JP6506369B2 - Method of manufacturing separator - Google Patents

Method of manufacturing separator Download PDF

Info

Publication number
JP6506369B2
JP6506369B2 JP2017213604A JP2017213604A JP6506369B2 JP 6506369 B2 JP6506369 B2 JP 6506369B2 JP 2017213604 A JP2017213604 A JP 2017213604A JP 2017213604 A JP2017213604 A JP 2017213604A JP 6506369 B2 JP6506369 B2 JP 6506369B2
Authority
JP
Japan
Prior art keywords
separator
binder
layer
slurry
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017213604A
Other languages
Japanese (ja)
Other versions
JP2018056573A (en
Inventor
敦 西野
西野  敦
伊藤 睦弘
睦弘 伊藤
明洋 芹澤
明洋 芹澤
光輝 小川
光輝 小川
浅野 達也
達也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Silysia Chemical Ltd filed Critical Fuji Silysia Chemical Ltd
Publication of JP2018056573A publication Critical patent/JP2018056573A/en
Application granted granted Critical
Publication of JP6506369B2 publication Critical patent/JP6506369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、セパレータ、電気化学素子、及びセパレータの製造方法に関する。   The present invention relates to a separator, an electrochemical device, and a method of manufacturing the separator.

従来、第1世代のセパレータとして、オレフィン系樹脂、PDF系樹脂、PAN系樹脂、PMMA系樹脂、及びウレタン系樹脂のいずれかから成るセバレータが知られている。このセパレータは、携帯電話、デジタルカメラのような小型携帯機器用の二次電池や電気二重層キャパシタ(以下、EDLCと略す)に用いられる。なお、二次電池の外観は、小型角形であった。   Conventionally, a separator made of any of an olefin resin, a PDF resin, a PAN resin, a PMMA resin, and a urethane resin is known as a first generation separator. This separator is used for a secondary battery for a small portable device such as a mobile phone or a digital camera or an electric double layer capacitor (hereinafter abbreviated as EDLC). In addition, the external appearance of the secondary battery was small square.

また、加工性、及び価格の観点から、オレフィン系樹脂(特に、超高分子量のポリプロピレン(PP)やポリエチレン(PE))と微粒子状のアルミナやシリカとを混練し、一軸または二軸延伸法を用いて生産されたセパレータが実用化されてきた(特許文献1、2)。   In addition, from the viewpoint of processability and cost, an olefin resin (in particular, ultrahigh molecular weight polypropylene (PP) or polyethylene (PE)) and fine particle alumina or silica are kneaded to obtain a uniaxial or biaxial stretching method. The separator produced using it has been commercialized (patent documents 1 and 2).

図7A、図7B、及び図7Cは、代表的な第1世代のセパレータの構造を示す。図7Aは、PPの単層101から成るセパレータを示す。図7Bは、PEの単層103から成るセパレータを示す。図7Cは、PPの層105、PEの層107、及びPPの層109を積層したセパレータ111を示す。   7A, 7B, and 7C show the structure of a representative first generation separator. FIG. 7A shows a separator consisting of a single layer 101 of PP. FIG. 7B shows a separator consisting of a single layer 103 of PE. FIG. 7C shows the separator 111 in which the layer 105 of PP, the layer 107 of PE, and the layer 109 of PP are stacked.

第2世代のセパレータは、パソコン(PC)、電動工具、ロボット電源等を用途とする2次電池に使用される。なお、この二次電池は、18650型や26650型の中型捲同型、又は角形である。第2世代のセパレータを用いた二次電池は、第1世代を用いた二次電池よりも、高容量、高出力が要求される。また、高容量化にともない、充電時間の短縮化が要請される。さらに、二次電池の大型化により、一層の安全性が要請される。   Second-generation separators are used in secondary batteries for personal computers (PCs), electric tools, robot power supplies, and the like. The secondary battery is a medium-sized rechargeable battery of 18650 type or 26650 type, or a square. A secondary battery using a second generation separator is required to have higher capacity and higher output than a secondary battery using a first generation. Moreover, shortening of charge time is required with high capacity-ization. Further, due to the enlargement of the secondary battery, further safety is required.

上記の安全性を確保するために、セパレータにセラミック層を形成する方法が提案されている。例えば、図8Aに示す構造は、セパレータ117、陽極119、陽極集電体121、陰極123、及び陰極集電体125から成り、セパレータ117において、セパレータの本体113の表面にアルミナの絶縁層(HRL(HeatResistanceLayer)層)115がコーティングにより形成されている。このHRL層115は、耐熱性絶縁機能と金属のデンドライト防止機能とを奏する(特許文献3、4)。この構造は、Panasonic(株)で開発され、実用化されたものである。   In order to ensure the above-mentioned safety, a method of forming a ceramic layer on the separator has been proposed. For example, the structure shown in FIG. 8A comprises a separator 117, an anode 119, an anode current collector 121, a cathode 123, and a cathode current collector 125, and in the separator 117, an alumina insulating layer (HRL) is formed on the surface of the separator body 113. (Heat Resistance Layer) 115 is formed by coating. The HRL layer 115 has a heat resistant insulation function and a metal dendrite prevention function (Patent Documents 3 and 4). This structure has been developed and commercialized by Panasonic Corporation.

また、図8Bに示す構造は、セパレータ127、陽極129、陽極集電体131、陰極133、及び陰極集電体135から成り、セパレータ127においては、セパレータの本体137の陽極側に、アルミナ等の無機微粒子(比表面積=4〜6m/g)をコーティングした層139を備えるとともに、陰極側に、板状の微粒子(7〜10m/g)をコーティングした層141を備える(特許文献5、6)。この構造は、日立マクセル(株)で開発製品化された構造である。 The structure shown in FIG. 8B comprises a separator 127, an anode 129, an anode current collector 131, a cathode 133, and a cathode current collector 135. In the separator 127, alumina or the like is formed on the anode side of the separator main body 137. A layer 139 coated with inorganic fine particles (specific surface area = 4 to 6 m 2 / g) is provided, and a layer 141 coated with plate-like fine particles (7 to 10 m 2 / g) is provided on the cathode side (Patent Document 5) 6). This structure is a structure developed and commercialized by Hitachi Maxell, Ltd.

特許第4450442号公報Patent No. 4450442 特開1999−317212号公報JP, 1999-317212, A 特許第4654700号公報Patent No. 4654700 特開2009−32668号公報JP, 2009-32668, A 特開2011−065849号公報JP, 2011-065849, A 特開2011−065850号公報JP, 2011-065850, A

しかしながら、図7Aに示すセパレータ117では、片面にHRL115をコーティングし、乾燥させるときに、セパレータ117が反ってしまうという問題が生じる。また、図8Bに示すセパレータ127でも、層139と層141とで組成が異なるため、セパレータ127が反ってしまうという問題が生じる。   However, in the separator 117 shown in FIG. 7A, when the HRL 115 is coated on one side and dried, there arises a problem that the separator 117 is warped. Further, in the separator 127 shown in FIG. 8B as well, the composition is different between the layer 139 and the layer 141, which causes a problem that the separator 127 is warped.

本発明は、反りを抑制できるセパレータ、そのセパレータを備えた電気化学素子、及びセパレータの製造方法を提供することをその一側面とする。   This invention makes it the one side to provide the manufacturing method of the separator which can suppress curvature, the electrochemical element provided with the separator, and a separator.

本発明のセパレータは、多孔質層と、多孔質シリカ、活性炭、及びゼオライトから成る群がら選ばれた1種以上を含み、前記多孔質層の片面又は両面に形成された被覆層と、を備えることを特徴とする。本発明のセパレータは、反りが生じにくい。   The separator of the present invention comprises a porous layer and one or more selected from the group consisting of porous silica, activated carbon, and zeolite, and a coated layer formed on one side or both sides of the porous layer. It is characterized by The separator of the present invention is unlikely to be warped.

本発明のセパレータの製造方法は、(A)多孔質シリカ、活性炭、及びゼオライトから成る群がら選ばれた1種以上、(B)バインダー、(C)スラリー安定剤、及び(D)コーティング助剤を含むスラリーを、多孔質層の片面又は両面に塗布して被覆層を形成することを特徴とする。本発明のセパレータの製造方法によれば、反りが生じにくいセパレータを容易に製造することができる。   The method for producing a separator of the present invention comprises (A) at least one member selected from the group consisting of porous silica, activated carbon and zeolite, (B) a binder, (C) a slurry stabilizer, and (D) a coating aid The slurry is applied to one side or both sides of the porous layer to form a covering layer. According to the method of manufacturing a separator of the present invention, it is possible to easily manufacture a separator that is less likely to be warped.

複合セパレータの構造を表す側断面図である。It is a side sectional view showing the structure of a compound separator. 複合セパレータの構造を表す側断面図である。It is a side sectional view showing the structure of a compound separator. セパレータの製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of a separator. コイン型EDLCの構成を表す説明図である。It is an explanatory view showing composition of coin type EDLC. 捲同型EDLCの構成を表す説明図である。It is an explanatory view showing composition of heteromorphic EDLC. リチウムイオン電池の構成を表す説明図である。It is an explanatory view showing composition of a lithium ion battery. 図7A、図7B、及び図7Cは、第1世代のセパレータの構成を表す側断面図である。FIG. 7A, FIG. 7B, and FIG. 7C are side sectional views showing the configuration of a first generation separator. 図8A、及び図8Bは、第2世代のセパレータの構成を表す側断面図である。8A and 8B are side sectional views showing the configuration of a second generation separator.

本発明の実施形態を説明する。本発明における多孔質層としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリロニトリル樹脂、フッ化ビニリデン樹脂、アクリル樹脂、及びウレタン樹脂のうちのいずれかから成るものが挙げられる。特許文献1、2に記載されているオレフィンセパレータを多孔質層としてもよい。また、市販の微多孔質セパレータを多孔質層としてもよい。   An embodiment of the present invention will be described. Examples of the porous layer in the present invention include those made of any of polyethylene resin, polypropylene resin, polyacrylonitrile resin, vinylidene fluoride resin, acrylic resin, and urethane resin. The olefin separators described in Patent Documents 1 and 2 may be used as the porous layer. Alternatively, a commercially available microporous separator may be used as the porous layer.

また、他の多孔質層として、ポリオレフィン系樹脂(例えば超高分子量のポリオレフィン系樹脂)にアルミナ(Al)やシリカ(SiO)を添加し、一軸または二軸延伸法で得られるものが挙げられる。 Further, as another porous layer, one obtained by adding alumina (Al 2 O 3 ) or silica (SiO 2 ) to a polyolefin resin (for example, an ultrahigh molecular weight polyolefin resin) and obtained by a uniaxial or biaxial stretching method Can be mentioned.

多孔質層の膜厚は、10〜110μmの範囲が好適である。特に、EDLCに用いるセパレータの場合は、耐熱性を高めるため、40〜110μmの膜厚が好ましい。また、ポリオレフィン系樹脂から成る多孔質層の場合は、膜厚が8〜20μmであり、多孔度が高
いことが好ましい。こうすることにより、抵抗を小さくすることができる。
The thickness of the porous layer is preferably in the range of 10 to 110 μm. In the case of the separator used for EDLC especially, in order to improve heat resistance, the film thickness of 40-110 micrometers is preferable. Moreover, in the case of the porous layer which consists of polyolefin resin, it is preferable that a film thickness is 8-20 micrometers and porosity is high. By doing this, the resistance can be reduced.

本発明における被覆層は、多孔質シリカ、活性炭、及びゼオライトから成る群がら選ばれた1種以上を含む。多孔質シリカとしては、電気化学素子の実用温度範囲において結晶型がアモルファスであり、多孔質であるものが好ましい。   The coating layer in the present invention contains one or more selected from the group consisting of porous silica, activated carbon, and zeolite. As porous silica, it is preferable that the crystal form is amorphous and porous in the practical temperature range of the electrochemical device.

被覆層は、セパレータを電気化学素子に適用した場合、多量の電解液を含浸できる。そのため、注液時間を短縮化し、濃度分極を減少させることができる。また、瞬時に急速充放電を行っても、デンドライトの成長を抑制できる。また、被覆層を備えることにより、セパレータの機械的強度が向上する。   The covering layer can be impregnated with a large amount of electrolyte when the separator is applied to the electrochemical device. Therefore, the liquid injection time can be shortened and the concentration polarization can be reduced. Also, even if rapid charge and discharge are performed instantaneously, the growth of dendrite can be suppressed. Also, the mechanical strength of the separator is improved by providing the covering layer.

また、被覆層を備えることにより、寸法収縮率が改善される(寸法安定性が向上する)。その結果、内部ショートを防止し、セパレータの機械的強度を改善することができる。
また、被覆層を備えることにより、浸液性が向上する。その結果、電解液が早く含浸し、コンベアースピードを向上することができる。
Also, by providing the covering layer, the dimensional contraction rate is improved (the dimensional stability is improved). As a result, internal shorts can be prevented, and the mechanical strength of the separator can be improved.
Moreover, the immersion property is improved by providing the covering layer. As a result, the electrolyte can be impregnated quickly, and the conveyor speed can be improved.

また、被覆層を備えることにより、デンドライトが改善される。その結果、安全性、信頼性、歩留まりが向上する。
また、被覆層を備えることにより、保液性が向上する。その結果、効率的な放電が可能になる。
Also, the dendrite is improved by providing the covering layer. As a result, safety, reliability and yield are improved.
Moreover, liquid retentivity improves by providing a coating layer. As a result, efficient discharge is possible.

また、被覆層を備えることにより、耐熱性が向上する。その結果、急速充電特性が向上する。
被覆層の膜厚は、0.5〜50μm(好ましくは3〜15μm)の範囲が好ましい。0.5μm以上であることにより、被覆層を均一に形成しやすくなる。また、50μm以下であることにより、被覆層に亀裂が生じにくくなる。セパレータを捲同型の電気化学素子に適用する場合は、膜厚が15μm以下であることが好ましい。
Moreover, heat resistance improves by providing a coating layer. As a result, the quick charge characteristics are improved.
The thickness of the coating layer is preferably in the range of 0.5 to 50 μm (preferably 3 to 15 μm). By being 0.5 micrometer or more, it becomes easy to form a coating layer uniformly. Moreover, by being 50 micrometers or less, it becomes difficult to produce a crack in a coating layer. When the separator is applied to a green electrochemical device, the film thickness is preferably 15 μm or less.

被覆層は、多孔質層の片面に形成されていてもよいし、両面に形成されていてもよい。両面に形成すると、セパレータの反りを一層軽減することができる。
多孔質シリカの物性は、例えば、以下の範囲が好ましい。
The covering layer may be formed on one side or both sides of the porous layer. Forming on both sides can further reduce the warp of the separator.
The physical properties of the porous silica are preferably, for example, in the following range.

平均粒子径:0.1〜8μm
比表面積:250〜800m/g
吸油量:50〜350ml/100g
物性が上記の範囲内であることにより、本セパレータを適用した電気化学素子において、大電流の充放電や非接触瞬時充電が可能となる。また、平均粒子径が0.1μm以上であることにより、被覆層の形成に用いるスラリーにおけるスラリー安定剤の量が少なくて済む。また、平均粒子径が8μm以下であることにより、被覆層を均一化しやすくなる。
Average particle size: 0.1 to 8 μm
Specific surface area: 250 to 800 m 2 / g
Oil absorption: 50 to 350 ml / 100 g
When the physical properties are within the above range, in the electrochemical device to which the present separator is applied, high current charge / discharge and noncontact instantaneous charge become possible. In addition, when the average particle size is 0.1 μm or more, the amount of the slurry stabilizer in the slurry used to form the coating layer may be small. In addition, when the average particle size is 8 μm or less, the coating layer can be easily made uniform.

また、比表面積が250m/g以上であることにより、本セパレータを電気化学素子に適用した場合、電解液含液量を多くすることができる。また、シリカの比表面積が800m/g以下であることにより、シリカの凝集粒子の機械的強度を高めることができる。その結果、充放電時におけるシリカ粒子の破壊を抑制できる。 In addition, when the specific surface area is 250 m 2 / g or more, when the present separator is applied to an electrochemical device, the electrolyte solution content can be increased. In addition, when the specific surface area of silica is 800 m 2 / g or less, the mechanical strength of the agglomerated particles of silica can be enhanced. As a result, the destruction of the silica particles during charge and discharge can be suppressed.

また、吸油量が50ml/100g以上であることにより、本セパレータを電気化学素子に適用した場合、電解液含液量を多くすることができる。また、吸油量が350ml/100g以下であることにより、被覆層の機械的強度が向上する。   Moreover, when this oil absorption amount is 50 ml / 100 g or more, when this separator is applied to an electrochemical element, electrolyte solution liquid content can be increased. Moreover, the mechanical strength of a coating layer improves because oil absorption amount is 350 ml / 100 g or less.

なお、平均粒子径の測定、比表面積の測定、及び吸油量の測定は、それぞれ、以下のと
おりである。
平均粒子径の測定:レーザ回折式粒度分布測定装置により測定
比表面積の測定:容量法(より詳しくは、JIS K1150“シリカゲル試験方法”に準拠する方法)により測定
吸油量の測定:JIS K5101−13−1“顔料試験方法−第13部吸油量”に準拠する方法により測定
本発明における導電層は、例えば、被覆層を構成する粒子の表面に形成することができる。例えば、被覆層を構成する粒子を、オキシチオフェン(EDOT)、ポリエチレンジオキシチオフエン(PEDOT)、酸化インジウムスズ(ITO)、ポリピロール、及びポリアニリンから選ばれた1種以上を含む塗料に含浸し、風乾、及び加熱乾燥(例えば150℃程度の温度での乾燥)を順次行うことで粒子の表面に導電層を形成できる。そして、導電層を備える粒子を用いて、被覆層を形成することができる。また、被覆層を形成した後、その上に導電層を積層してもよい。
In addition, the measurement of an average particle diameter, the measurement of a specific surface area, and the measurement of oil absorption amount are as follows, respectively.
Measurement of average particle size: measurement with a laser diffraction particle size distribution analyzer Measurement of specific surface area: measurement with a volumetric method (more specifically, method according to JIS K 1150 "silica gel test method") Measurement of oil absorption: JIS K 5101-13 The conductive layer in the present invention can be formed, for example, on the surface of the particles constituting the coating layer. For example, the particles constituting the covering layer are impregnated with a paint containing one or more selected from oxythiophene (EDOT), polyethylenedioxythiophenene (PEDOT), indium tin oxide (ITO), polypyrrole, and polyaniline, A conductive layer can be formed on the surface of the particles by sequentially performing air drying and heat drying (for example, drying at a temperature of about 150 ° C.). And a coating layer can be formed using particles provided with a conductive layer. Alternatively, after forming the covering layer, a conductive layer may be stacked thereon.

導電層を形成する材料としては、例えば、EDOT、PEDOT、ITO、ポリピロール、及びポリアニリンから選ばれた1種以上が挙げられる。導電層は、被覆層の抵抗を、例えば、10−1〜10−2程度低くすることで、セパレータの静電気トラブルを軽減できる。なお、静電気トラブルとしては、静電気によってセパレータが延伸したり、断裂するトラブルが挙げられる。 Examples of the material for forming the conductive layer include one or more selected from EDOT, PEDOT, ITO, polypyrrole, and polyaniline. The conductive layer can reduce electrostatic troubles of the separator by lowering the resistance of the covering layer by, for example, about 10 −1 to 10 −2 . In addition, as static electricity trouble, the trouble in which a separator extends or tears by static electricity is mentioned.

本発明の電気化学素子としては、例えば、一次電池、二次電池、電気二重層キャパシタ(EDLC)、擬似電気二重層キャパシタ等が挙げられる。
本発明のセパレータは、例えば、(A)多孔質シリカ、活性炭、及びゼオライトから成る群がら選ばれた1種以上、(B)バインダー、(C)スラリー安定剤、及び(D)コーティング助剤を含むスラリーを、多孔質層の片面又は両面に塗布して被覆層を形成することで製造できる。
Examples of the electrochemical device of the present invention include a primary battery, a secondary battery, an electric double layer capacitor (EDLC), a simulated electric double layer capacitor, and the like.
The separator of the present invention contains, for example, (A) at least one selected from the group consisting of porous silica, activated carbon, and zeolite, (B) a binder, (C) a slurry stabilizer, and (D) a coating aid The slurry can be produced by applying the slurry on one side or both sides of the porous layer to form a coating layer.

バインダーとしては、例えば、オレフィン系バインダー、スチレンーブタジエンゴム系バインダー(SBR系バインダー)、変性スチレンーブタジエンゴム系バインダー(変性SBR系バインダー)、アタリレート系バインダー、セルロース系バインダー、弗素系バインダー(例えば、PTFE、PVDF等)、水系バインダー等が挙げられる。   Examples of the binder include olefin binders, styrene-butadiene rubber binders (SBR binders), modified styrene-butadiene rubber binders (modified SBR binders), atarilate binders, cellulose binders, and fluorine binders (for example, , PTFE, PVDF and the like), aqueous binders and the like.

特に、水系バインダー又はオレフィン系バインダーである第1のバインダーと、スチレンーブタジエンゴム系バインダー、変性スチレンーブタジエンゴム系バインダー(例えばアクリルドープ型)、アタリレート系バインダー、セルロース系バインダー、ビニールピロリドン、及び弗素系バインダーから成る群がら選ばれた1種以上である第2のバインダーとの混合バインダーが好ましい。この混合バインダーを用いることにより、多孔質層に対するスラリーの濡れ性が向上し、また、多孔質層と被覆層との接着強度が向上する。   In particular, a first binder which is an aqueous binder or an olefin binder, a styrene-butadiene rubber binder, a modified styrene-butadiene rubber binder (for example, acrylic dope type), an atalylate binder, a cellulose binder, vinyl pyrrolidone, Preferred is a mixed binder with a second binder which is at least one selected from the group consisting of fluorine-based binders. By using this mixed binder, the wettability of the slurry to the porous layer is improved, and the adhesive strength between the porous layer and the coating layer is improved.

混合バインダーを用いる場合、第1のバインダーの配合量は、(A)成分100重量部に対し、0.5〜2.0重量部の範囲が好ましく、第2のバインダーの配合量は、2〜5重量部の範囲が好ましい。これらの範囲内であることにより、上述した混合バインダーの効果が一層顕著になる。   When a mixed binder is used, the blending amount of the first binder is preferably in the range of 0.5 to 2.0 parts by weight with respect to 100 parts by weight of the component (A), and the blending amount of the second binder is 2 to 2 A range of 5 parts by weight is preferred. By being in these ranges, the effect of the mixed binder mentioned above becomes more remarkable.

また、アタリレート系バインダーを用いる場合、その配合量は、(A)成分100重量部に対し、2〜5重量部の範囲が好ましい。2重量部以上であることにより、被覆層の曲げ強度が向上する。また、5重量部以下であることにより、被覆層の注液含浸性が向上する。   Moreover, when using an atarilate type binder, the compounding quantity has the preferable range of 2 to 5 weight part with respect to 100 weight part of (A) component. By being 2 weight part or more, the bending strength of a coating layer improves. Moreover, the pouring impregnation property of a coating layer improves by being 5 parts weight or less.

スラリー安定剤としては、例えば、水溶性ポリマー、界面活性剤等が挙げられる。水溶
性ポリマーとしては、ブロック型で、スルホン化率が5〜30%のものが好ましい。すなわち、スルホン酸系水溶性ポリマーが好ましい。界面活性剤としては、弗素系のノニオン界面活性剤が好ましい。スラリーにスラリー安定剤を配合することにより、スラリーの調製が容易になり、スラリー寿命が延びる。
As a slurry stabilizer, a water-soluble polymer, surfactant, etc. are mentioned, for example. The water-soluble polymer is preferably a block type polymer having a sulfonation rate of 5 to 30%. That is, sulfonic acid-based water-soluble polymers are preferred. As the surfactant, a fluorine-based nonionic surfactant is preferred. The incorporation of a slurry stabilizer into the slurry facilitates preparation of the slurry and extends the slurry life.

コーティング助剤としては、例えば、Na中和CMC、又はアンモニア中和CMC等が挙げられる。コーティング助剤を含むことにより、スラリーの安定性、被覆層の均一性が向上する。また、セパレータを電池やEDLCに適用した場合、それらの寿命が向上する。   As a coating adjuvant, Na neutralization CMC, or ammonia neutralization CMC etc. are mentioned, for example. By including a coating aid, the stability of the slurry and the uniformity of the coating layer are improved. In addition, when the separator is applied to a battery or EDLC, their lifetime is improved.

本発明のセパレータは、例えば、図1に示す複合セパレータ1に適用することができる。複合セパレータ1は、セパレータ3と、陽極5と、陰極7とから構成される。セパレータ3は、多孔質層9と、その両側の被覆層11、13を備える。この複合セパレータ1は、種々の電気化学素子(例えば、一次電池、二次電池、EDLC等)に適用できる。   The separator of the present invention can be applied to, for example, the composite separator 1 shown in FIG. The composite separator 1 is composed of a separator 3, an anode 5 and a cathode 7. The separator 3 includes a porous layer 9 and the cover layers 11 and 13 on both sides thereof. The composite separator 1 can be applied to various electrochemical devices (eg, primary battery, secondary battery, EDLC, etc.).

また、本発明のセパレータは、例えば、図2に示す複合セパレータ21に適用することができる。複合セパレータ21は、セパレータ23と、陽極25と、陰極27とから構成される。セパレータ23は、多孔質層29と、その両側の被覆層31、33と、さらにその外側の導電層35、37を備える。この複合セパレータ21は、種々の電気化学素子(例えば、一次電池、二次電池、EDLC等)に適用できる。
実施例1
1.スラリーの調製
(1)スラリーS1
スラリーS1の製造方法を、図3に基づいて説明する。まず、多孔質シリカ(SiO)を乾式混合し(P1)、次に、水とCMC(コーティング助剤)とを加えて湿式混合し(P2)、混練する(P3)。その後、オレフィン系バインダー(図3ではBinder1と表記)、変性SBR系バインダー(図3ではBinder2と表記)、及びスラリー安定剤を添加し、スラリーを得る(P4)。
In addition, the separator of the present invention can be applied to, for example, the composite separator 21 shown in FIG. The composite separator 21 is composed of a separator 23, an anode 25 and a cathode 27. The separator 23 includes a porous layer 29, covering layers 31 and 33 on both sides thereof, and conductive layers 35 and 37 outside the porous layer 29. The composite separator 21 can be applied to various electrochemical devices (eg, primary battery, secondary battery, EDLC, etc.).
Example 1
1. Preparation of Slurry (1) Slurry S1
The manufacturing method of slurry S1 is demonstrated based on FIG. First, porous silica (SiO 2 ) is dry mixed (P1), then water and CMC (coating aid) are added and wet mixed (P2) and kneaded (P3). Thereafter, an olefin-based binder (denoted as Binder 1 in FIG. 3), a modified SBR-based binder (denoted Binder 2 in FIG. 3), and a slurry stabilizer are added to obtain a slurry (P4).

ここで、上記の配合成分は、具体的には、それぞれ以下のものである。
CMC:ダイセルファインケム(株)製 DN−800H
オレフィン系バインダー:三井化学(株)製 ケミパールS100
変性SBR系バインダー:JSR株式会社製 SBラテックス
スラリー安定剤:水溶性ポリマー(JSR株式会社製の界面活性剤)
また、使用した多孔質シリカの物性は、それぞれ以下のものである。
Here, the above-mentioned compounding ingredients are specifically the following, respectively.
CMC: Daicel Fine Chem Co., Ltd. DN-800H
Olefin-based binder: manufactured by Mitsui Chemicals, Inc. Kemipearl S100
Modified SBR-based binder: SB latex manufactured by JSR Corporation Slurry stabilizer: Water-soluble polymer (surfactant manufactured by JSR Corporation)
The physical properties of the porous silica used are as follows.

平均粒子径:2.7μm
比表面積:300m/g
吸油量:330ml/100g
また、スラリーS1における各成分の配合量(単位は重量部)を表1に示す。
[表1]

Figure 0006506369
Average particle size: 2.7 μm
Specific surface area: 300 m 2 / g
Oil absorption: 330ml / 100g
In addition, the blending amounts (in parts by weight) of the respective components in the slurry S1 are shown in Table 1.
[Table 1]
Figure 0006506369

(2)スラリーS2
まず、スラリーS1の調製で用いたものと同一の多孔質シリカの粒子表面に前もってEDOTから成る導電層を形成し、その後は、スラリーS1の場合と同様の工程により、スラリーS2を調製した。
(2) Slurry S2
First, a conductive layer consisting of EDOT was formed in advance on the particle surface of the same porous silica as that used in preparation of slurry S1, and thereafter, slurry S2 was prepared by the same process as in the case of slurry S1.

多孔質シリカの表面にEDOTから成る導電層を形成する方法は以下のとおりである。すなわち、多孔質シリカをEDOT導電性塗料に含浸させ、風乾により表面乾燥後、さらに150℃で乾燥することで、多孔質シリカの表面にEDOTから成る導電層を形成する。この導電層により、多孔質シリカは、静電気除去機能を有する。   The method of forming the conductive layer of EDOT on the surface of porous silica is as follows. That is, porous silica is impregnated with the EDOT conductive paint, air dried, and then dried at 150 ° C. to form a conductive layer of EDOT on the surface of the porous silica. By this conductive layer, the porous silica has a static elimination function.

多孔質シリカの表面に存在するEDOTの量は、多孔質シリカ100重量部に対し、3重量部である。
(3)スラリーS3
基本的にはスラリーS1の場合と同様の方法であるが、多孔質シリカの代わりに比表面積700m/gである同量の椰子殻活性炭を用いてスラリーS3を調製した。
(4)スラリーS4
基本的にはスラリーS1の場合と同様の方法であるが、多孔質シリカの代わりに同量の合成ゼオライトを用いてスラリーS3を調製した。
2.セパレータの製造
市販のPP樹脂から、延伸法を用いて、厚さ15μmのフィルムと、厚さ25μmのフィルムとを製造した。このフィルムは微多孔性である。このフィルムを多孔質層として、その両側に、ブレードコーティング法でスラリーを塗布(P5)、乾燥して厚さ3μmの被覆層を形成し(P6)、セパレータを製造した(P7)(図3参照)。
The amount of EDOT present on the surface of the porous silica is 3 parts by weight with respect to 100 parts by weight of the porous silica.
(3) Slurry S3
Basically, the method is the same as in the case of slurry S1, but slurry S3 is prepared using the same amount of coconut shell activated carbon having a specific surface area of 700 m 2 / g instead of porous silica.
(4) Slurry S4
The procedure is basically the same as in the case of slurry S1, but slurry S3 was prepared using the same amount of synthetic zeolite instead of porous silica.
2. Production of Separator A 15 μm thick film and a 25 μm thick film were produced from commercially available PP resin using a drawing method. This film is microporous. Using this film as a porous layer, the slurry was applied by blade coating method on both sides (P5) and dried to form a 3 μm thick coating layer (P6), and a separator was manufactured (P7) (see FIG. 3) ).

上記の製造方法において、多孔質層の膜厚(15μm又は25μm)、及び塗布するスラリーの種類(S1〜S4)を変えて、表2に示すE1〜E6までの6種類のセパレータを製造した。E1、E2についてはスラリーS1を使用し、E3、E4についてはスラリーS2を使用し、E5についてはスラリーS3を使用し、E6についてはスラリーS4を使用した。   In the above manufacturing method, six types of separators E1 to E6 shown in Table 2 were manufactured by changing the film thickness (15 μm or 25 μm) of the porous layer and the type (S1 to S4) of the slurry to be applied. The slurry S1 was used for E1 and E2, the slurry S2 was used for E3 and E4, the slurry S3 was used for E5, and the slurry S4 was used for E6.

また、スラリーを塗布しない厚さ15μmのフィルムをセパレータR1とし、スラリーを塗布しない厚さ25μmのフィルムをセパレータR2とした。
[表2]

Figure 0006506369
In addition, a film with a thickness of 15 μm not coated with a slurry is referred to as a separator R1, and a film with a thickness of 25 μm not coated with a slurry is referred to as a separator R2.
[Table 2]
Figure 0006506369

3.セパレータの評価
(1)ガーレー値
JIS P8117に準拠して、各セパレータのガーレー値(通気度)を測定した。そ
の結果を上記表2に示す。セパレータE1〜E6の通気度は、被覆層を形成しても殆ど低下していないことが確認できた。
(2)熱風温度での収縮率
各セパレータに熱風を1時間吹きかける処理を行い、処理前に状態に対する収縮率(%)を測定した。測定は、熱風の温度が120℃の場合と、150℃の場合とのそれぞれについて行った。測定結果を上記表2に示す。セパレータE1〜E6は、セパレータR1、R2に比べて、収縮率が小さかった。このことから、セパレータE1〜E6は、反りにくいことが確認できた。
(3)EMIBF4の2μm含浸時間
粘度の高いイオン液体(EMIBF4)を各セパレータの上に2μm滴下し、そのイオン液体がセパレータ表面に拡散するまでの時間(sec)を測定した。その結果を上記表2に示す。セパレータE1〜E6の場合は、短時間でイオン液体が拡散した。このことから、セパレータE1〜E6は、液体(例えば電解液)に対する含浸性が高いことが確認できた。
(4)−65℃静電気防止特性
露点−65℃のドライルーム内において、帯電試験を実施し、静電気防止特性を評価した。その評価基準は以下のとおりである。
3. Evaluation of Separator (1) Gurley Value The Gurley value (air permeability) of each separator was measured in accordance with JIS P8117. The results are shown in Table 2 above. It was confirmed that the air permeability of the separators E1 to E6 was hardly reduced even when the coating layer was formed.
(2) Shrinkage at Hot Air Temperature Hot air was blown to each separator for 1 hour, and the shrinkage (%) with respect to the state was measured before treatment. The measurement was performed for each of the cases where the temperature of the hot air was 120 ° C. and 150 ° C. The measurement results are shown in Table 2 above. The contraction rates of the separators E1 to E6 were smaller than those of the separators R1 and R2. From this, it was confirmed that the separators E1 to E6 were hard to warp.
(3) 2 μm Impregnation Time of EMIBF 4 A high viscosity ionic liquid (EMIBF 4) was dropped 2 μm on each separator, and the time (sec) until the ionic liquid diffused to the separator surface was measured. The results are shown in Table 2 above. In the case of the separators E1 to E6, the ionic liquid diffused in a short time. From this, it has been confirmed that the separators E1 to E6 have high impregnation with a liquid (for example, an electrolytic solution).
(4) -65 ° C antistatic property In a dry room of dew point -65 ° C, an electrification test was conducted to evaluate the antistatic property. The evaluation criteria are as follows.

◎:帯電なし
○:わずかに帯電
×:帯電有り
評価結果を上記表2に示す。セパレータE1〜E6は、静電気を生じにくいことが確認できた。この特性は、セパレータを量産機械に適用した場合に有用である。すなわち、セパレータ、及びそれを備えた電気化学素子の製造工程において、静電気の発生を防止することができる。
実施例2
1.EDLCの構成
(1)コイン型EDLC39の構成
コイン型EDLC39の構成を図4に基づいて説明する。コイン型EDLC39は、直径4.8mm、厚さ1.4mmのコイン形状を有する。コイン型EDLC39は、セパレータ41と、陽極43と、陰極45とから成る積層構造を有する。さらに、セパレータ41は、多孔質層47と、その両側の被覆層49、51を備える。多孔質層47は、耐熱性仕様の微多孔性PPフィルムから成る。
◎: no charging ○: slightly charging ×: with charging Evaluation results are shown in Table 2 above. It was confirmed that the separators E1 to E6 were less likely to generate static electricity. This characteristic is useful when the separator is applied to a mass-production machine. That is, in the process of manufacturing the separator and the electrochemical device including the same, the generation of static electricity can be prevented.
Example 2
1. Configuration of EDLC (1) Configuration of Coin Type EDLC 39 The configuration of the coin type EDLC 39 will be described based on FIG. The coin-shaped EDLC 39 has a coin shape having a diameter of 4.8 mm and a thickness of 1.4 mm. The coin-shaped EDLC 39 has a laminated structure including a separator 41, an anode 43 and a cathode 45. Furthermore, the separator 41 includes the porous layer 47 and the cover layers 49 and 51 on both sides thereof. The porous layer 47 is made of a microporous PP film of heat resistant specifications.

被覆層49、51は、多孔質層47の表面にスラリーS1を塗布、乾燥することによって形成した。また、陽極43及び陰極45は、活性炭、アセチレンブラック、バインダー、及びPTFE粉末から成る組成物を500μm厚にシート成型し、所定の形状に打ち抜く方法で作成した。電解液には、EMIBF4の100%原液を用いた。   The coating layers 49 and 51 were formed by applying and drying the slurry S1 on the surface of the porous layer 47. The anode 43 and the cathode 45 were formed by sheet-forming a composition consisting of activated carbon, acetylene black, a binder, and PTFE powder to a thickness of 500 μm and punching it into a predetermined shape. A 100% stock solution of EMIBF 4 was used as the electrolyte.

多孔質層47の膜厚、及び被覆層49、51の膜厚を変えて、表3に示すE11〜E14のコイン型EDLC39を製造した。E11〜E14のコイン型EDLC39は、414型面実装キャパシタである。   Coin-shaped EDLCs 39 of E11 to E14 shown in Table 3 were manufactured by changing the film thickness of the porous layer 47 and the film thicknesses of the covering layers 49 and 51. The coin-shaped EDLC 39 of E11 to E14 is a 414 type surface mount capacitor.

また、被覆層49、51を形成せずに、その他の点はE11〜E14のコイン型EDLC39と同様にして、R11、R12のコイン型EDLCを製造した。
[表3]

Figure 0006506369
Further, coin-shaped EDLCs of R11 and R12 were manufactured in the same manner as the coin-shaped EDLC 39 of E11 to E14 without forming the covering layers 49 and 51.
[Table 3]
Figure 0006506369

(2)捲同型EDLC53の構成
捲同型EDLC53の構成を図5に示す。捲同型EDLC53は、直径18mm、長さ40mmの円筒形状を有するキャパシタである。捲同型EDLC53は、2つのセパレータ55と、陽極57と、陰極59とを積層したシートを捲き回した構造を有する。さらに、それぞれのセパレータ55は、多孔質層61と、その両側の被覆層63、65を備える。多孔質層61は、耐熱性仕様の微多孔性PPフィルムから成る。
(2) Configuration of Homomorphic EDLC 53 The configuration of the homomorphic EDLC 53 is shown in FIG. The homomorphic EDLC 53 is a capacitor having a cylindrical shape with a diameter of 18 mm and a length of 40 mm. The orthodontic EDLC 53 has a structure in which a sheet obtained by laminating two separators 55, an anode 57, and a cathode 59 is wound around. Furthermore, each separator 55 includes a porous layer 61 and covering layers 63 and 65 on both sides thereof. The porous layer 61 is made of a microporous PP film of heat resistant specifications.

被覆層63、65は、多孔質層61の表面にスラリーS1を塗布、乾燥することで形成した。また、陽極57及び陰極59は、活性炭、アセチレンブラック、バインダー、及びPTFE粉末から成る組成物を500μm厚にシート成型し、所定の形状に打ち抜く方法で作成した。電解液には、EMIBF4の100%原液を用いた。   The coating layers 63 and 65 were formed by applying the slurry S1 on the surface of the porous layer 61 and drying it. Further, the anode 57 and the cathode 59 were formed by sheet-forming a composition comprising activated carbon, acetylene black, a binder, and PTFE powder to a thickness of 500 μm and punching it into a predetermined shape. A 100% stock solution of EMIBF 4 was used as the electrolyte.

多孔質層61の膜厚、及び被覆層63、65の膜厚を変えて、表4に示すE15〜E18の捲同型EDLC53を製造した。E15〜E18の捲同型EDLC53は、1840型である。   The film thickness of the porous layer 61 and the film thickness of the covering layers 63 and 65 were changed to manufacture a conformal EDLC 53 of E15 to E18 shown in Table 4. The homozygous EDLC 53 of E15 to E18 is of the 1840 type.

また、被覆層63、65を形成せずに、その他の点はE15〜E18の捲同型EDLC53と同様にして、R13、R14の捲同型EDLCを製造した。
[表4]

Figure 0006506369
Further, without forming the covering layers 63 and 65, other points were produced in the same manner as the homomorphic EDLC 53 of E15 to E18 to produce homomorphic EDLCs of R13 and R14.
[Table 4]
Figure 0006506369

2.EDLCの評価
各EDLCについて、イオン液体含浸性、ESR、及び漏液性を評価した。
ここで、イオン液体含浸性の評価方法は、セパレータにEMIBF4電解液5μLを滴下し、染み込むまでの時間を測定する方法である。染み込むまでの時間が最も短いものから、◎、○、△、×と評価した。
2. Evaluation of EDLC For each EDLC, the ionic liquid impregnation, ESR, and liquid leakage were evaluated.
Here, the evaluation method of the ionic liquid impregnation property is a method of measuring the time until the electrolyte solution is dripped with 5 μL of the EMIBF 4 electrolyte and soaked in the separator. From the shortest time to soaking, it was evaluated as ◎, 、, △, x.

ESR(等価直列抵抗)は、電池試料のインピーダンス周波数特性により評価した。
漏液性の評価方法は、コイン型EDLCの場合は、100個のコイン型EDLCを260℃の温度環境下に10secさらし、電解液が漏洩したものの個数を求める方法である。また、捲同型EDLCの場合は、100個の捲同型EDLCを80℃の温度環境下に200時間保持し、電解液の漏れが生じるか、本体に膨れが生じたものの個数を求める方法である。
The ESR (equivalent series resistance) was evaluated by the impedance frequency characteristics of the battery sample.
In the case of coin-shaped EDLC, the method of evaluating the liquid leakage is a method of exposing 100 coin-shaped EDLCs to a temperature environment of 260 ° C. for 10 seconds and determining the number of leaked electrolytes. Further, in the case of the heteromorphic EDLC, the method is a method of holding 100 heteromorphic EDLCs under a temperature environment of 80 ° C. for 200 hours, and determining the number of leaks of the electrolyte or the number of blisters in the main body.

評価結果を上記表3、及び上記表4に示す。E11〜E18のEDLCは、イオン液体含浸性、ESR、及び漏液性において優れていることが確認できた。
実施例3
1.リチウムイオン電池67の構成
リチウムイオン電池67の構成を図6に示す。リチウムイオン電池67は、直径18mm、長さ65mmの円筒形状を有する電池である。
The evaluation results are shown in Table 3 above and Table 4 above. It has been confirmed that EDLCs of E11 to E18 are excellent in ionic liquid impregnation, ESR, and liquid leakage.
Example 3
1. Configuration of Lithium Ion Battery 67 The configuration of the lithium ion battery 67 is shown in FIG. The lithium ion battery 67 is a battery having a cylindrical shape with a diameter of 18 mm and a length of 65 mm.

リチウムイオン電池67は、2つのセパレータ69と、陽極71と、陰極73とを積層したシートを捲き回した構造を有する。さらに、それぞれのセパレータ69は、多孔質層75と、その両側の被覆層77、79と、さらにその外側の導電層81、83を備える。多孔質層75は、耐熱性仕様の微多孔性PPフィルムから成る。   The lithium ion battery 67 has a structure in which a sheet in which two separators 69, an anode 71, and a cathode 73 are laminated is wound. Furthermore, each separator 69 includes a porous layer 75, cover layers 77 and 79 on both sides thereof, and conductive layers 81 and 83 outside thereof. The porous layer 75 is made of a microporous PP film of heat resistant specifications.

被覆層77、79は、多孔質層75の表面にスラリーS1を塗布、乾燥することで形成した。また、導電層81、83は、EDOTを含む塗布液を塗布、乾燥することで形成した。また、陽極71は、Al集電体上に公知の方法で形成されたLiCoOxである。また、陰極73は、Cu箔集電体に人造黒鉛から成る陰極スラリーを塗布、乾燥して形成したものである。電解液には、濃度1.2mol/LのLiPF(溶媒はEMC)を用いた。 The coating layers 77 and 79 were formed by applying and drying the slurry S1 on the surface of the porous layer 75. The conductive layers 81 and 83 were formed by applying and drying a coating solution containing EDOT. The anode 71 is LiCoOx formed on the Al current collector by a known method. The cathode 73 is formed by applying and drying a cathode slurry composed of artificial graphite on a Cu foil current collector. As the electrolytic solution, LiPF 6 (with a solvent of EMC) at a concentration of 1.2 mol / L was used.

多孔質層75の膜厚、及び被覆層77、79の膜厚を変えて、表5に示すE21〜E24のリチウムイオン電池67を製造した。このリチウムイオン電池67は、18650)型円筒型リチウムイオン電池である。
[表5]

Figure 0006506369
The film thickness of the porous layer 75 and the film thickness of the covering layers 77 and 79 were changed, and lithium ion batteries 67 of E21 to E24 shown in Table 5 were manufactured. The lithium ion battery 67 is a 18650) cylindrical lithium ion battery.
[Table 5]
Figure 0006506369

また、被覆層77、79を形成せずに、その他の点はE21〜E24のリチウムイオン電池67と同様にして、R21、R22のリチウムイオン電池を製造した。
2.リチウムイオン電池の評価
各リチウムイオン電池について、電解液含浸性、膨れ一短絡個数を評価した。
Further, R21 and R22 lithium ion batteries were manufactured in the same manner as the E21 to E24 lithium ion battery 67 without forming the covering layers 77 and 79.
2. Evaluation of Lithium Ion Battery For each lithium ion battery, the electrolyte impregnation property and the number of blister-short circuit were evaluated.

ここで、電解液含浸性の評価方法は、セパレータにEMIBF4電解液5μLを滴下し
、染み込むまでの時間を測定する方法である。染み込むまでの時間が最も短いものから、◎、○、△、×と評価した。
Here, the evaluation method of the electrolytic solution infiltration property is a method of measuring the time until 5 .mu.L of the EMIBF4 electrolytic solution is dropped to the separator and soaking. From the shortest time to soaking, it was evaluated as ◎, 、, △, x.

膨れ一短絡個数の評価方法は、100個のリチウムイオン電池を60℃の温度環境下で200時間保持し、電池本体が膨れたもの、又は再充電できなくなったものの個数を求める方法である。   The method for evaluating the number of blister-short circuits is a method of holding 100 lithium ion batteries under a temperature environment of 60 ° C. for 200 hours and determining the number of battery bodies that are swollen or can not be recharged.

評価結果を上記表4に示す。E11〜E18のEDLCは、電解液含浸性において優れ、膨れや短絡が生じにくいことが確認できた。
電解液含浸性が優れることにより、リチウムイオン電池の製造において、濃厚電解液の注入が容易になる。また、電解液を電極近傍に豊富に含浸することができるので、リチウムイオン電池が低抵抗化し、また、デンドライト形成を防止することができる。
The evaluation results are shown in Table 4 above. It has been confirmed that EDLCs E11 to E18 are excellent in electrolyte impregnation, and are less likely to cause swelling or short circuit.
The excellent electrolyte impregnation property facilitates the injection of the concentrated electrolyte in the manufacture of a lithium ion battery. Further, since the electrolytic solution can be impregnated abundantly in the vicinity of the electrode, the resistance of the lithium ion battery can be lowered, and the formation of dendrite can be prevented.

1、21…複合セパレータ、3、23、41、55、69…セパレータ、5、25、43、57、71…陽極、7、27、45、59、73…陰極、9、29、47、61、75…多孔質層、11、13、31、33、49、51、63、65、77、79…被覆層、35、37、81、83…導電層、39…コイン型EDLC、53…捲同型EDLC、67…リチウムイオン電池 DESCRIPTION OF SYMBOLS 1, 21 ... Composite separator, 3, 23, 41, 55, 69 ... Separator, 5, 25, 43, 57, 71 ... Anode, 7, 27, 45, 59, 73 ... Cathode, 9, 29, 47, 61 , 75: porous layer, 11, 13, 31, 33, 49, 51, 63, 65, 77, 79: covering layer, 35, 37, 81, 83: conductive layer, 39: coin-shaped EDLC, 53: 捲Same type EDLC, 67 ... lithium ion battery

Claims (5)

セパレータの製造方法であって、
(A)多孔質シリカ、(B)バインダー、(C)スラリー安定剤、及び(D)コーティング助剤を含むスラリーを、多孔質層の片面又は両面に塗布して被覆層を形成し、
ITOを含む導電層を前記被覆層の上にさらに形成し、
前記多孔質シリカの物性が以下のとおりであることを特徴とするセパレータの製造方法。
平均粒子径:0.1〜8μm
比表面積:250〜800m/g
吸油量:50〜350ml/100g
It is a manufacturing method of a separator, and
Applying a slurry comprising (A) porous silica, (B) binder, (C) slurry stabilizer, and (D) coating aid on one side or both sides of the porous layer to form a covering layer,
Forming a conductive layer including ITO on the covering layer;
The physical property of the said porous silica is as follows, The manufacturing method of the separator characterized by the above-mentioned.
Average particle size: 0.1 to 8 μm
Specific surface area: 250 to 800 m 2 / g
Oil absorption: 50 to 350 ml / 100 g
セパレータの製造方法であって、It is a manufacturing method of a separator, and
EDOT、PEDOT、ITO、ポリピロール、及びポリアニリンから選ばれた1種以上を含む導電層を多孔質シリカの表面に形成し、Forming on the surface of porous silica a conductive layer comprising one or more selected from EDOT, PEDOT, ITO, polypyrrole, and polyaniline;
(A)前記導電層が表面に形成された前記多孔質シリカ、(B)バインダー、(C)スラリー安定剤、及び(D)コーティング助剤を含むスラリーを、多孔質層の片面又は両面に塗布して被覆層を形成し、(A) The porous silica having the conductive layer formed on the surface, (B) a binder, (C) a slurry stabilizer, and (D) a coating aid is coated on one side or both sides of a porous layer Form a covering layer,
前記多孔質シリカの物性が以下のとおりであることを特徴とするセパレータの製造方法。The physical property of the said porous silica is as follows, The manufacturing method of the separator characterized by the above-mentioned.
平均粒子径:0.1〜8μmAverage particle size: 0.1 to 8 μm
比表面積:250〜800mSpecific surface area: 250 to 800 m 2 /g/ G
吸油量:50〜350ml/100gOil absorption: 50 to 350 ml / 100 g
前記バインダーが、水系バインダー又はオレフィン系バインダーである第1のバインダーと、スチレンーブタジエンゴム系バインダー、変性スチレンーブタジエンゴム系バインダー、アクリレート系バインダー、セルロース系バインダー、ビニールピロリドン、及び弗素系バインダーから成る群から選ばれた1種以上である第2のバインダーとの混合バインダーであることを特徴とする請求項1又は2に記載のセパレータの製造方法。   The binder comprises a first binder which is an aqueous binder or an olefin binder, a styrene-butadiene rubber binder, a modified styrene-butadiene rubber binder, an acrylate binder, a cellulose binder, vinyl pyrrolidone, and a fluorine binder. It is a mixed binder with the 2nd binder which is 1 or more types chosen from a group, The manufacturing method of the separator of Claim 1 or 2 characterized by the above-mentioned. 前記コーティング助剤が、Na中和CMC、又はアンモニア中和CMCを含むことを特徴とする請求項1〜3のいずれか1項に記載のセパレータの製造方法。   The method for producing a separator according to any one of claims 1 to 3, wherein the coating aid includes Na-neutralized CMC or ammonia-neutralized CMC. 前記スラリー安定剤が、界面活性剤、又はスルフォン酸系水溶性ポリマーを含むことを特徴とする請求項1〜4のいずれか1項に記載のセパレータの製造方法。   The method for producing a separator according to any one of claims 1 to 4, wherein the slurry stabilizer comprises a surfactant or a sulfonic acid-based water-soluble polymer.
JP2017213604A 2011-06-03 2017-11-06 Method of manufacturing separator Active JP6506369B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011125694 2011-06-03
JP2011125694 2011-06-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015214333A Division JP2016054302A (en) 2011-06-03 2015-10-30 Method for manufacturing separator

Publications (2)

Publication Number Publication Date
JP2018056573A JP2018056573A (en) 2018-04-05
JP6506369B2 true JP6506369B2 (en) 2019-04-24

Family

ID=47259473

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012551433A Pending JPWO2012165624A1 (en) 2011-06-03 2012-06-01 Separator and electrochemical element
JP2013058624A Pending JP2013168373A (en) 2011-06-03 2013-03-21 Separator, electrochemical element, and method for producing separator
JP2015214333A Pending JP2016054302A (en) 2011-06-03 2015-10-30 Method for manufacturing separator
JP2017213604A Active JP6506369B2 (en) 2011-06-03 2017-11-06 Method of manufacturing separator

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2012551433A Pending JPWO2012165624A1 (en) 2011-06-03 2012-06-01 Separator and electrochemical element
JP2013058624A Pending JP2013168373A (en) 2011-06-03 2013-03-21 Separator, electrochemical element, and method for producing separator
JP2015214333A Pending JP2016054302A (en) 2011-06-03 2015-10-30 Method for manufacturing separator

Country Status (2)

Country Link
JP (4) JPWO2012165624A1 (en)
WO (1) WO2012165624A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004310B2 (en) * 2012-01-31 2016-10-05 国立大学法人山形大学 Nonaqueous electrolyte secondary battery separator, method for producing the same, and nonaqueous electrolyte secondary battery
JP2014113734A (en) * 2012-12-10 2014-06-26 Mitsubishi Plastics Inc Laminate porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN103078076B (en) * 2013-01-11 2015-08-26 宁波晶一新材料科技有限公司 Composite isolated film and use the lithium ion battery of this barrier film
CN103107301B (en) * 2013-01-17 2015-04-08 中国科学院金属研究所 Novel lithium ion battery diaphragm with inorganic coating and preparation method thereof
CN103078077B (en) * 2013-01-17 2015-03-25 中国科学院金属研究所 Lithium ion battery diaphragm with special structure and preparation method thereof
JP2014179519A (en) * 2013-03-15 2014-09-25 Nippon Sheet Glass Co Ltd Separator for electricity storage device, and electricity storage device
JP6008199B2 (en) * 2013-04-16 2016-10-19 トヨタ自動車株式会社 Lithium ion secondary battery
CN103400953B (en) * 2013-07-19 2016-01-13 中国科学院金属研究所 A kind of zinc-silver oxide cell composite diaphragm with inorganic coating and preparation method thereof
KR20150106811A (en) 2013-11-21 2015-09-22 삼성에스디아이 주식회사 Separators and secondary battery using the separator
WO2015076602A1 (en) * 2013-11-21 2015-05-28 삼성에스디아이 주식회사 Electrode assembly having improved flexural rigidity, method for preparing same, and electrochemical battery comprising same
KR20160114587A (en) * 2014-01-30 2016-10-05 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
CN103904276B (en) * 2014-03-28 2017-09-19 东莞新能源科技有限公司 Composite porous isolating membrane and electrochemical appliance
KR102468672B1 (en) * 2014-05-05 2022-11-18 다라믹 엘엘씨 Improved lead-acid battery separators, electrodes, batteries, and methods of manufacture and use thereof
JP5893811B1 (en) * 2014-05-08 2016-03-23 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP6094542B2 (en) * 2014-07-29 2017-03-15 住友化学株式会社 Porous membrane
KR101670802B1 (en) * 2014-12-01 2016-10-31 에스케이씨 주식회사 Porous membrane for secondary battery
CN106981606B (en) * 2016-01-19 2019-11-26 中国电力科学研究院 A kind of preparation method of MFI type zeolite coating lithium ion battery separator
JP6222296B2 (en) * 2016-06-27 2017-11-01 住友化学株式会社 Porous membrane
CN106169376A (en) * 2016-08-18 2016-11-30 苏州大学 A kind of solaode capacitor integrated self-charging unit preparation method
KR102146393B1 (en) 2016-08-30 2020-08-20 삼성에스디아이 주식회사 Separator for lithium rechargeable battery, method of manufacturing the separator, and rechargeable lithium battery including the separator
KR20180031459A (en) * 2016-09-20 2018-03-28 한국전기연구원 Separator for sodium secondary batteries and producing method of the same
CN106981373B (en) * 2017-05-26 2018-09-28 宁波智正伟盈信息科技有限公司 A kind of double layer capacitor
KR102591524B1 (en) * 2017-06-19 2023-10-18 니폰 제온 가부시키가이샤 Composition for porous membranes for non-aqueous secondary batteries, porous membranes for non-aqueous secondary batteries, and non-aqueous secondary batteries
DE102017211412A1 (en) 2017-07-05 2019-01-10 Robert Bosch Gmbh Lithium cell separator with sponge material layer
KR20190046237A (en) * 2017-10-25 2019-05-07 현대자동차주식회사 Secondary battery preventing dendrite growth
EP3719866A4 (en) * 2017-11-29 2021-01-27 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
US10950836B2 (en) * 2018-01-24 2021-03-16 GM Global Technology Operations LLC Separators for lithium-containing electrochemical cells and methods of making the same
WO2019218327A1 (en) * 2018-05-18 2019-11-21 GM Global Technology Operations LLC Hybrid lithium ion capacitor battery having a carbon coated separate layer and method of making the same
CN108682775B (en) * 2018-06-29 2021-05-07 安徽省徽腾智能交通科技有限公司 Lithium battery diaphragm and application thereof
CN108847467B (en) * 2018-06-29 2021-05-07 安徽省徽腾智能交通科技有限公司 Preparation method of lithium battery diaphragm
CN112514127A (en) * 2018-07-13 2021-03-16 南洋理工大学 Electrochemically active intermediate layer for rechargeable batteries
KR102641842B1 (en) * 2018-08-03 2024-02-29 주식회사 엘지에너지솔루션 Method of manufacturing electrode improving curl of foil and preventing foil folding
KR102533015B1 (en) * 2018-10-16 2023-05-16 주식회사 엘지에너지솔루션 Method of transferring and processing foil improving curl of foil and preventing foil folding
KR102645752B1 (en) * 2018-11-02 2024-03-11 주식회사 엘지화학 Preparation method for separator
CN111009425B (en) * 2019-12-11 2021-06-22 东佳电子(郴州)有限公司 Low-noise breakdown-resistant supercapacitor
CN111341975B (en) * 2020-03-16 2022-11-15 四川优源新能源有限公司 Diaphragm for high-efficiency lithium ion secondary battery and preparation method thereof
WO2022065439A1 (en) * 2020-09-25 2022-03-31 旭化成株式会社 Separator for lead acid storage batteries, and lead acid storage battery
JPWO2022090862A1 (en) * 2020-10-26 2022-05-05
KR102531615B1 (en) * 2022-12-14 2023-05-11 한국세라믹기술원 Method for modifying graphene separator using aqueous binder and graphene separator thereof and electrochemical device including same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199769A (en) * 1989-01-27 1990-08-08 Hitachi Maxell Ltd Battery with overcharge preventing function
JPH10144570A (en) * 1996-11-08 1998-05-29 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JP2001155708A (en) * 1999-11-30 2001-06-08 Kazuhiro Tachibana Ni-H BATTERY AND SEPARATOR THEREFOR
JP2002134086A (en) * 2000-10-30 2002-05-10 Yoji Hirai Activated carbon composite separator for battery
JP2004014127A (en) * 2002-06-03 2004-01-15 Mitsubishi Heavy Ind Ltd Heat-resistant separator and secondary battery
JP4145762B2 (en) * 2003-09-26 2008-09-03 株式会社東芝 Nonaqueous electrolyte secondary battery
DE10347566A1 (en) * 2003-10-14 2005-05-12 Degussa Ceramic separator for electrochemical cells with improved conductivity
JP2006167593A (en) * 2004-12-15 2006-06-29 Optnics Precision Co Ltd Spherical ultrafine particle and its manufacturing method
JP2006338918A (en) * 2005-05-31 2006-12-14 Tomoegawa Paper Co Ltd Electronic component and separator therefor
TWI330136B (en) * 2005-11-28 2010-09-11 Lg Chemical Ltd Organic/inorganic composite porous membrane and electrochemical device using the same
JP5657856B2 (en) * 2007-01-29 2015-01-21 日立マクセル株式会社 Porous membrane, battery separator and lithium secondary battery
JP5778378B2 (en) * 2008-02-28 2015-09-16 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP4685974B2 (en) * 2009-02-24 2011-05-18 帝人株式会社 Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
JP2011018589A (en) * 2009-07-10 2011-01-27 Hitachi Maxell Ltd Slurry for insulating layer forming, separator for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2011034745A (en) * 2009-07-31 2011-02-17 Panasonic Corp Nonaqueous electrolyte secondary battery
JP5328034B2 (en) * 2009-09-04 2013-10-30 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same
US8852788B2 (en) * 2009-09-30 2014-10-07 Zeon Corporation Porous membrane for a secondary battery and a secondary battery

Also Published As

Publication number Publication date
JPWO2012165624A1 (en) 2015-02-23
JP2016054302A (en) 2016-04-14
JP2018056573A (en) 2018-04-05
WO2012165624A1 (en) 2012-12-06
JP2013168373A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP6506369B2 (en) Method of manufacturing separator
CN103477491B (en) Barrier film, its manufacture method and comprise the electrochemical appliance of this barrier film
Zhang et al. Polydopamine-coated separator for high-performance lithium-sulfur batteries
US10199623B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2019133940A (en) Protective film, and separator and secondary battery using the same
EP2077594A1 (en) Composite separator films for lithium-ion batteries
KR20150129669A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
DK2814082T3 (en) Electrochemical cells with glass-containing separators
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2019510349A (en) Composite electrolyte for secondary battery having multilayer structure
JP2002542582A (en) Rechargeable hybrid battery / supercapacitor system
KR20140051325A (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
KR101500078B1 (en) Electrode with enhanced cycle life and lithium secondary battery comprising the same
KR101455943B1 (en) Separator for secondary battery, method of manufacturing the same, and secondary battery using the same
US10553858B2 (en) Lithium electrode for a rechargeable lithium-ion battery and method for the manufacture thereof
Wang et al. A four-layers Hamburger-Structure PVDF-HFP/Al2O3/PE/PVDF-HFP composite separator for pouch lithium-ion batteries with enhanced safety and reliability
JP2007227231A (en) Separator for battery, lithium-ion secondary battery, and electric double-layer capacitor
KR20130099546A (en) Separator comprising organic and inorganic mixture coating layer containing soluble polyimide and battery using the separator
KR102298059B1 (en) Method of manufacturing lithium secondary battery
KR101464524B1 (en) Electrical double layer capacitor with excellent withstanding voltage property
KR101586536B1 (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JP4699256B2 (en) Lithium secondary battery
KR101956963B1 (en) Separator for Lithium Secondary Battery Containing Coating Layers of Different type
Kim et al. Electrochemical performances of inorganic membrane coated electrodes for li-ion batteries
JP6573150B2 (en) Electricity storage element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190328

R150 Certificate of patent or registration of utility model

Ref document number: 6506369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250