp)が一定であることから、各調整箇所において、式8が成り立つ。
Da(i)´+Ds(i)´=Const. … (式8)
また、実際の前面窓ガラス高さ(Hg(i)´)、実際の調整部材厚さ(Da(i)´)および前面窓ガラス厚さ(Dg)の関係より、以下式9が成り立つ。
Da(i)´=Hg(i)´−Dg … (式9)
式9より実際の調整部材厚さ(Da´)が算出されるが、調整部材厚さの制約を満たす必要がある(制約条件B1)。
また、式8より実際のシール材厚さ(Ds´)が算出されるが、シール材厚さの制約を満たす必要がある(制約条件B2)。
前面窓ガラス受け部および前面窓ガラス552の測定は、先の実施例2で説明した方法と同様に、レーザトラッカやレーザスキャナなどを用いた3次元計測、アナログ測定器やレーザレベルなどを使った簡易的な手法が選択可能である。その他に、前面窓ガラス552の形状を正確に再現した治具を作成し、調整箇所における治具との差分を測定値に置き換える方法なども選択可能である。これは、床板に比べ測定範囲の小さな前面窓ガラスなどにおいて、測定工数を削減する有効な手段の一つである。
図43は、艤装品施工指示装置111の艤装品調整量算出処理部104による前面窓ガラス調整量算出処理に係るフローチャートの一例である。
図43のフローチャートに基づく動作を以下に説明する。
ステップS501において、艤装品調整量算出処理部104は、メモリ123から、必要な車両設計情報101を入力データとして受け付ける。その入力に際しては、対象車両の選択が必要となる。車両設計情報101には、前面窓ガラス受け部を含む先頭構体および前面窓ガラスのデータテーブル、各種制約条件、3D−CADデータ、調整部材のデータテーブル、などが含まれる。3D−CADデータは、前面窓ガラスと先頭構体が共通の座標系に対して設計上の最終組立位置(以下、設計位置)に配置された状態で読み込む。
ステップS502において、艤装品調整量算出処理部104は、メモリ123から、必要な測定結果情報102を入力データとして受け付ける。測定結果情報102には、先頭構体、前面窓ガラスを計測した点群データ、必要部位を抽出したデータテーブルなどが含まれる。
ステップS503において、前記入力を受け付けた車両設計情報101および測定結果情報102に基づき、先頭構体と前面窓ガラスの仮想組立を行い、前面窓ガラスの調整後の理想位置を算出する。
ここで、仮想組立の処理方法として、少なくとも以下3つの方法が選択可能である。選択の反映には、ユーザ画面で入力を受け付ける方法や、初期設定を保持しておく方法などがある。
(仮想組立A)として、先頭構体および前面窓ガラスの計測データを、それぞれ3D−CADにベストフィットする方法。ここで、ベストフィットとは、最小二乗法を用いて比較対象データ間の距離の総和が最小になるように、点群データの位置を決定することである。最小二乗法の係数に重み付けしてもよい。例えば、計測位置によってデータ量に差がある場合や、優先する移動方向がある場合などに、重み付けを変更することにより、設計意図を反映した仮想組立が可能となる。
この方法の利点は、先頭構体および前面窓ガラスのそれぞれが理想的な位置(すなわち設計位置)からの誤差が最小となる点である。また、計算上の利点として、3D−CADと計測データをベストフィットするため、点群データ同士のベストフィットと比較し、計算時間が早く、ベストフィットが収束する可能性が高くなる。
この方法の欠点は、それぞれの形状の関係性を考慮できず、隙間(すなわち調整量)が大きくなる可能性が高い点である。
(仮想組立B)として、先頭構体および前面窓ガラスの計測データ同士をベストフィットする方法。計測データ同士を直接ベストフィットすることが可能だが、事前に片方ないし両方をメッシュ、ポリゴン、3D−CAD化してからベストフィットしてもよい。
この方法の利点は、それぞれの形状の関係性を考慮し、隙間が最小となる点である。
この方法の欠点は、設計位置を考慮しておらず、設計位置からのずれが大きくなる可能性が高い点である。また、計測データ同士をベストフィットする場合には、計測データの密度が不均一であることや、計測データ同士に比較できる箇所(すなわち、設計上の位置関係に配置した際に、ライナーないしシール剤を介してガラスとフレームが接触する箇所)が測定できていない場合には、ベストフィットが収束しない可能性がある。また、計測データ同士の座標系が一致していない場合には、比較する箇所を適切に選択することができず、ベストフィットが収束しない可能性がある。
(仮想組立C)として、(仮想組立A)と(仮想組立B)を組み合わせた方法。
この方法の利点は、事前に(仮想組立A)で位置合わせすることにより、(仮想組立B)でベストフィットが収束する可能性を高めることができる。(仮想組立B)の欠点を(仮想組立A)の方法で補うことができる。
この方法の欠点は、処理ステップが増えることである。
ステップS504において、式9に基づき、ステップS503で算出した艤装品と構体の位置関係から差分を抽出し、その差分を調整する調整部材厚さ(Da´)を、前記入力を受け付けた車両設計情報101が持つ調整部材情報に基づき決定する。
ここで、各調整箇所における調整部材厚さ(Da(i)´)は、前述した実施例2の図16に示すフローチャートのステップS104からステップS116と同様に順次算出される。
調整部材の長さ、幅が小さい場合や、製造上調整部材の分割が許容されない場合には、各調整箇所における代表測定点から調整量を一意に算出しても構わない。
ステップS505において、前記算出した調整量が、前記入力を受け付けた車両設計情報101が持つ制約条件を満足するかを評価する。
ここで、制約条件としては、少なくとも下記2つを含む。
(制約条件B1)前述した実施例2の図16に示すフローチャートのステップS114と同様に、調整部材の厚さの上限値および下限値を満たす。
(制約条件B2)式8に基づく調整部材厚さ(Da(i)´)とシール材厚さ(Ds(i)´)の和が一定であるとの関係より、シール材厚さの上限値および下限値を満たす。
以上の制約条件を満足する場合(YES)は、ステップS507に進む。満足しない場合(NO)は、ステップS506に進む。
ステップS506において、調整不可通知書203を出力する。ユーザは出力結果を確認し、以下の選択を行う。これらの選択は複数組合せてもよい。
(選択A)ステップS501の入力を変更し、処理を再実行する。変更方法として、車両設計情報101が持つ各種制約条件を変更(緩和)する、再測定を実施し測定結果情報102を更新する、などの方法がある。
(選択B)ステップS503の仮想組立の処理方法を変更(再選択)し、処理を再実行する。
(選択C)現在の構体(実施例5では先頭構体)または艤装品(実施例5では前面窓ガラス)の出来具合では調整不可と判断し、形状修正などの手配をとる。形状修正後、再測定を実施し、再度処理を実行することも可能である。
ステップS507において、調整部材の事前製作手配を可能とする調整部材製作指示書201、および、算出した調整量に基づく艤装品施工指示を可能とする調整部材配置指示書202を出力する。
図44は、前面窓ガラス施工における調整部材配置指示書202の一例である。
前面窓ガラス施工の次の工程としては、調整部材製作指示書201に基づいて調整部材が製作されると、調整部材配置指示書202(図44)に従ってその調整部材を配置し前面窓ガラスの位置調整を行って、前面窓ガラスの施工作業が行われることになる。
実施例5により、前面窓ガラスの用に艤装品が変形している場合でも、施工前に調整量を算出することが可能となる。
実施例6は、(類型4)に該当する、(A2)非調整箇所の測定結果情報が必要、かつ、(B)艤装品の測定結果情報が必要な場合の例として、運転台取り付け施工時の艤装品施工指示方法である。
実施例6においては、先の実施例1〜3および5の“艤装品”を“運転台”とした例について説明する。
装置構成は、実施例2の図4と同様である。処理と入出力に係るフローの一例は図5と同様である。
図45は、実施例6に係る入出力情報の関連を例示する図である。実施例2の図6との差分として、車両設計情報101は、運転台受けテーブル611、運転台周辺テーブル612および運転台テーブル613を有する。また、測定結果情報102は、運転台受け測定テーブル621、運転台周辺測定テーブル622および運転台測定テーブル623を有する。すなわち、運転台周辺測定テーブル622に格納した測定データが、非調整箇所の測定結果情報に対応し、運転台測定テーブル623に格納した測定データが、艤装品の測定結果情報に対応する。
図46は、鉄道車両の先頭構体内部および運転台の構造を説明する図である。
先頭構体内部の側面に、運転台受け(取り付け座)653が複数設けられ、上部に運転台652が配置されている(図中は底面のみ表示)。運転台652は、溶接構造物であり、溶接後、先頭構体内部に搬送され、運転台受け653で位置を調整し、ボルトなどで締結される。運転台652の内部に制御パネルなどの電装品が配置される。運転台652の表面は、樹脂製のパネルなどで覆われることもある。運転台受け653は、先頭構体の側面からではなく、正面や台枠上面(床)656に設けられる構造も考えられる。運転台652の下部には、製造装置などの下部機器655が配置される(図46では省略)。運転台受け653の配置や数、その他の構造についても図46に限定されない。
図47は、図46中の断面Cを示す図である。図中の斜線部で示す調整部材651は、運転台652と運転台受け653の間に挟まれる形で配置され、運転台652は複数の調整部材651により支えられていることが分かる。
運転台652の上面は、先頭構体内部との干渉を回避しなくてはならず、特に先頭構体ピラー654との干渉を考慮しなければならない(制約条件C1)。
また、運転台652の下面は、台枠上面656に配置される下部機器655との干渉を考慮しなければならない(制約条件C2)。
基準面(たとえば台枠上面656)からの運転台652の最上面の高さ(Ht)は、基準面からの運転台受け653の高さ(Hs)、調整部材651の厚さ(Da)、運転台652の厚さ(Dc)の和と同値であることが分かる。それを式10として以下に示す。
Ht=Hs+Da+Dc … (式10)
運転台受け653は、溶接構造物である先頭構体の一部であるため溶接変形を生じる。実際の運転台受け653の高さを(Hs´)とする。また、運転台652自身も溶接構造物であるため、実際の運転台652の厚さを(Dc´)とする。運転台652の下面を基準に製作された場合、運転台652の厚さの変動が運転台652の上面の変動として表出する。調整部材651の厚さおよび運転台652の最上面高さは調整内容によって変動するため、実際の調整部材651の厚さを(Da´)、実際の運転台652の最上面高さを(Ht´)、とそれぞれ定義する。以上より式11が成り立つ。
Ht´=Hs´+Da´+Dc´ … (式11)
先頭構体ピラー654は溶接構造物である先頭構体の一部であるため、実際の先頭構体ピラー654の高さを(Hu´)とすると、制約条件10より式12が成り立つ。
Ht´<Hu´ … (式12)
下部機器655は精密機器であり、設計上の厚さ(Db)は設計と実際とで大きな誤差は生じない。制約条件式11より式13が成り立つ。
Db<Hs´+Da´ … (式13)
各調整箇所(i)における垂直方向の高さに着目し、式10から式13より、実際の調整部材651の厚さ(Da´)は、以下の式14、式15および式16を満足する。
Da(i)´=Ht(i)´−Hs(i)´−Dc(i)´ … (式14)
Da(i)´<Hu(i)´−Dc(i)´−Hs(i)´ … (式15)
Db−Hs(i)´<Da(i)´ … (式16)
特に、先頭構体ピラー654は、傾斜を有する構造であることが多く、Hu(i)´は調整箇所(i)の垂直方向高さであることに留意が必要である。
運転台652、運転台受け653および先頭構体ピラー654の測定は、先の実施例2で説明した方法と同様に、レーザトラッカやレーザスキャナなどを用いた3次元計測、アナログ測定器やレーザレベルなどを使った簡易的な手法が選択可能である。先頭構体ピラー654のように、水平方向の位置ずれによる垂直方向の高さ変動が大きい場合、3次元スキャナ等を用いて大規模点群を取得し、面に近しい情報として保持することも、誤測定や誤判定を排除する有効な手段の一つである。
図48は、艤装品施工指示装置111の艤装品調整量算出処理部104による運転台調整量算出処理に係るフローチャートの一例である。
図48のフローチャートに基づく動作を以下に説明する。
ステップS601において、艤装品調整量算出処理部104は、メモリ123から、必要な車両設計情報101を入力データとして受け付ける。その入力に際しては、対象車両の選択が必要となる。車両設計情報101には、運転台受けおよび先頭構体ピラーを含む先頭構体並びに運転台のデータテーブル、各種制約条件、3D−CADデータ、調整部材のデータテーブル、などが含まれる。3D−CADデータは、運転台と先頭構体が共通の座標系に対して設計位置にある状態を保った状態で読み込む。
ステップS602において、艤装品調整量算出処理部104は、メモリ123から、必要な測定結果情報102を入力データとして受け付ける。測定結果情報102には、先頭構体、運転台を計測した点群データ、などが含まれる。
ステップS603において、前記入力を受け付けた車両設計情報101および測定結果情報102に基づき、運転台の水平出しを行う。運転台は、運転手が車両操作を行う重要な機器を配置する箇所であり、基準面に対して水平であることが望ましい。水平の基準として、運転台の下端や運転台上面などをとることが可能である。運転台の測定結果情報から水平方向となる座標系を座標軸の回転等を適宜行って算出し、運転台の測定結果情報の座標を変換する。
ステップS604において、前記座標変換した運転台の測定結果情報について垂直方向の位置調整を行う。位置調整の初期値として、運転台の車両設計情報が持つ垂直方向の位置に調整する。
ステップS603およびステップS604の処理は、例えば、運転台の測定データを運転台の3D−CADデータに対して、水平方向または垂直方向の優先順にベストフィットすることで得ることも可能である。
ステップS605において、式14に基づき、ステップS604で算出した構体と艤装品の位置関係から差分を抽出し、その差分を調整する調整部材厚さ(Da´)を、前記入力を受け付けた車両設計情報101が持つ調整部材情報に基づき決定する。
ここで、各調整箇所における調整部材厚さ(Da(i)´)は、前記実施例2のフローチャート図16のステップS104からステップS116と同様に順次算出される。
調整部材の長さ、幅が小さい場合や、製造上調整部材の分割が許容されない場合には、各調整箇所における代表測定点から調整量を一意に算出しても構わない。
ステップS606からステップS608において、前記算出した調整量が、前記入力を受け付けた車両設計情報101が持つ制約条件を満足するかを評価する。
ステップS606では、前記実施例2のフローチャート図16のステップS114と同様に、調整部材の厚さの上限値および下限値を満たしているかどうかを判定する。満足しない場合(NO)は、ステップS604に戻り、上限値を越える場合は垂直方向下に、下限値を越える場合は垂直方向上に、位置を調整する。
ステップS607では、式15に基づき、運転台上面と構体ピラーが干渉しないかどうかを判定する。干渉する場合(NO)は、ステップS604に戻り、垂直方向下に位置を調整する。
ステップS608では、式16に基づき、運転台下面と下部機器が干渉しないがどうかを判定する。干渉する場合(NO)は、ステップS604に戻り、垂直方向上に位置を調整する。
ステップS606からステップS608に基づく、ステップS604での調整量は調整部材情報が持つ調整部材厚さピッチによる。
また、計算の繰り返しについて、ステップS609において、初期設定として保持した規定回数以下であることを判定する。規定回数以下(YES)であれば、前記のとおり、ステップS604に戻って再計算を実行する。規定回数以上(NO)であれば、計算が収束しないと判定し、ステップS610に進む。
計算が収束した場合(ステップS608で「YES」)、ステップS608からステップS611に進む。ステップS606からステップS608の処理は、一つの処理ステップに集約しても構わない。また、工程の特徴に応じて、評価基準が追加・変更・削除されても構わない。
ステップS610において、調整不可通知書A33を出力する。ユーザは出力結果を確認し、以下の選択を行う。これらの選択は複数組合せてもよい。
(選択A)ステップS601の入力を変更し、処理を再実行する。変更方法として、車両設計情報101が持つ各種制約条件を変更(緩和)する、再測定を実施し測定結果情報102を更新する、などの方法がある。
(選択B)現在の構体(本実施例では運転台受けまたは先頭構体ピラー)または艤装品(本実施例では運転台)の出来具合では調整不可と判断し、形状修正などの手配をとる。形状修正後、再測定を実施し、再度処理を実行することも可能である。
ステップS611において、調整部材の事前製作手配を可能とする調整部材製作指示書201、および、算出した調整量に基づく艤装品施工指示を可能とする調整部材配置指示書202を出力する。
図49は、運転台施工における調整部材配置指示書202の一例である。
運転台施工の次の工程としては、調整部材製作指示書201に基づいて調整部材が製作される。この工程では、調整部材配置指示書202(図49)に従ってその調整部材を配置し運転台の位置調整を行って、運転台の施工作業が行われることになる。
実施例6により、運転台と運転台受けの関係だけでなく、先頭構体ピラーや下部機器との干渉を施工前に考慮した調整量を算出することが可能となる。
実施例7は、調整部材の厚さの組合せを算出して調整部材を製作するに当たって、その調整部材の製作を容易にするための実施形態である。したがって、先の各実施例で求めた調整部材に対して適用可能である。
図50は、実施例7に係る調整部材種類テーブル313のデータ例である。実施例2の調整部材種類テーブル313(図14)に対して、各調整部材の厚さのフィールドが追加され、その厚さにおいて複数の選択肢を有している。
図51は、実施例7に係る調整部材指示生成処理部105が、調整部材製作指示書201および調整部材配置指示書202を出力する処理のフローチャートの一例である。実施例2に対して、ステップS202とステップS203の間に4つのステップ(ステップS211〜S214)が追加されている。
図52は、実施例7に係る調整部材厚さの組合せを説明する図である。
以下に、図51に追加された4つのステップ(ステップS211〜S214)の処理内容について、図52を参照して説明する。
ステップS211において、調整部材指示生成処理部105は、隣り合う調整部材を一体化するか否かを選択する指示入力を受け付ける。この選択指示入力は、例えば、入出力部121の入力画面を使用して入力すればよい。
ステップS212において、調整部材指示生成処理部105は、調整部材の厚さの全組合せを算出する。例えば、厚さの選択肢として1、2、3および4mmの4種類があるとすると、図52の例では、調整部材を一体化する場合は3種類の組合せ、調整部材を一体化しない場合は15種類の組合せが算出される。
ステップS213において、調整部材指示生成処理部105は、組合せ評価式の入力を受け付ける。ここで、組合せ評価式とは、使用する調整部材の組合せの優劣を決定するための評価式である。例えば、使用する調整部材の厚さの種類を最小にする、できるだけ厚さの大きい調整部材を使用する、使用する調整部材の枚数を最小にする、などを評価するための式である。また、評価項目に重み付けを付ける、評価項目に優先順を付けるなど、多段階に評価することもできる。この評価式の入力には、例えば、入出力部121の入力画面を使用すればよい。
ステップS214において、調整部材指示生成処理部105は、ステップS213で受け付けた組合せ評価式に基づき、調整部材の厚さの組合せを算出する。例えば、評価式として、使用枚数の最小化を優先した場合、図52に示すように、調整部材を一体化する場合は、全長に渡る厚さ3mmの上に厚さ1mmを重ねる組合せ、調整部材を一体化しない場合は、厚さの違いで区切られた厚さ3mmと厚さ4mmとの組合せ、が算出される。
以上のように、実施例7は、調整部材の厚さの選択肢を複数持つことで、厚さの小さい調整部材を多数積層する場合に比べて、調整部材の製作工数を低減する効果を奏する。また、上記一体化を選択すれば、厚さの変化の区切りごとに調整部材を製作するのではなく、隣接する数枚の調整部材を一定厚さで一体化したものとし、その一体化したものに厚さの異なる分のみを重ねることで、調整部材の製作工数および施工工数を削減する効果を奏する。
なお、本発明は、上記した実施例に限定されるものではなく、様々な変形例を含むものである。例えば、上記した実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えること、ある実施例の構成に他の実施例の構成を加えることなども可能である。更にまた、各実施例の構成の一部について、他の構成の追加、削除および置換の少なくともいずれかを実行することが可能である。
上記した各構成、機能、処理部等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記した各構成、機能等は、プロセッサがそれぞれの機能を実現する部を解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現する部、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に格納することができる。
制御線や情報線については、説明上必要と考えられるものを示し、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
111 艤装品施工指示装置、101 車両設計情報、102 測定結果情報、
103 調整部材情報、104 艤装品調整量算出処理部、
105 調整部材指示生成処理部、121 入出力部、122 プロセッサ、
123 メモリ、201 調整部材製作指示書、202 調整部材配置指示書、
203 調整不可通知書、311 床受けテーブル、312 エリアテーブル、
313 調整部材種類テーブル、314 キャンバー式、321 床受け測定テーブル、322 キャンバー基準測定テーブル、323 面合わせ基準測定テーブル、
331 調整部材テーブル、511 前面窓ガラス受けテーブル、
512 前面窓ガラステーブル、521 前面窓ガラス受け測定テーブル、
522 前面窓ガラス測定テーブル、611 運転台受けテーブル、
612 運転台周辺テーブル、613 運転台テーブル、
621 運転台受け測定テーブル、622 運転台周辺測定テーブル、
623 運転台測定テーブル

Claims (15)

  1. 車両の構体および艤装品に関する車両設計情報と、前記艤装品を設置する前記構体上の調整箇所を3次元計測して得た第1の測定結果情報とに基づいて、前記構体に設置する前記艤装品の理想の設置位置を算出する第1のステップと、
    前記第1のステップで算出した前記艤装品の理想の設置位置と前記第1の測定結果情報とから算出した前記調整箇所における差分の調整量と、前記艤装品の設置時に当該差分の調整用に用いる調整部材の情報とに基づき、当該調整箇所に配置する前記調整部材の選択および配置位置を指示する指示情報を出力する第2のステップと、
    前記指示情報に基づいて前記艤装品を施工する第3のステップと
    を有することを特徴とする鉄道車両の製造方法。
  2. 請求項1において、
    前記調整部材を配置する箇所ではないが前記艤装品の配置に影響を与える箇所である非調整箇所の測定結果情報を第2の測定結果情報とし、
    前記艤装品の測定結果情報を第3の測定結果情報として、
    前記第1のステップは、前記車両設計情報および前記第1の測定結果情報に加えて前記第2の測定結果情報または前記第3の測定結果情報にも基づいて、前記構体に設置する前記艤装品の理想の設置位置を算出する
    ことを特徴とする鉄道車両の製造方法。
  3. 請求項1において、
    前記調整部材を配置する箇所ではないが前記艤装品の配置に影響を与える箇所である非調整箇所の測定結果情報を第2の測定結果情報とし、
    前記艤装品の測定結果情報を第3の測定結果情報として、
    前記第1のステップは、前記車両設計情報および前記第1の測定結果情報に加えて前記第2および前記第3の各測定結果情報にも基づいて、前記構体に設置する前記艤装品の垂直または水平方向の位置を調整しながら、前記艤装品の理想の設置位置を算出する
    ことを特徴とする鉄道車両の製造方法。
  4. 請求項1から3のいずれか1項において、
    前記第3のステップは、前記指示情報に基づいて施工に用いる前記調整部材の加工を行う第4のステップと、前記第4のステップで加工した当該調整部材を用いて前記艤装品を施工する第5のステップを有し、
    前記5のステップで用いる前記調整部材を、前記第4のステップで事前に準備しておくことを特徴とする鉄道車両の製造方法。
  5. 請求項1から4のいずれか1項において、
    前記第2のステップは、前記調整部材の情報として前記調整部材の長さと幅の情報を用いて、前記艤装品を分割した区画毎に前記調整部材を選択する
    ことを特徴とする鉄道車両の製造方法。
  6. 請求項1から5のいずれか1項において、
    前記第2のステップは、前記指示情報として、前記調整部材の製作指示書および配置指示書を出力する
    ことを特徴とする鉄道車両の製造方法。
  7. 請求項1または請求項1を引用する請求項4から6のいずれか1項において、
    前記艤装品は、床板であり、
    前記第1のステップで、前記第1の測定結果情報は前記構体上の調整箇所である前記車両の台枠に設ける床受け上面の測定情報を含み、前記理想の設置位置は前記床板を施工する対象車両に対する理想の床板上面位置であり、
    前記第2のステップで、前記差分の調整量は床受け上面における厚さ調整量であり、前記指示情報は当該床受け上面に配置する前記調整部材の選択および設置位置であり、
    前記第3のステップで前記床板を施工する
    ことを特徴とする鉄道車両の製造方法。
  8. 請求項7において、
    前記車両設計情報は、キャンバーに係る曲率を定義するキャンバー式情報を有し、
    前記第1のステップにおける前記理想の床板上面位置の算出に、前記キャンバー式情報も用いる
    ことを特徴とする鉄道車両の製造方法。
  9. 請求項2または請求項2を引用する請求項4から6のいずれか1項において、
    前記艤装品は、床板であり、
    前記第1のステップで、前記車両設計情報はキャンバーに係る曲率を定義するキャンバー式情報を含み、前記第1の測定結果情報は前記構体上の調整箇所である前記車両の台枠に設ける床受け上面の測定情報を含み、前記第2の測定結果情報は前記キャンバーの基準となる前記車両の台枠以外の測定情報または前記床板の上面に対して面合わせ基準となる箇所の測定情報を含み、前記理想の設置位置は前記床板を施工する対象車両に対する理想の床板上面位置であり、
    前記第2のステップで、前記差分の調整量は床受け上面における厚さ調整量であり、前記指示情報は当該床受け上面に配置する前記調整部材の選択および設置位置であり、
    前記第3のステップで前記床板を施工する
    ことを特徴とする鉄道車両の製造方法。
  10. 請求項2または請求項2を引用する請求項4から6のいずれか1項において、
    前記艤装品は、前記車両の前面窓ガラスであり、
    前記第1のステップで、前記第1の測定結果情報は前記車両の先頭構体上の調整箇所である前面窓ガラス受け部の測定情報を含み、前記第3の測定結果情報は前記前面窓ガラスの測定情報を含み、前記理想の設置位置は前記前面窓ガラスの前記先頭構体上の設置位置であり、
    前記第2のステップで、前記差分の調整量は前記前面窓ガラス受け部における厚さ調整量であり、前記指示情報は当該前面窓ガラス受け部に配置する前記調整部材の選択および設置位置であり、
    前記第3のステップで前記前面窓ガラスを施工する
    ことを特徴とする鉄道車両の製造方法。
  11. 請求項3または請求項3を引用する請求項4から6のいずれか1項において、
    前記艤装品は、前記車両の運転台であり、
    前記第1のステップで、前記第1の測定結果情報は前記車両の先頭構体上の調整箇所である運転台受けの測定情報を含み、前記第2の測定結果情報は前記運転台の周辺の測定情報を含み、前記第3の測定結果情報は前記運転台の測定情報を含み、前記理想の設置位置は前記運転台の前記先頭構体上の設置位置であり、
    前記第2のステップで、前記差分の調整量は前記運転台受けにおける厚さ調整量であり、前記指示情報は当該運転台受けに配置する前記調整部材の選択および設置位置であり、
    前記第3のステップで前記運転台を施工する
    ことを特徴とする鉄道車両の製造方法。
  12. 請求項1から11のいずれか1項において、
    前記第2のステップにおいて、前記指示情報に前記調整部材の組み合わせを選択肢として含め、
    前記第3のステップにおける前記艤装品の施工は、前記選択肢の中から選択された任意の調整部材の組み合わせで行う
    ことを特徴とする鉄道車両の製造方法。
  13. 請求項1から12のいずれか1項において、
    前記第2のステップで算出した前記差分の調整量が、前記車両設計情報の制約条件を満足しない場合には、調整が不可であることを通知する
    ことを特徴とする鉄道車両の製造方法。
  14. 請求項13において、
    前記調整が不可であることの通知として、少なくとも前記制約条件を満足しない箇所および満足しない理由のいずれかを定量的な提示する
    ことを特徴とする鉄道車両の製造方法。
  15. 請求項1から14のいずれか1項において、
    前記車両設計情報、前記第1から前記第3の各測定結果情報および前記調整部材の情報を格納した記憶部と、前記各ステップを実行する処理部と、入出力部とを備えた艤装品施工指示装置を使用した鉄道車両の製造方法。
JP2016050359A 2015-04-24 2016-03-15 鉄道車両の製造方法 Active JP6510449B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015089211 2015-04-24
JP2015089211 2015-04-24

Publications (3)

Publication Number Publication Date
JP2016203967A JP2016203967A (ja) 2016-12-08
JP2016203967A5 JP2016203967A5 (ja) 2018-05-24
JP6510449B2 true JP6510449B2 (ja) 2019-05-08

Family

ID=56137066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050359A Active JP6510449B2 (ja) 2015-04-24 2016-03-15 鉄道車両の製造方法

Country Status (2)

Country Link
EP (1) EP3085597B1 (ja)
JP (1) JP6510449B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6510449B2 (ja) * 2015-04-24 2019-05-08 株式会社日立製作所 鉄道車両の製造方法
CN112097673B (zh) * 2019-06-18 2022-11-15 上汽通用汽车有限公司 车身部件虚拟匹配方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272639A (en) * 1938-03-26 1942-02-10 Johns Manville Vibration isolating mounting
JPS60213564A (ja) * 1984-04-05 1985-10-25 川崎重工業株式会社 車両構体
JPH03235017A (ja) * 1990-02-13 1991-10-21 Sokkisha Co Ltd 三次元測定装置
DE10146713A1 (de) * 2001-09-21 2003-04-30 Siemens Ag Verfahren zur Vermessung von Großbauteilen, insbesondere Wagenkästen von Schienenfahrzeugen
JP5228145B2 (ja) * 2006-06-27 2013-07-03 東日本旅客鉄道株式会社 鉄道車両の出来形寸法の計測方法および計測システム、並びにその計測システムを具えた鉄道車両の出来形寸法検査システム
KR100837181B1 (ko) * 2007-04-10 2008-06-11 현대로템 주식회사 캠버 가공을 위한 철도차량 차체 제작방법
JP5583553B2 (ja) * 2010-11-08 2014-09-03 川崎重工業株式会社 鉄道車両の台枠構造
JP6510449B2 (ja) * 2015-04-24 2019-05-08 株式会社日立製作所 鉄道車両の製造方法

Also Published As

Publication number Publication date
EP3085597A1 (en) 2016-10-26
EP3085597B1 (en) 2017-11-15
JP2016203967A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
JP5225295B2 (ja) 部品アセンブリを嵌合する方法
US7447616B2 (en) Method and system for developing a vehicle package
CN101646983B (zh) 无需垫片的拼接机身区段
JP6510449B2 (ja) 鉄道車両の製造方法
CN107364565A (zh) 使用预测填隙优化部件之间对准的方法
CN106709124A (zh) 用于垫补弯曲体的系统和方法
CN111723248A (zh) 自动检查座椅尺寸精度的系统和方法以及可读记录介质
US9652583B2 (en) Methods and apparatus to automatically fabricate fillers
EP2979075B1 (en) Tire uniformity improvement using estimates based on convolution/deconvolution with measured lateral force variation
JP4640601B2 (ja) 車両企画支援システム
US9550467B2 (en) Tunable crash bolster
JP4640603B2 (ja) 車両企画支援システム
CN107665284A (zh) 一种基于最小二乘法的飞机装配型架骨架优化布局方法
US8131513B2 (en) Method and system of computer assisted vehicle seat design
JP4650685B2 (ja) 車両企画支援システム
Reed Development of a new eyellipse and seating accommodation model for trucks and buses
EP1270385A1 (en) Mock-up of a motor vehicle structure (cubing)
Wang et al. Design and verification of a new computer controlled seating buck
JP4640602B2 (ja) 車両企画支援システム
Mesicek et al. Comprehensive View of Topological Optimization Scooter Frame Design and Manufacturing. Symmetry 2021, 13, 1201
US20240169114A1 (en) Systems and methods for predictive assembly
US20240069534A1 (en) System and Method for Sheet Forming Multiple Parts Using a Common Addendum
JP2005182258A (ja) 設計支援システム
JP4640600B2 (ja) 車両企画支援システム
JP2012148622A (ja) アクセルペダル固定用ブラケットの取付構造

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6510449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150