JP6222296B2 - Porous membrane - Google Patents

Porous membrane Download PDF

Info

Publication number
JP6222296B2
JP6222296B2 JP2016126312A JP2016126312A JP6222296B2 JP 6222296 B2 JP6222296 B2 JP 6222296B2 JP 2016126312 A JP2016126312 A JP 2016126312A JP 2016126312 A JP2016126312 A JP 2016126312A JP 6222296 B2 JP6222296 B2 JP 6222296B2
Authority
JP
Japan
Prior art keywords
group
porous membrane
porous film
porous
polyoxyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126312A
Other languages
Japanese (ja)
Other versions
JP2017004960A (en
JP2017004960A5 (en
Inventor
俊彦 緒方
俊彦 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2016126312A priority Critical patent/JP6222296B2/en
Publication of JP2017004960A publication Critical patent/JP2017004960A/en
Publication of JP2017004960A5 publication Critical patent/JP2017004960A5/ja
Application granted granted Critical
Publication of JP6222296B2 publication Critical patent/JP6222296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、多孔質膜に関する。   The present invention relates to a porous membrane.

リチウムイオン二次電池等の非水電解液電池は、パーソナルコンピュータ、携帯電話、携帯情報端末などに用いる電池として広く使用されている。
非水電解液電池には、通常、正極と負極とを分離する部材としてセパレータが用いられている。従来、セパレータにはポリオレフィンからなる多孔質膜が用いられてきたが、耐熱性が十分でないという問題を有していた。
耐熱性に優れたセパレータとして、例えば、特許文献1には、ポリオレフィンからなる多孔質膜に、無機粉末とポリビニルアルコールからなる多孔質膜を積層したセパレータが提案されている。
Nonaqueous electrolyte batteries such as lithium ion secondary batteries are widely used as batteries for personal computers, cellular phones, portable information terminals, and the like.
In a nonaqueous electrolyte battery, a separator is usually used as a member for separating a positive electrode and a negative electrode. Conventionally, a porous film made of polyolefin has been used as a separator, but it has a problem that heat resistance is not sufficient.
As a separator excellent in heat resistance, for example, Patent Document 1 proposes a separator in which a porous film made of polyolefin and a porous film made of polyvinyl alcohol are laminated.

特開2008−186721号公報JP 2008-186721 A

しかしながら、ポリオレフィンからなる多孔質膜に、無機粉末を含む多孔質膜を積層したセパレータは、カールし易く、電池組み立て時の作業性が低下する問題があった。   However, a separator in which a porous film made of polyolefin and a porous film containing an inorganic powder are laminated is easy to curl, and there is a problem that workability at the time of battery assembly is lowered.

本発明は、以下の発明を含む。
[1] 疎水性基及びノニオン性の親水性基を有する化合物と、無機粉末と、バインダー樹脂と、を含む多孔質膜。
[2] 疎水性基及びノニオン性の親水性基を有する化合物がノニオン性界面活性剤である[1]に記載の多孔質膜。
[3] 無機粉末が、金属酸化物、金属水酸化物、又は金属炭酸化物である[1]又は[2]に記載の多孔質膜。
[4] ノニオン性の親水性基が、ポリオキシエチレン構造を有する[1]〜[3]のいずれかに記載の多孔質膜。
[5] バインダー樹脂が、水溶性の樹脂である[1]〜[4]のいずれかに記載の多孔質膜。
[6] [1]〜[5]のいずれかに記載の多孔質膜と、[1]〜[5]のいずれかに記載の多孔質膜とは異なるその他の多孔質膜と、が積層された積層多孔質フィルム。
[7] 疎水性基及びノニオン性の親水性基を有する化合物と、無機粉末と、バインダー樹脂と、溶媒と、を含む塗工液。
[8] [1]〜[5]のいずれかに記載の多孔質膜を含む非水電解液電池用セパレータ。
[9] [8]に記載の非水電解液電池用セパレータを用いた非水電解液電池。
The present invention includes the following inventions.
[1] A porous membrane comprising a compound having a hydrophobic group and a nonionic hydrophilic group, an inorganic powder, and a binder resin.
[2] The porous membrane according to [1], wherein the compound having a hydrophobic group and a nonionic hydrophilic group is a nonionic surfactant.
[3] The porous membrane according to [1] or [2], wherein the inorganic powder is a metal oxide, a metal hydroxide, or a metal carbonate.
[4] The porous membrane according to any one of [1] to [3], wherein the nonionic hydrophilic group has a polyoxyethylene structure.
[5] The porous membrane according to any one of [1] to [4], wherein the binder resin is a water-soluble resin.
[6] The porous film according to any one of [1] to [5] and another porous film different from the porous film according to any one of [1] to [5] are laminated. Laminated porous film.
[7] A coating liquid comprising a compound having a hydrophobic group and a nonionic hydrophilic group, an inorganic powder, a binder resin, and a solvent.
[8] A separator for a non-aqueous electrolyte battery including the porous film according to any one of [1] to [5].
[9] A nonaqueous electrolyte battery using the nonaqueous electrolyte battery separator according to [8].

本発明によれば、ポリオレフィンからなる多孔質膜と、無機粉末を含む多孔質膜とを積層した、カールし難い積層多孔質フィルムを得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the lamination | stacking porous film which is hard to curl which laminated | stacked the porous film which consists of polyolefin, and the porous film containing inorganic powder can be obtained.

<本発明の多孔質膜>
本発明の多孔質膜(以下、本多孔質膜ということがある)は、その内部に連結した細孔を有する構造であり、多孔質であるため、一方の面から他方の面に気体、液体及びイオン等が透過可能であり、さらに、無機粉末を含むため耐熱性が高く、本多孔質膜を含む積層多孔質フィルムに高温時における形状安定性を付与することができる。よって、本多孔質膜は、非水電解液電池用セパレータに好適に含まれる。
<Porous membrane of the present invention>
The porous membrane of the present invention (hereinafter sometimes referred to as the present porous membrane) has a structure having pores connected to the inside thereof, and is porous, so that a gas or liquid is transferred from one surface to the other. In addition, since it contains inorganic powder, it has high heat resistance, and shape stability at high temperatures can be imparted to the laminated porous film including this porous membrane. Therefore, this porous membrane is suitably included in the separator for nonaqueous electrolyte batteries.

さらに、本多孔質膜は、疎水性基及びノニオン性の親水性基を有する化合物(以下、本化合物ということがある)を含むことによって、カールを抑制することができる。
ポリオレフィンからなる多孔質膜と、無機粉末を含む多孔質膜とは、極性が異なるため、水との親和性が異なり、同じ環境に置かれたときの吸水量が異なることがある。そのため、吸水したときのそれぞれの膜の寸法変化量に違いが生じ、積層多孔質フィルムにカールが発生する。
無機粉末は一般的に極性が高いため、水との相互作用が強い。このような無機粉末と、本化合物が有するノニオン性の親水性基とが、相互作用することによって、無機粉末の表面に本化合物が付着し、そして、本化合物が有する疎水性基によって無機粉末の表面を覆うことによって、無機粉末と水との相互作用を低減することができると考えられる。よって、本多孔質膜の水分含有量を低くすることができ、ポリオレフィンからなる多孔質膜の水分含有量と近くなるためカールは抑制される。
Furthermore, the present porous membrane can suppress curling by including a compound having a hydrophobic group and a nonionic hydrophilic group (hereinafter sometimes referred to as the present compound).
A porous membrane made of polyolefin and a porous membrane containing an inorganic powder have different polarities, and therefore have a different affinity for water and may have different water absorption when placed in the same environment. Therefore, a difference occurs in the dimensional change amount of each film when water is absorbed, and curling occurs in the laminated porous film.
Inorganic powders generally have a high polarity and thus have a strong interaction with water. Such an inorganic powder interacts with the nonionic hydrophilic group of the present compound, whereby the present compound adheres to the surface of the inorganic powder, and the hydrophobic group of the present compound causes the inorganic powder to It is considered that the interaction between the inorganic powder and water can be reduced by covering the surface. Therefore, the moisture content of the present porous membrane can be lowered, and curling is suppressed because it becomes close to the moisture content of the porous membrane made of polyolefin.

本多孔質膜の水分含有量は、好ましくは0.15%未満である。多孔質膜の水分含有量が0.15%未満だとカールの発生量がより少なくなり、また、本多孔質膜を用いた非水電解液電池の充放電サイクル特性が高くなる傾向がある。   The water content of the present porous membrane is preferably less than 0.15%. When the water content of the porous membrane is less than 0.15%, the amount of curling is reduced, and the charge / discharge cycle characteristics of the nonaqueous electrolyte battery using the porous membrane tend to be high.

<疎水性基及びノニオン性の親水性基を有する化合物>
ノニオン性の親水性基をしては、ポリオキシエチレン構造を有する基、及びヒドロキシ基等が挙げられる。また、本化合物は、好ましくはアニオン性基及びカチオン性基等のイオン性基を有さない。本明細書におけるアニオン性基とは、スルホン酸塩及びカルボン酸塩等の塩、及び、スルホン酸及びカルボン酸等のpKaが10未満の酸基のことである。
すなわち、pKaが10以上である一般的なヒドロキシ基はアニオン性基ではなく、ノニオン性基に該当する。
<Compound having hydrophobic group and nonionic hydrophilic group>
Examples of the nonionic hydrophilic group include a group having a polyoxyethylene structure and a hydroxy group. Moreover, this compound preferably does not have an ionic group such as an anionic group and a cationic group. An anionic group in this specification is an acid group having a pKa of less than 10 such as a salt such as a sulfonate and a carboxylate, and a sulfonic acid and a carboxylic acid.
That is, a general hydroxy group having a pKa of 10 or more corresponds to a nonionic group, not an anionic group.

疎水性基としては、炭化水素基、フッ化炭素基を含む基、及び、ケイ素を含む基等が挙げられ、好ましくは炭化水素基である。   Examples of the hydrophobic group include a hydrocarbon group, a group containing a fluorocarbon group, and a group containing silicon, and a hydrocarbon group is preferable.

炭化水素基は、好ましくは炭素数3〜30の炭化水素基である。炭素数3〜30の炭化水素基としてはプロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基(=エイコシル基)、ヘンイコシル基(=ヘンエイコシル基)、ドコシル基、トリコシル基、テトラコシル基、ペンタコシル基、ヘキサコシル基、ヘプタコシル基、オクタコシル基、ノナコシル基、トリアコンチル基、プロペニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基(=エイコセニル基)、ヘンイコセニル基(=ヘンエイコセニル基)、ドコセニル基、トリコセニル基、テトラコセニル基、ペンタコセニル基、ヘキサコセニル基、ヘプタコセニル基、オクタコセニル基、ノナコセニル基、トリアコンテニル基、プロピニル基、2−プロピニル基、イソプロピニル基、ブチニル基、イソブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基、トリデシニル基、テトラデシニル基、ペンタデシニル基、ヘキサデシニル基、ヘプタデシニル基、オクタデシニル基、ノナデシニル基、イコシニル基(=エイコシニル基)、ヘンイコシニル基(=ヘンエイコシニル基)、ドコシニル基、トリコシニル基、テトラコシニル基、ペンタコシニル基、ヘキサコシニル基、ヘプタコシニル基、オクタコシニル基、ノナコシニル基、及びトリアコンチニル基等が挙げられる。   The hydrocarbon group is preferably a hydrocarbon group having 3 to 30 carbon atoms. The hydrocarbon group having 3 to 30 carbon atoms is propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, t-butyl group, pentyl group, isopentyl group, hexyl group, isohexyl group, heptyl group, isoheptyl group. , Octyl group, isooctyl group, nonyl group, isononyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group (= eicosyl group) , Heicosyl group (= heneicosyl group), docosyl group, tricosyl group, tetracosyl group, pentacosyl group, hexacosyl group, heptacosyl group, octacosyl group, nonacosyl group, triacontyl group, propenyl group, allyl group, isopropenyl group, butenyl group, isobute Group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group, tridecenyl group, tetradecenyl group, pentadecenyl group, hexadecenyl group, heptadecenyl group, octadecenyl group, nonacenyl group, icocenyl group (= Eicosenyl group), heicosenyl group (= heneicosenyl group), dococenyl group, tricocenyl group, tetracocenyl group, pentacocenyl group, hexacocenyl group, heptacocenyl group, octacocenyl group, nonacosenyl group, triaconenyl group, propynyl group, 2-propynyl group , Isopropynyl, butynyl, isobutynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, undecynyl, dodecynyl, tridecyl Nyl group, tetradecynyl group, pentadecynyl group, hexadecynyl group, heptadecinyl group, octadecynyl group, nonadecynyl group, icosinyl group (= eicosinyl group), heicosinyl group (= heneicosinyl group), docosinyl group, tricosinyl group, tetracosinyl group, hexacosinyl group Group, heptacosinyl group, octacosinyl group, nonacosynyl group, triacontinyl group and the like.

フッ化炭素基を含む基は、好ましくは炭素数3〜30のフッ化炭素基を含むである。炭素数3〜30のフッ化炭素基を含む基としては、上記炭化水素基の水素原子の一部または全てがフッ素原子に置き換わった基が挙げられる。例えば、パーフルオロプロピル基、イソパーフルオロプロピル基、パーフルオロブチル基、イソパーフルオロブチル基、sec−パーフルオロブチル基、t−パーフルオロブチル基、パーフルオロペンチル基、イソパーフルオロペンチル基、パーフルオロヘキシル基、イソパーフルオロヘキシル基、パーフルオロヘプチル基、イソパーフルオロヘプチル基、パーフルオロオクチル基、イソパーフルオロオクチル基、パーフルオロノニル基、イソパーフルオロノニル基、パーフルオロデシル基、パーフルオロウンデシル基、パーフルオロドデシル基、パーフルオロトリデシル基、パーフルオロテトラデシル基、パーフルオロペンタデシル基、パーフルオロヘキサデシル基、パーフルオロヘプタデシル基、パーフルオロオクタデシル基、パーフルオロノナデシル基、パーフルオロイコシル基(=パーフルオロエイコシル基)、パーフルオロヘンイコシル基(=パーフルオロヘンエイコシル基)、パーフルオロドコシル基、パーフルオロトリコシル基、パーフルオロテトラコシル基、パーフルオロペンタコシル基、パーフルオロヘキサコシル基、パーフルオロヘプタコシル基、パーフルオロオクタコシル基、パーフルオロノナコシル基、パーフルオロトリアコンチル基、パーフルオロプロペニル基、パーフルオロアリル基、イソパーフルオロプロペニル基、パーフルオロブテニル基、イソパーフルオロブテニル基、パーフルオロペンテニル基、パーフルオロヘキセニル基、パーフルオロヘプテニル基、パーフルオロオクテニル基、パーフルオロノネニル基、パーフルオロデセニル基、パーフルオロウンデセニル基、パーフルオロドデセニル基、パーフルオロトリデセニル基、パーフルオロテトラデセニル基、パーフルオロペンタデセニル基、パーフルオロヘキサデセニル基、パーフルオロヘプタデセニル基、パーフルオロオクタデセニル基、パーフルオロノナデセニル基、パーフルオロイコセニル基(=パーフルオロエイコセニル基)、パーフルオロヘンイコセニル基(=パーフルオロヘンエイコセニル基)、パーフルオロドコセニル基、パーフルオロトリコセニル基、パーフルオロテトラコセニル基、パーフルオロペンタコセニル基、パーフルオロヘキサコセニル基、パーフルオロヘプタコセニル基、パーフルオロオクタコセニル基、パーフルオロノナコセニル基、パーフルオロトリアコンテニル基、パーフルオロプロピニル基、2−パーフルオロプロピニル基、イソパーフルオロプロピニル基、パーフルオロブチニル基、イソパーフルオロブチニル基、パーフルオロペンチニル基、パーフルオロヘキシニル基、パーフルオロヘプチニル基、パーフルオロオクチニル基、パーフルオロノニニル基、パーフルオロデシニル基、パーフルオロウンデシニル基、パーフルオロドデシニル基、トリデシニル基、テトラデシニル基、ペンタデシニル基、ヘキサデシニル基、ヘプタデシニル基、パーフルオロオクタデシニル基、パーフルオロノナデシニル基、パーフルオロイコシニル基(=パーフルオロエイコシニル基)、パーフルオロヘンイコシニル基(=パーフルオロヘンエイコシニル基)、パーフルオロドコシニル基、パーフルオロトリコシニル基、パーフルオロテトラコシニル基、パーフルオロペンタコシニル基、パーフルオロヘキサコシニル基、パーフルオロヘプタコシニル基、パーフルオロオクタコシニル基、パーフルオロノナコシニル基、及びパーフルオロトリアコンチニル基が挙げられる。
また、前記炭化水素基及びフッ化炭素基は、エーテル結合、チオエーテル結合、エステル結合、及びアミド結合等で連結されていてもよい。
The group containing a fluorocarbon group is preferably a fluorocarbon group having 3 to 30 carbon atoms. Examples of the group containing a fluorocarbon group having 3 to 30 carbon atoms include groups in which some or all of the hydrogen atoms of the hydrocarbon group have been replaced with fluorine atoms. For example, perfluoropropyl, isoperfluoropropyl, perfluorobutyl, isoperfluorobutyl, sec-perfluorobutyl, t-perfluorobutyl, perfluoropentyl, isoperfluoropentyl, Fluorohexyl group, isoperfluorohexyl group, perfluoroheptyl group, isoperfluoroheptyl group, perfluorooctyl group, isoperfluorooctyl group, perfluorononyl group, isoperfluorononyl group, perfluorodecyl group, perfluoro Undecyl group, perfluorododecyl group, perfluorotridecyl group, perfluorotetradecyl group, perfluoropentadecyl group, perfluorohexadecyl group, perfluoroheptadecyl group, perfluorooctadecyl group, perful Rononadecyl group, perfluoroicosyl group (= perfluoroeicosyl group), perfluorohenecosyl group (= perfluoroheneicosyl group), perfluorodocosyl group, perfluorotricosyl group, perfluorotetracosyl group Group, perfluoropentacosyl group, perfluorohexacosyl group, perfluoroheptacosyl group, perfluorooctacosyl group, perfluorononacosyl group, perfluorotriacontyl group, perfluoropropenyl group, perfluoro Allyl group, isoperfluoropropenyl group, perfluorobutenyl group, isoperfluorobutenyl group, perfluoropentenyl group, perfluorohexenyl group, perfluoroheptenyl group, perfluorooctenyl group, perfluorononenyl group, Perfluorodecenyl group, per Fluorodecenyl, perfluorododecenyl, perfluorotridecenyl, perfluorotetradecenyl, perfluoropentadecenyl, perfluorohexadecenyl, perfluoroheptade Senyl group, perfluorooctadecenyl group, perfluorononadecenyl group, perfluoroicosenyl group (= perfluoroeicosenyl group), perfluoroheneicosenyl group (= perfluoroheneicosyl group) Nyl group), perfluorodocosenyl group, perfluorotricocenyl group, perfluorotetracocenyl group, perfluoropentacocenyl group, perfluorohexacocenyl group, perfluoroheptacosenyl group, perfluorooctacose. Nyl group, perfluorononacosenyl group, perfluorotriacontenyl group, perfluoropropynyl group 2-perfluoropropynyl group, isoperfluoropropynyl group, perfluorobutynyl group, isoperfluorobutynyl group, perfluoropentynyl group, perfluorohexynyl group, perfluoroheptynyl group, perfluorooctynyl Group, perfluorononynyl group, perfluorodecynyl group, perfluoroundecynyl group, perfluorododecynyl group, tridecynyl group, tetradecynyl group, pentadecynyl group, hexadecynyl group, heptadecynyl group, perfluorooctadecynyl group, perfluoro Fluorononadecynyl group, perfluoroicosinyl group (= perfluoroeicosinyl group), perfluorohenicosinyl group (= perfluoroheneicosinyl group), perfluorodocosinyl group, perfluorotricosinyl group, perfluoro Tetrakoshi Group, perfluorohexyl stiffness group, perfluoro hexa stiffness group, perfluoro hepta stiffness group, perfluorooctanoate stiffness group, perfluoro nona stiffness group, and perfluoro thoria Continentale sulfonyl group.
The hydrocarbon group and the fluorocarbon group may be linked by an ether bond, a thioether bond, an ester bond, an amide bond, or the like.

ケイ素を含む基としてはアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、アルキルシロキサン、ジアルキルシロキサン、トリアルキルシロキサン等が挙げられる。   Examples of the group containing silicon include an alkylsilyl group, a dialkylsilyl group, a trialkylsilyl group, an alkylsiloxane, a dialkylsiloxane, and a trialkylsiloxane.

本化合物は、好ましくはノニオン性の界面活性剤である。   This compound is preferably a nonionic surfactant.

本化合物としては、ポリエチレングリコール−ポリプロピレングリコールジブロック共重合体、ポリプロピレングリコール−ポリエチレングリコール−ポリプロピレングリコールトリブロック共重合体等のポリエチレングリコール−ポリプロピレングリコールブロック共重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ポリエチレンオキサイドポリプロピレンオキサイドブロック共重合体、ポリオキシエチレン脂肪酸アミド、エチレンオキサイド−プロピレンオキサイド共重合体等のポリオキシエチレン構造を有する化合物;及びポリオキシエチレンソルビタン脂肪酸エステル等のソルビタン誘導体等が挙げられる。好ましくはポリオキシエチレンアルキルエーテルである。   As this compound, polyethylene glycol-polypropylene glycol diblock copolymer, polyethylene glycol-polypropylene glycol block copolymer such as polypropylene glycol-polyethylene glycol-polypropylene glycol triblock copolymer; polyoxyethylene alkyl ether, polyoxyethylene Compounds having a polyoxyethylene structure such as alkyl phenyl ether, polyethylene glycol fatty acid ester, polyethylene oxide polypropylene oxide block copolymer, polyoxyethylene fatty acid amide, ethylene oxide-propylene oxide copolymer; and polyoxyethylene sorbitan fatty acid ester, etc. Sorbitan derivatives of Polyoxyethylene alkyl ether is preferred.

ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンメチルエーテル、ポリオキシエチレンエチルエーテル、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンイソプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンイソブチルエーテル、ポリオキシエチレンsec−ブチルエーテル、ポリオキシエチレン−t−ブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンイソペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンイソヘキシルエーテル、ポリオキシエチレンヘプチルエーテル、ポリオキシエチレンイソヘプチルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンイソオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンイソノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンウンデシルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンテトラデシルエーテル、ポリオキシエチレンペンタデシルエーテル、ポリオキシエチレンヘキサデシルエーテル、ポリオキシエチレンヘプタデシルエーテル、ポリオキシエチレンオクタデシルエーテル、ポリオキシエチレンノナデシルエーテル、ポリオキシエチレンイコシルエーテル(=ポリオキシエチレンエイコシルエーテル)、ポリオキシエチレンヘンイコシルエーテル(=ポリオキシエチレンヘンエイコシルエーテル)、ポリオキシエチレンドコシルエーテル、ポリオキシエチレントリコシルエーテル、ポリオキシエチレンテトラコシルエーテル、ポリオキシエチレンペンタコシルエーテル、ポリオキシエチレンヘキサコシルエーテル、ポリオキシエチレンヘプタコシルエーテル、ポリオキシエチレンオクタコシルエーテル、ポリオキシエチレンノナコシルエーテル、及びポリオキシエチレントリアコンチルエーテル等が挙げられる。   As polyoxyethylene alkyl ether, polyoxyethylene methyl ether, polyoxyethylene ethyl ether, polyoxyethylene propyl ether, polyoxyethylene isopropyl ether, polyoxyethylene butyl ether, polyoxyethylene isobutyl ether, polyoxyethylene sec-butyl ether, Polyoxyethylene-t-butyl ether, polyoxyethylene pentyl ether, polyoxyethylene isopentyl ether, polyoxyethylene hexyl ether, polyoxyethylene isohexyl ether, polyoxyethylene heptyl ether, polyoxyethylene isoheptyl ether, polyoxyethylene Octyl ether, polyoxyethylene isooctyl ether, polyoxyethylene Ether, polyoxyethylene isononyl ether, polyoxyethylene decyl ether, polyoxyethylene undecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene tridecyl ether, polyoxyethylene tetradecyl ether, polyoxyethylene pentadecyl ether, poly Oxyethylene hexadecyl ether, polyoxyethylene heptadecyl ether, polyoxyethylene octadecyl ether, polyoxyethylene nonadecyl ether, polyoxyethylene icosyl ether (= polyoxyethylene eicosyl ether), polyoxyethylene heicosyl ether ( = Polyoxyethylene henecosyl ether), polyoxyethylene docosyl ether, polyoxyethylene tricosyl ether Tellurium, polyoxyethylene tetracosyl ether, polyoxyethylene pentacosyl ether, polyoxyethylene hexacosyl ether, polyoxyethylene heptacosyl ether, polyoxyethylene octacosyl ether, polyoxyethylene nonacosyl ether, and polyoxyethylene triacon And ruether.

本化合物は市場から容易に入手することができる。市販品としては、「エマルゲン(登録商標、花王株式会社製)」、「ニューコール(日本乳化剤株式会社製)」、「レオックス(登録商標、ライオン株式会社製)」、「レオコール(登録商標、ライオン株式会社製)」、「ライオノール(登録商標、ライオン株式会社製)」、「レオソルブ(登録商標、ライオン株式会社製)」、「ラオール(登録商標、ライオン株式会社製)」、「エマルミン(登録商標、三洋化成工業株式会社製)」、「サンノニック(登録商標、三洋化成工業株式会社製)」、「ニューポール(登録商標、三洋化成工業株式会社製)」、及び「サンモリン(登録商標、三洋化成工業株式会社製)」等が挙げられる。   This compound can be easily obtained from the market. Commercially available products include “Emulgen (registered trademark, manufactured by Kao Corporation)”, “New Coal (manufactured by Nippon Emulsifier Co., Ltd.)”, “Leox (registered trademark, manufactured by Lion Corporation)”, “Leocor (registered trademark, Lion Corporation) "Lionol (registered trademark, manufactured by Lion Corporation)", "Reosolve (registered trademark, manufactured by Lion Corporation)", "Raol (registered trademark, manufactured by Lion Corporation)", "Emalmin (registered trademark)" Sanyo Chemical Co., Ltd.), Sannonic (registered trademark, Sanyo Chemical Industry Co., Ltd.), New Pole (registered trademark, Sanyo Chemical Industry Co., Ltd.), and Sanmorin (registered trademark, Sanyo Chemical Industries, Ltd.) Kogyo Co., Ltd.).

無機粉末100質量部に対する本化合物の含有量は、好ましくは0.05〜10質量部である。好ましくは0.1質量部以上であり、より好ましくは0.2質量部以上であり、さらに好ましくは0.3質量部以上である。また、好ましくは5質量部以下であり、より好ましくは3質量部以下であり、さらに好ましくは1.5質量部以下である。
無機粉末100質量部に対する、本化合物の含有量が10質量部を超えると本多孔質膜の耐熱性を損なう傾向がある。
The content of the present compound with respect to 100 parts by mass of the inorganic powder is preferably 0.05 to 10 parts by mass. Preferably it is 0.1 mass part or more, More preferably, it is 0.2 mass part or more, More preferably, it is 0.3 mass part or more. Moreover, it is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 1.5 parts by mass or less.
If the content of the present compound exceeds 10 parts by mass with respect to 100 parts by mass of the inorganic powder, the heat resistance of the porous membrane tends to be impaired.

<無機粉末>
無機粉末としては、金属酸化物、金属水酸化物、金属炭酸化物、金属窒化物、金属炭化物、金属水酸化物、及び金属の硫酸塩等が挙げられ、好ましくは、金属酸化物、金属水酸化物、及び金属炭酸化物であり、さらに好ましくは金属酸化物である。
<Inorganic powder>
Examples of the inorganic powder include metal oxides, metal hydroxides, metal carbonates, metal nitrides, metal carbides, metal hydroxides, and metal sulfates, preferably metal oxides, metal hydroxides. And metal carbonates, more preferably metal oxides.

金属酸化物には、金属水酸化物及び金属炭酸化物等のその他の金属成分が含まれてもよい。金属酸化物に含まれるその他の金属成分の割合は、金属酸化物全量に対して、通常30%以下であり、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは1%以下である。金属酸化物の中でも、化学安定性、高温における形状安定性をより高める点で、アルミナが好ましく、中でもα−アルミナがより好ましい。   The metal oxide may contain other metal components such as metal hydroxide and metal carbonate. The ratio of the other metal components contained in the metal oxide is usually 30% or less, preferably 20% or less, more preferably 10% or less, further preferably 5%, based on the total amount of the metal oxide. % Or less, particularly preferably 1% or less. Among metal oxides, alumina is preferable in terms of further improving chemical stability and shape stability at high temperature, and α-alumina is more preferable.

具体的な無機粉末としては、酸化カルシウム、酸化マグネシウム、酸化チタン、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸バリウム、タルク、クレー、カオリン、シリカ、ハイドロタルサイト、珪藻土、マイカ、ゼオライト、ガラス等が挙げられる。これらは、単独あるいは二種以上を組み合わせて用いることができる。   Specific inorganic powders include calcium oxide, magnesium oxide, titanium oxide, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, magnesium sulfate, barium sulfate, talc, clay, kaolin. , Silica, hydrotalcite, diatomaceous earth, mica, zeolite, glass and the like. These can be used alone or in combination of two or more.

本多孔質膜における無機粉末の割合は、通常本多孔質膜の50質量%を超え、好ましくは70質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。また、好ましくは99.5%以下であり、より好ましくは99%いかであり、さらに好ましくは98%以下である。   The proportion of the inorganic powder in the present porous membrane usually exceeds 50% by mass of the present porous membrane, preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. is there. Further, it is preferably 99.5% or less, more preferably 99%, and even more preferably 98% or less.

<バインダー樹脂>
バインダー樹脂は、無機粉末同士結着させるものであり、また、本多孔質膜と、本多孔質膜とは異なるその他の多孔質膜(以下、その他の多孔質膜ということがある)とを結着させる機能も有する。バインダー樹脂は、非水電解液電池の電解液に対して不溶であり、非水電解液電池の使用範囲で電気化学的に安定である樹脂が好ましい。バインダー樹脂としては、例えば、ポリエチレン、及びポリプロピレン等のポリオレフィン;ポリフッ化ビニリデン、及びポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、及びエチレン−テトラフルオロエチレン共重合体等の含フッ素ゴム;スチレン−ブタジエン共重合体及びその水素化物;メタクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、及びスチレン−アクリル酸エステル共重合体等の(メタ)アクリル酸エステル共重合体;エチレンプロピレンラバー等のゴム類;ポリ酢酸ビニル;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルアミド、ポリエステル、芳香族ポリエステル、及びポリエーテルエーテルケトン等の融点やガラス転移温度が180℃以上の樹脂;ポリカーボネート;ポリアセタール;並びに、カルボキシアルキルセルロース、アルキルセルロース、ヒドロキシアルキルセルロース、澱粉、ポリビニルアルコール、アルギン酸ナトリウム、ポリエチレングリコール、セルロースエーテル、ポリアクリル酸、ポリアクリルアミド、及びポリメタクリル酸等の水溶性の樹脂等の重合体が挙げられる。
中でも、含フッ素樹脂、含フッ素ゴム、融点やガラス転移温度が180℃以上の樹脂、及び水溶性の樹脂が好ましい。含フッ素樹脂、含フッ素ゴム、及び融点やガラス転移温度が180℃以上の樹脂は、非水電解液電池の使用範囲での安定性がより高いため好ましい。
水溶性の樹脂は、プロセスや環境負荷の点で好ましい。水溶性の樹脂の中でも、カルボキシアルキルセルロース、アルキルセルロース、ヒドロキシアルキルセルロース、澱粉、ポリビニルアルコール、アルギン酸ナトリウムが好ましく、セルロースエーテルがより好ましい。これらのバインダー樹脂は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
<Binder resin>
The binder resin binds inorganic powders, and binds the present porous membrane to another porous membrane different from the present porous membrane (hereinafter also referred to as other porous membrane). It also has a function to wear. The binder resin is preferably a resin that is insoluble in the electrolyte solution of the non-aqueous electrolyte battery and is electrochemically stable within the use range of the non-aqueous electrolyte battery. Examples of the binder resin include polyolefins such as polyethylene and polypropylene; fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and ethylene-tetrafluoro. Fluorine-containing rubbers such as ethylene copolymers; styrene-butadiene copolymers and their hydrides; methacrylates, acrylonitrile-acrylate copolymers, and styrene-acrylate copolymers (meta ) Acrylate ester copolymer; Rubber such as ethylene propylene rubber; Polyvinyl acetate; Polyphenylene ether, Polysulfone, Polyethersulfone, Polyphenylene sulfide, Polyetherimide, Polyamide, Polyethylene Resins having a melting point or glass transition temperature of 180 ° C. or higher, such as imide, polyamideimide, polyetheramide, polyester, aromatic polyester, and polyetheretherketone; polycarbonate; polyacetal; and carboxyalkyl cellulose, alkyl cellulose, hydroxyalkyl cellulose And polymers such as water-soluble resins such as starch, polyvinyl alcohol, sodium alginate, polyethylene glycol, cellulose ether, polyacrylic acid, polyacrylamide, and polymethacrylic acid.
Among these, a fluorine-containing resin, a fluorine-containing rubber, a resin having a melting point or glass transition temperature of 180 ° C. or higher, and a water-soluble resin are preferable. A fluorine-containing resin, a fluorine-containing rubber, and a resin having a melting point and a glass transition temperature of 180 ° C. or higher are preferable because of higher stability in the use range of the nonaqueous electrolyte battery.
A water-soluble resin is preferable in terms of process and environmental load. Among water-soluble resins, carboxyalkyl cellulose, alkyl cellulose, hydroxyalkyl cellulose, starch, polyvinyl alcohol, and sodium alginate are preferable, and cellulose ether is more preferable. These binder resins may be used alone or in combination of two or more.

セルロースエーテルとしては、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、及びオキシエチルセルロース等が挙げられる。中でも、化学的、熱的な安定性に優れたCMC、HECが好ましく、CMCがより好ましい。   Examples of the cellulose ether include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, and oxyethyl cellulose. Among them, CMC and HEC excellent in chemical and thermal stability are preferable, and CMC is more preferable.

ポリアミドは、好ましくは芳香族ポリアミドであり、特に好ましくは、パラ配向芳香族ポリアミド(以下、「パラアラミド」ということがある。)である。   The polyamide is preferably an aromatic polyamide, and particularly preferably a para-oriented aromatic polyamide (hereinafter sometimes referred to as “para-aramid”).

パラアラミドは、通常、パラ配向芳香族ジアミンとパラ配向芳香族ジカルボン酸ハライドの縮合重合により得られ、アミド結合が芳香族環のパラ位またはそれに準じた配向位(例えば、4,4’−ビフェニレン、1,5−ナフタレン、2,6−ナフタレン等のような反対方向に同軸または平行に延びる配向位)で結合される繰り返し単位から実質的になるものである。パラアラミドとしては、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(パラベンズアミド)、ポリ(4,4’−ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン−4,4’−ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン−2,6−ナフタレンジカルボン酸アミド)、ポリ(2−クロロ−パラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6−ジクロロパラフェニレンテレフタルアミド共重合体等のパラ配向型またはパラ配向型に準じた構造を有するパラアラミドが挙げられる。   Para-aramid is usually obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′-biphenylene, It consists essentially of repeating units that are bound together in an opposite orientation, such as 1,5-naphthalene, 2,6-naphthalene, etc. Examples of para-aramid include poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic amide), poly (Paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), para-phenylene type such as paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer or para Para-aramid having a structure conforming to the orientation type may be mentioned.

ポリイミドは、好ましくは芳香族ポリイミドであり、より好ましくは全芳香族ポリイミドである。芳香族ポリイミドは、通常、芳香族の二酸無水物とジアミンの縮重合で製造される。二酸無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’、4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’−ビス(3,4―ジカルボキシフェニル)ヘキサフルオロプロパン、及び3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が挙げられる。ジアミンとしては、例えば、オキシジアニリン、パラフェニレンジアミン、ベンゾフェノンジアミン、3,3’−メチレンジアニリン、3,3’−ジアミノベンソフェノン、3,3’−ジアミノジフェニルスルフォン、及び1,5’−ナフタレンジアミンが挙げられる。   The polyimide is preferably an aromatic polyimide, more preferably a wholly aromatic polyimide. The aromatic polyimide is usually produced by condensation polymerization of an aromatic dianhydride and a diamine. Examples of the dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. Examples include anhydrides, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. Examples of the diamine include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3′-methylenedianiline, 3,3′-diaminobenzophenone, 3,3′-diaminodiphenylsulfone, and 1,5 ′. -Naphthalenediamine.

ポリアミドイミドは、好ましくは芳香族ポリアミドイミドである。芳香族ポリアミドイミドは、通常、芳香族ジカルボン酸および芳香族ジイソシアネートを用いてこれらの縮合重合から得られ、また、芳香族二酸無水物および芳香族ジイソシアネートを用いてこれらの縮合重合からも得ることができる。芳香族ジカルボン酸としては、例えば、イソフタル酸、及びテレフタル酸が挙げられる。芳香族二酸無水物としては、例えば、無水トリメリット酸が挙げられる。芳香族ジイソシアネートとしては、例えば、4,4’−ジフェニルメタンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、オルソトリランジイソシアネート、及びm−キシレンジイソシアネートが挙げられる。   The polyamideimide is preferably an aromatic polyamideimide. Aromatic polyamideimides are usually obtained from these condensation polymerizations using aromatic dicarboxylic acids and aromatic diisocyanates, and can also be obtained from these condensation polymerizations using aromatic dianhydrides and aromatic diisocyanates. Can do. Examples of the aromatic dicarboxylic acid include isophthalic acid and terephthalic acid. Examples of the aromatic dianhydride include trimellitic anhydride. Examples of the aromatic diisocyanate include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, orthotolylane diisocyanate, and m-xylene diisocyanate.

本多孔質膜中のバインダー樹脂と無機粉末の合計量に対する、無機粉末の割合は、通常50質量%を超え、好ましくは70質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。また、好ましくは99.5%以下であり、より好ましくは99%いかであり、さらに好ましくは98%以下である。無機粉末の割合が、上記特定の範囲であることで、イオン透過性と、粉落ちのし難さとのバランスに優れる本多孔膜が得られる。粉落ちとは、本多孔質膜から無機粉末が剥がれる現象である。   The ratio of the inorganic powder to the total amount of the binder resin and the inorganic powder in the present porous membrane is usually more than 50% by mass, preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably. Is 95% by mass or more. Further, it is preferably 99.5% or less, more preferably 99%, and even more preferably 98% or less. When the proportion of the inorganic powder is within the specific range, the present porous membrane having an excellent balance between ion permeability and difficulty in powder removal can be obtained. Powder falling is a phenomenon in which inorganic powder is peeled off from the porous membrane.

本多孔質は、本多孔質の機能を損なわない範囲で、その他の成分を含んでいてもよい。
その他の成分として、例えば、分散剤、可塑剤、pH調製剤が挙げられる。
The present porous may contain other components as long as the function of the present porous is not impaired.
Examples of other components include a dispersant, a plasticizer, and a pH adjuster.

本多孔質膜の厚さは、通常0.1〜20μmであり、好ましくは1〜10μmである。
厚さが0.1μm未満であると、本多孔質膜を含む非水電解液電池用セパレータの耐熱性が不十分になる傾向がある。例えば、本多孔質膜と、ポリオレフィンからなる多孔質膜と、が積層された積層多孔質フィルムを非水電解液電池用セパレータに用いた場合には、本多孔質膜の厚さが0.1μm未満であると、非水電解液電池に事故等により発熱が生じたときにポリオレフィンからなる多孔質膜の熱収縮に抗しきれず該セパレータが収縮する恐れがあり、20μmを超えると、該セパレータの厚さが厚くなり、電池の容量が小さくなる恐れがある。
The thickness of the present porous membrane is usually 0.1 to 20 μm, preferably 1 to 10 μm.
When the thickness is less than 0.1 μm, the heat resistance of the separator for a nonaqueous electrolyte battery including the porous membrane tends to be insufficient. For example, when a laminated porous film obtained by laminating the present porous film and a porous film made of polyolefin is used for a separator for a non-aqueous electrolyte battery, the thickness of the present porous film is 0.1 μm. If the temperature is less than 20 μm, the separator may shrink without being able to resist the heat shrinkage of the porous membrane made of polyolefin when heat is generated due to an accident or the like in the nonaqueous electrolyte battery. The thickness may increase and the battery capacity may decrease.

本多孔質膜の空隙率は、通常20〜80体積%であり、好ましくは30〜70体積%である。
空隙率が20体積%未満では電解液の保持量が少なくなる虞があり、80体積%を超えると本多孔質膜の耐熱性を損なう虞がある、すなわち電池が激しく発熱したときに電流が遮断できなくなる虞がある。
The porosity of the present porous membrane is usually 20 to 80% by volume, preferably 30 to 70% by volume.
If the porosity is less than 20% by volume, the amount of electrolyte retained may be reduced, and if it exceeds 80% by volume, the heat resistance of the porous membrane may be impaired. There is a risk that it will not be possible.

本多孔質膜が有する孔の孔径は、優れたイオン透過性を有し、かつ正極や負極への粒子の入り込みを防止する観点から、3μm以下が好ましく、1μm以下がさらに好ましい。   The pore diameter of the porous membrane of the present porous membrane is preferably 3 μm or less, more preferably 1 μm or less from the viewpoint of having excellent ion permeability and preventing particles from entering the positive electrode and the negative electrode.

本多孔質膜の透過率は、通常、透気度で表される。本多孔質膜の透気度は、通常30〜1000sec/100ccであり、好ましくは50〜800sec/100ccである。   The permeability of the present porous membrane is usually expressed by air permeability. The air permeability of the present porous membrane is usually 30 to 1000 sec / 100 cc, preferably 50 to 800 sec / 100 cc.

本多孔質膜の目付は、通常4〜20g/mであり、好ましくは5〜12g/mである。目付けが4g/m未満であると、強度が不十分となる虞があり、20g/mを超えると、本多孔質膜の厚さが厚くなり、電池の容量が小さくなる虞がある。 The basis weight of the present porous membrane is usually 4 to 20 g / m 2 , preferably 5 to 12 g / m 2 . If the basis weight is less than 4 g / m 2 , the strength may be insufficient, and if it exceeds 20 g / m 2 , the thickness of the porous membrane may increase and the battery capacity may decrease.

<積層多孔質フィルム>
本多孔質膜は、その他の多孔質膜と積層した積層多孔質フィルム(以下、本積層多孔質フィルムということがある)として非水電解液電池用セパレータに用いられる。該その他の多孔質膜としては、例えば、ビスコースレーヨン、天然セルロース等の抄紙;セルロース、ポリエステル等の繊維を抄紙して得られる混抄紙;電解紙;クラフト紙;マニラ紙;ポリエチレン不織布、ポリプロピレン不織布、ポリエステル不織布、ガラス繊維、多孔質ポリオレフィン(例えば、多孔質ポリエチレン、多孔質ポリプロピレン)、多孔質ポリエステル、アラミド繊維、ポリブチレンテレフタレート不織布、パラ系全芳香族ポリアミド、ポリフッ化ビニリデン、テトラフルオロエチレン、フッ化ビニリデンと6フッ化プロピレンとの共重合体、フッ素ゴム等の含フッ素樹脂等の不織布又は多孔質膜;プロトン伝導型ポリマー;等の膜が挙げられる。好ましくはポリオレフィンからなる多孔質膜(以下、ポリオレフィン膜ということがある)である。
<Laminated porous film>
This porous membrane is used for a separator for a non-aqueous electrolyte battery as a laminated porous film laminated with other porous membranes (hereinafter sometimes referred to as this laminated porous film). Examples of the other porous membrane include papermaking of viscose rayon and natural cellulose; mixed paper obtained by making fibers of cellulose and polyester; electrolytic paper; kraft paper; manila paper; polyethylene nonwoven fabric and polypropylene nonwoven fabric Polyester nonwoven fabric, glass fiber, porous polyolefin (for example, porous polyethylene, porous polypropylene), porous polyester, aramid fiber, polybutylene terephthalate nonwoven fabric, para-type wholly aromatic polyamide, polyvinylidene fluoride, tetrafluoroethylene, fluorine Non-woven fabrics or porous membranes such as copolymers of vinylidene fluoride and propylene hexafluoride, fluorine-containing resins such as fluororubber; membranes such as proton conducting polymers; A porous film made of polyolefin (hereinafter sometimes referred to as a polyolefin film) is preferred.

本積層多孔質フィルムは、その他の多孔質膜と本多孔質膜とを複数有していてもよく、例えば、その他の多孔質膜の両面に本多孔質膜が積層されていてもよい。また、その他の多孔質膜の両面に本多孔質膜が積層される場合には、本多孔質膜はそれぞれ異なる本化合物、無機粉末及びバインダー樹脂を含んでいてもよい。   The present laminated porous film may have a plurality of other porous films and a plurality of the present porous films. For example, the present porous film may be laminated on both surfaces of the other porous film. Moreover, when this porous film is laminated | stacked on both surfaces of another porous film, this porous film may contain the different this compound, inorganic powder, and binder resin, respectively.

ポリオレフィン膜は、電池が激しく発熱した時に、溶融して無孔化することにより、本積層多孔質フィルムにシャットダウンの機能を付与する。また、本多孔質膜は、シャットダウンが生じる高温における耐熱性を有しているので、本積層多孔質フィルムは高温でも形状安定性を有する。   The polyolefin membrane melts and becomes non-porous when the battery generates heat violently, thereby giving a shutdown function to the laminated porous film. In addition, since the present porous membrane has heat resistance at a high temperature at which shutdown occurs, the present laminated porous film has shape stability even at a high temperature.

本積層多孔質膜の水分含有量は、好ましくは0.15%未満である。
多孔質膜の水分含有量が0.15%以上だと電池の充放電サイクル特性を損なう虞がある。
The moisture content of the present laminated porous membrane is preferably less than 0.15%.
If the water content of the porous membrane is 0.15% or more, the charge / discharge cycle characteristics of the battery may be impaired.

本積層多孔質フィルムを非水電解液電池用セパレータとして含む非水電解液電池の50%破壊電圧は、好ましくは4.40V以上である。当該非水電解液二次電池は、電池電圧が4.40V以上と大きく、電池容量が大きい場合でも、内部短絡が生じた際の異常発熱が抑制される、つまりは内部短絡に対する安全性に優れるものとなる。   The 50% breakdown voltage of a non-aqueous electrolyte battery including the laminated porous film as a separator for a non-aqueous electrolyte battery is preferably 4.40 V or more. The non-aqueous electrolyte secondary battery has a large battery voltage of 4.40 V or more, and even when the battery capacity is large, abnormal heat generation when an internal short circuit occurs is suppressed, that is, excellent safety against an internal short circuit. It will be a thing.

本積層多孔質フィルムの膜抵抗は、電池特性(イオン透過性、負荷特性)の点から、好ましくは0.25〜5.00Ω・cmである。膜抵抗が0.25Ω・cm未満であると、イオン透過性には優れるものの、微小短絡が発生する危険性が高まる恐れがあり、5.00Ω・cmを超えると、良好なイオン透過性が得られず、電池特性が悪化する恐れがある。膜抵抗を大きくするには、例えば、その他の多孔質膜および/または本多孔質膜の、厚さを厚くしたり、空隙率を低くすればよく、膜抵抗を小さくするには、その他の多孔質膜および/または本多孔質膜の、厚さを薄くしたり、空隙率を高くすればよい。 The membrane resistance of the present laminated porous film is preferably 0.25 to 5.00 Ω · cm 2 from the viewpoint of battery characteristics (ion permeability, load characteristics). If the membrane resistance is less than 0.25 Ω · cm 2 , the ion permeability is excellent, but the risk of occurrence of a short-circuit may increase, and if it exceeds 5.00 Ω · cm 2 , good ion permeability May not be obtained, and battery characteristics may be deteriorated. In order to increase the membrane resistance, for example, the thickness of the other porous membrane and / or the present porous membrane may be increased or the porosity may be decreased. The thickness of the porous membrane and / or the porous membrane may be reduced or the porosity may be increased.

本積層多孔質フィルムの厚さは、通常5〜75μmであり、好ましくは10〜50μmである。本積層多孔質フィルムの厚さが5μm未満であると、積層多孔質フィルムが破膜しやすくなる恐れがあり、75μmを超えると、本積層多孔質フィルムの厚さが厚くなり、電池の容量が小さくなる恐れがある。   The thickness of the laminated porous film is usually 5 to 75 μm, preferably 10 to 50 μm. If the thickness of the laminated porous film is less than 5 μm, the laminated porous film may be easily broken, and if it exceeds 75 μm, the thickness of the laminated porous film is increased and the battery capacity is increased. There is a risk of becoming smaller.

本積層多孔質フィルムに含まれる本多孔質膜の体積目付は、加熱時の安定性および電池特性の点から、通常0.5〜20cc/mであり、好ましくは1〜10cc/mである。体積目付が0.5cc/m未満であると、本積層多孔質フィルムが加熱されたときに破膜しやすくなる恐れがあり、20cc/mを超えると、本積層多孔質フィルムの厚さが厚くなり、電池の容量が小さくなる恐れがある。ただし、本多孔質膜がその他の多孔質膜の両面に積層される場合、体積目付は、両面の合計値とする。 The volume basis weight of the porous membrane contained in the laminated porous film is usually 0.5 to 20 cc / m 2 , preferably 1 to 10 cc / m 2 from the viewpoint of stability during heating and battery characteristics. is there. If the volume basis weight is less than 0.5 cc / m 2 , the laminated porous film may be easily broken when heated. If it exceeds 20 cc / m 2 , the thickness of the laminated porous film May become thicker and the battery capacity may be reduced. However, when this porous membrane is laminated on both surfaces of other porous membranes, the volume per unit area is the total value of both surfaces.

本積層多孔質フィルムの透気度は、通常50〜2000sec/100cc、好ましくは70〜1000sec/100ccである。透気度が2000sec/100ccを超えると、電池特性(イオン透過性、負荷特性)を損なう恐れがある。   The air permeability of the laminated porous film is usually 50 to 2000 sec / 100 cc, preferably 70 to 1000 sec / 100 cc. If the air permeability exceeds 2000 sec / 100 cc, battery characteristics (ion permeability, load characteristics) may be impaired.

本積層多孔質フィルムは、本発明の目的を損なわない範囲で、その他の多孔質膜と本多孔質膜以外の、例えば、接着層、保護層等の多孔質層を含んでもよい。   The present laminated porous film may contain other porous films and porous layers such as an adhesive layer and a protective layer other than the porous film and the present porous film as long as the object of the present invention is not impaired.

<ポリオレフィン膜>
ポリオレフィン膜に含まれるポリオレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、又は1−ヘキセン等を重合して得られる高分子量の単独重合体、又は共重合体が挙げられる。好ましくは、高分子量ポリエチレンである。これらのポリオレフィンは、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
<Polyolefin film>
Examples of the polyolefin contained in the polyolefin film include a high molecular weight homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. Can be mentioned. High molecular weight polyethylene is preferable. These polyolefins may be used alone or in combination of two or more.

ポリオレフィンの分子量は、本積層多孔質フィルムを非水電解液電池用セパレータとして非水電解液電池に使用した場合に、本ポリオレフィン膜の電解液への溶解を防止する観点から、重量平均分子量が1×10〜15×10であると好ましい。 The molecular weight of the polyolefin is such that when this laminated porous film is used as a separator for a non-aqueous electrolyte battery in a non-aqueous electrolyte battery, the weight average molecular weight is 1 from the viewpoint of preventing dissolution of the polyolefin membrane in the electrolyte. It is preferable in it being * 10 < 5 > -15 * 10 < 6 >.

ポリオレフィン膜に含まれるポリオレフィンの割合は、通常、ポリオレフィン膜に含まれる固形分全体の50体積%を超え、好ましくは70体積%以上であり、より好ましくは90体積%以上であり、さらに好ましくは95体積%以上である。   The proportion of the polyolefin contained in the polyolefin film is usually more than 50% by volume of the total solid content contained in the polyolefin film, preferably 70% by volume or more, more preferably 90% by volume or more, and still more preferably 95%. Volume% or more.

ポリオレフィン膜は、ポリオレフィン膜の機能を損なわない範囲で、ポリオレフィン以外の成分を含んでいてもよい。   The polyolefin film may contain components other than polyolefin as long as the function of the polyolefin film is not impaired.

ポリオレフィン膜の厚さは、通常4〜50μmであり、好ましくは5〜30μmである。厚さが4μm未満であると、本積層多孔質フィルムの強度が不十分となる虞があり、50μmを超えると、本積層多孔質フィルムの厚さが厚くなり、電池の容量が小さくなる虞がある。   The thickness of the polyolefin film is usually 4 to 50 μm, preferably 5 to 30 μm. If the thickness is less than 4 μm, the strength of the laminated porous film may be insufficient. If the thickness exceeds 50 μm, the thickness of the laminated porous film may be increased, and the battery capacity may be reduced. is there.

ポリオレフィン膜の空隙率は、通常20〜80体積%であり、好ましくは30〜70体積%である。
空隙率が20体積%未満では電解液の保持量が少なくなる虞があり、80体積%を超えるとシャットダウンが生じる高温における無孔化が不十分となる虞がある、すなわち電池が激しく発熱したときに電流が遮断できなくなる虞がある。
The porosity of the polyolefin film is usually 20 to 80% by volume, preferably 30 to 70% by volume.
If the porosity is less than 20% by volume, the amount of electrolyte retained may be reduced, and if it exceeds 80% by volume, there may be insufficient pore formation at a high temperature at which shutdown occurs. There is a risk that the current cannot be interrupted.

ポリオレフィン膜が有する孔の孔径は、本積層多孔質フィルムを非水電解液電池用セパレータとして用いた際に、優れたイオン透過性を有し、かつ正極や負極への粒子の入り込みを防止する点から、3μm以下が好ましく、1μm以下がさらに好ましい。   The pore diameter of the polyolefin membrane has excellent ion permeability when the laminated porous film is used as a separator for a non-aqueous electrolyte battery, and prevents particles from entering the positive electrode and the negative electrode. Therefore, it is preferably 3 μm or less, more preferably 1 μm or less.

ポリオレフィン膜は、その内部に連結した細孔を有す構造であり、一方の面から他方の面に気体、液体及びイオン等が透過可能である。その透過率は、通常、透気度で表される。ポリオレフィン膜の透気度は、通常30〜1000sec/100ccであり、好ましくは50〜800sec/100ccである。   The polyolefin film has a structure having pores connected to the inside thereof, and gas, liquid, ions, and the like can be transmitted from one surface to the other surface. The transmittance is usually expressed by air permeability. The air permeability of the polyolefin membrane is usually 30 to 1000 sec / 100 cc, preferably 50 to 800 sec / 100 cc.

ポリオレフィン膜の目付は、通常4〜15g/mであり、好ましくは5〜12g/mである。目付けが4g/m未満であると、本積層多孔質フィルムの強度が不十分となる恐れがあり、15g/mを超えると、本積層多孔質フィルムの厚さが厚くなり、電池の容量が小さくなる恐れがある。 The basis weight of the polyolefin film is usually 4 to 15 g / m 2 , preferably 5 to 12 g / m 2 . If the basis weight is less than 4 g / m 2 , the strength of the laminated porous film may be insufficient, and if it exceeds 15 g / m 2 , the thickness of the laminated porous film increases, resulting in a battery capacity. May become smaller.

<本多孔質膜の製造方法>
本多孔質膜の製造方法としては、本化合物と、無機粉末と、バインダー樹脂とを含有する塗工液(以下、本塗工液ということがある)を基材に塗工して本多孔質膜を形成し、その後、基材を除去することによって形成する方法、及び、本塗工液を基材に塗工した後、本塗工液と混合可能でバインダー樹脂を溶解しない溶媒中に浸漬させ、乾燥することによって多孔質膜を形成し、その後、基材を除去する方法等が挙げられる。
<Manufacturing method of the present porous membrane>
As a method for producing the present porous membrane, a coating liquid containing the present compound, an inorganic powder, and a binder resin (hereinafter sometimes referred to as the present coating liquid) is applied to a substrate, and then the porous film is prepared. After forming the film and then removing the base material, and after applying the coating liquid to the base material, it is immersed in a solvent that can be mixed with the coating liquid and does not dissolve the binder resin. And a method of forming a porous film by drying and then removing the substrate.

本塗工液には、通常、バインダー樹脂を溶解する溶媒が含まれる。また、本塗工液には、本発明の目的を損なわない範囲で、pH調整剤、分散剤、可塑剤、及びアルコール等が含まれていてもよく、好ましくはアルコールが含まれる。   The coating liquid usually contains a solvent that dissolves the binder resin. In addition, the coating liquid may contain a pH adjuster, a dispersant, a plasticizer, alcohol, and the like as long as the object of the present invention is not impaired, and preferably contains alcohol.

前記アルコールとしては、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、2−ブタノール、tert−ブチルアルコール、1−ブタノール、イソブチルアルコール、sec−ブチルアルコール、t−ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、ヘキシルアルコール、イソヘキシルアルコール、ヘプチルアルコール、イソヘプチルアルコール、オクチルアルコール、イソオクチルアルコール、オクチルアルコール、イソオクチルアルコール、ノニルアルコール、イソノニルアルコール、デシルアルコール、エチレングリコール、プロピレングリコール、及びブタンジオール等が挙げられる。   Examples of the alcohol include methanol, ethanol, 1-propanol, isopropyl alcohol, 2-butanol, tert-butyl alcohol, 1-butanol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, pentyl alcohol, isopentyl alcohol, hexyl. Examples include alcohol, isohexyl alcohol, heptyl alcohol, isoheptyl alcohol, octyl alcohol, isooctyl alcohol, octyl alcohol, isooctyl alcohol, nonyl alcohol, isononyl alcohol, decyl alcohol, ethylene glycol, propylene glycol, and butanediol. .

本塗工液におけるアルコールの含有量は、特に制限されず、その他の多孔質膜への塗工を行いやすい性状が得られる様な量とすればよい。本塗工液におけるアルコールの含有量は、バインダー樹脂1質量部に対して、好ましくは1〜1000質量部であり、より好ましくは2〜500質量部であり、さらに好ましくは3〜300質量部であり、さらにより好ましくは5〜200質量部である。   The content of alcohol in the present coating solution is not particularly limited, and may be an amount that can provide a property that allows easy application to other porous membranes. The content of alcohol in the present coating liquid is preferably 1 to 1000 parts by mass, more preferably 2 to 500 parts by mass, and further preferably 3 to 300 parts by mass with respect to 1 part by mass of the binder resin. Yes, even more preferably 5 to 200 parts by mass.

<その他の多孔質膜の製造方法>
その他の多孔質膜は、公知の方法によって製造してもよいし、市販品を用いてもよい。
<Other porous membrane production methods>
Other porous membranes may be produced by known methods, or commercially available products may be used.

<ポリオレフィン膜の製造方法>
ポリオレフィン膜には、ポリオレフィンを用いて形成したフィルムやシートに、一軸または二軸延伸を施して微細な空孔を形成したもの等を用いることができる。ポリオレフィン膜の製造方法としては、例えば、特開平7−29563号公報に記載されたように、熱可塑性樹脂に可塑剤を加えてフィルム成形した後、該可塑剤を適当な溶媒で除去する方法が挙げられる。例えば、ポリオレフィン膜が、重量平均分子量が100万を超える高分子量ポリエチレンと重量平均分子量が1万以下の低分子量ポリオレフィンとを含むポリオレフィン樹脂から形成される場合には、製造コストの点から、以下の各工程を含む方法により製造することが好ましい。
(a)高分子量ポリエチレン100質量部と、低分子量ポリオレフィン5〜200質量部と、炭酸カルシウム等の無機充填剤100〜400質量部とを混練してポリオレフィン樹脂組成物を得る。
(b)前記ポリオレフィン樹脂組成物を用いてシートを成形する。
(c)工程(b)で得られたシート中から無機充填剤を除去する。
(d)工程(c)で得られたシートを延伸してポリオレフィン膜を得る。
を含む方法である。
<Method for producing polyolefin film>
As the polyolefin film, there can be used a film or sheet formed using polyolefin, which is uniaxially or biaxially stretched to form fine pores. As a method for producing a polyolefin film, for example, as described in JP-A-7-29563, there is a method in which a plasticizer is added to a thermoplastic resin to form a film, and then the plasticizer is removed with an appropriate solvent. Can be mentioned. For example, when the polyolefin film is formed from a polyolefin resin containing a high molecular weight polyethylene having a weight average molecular weight exceeding 1,000,000 and a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, from the viewpoint of production cost, It is preferable to manufacture by the method including each process.
(A) 100 parts by mass of high molecular weight polyethylene, 5 to 200 parts by mass of a low molecular weight polyolefin, and 100 to 400 parts by mass of an inorganic filler such as calcium carbonate are kneaded to obtain a polyolefin resin composition.
(B) A sheet is formed using the polyolefin resin composition.
(C) The inorganic filler is removed from the sheet obtained in the step (b).
(D) The sheet obtained in step (c) is stretched to obtain a polyolefin film.
It is a method including.

<本積層多孔質フィルムの製造方法>
本多孔質膜とその他の多孔質膜とを積層する方法としては、その他の多孔質膜と本多孔質膜とを別々に製造してそれぞれを積層する方法、並びに、その他の多孔質膜に、本塗工液を塗工して本多孔質膜を形成する方法等が挙げられ、より簡便であることから後者の方法が好ましい。
<Method for producing the present laminated porous film>
As a method of laminating the present porous membrane and other porous membranes, the method of separately producing the other porous membrane and the present porous membrane and laminating each, and the other porous membrane, Examples of the method include forming the porous film by applying the coating solution, and the latter method is preferable because it is simpler.

その他の多孔質膜に、本塗工液を塗工して本多孔質膜を形成する方法としては、例えば、以下の各工程を含む方法が挙げられる。
(a)本化合物及びバインダー樹脂が溶媒に溶解した溶液に、無機粉末が分散した塗工液を調製する。
(b)該塗工液をその他の多孔質膜に塗工し、塗工膜を形成する。
(c)溶媒除去、又はバインダー樹脂を溶解しない溶媒への浸漬等の手段で、前記塗工膜からバインダー樹脂を析出させ、必要に応じて乾燥する。
Examples of a method for forming the porous film by applying the coating liquid to another porous film include a method including the following steps.
(A) A coating liquid in which an inorganic powder is dispersed in a solution in which the present compound and binder resin are dissolved in a solvent is prepared.
(B) The coating liquid is applied to another porous film to form a coating film.
(C) The binder resin is precipitated from the coating film by means such as solvent removal or immersion in a solvent that does not dissolve the binder resin, and dried as necessary.

バインダー樹脂が芳香族ポリアミドである場合の、バインダー樹脂を溶解する溶媒としては、極性アミド系溶媒、及び極性尿素系溶媒が挙げられる。具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)、及びテトラメチルウレア等が挙げられる。   When the binder resin is an aromatic polyamide, examples of the solvent that dissolves the binder resin include polar amide solvents and polar urea solvents. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), and tetramethylurea.

パインダー樹脂がパラアラミドである場合は、パラアラミドの溶媒への溶解性を改善する目的で、アルカリ金属またはアルカリ土類金属の塩化物を添加することが好ましい。具体例としては、塩化リチウム、及び塩化カルシウム等が挙げられる。前記塩化物の添加量は、パラアミドが有するアミド基1.0モル当たり0.5〜6.0モルの範囲が好ましく、1.0〜4.0モルの範囲がさらに好ましい。塩化物が0.5モル未満では、パラアラミドの溶解性が不十分となる場合があり、6.0モルを越えると実質的に塩化物の溶媒への溶解度を越えるので好ましくない場合がある。一般に、アルカリ金属またはアルカリ土類金属の塩化物が2質量%未満では、パラアラミドの溶解性が不十分となる場合があり、10質量%を越えると該塩化物の溶解性が不十分となる場合がある。   When the binder resin is para-aramid, it is preferable to add an alkali metal or alkaline earth metal chloride for the purpose of improving the solubility of para-aramid in a solvent. Specific examples include lithium chloride and calcium chloride. The amount of the chloride added is preferably in the range of 0.5 to 6.0 mol, more preferably in the range of 1.0 to 4.0 mol, per 1.0 mol of the amide group of the paraamide. If the chloride is less than 0.5 mol, the solubility of para-aramid may be insufficient, and if it exceeds 6.0 mol, the solubility of the chloride in the solvent may be substantially exceeded, which may be undesirable. Generally, when the alkali metal or alkaline earth metal chloride is less than 2% by mass, the solubility of para-aramid may be insufficient, and when it exceeds 10% by mass, the solubility of the chloride will be insufficient. There is.

バインダー樹脂が芳香族ポリイミドである場合の、バインダー樹脂を溶解する溶媒としては、芳香族ポリアミドを溶解する溶媒として例示したもののほか、ジメチルスルホキサイド、クレゾール、及びo−クロロフェノール等が好適に使用できる。   In the case where the binder resin is an aromatic polyimide, as the solvent for dissolving the binder resin, dimethyl sulfoxide, cresol, and o-chlorophenol are preferably used in addition to those exemplified as the solvent for dissolving the aromatic polyamide. it can.

バインダー樹脂が水溶性の樹脂である場合の、バインダー樹脂を溶解する溶媒としては、水、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、トルエン、キシレン、ヘキサン、N−メチルピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどを単独、または相溶する範囲で複数混合することが挙げられる。中でも、プロセスや環境負荷の点から、媒体の80質量%以上が水であることが好ましく、水のみがより好ましい。   When the binder resin is a water-soluble resin, the solvent for dissolving the binder resin includes water, alcohols such as methanol, ethanol, isopropanol, acetone, toluene, xylene, hexane, N-methylpyrrolidone, N, N- Examples thereof include dimethylacetamide, N, N-dimethylformamide, etc., either alone or in combination within a compatible range. Among these, from the viewpoint of process and environmental load, 80% by mass or more of the medium is preferably water, and only water is more preferable.

溶媒が水を含む場合は、その他の多孔質膜上に塗工する前に、予めその他の多孔質膜に親水化処理を行うことが好ましい。その他の多孔質膜を親水化処理することにより、より塗布性が向上し、より均質な本多孔質膜を得ることができる。この親水化処理は、特に溶媒中の水の濃度が高いときに有効である。
その他の多孔質膜の親水化処理は、いかなる方法でもよく、具体的には酸やアルカリ等による薬剤処理、コロナ処理、プラズマ処理等が挙げられる。
ここで、コロナ処理は、比較的短時間でその他の多孔質膜を親水化できることに加え、コロナ放電による改質が、その他の多孔質膜の表面近傍のみに限られ、その他の多孔質膜内部の性質を変化させることなく、高い塗工性を確保できるという利点がある。
In the case where the solvent contains water, it is preferable to perform a hydrophilic treatment on the other porous membrane in advance before coating on the other porous membrane. By subjecting other porous membranes to a hydrophilic treatment, applicability is further improved, and a more homogeneous main porous membrane can be obtained. This hydrophilization treatment is particularly effective when the concentration of water in the solvent is high.
Other methods for hydrophilizing the porous membrane may be any method, and specific examples include chemical treatment with acid or alkali, corona treatment, plasma treatment and the like.
Here, in addition to the ability to hydrophilize other porous membranes in a relatively short time, the corona treatment is limited to modification by corona discharge only in the vicinity of the surface of other porous membranes. There is an advantage that high coatability can be secured without changing the properties of the coating.

その他の多孔質膜上に塗布された塗工液からの溶媒の除去は、加熱乾燥による方法が一般的である。加熱乾燥前の塗工膜を、バインダー樹脂を溶解しない溶媒中に浸漬してバインダー樹脂を析出させた後に、溶媒を加熱乾燥により除去することもできる。なお、塗工液をその他の多孔質膜の上に塗布した場合、溶媒の乾燥温度は、乾燥後のその他の多孔質膜の透気度を変化させない温度が好ましい。   The removal of the solvent from the coating liquid applied on the other porous membrane is generally a method by heat drying. The coating film before heat-drying can be immersed in a solvent that does not dissolve the binder resin to precipitate the binder resin, and then the solvent can be removed by heat-drying. In addition, when a coating liquid is apply | coated on another porous membrane, the temperature which does not change the air permeability of the other porous membrane after drying is preferable.

本塗工液をその他の多孔質膜に塗工する方法は、均一にウェットコーティングできる方法であれば特に制限はなく、従来公知の方法を採用することができる。例えば、キャピラリーコート法、スピンコート法、スリットダイコート法、スプレーコート法、ロールコート法、スクリーン印刷法、フレキソ印刷法、バーコーター法、グラビアコーター法、及びダイコーター法などを採用することができる。形成される本多孔質膜の厚さは、本塗工液の塗工量、本塗工液の濃度、及び無機粉末とバインダー樹脂との含有量比を調節することによって制御することができる。なお、塗工時には支持体として、樹脂製のフィルム、金属製のベルト、又はドラム等を用いることができる。   The method for applying the present coating liquid to other porous membranes is not particularly limited as long as it can uniformly wet coat, and a conventionally known method can be adopted. For example, a capillary coating method, a spin coating method, a slit die coating method, a spray coating method, a roll coating method, a screen printing method, a flexographic printing method, a bar coater method, a gravure coater method, a die coater method, and the like can be employed. The thickness of the porous film to be formed can be controlled by adjusting the coating amount of the coating solution, the concentration of the coating solution, and the content ratio of the inorganic powder and the binder resin. In addition, a resin film, a metal belt, a drum, or the like can be used as a support during coating.

本塗工液を調製する方法としては、機械攪拌法、超音波分散法、高圧分散法、又はメディア分散法等の方法で攪拌する方法が挙げられる。より均一に無機粉末を分散させることができるため、高圧分散法がより好ましい。   Examples of the method for preparing the coating liquid include a method of stirring by a method such as a mechanical stirring method, an ultrasonic dispersion method, a high-pressure dispersion method, or a media dispersion method. Since the inorganic powder can be dispersed more uniformly, the high pressure dispersion method is more preferable.

<非水電解液電池>
非水電解液電池は、正極と、負極と、該正極と該負極の対向面間に挟まれた非水電解液電池用セパレータと、非水電解液とを備える。
<Nonaqueous electrolyte battery>
The non-aqueous electrolyte battery includes a positive electrode, a negative electrode, a separator for a non-aqueous electrolyte battery sandwiched between opposing surfaces of the positive electrode and the negative electrode, and a non-aqueous electrolyte.

非水電解液としては、例えば、リチウム塩を有機溶媒に溶解させた非水電解液を用いることができる。リチウム塩としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiC(SOCF、Li10Cl10、低級脂肪族カルボン酸リチウム塩、LiAlClなどのうち1種または2種以上の混合物が挙げられる。リチウム塩として、これらの中でもフッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、およびLiC(CFSOからなる群から選ばれる少なくとも1種を含むものを用いることが好ましい。 As the non-aqueous electrolyte, for example, a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent can be used. Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , One or a mixture of two or more of lower aliphatic carboxylic acid lithium salts, LiAlCl 4 and the like can be mentioned. The lithium salt is selected from the group consisting of LiPF 6 containing fluorine, LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3 among these. It is preferable to use those containing at least one selected from the above.

非水電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、1,2−ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3−テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、Y−ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;3−メチル−2−オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3−プロパンサルトンなどの含硫黄化合物または前記の物質にフッ素基を導入したものを用いることができるが、通常はこれらのうちの2種以上を混合して用いる。   Examples of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-di (methoxycarbonyloxy) ) Carbonates such as ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, etc. Ethers; esters such as methyl formate, methyl acetate and Y-butyrolactone; nitriles such as acetonitrile and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide Carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone, or those obtained by introducing a fluorine group into the above-mentioned substances can be used. Two or more of these are used in combination.

これらの中でもカーボネート類を含むものが好ましく、環状カーボネートと非環状カーボネート、または環状カーボネートとエーテル類の混合物がさらに好ましい。環状カーボネートと非環状カーボネートの混合物としては、作動温度範囲が広く、かつ負極の活物質として天然黒鉛、人造黒鉛等の黒鉛材料を用いた場合でも難分解性であるという点で、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合物が好ましい。   Among these, those containing carbonates are preferred, and cyclic carbonates and acyclic carbonates, or mixtures of cyclic carbonates and ethers are more preferred. As a mixture of cyclic carbonate and acyclic carbonate, ethylene carbonate and dimethyl have a wide operating temperature range and are hardly decomposable even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material. A mixture comprising carbonate and ethyl methyl carbonate is preferred.

正極は、通常、正極活物質、導電剤およびバインダーを含む合剤を集電体上に担持したものを用いる。具体的には、該正極活物質として、リチウムイオンをドープ・脱ドープ可能な材料を含み、導電剤として炭素質材料を含み、バインダーとして熱可塑性樹脂などを含むものを用いることができる。該リチウムイオンをドープ・脱ドープ可能な材料としては、V、Mn、Fe、Co、Niなどの遷移金属を少なくとも1種含むリチウム複合酸化物が挙げられる。中でも好ましくは、平均放電電位が高いという点で、ニッケル酸リチウム、コバルト酸リチウムなどのα−NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネルなどのスピネル型構造を有するリチウム複合酸化物が挙げられる。 As the positive electrode, a material in which a mixture containing a positive electrode active material, a conductive agent and a binder is supported on a current collector is usually used. Specifically, as the positive electrode active material, a material containing a material capable of doping and dedoping lithium ions, a carbonaceous material as a conductive agent, and a thermoplastic resin as a binder can be used. Examples of the material that can be doped / undoped with lithium ions include lithium composite oxides containing at least one transition metal such as V, Mn, Fe, Co, and Ni. Among these, lithium composite oxides having an α-NaFeO 2 type structure such as lithium nickelate and lithium cobaltate, and lithium composite oxides having a spinel type structure such as lithium manganese spinel are preferable in that the average discharge potential is high. Can be mentioned.

リチウム複合酸化物は、種々の金属元素を含んでもよく、特にTi、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、InおよびSnからなる群から選ばれた少なくとも1種の金属元素のモル数とニッケル酸リチウム中のNiのモル数との和に対して、前記の少なくとも1種の金属元素が0.1〜20モル%であるように該金属元素を含む複合ニッケル酸リチウムを用いると、高容量での使用におけるサイクル性が向上するので好ましい。   The lithium composite oxide may contain various metal elements, particularly at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Ag, Mg, Al, Ga, In, and Sn. A composite containing the metal element such that the at least one metal element is 0.1 to 20 mol% with respect to the sum of the number of moles of the metal element and the number of moles of Ni in the lithium nickelate. Use of lithium nickelate is preferable because cycle characteristics in use at a high capacity are improved.

バインダーとしては、例えば、ポリビニリデンフロライド、ビニリデンフロライドの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフロロプロピレンの共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルの共重合体、エチレン−テトラフルオロエチレンの共重合体、ビニリデンフロライド−ヘキサフルオロプロピレン−テトラフルオロエチレンの共重合体、熱可塑性ポリイミド、ポリエチレン、ポリプロピレンなどの熱可塑性樹脂が挙げられる。   Examples of the binder include polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, ethylene -Tetrafluoroethylene copolymers, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymers, thermoplastic resins such as thermoplastic polyimide, polyethylene, and polypropylene.

導電剤としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラックなどの炭素質材料が挙げられる。導電材として、それぞれ単独で用いてもよいし、例えば人造黒鉛とカーボンブラックとを混合して用いてもよい。   Examples of the conductive agent include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black. As the conductive material, each may be used alone, for example, artificial graphite and carbon black may be mixed and used.

負極としては、例えば、リチウムイオンをドープ・脱ドーブ可能な材料、リチウム金属またはリチウム合金などを用いることができる。リチウムイオンをドープ・脱ドープ可能な材料としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素質材料、正極よりも低い電位でリチウムイオンのドープ・脱ドープを行う酸化物、硫化物等のカルコゲン化合物が挙げられる。炭素質材料として、電位平坦性が高く、また平均放電電位が低いため正極と組み合わせた場合大きなエネルギー密度が得られるという点で、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料が好ましい。   As the negative electrode, for example, a material capable of doping and dedoping lithium ions, lithium metal, or a lithium alloy can be used. Materials that can be doped / undoped with lithium ions include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds, and lower potential than the positive electrode. And chalcogen compounds such as oxides and sulfides for doping and dedoping lithium ions. As a carbonaceous material, a carbonaceous material mainly composed of graphite materials such as natural graphite and artificial graphite, because it has a high potential flatness and a low average discharge potential, so that a large energy density can be obtained when combined with a positive electrode. Is preferred.

負極集電体としては、Cu、Ni、ステンレスなどを用いることができるが、特にリチウム二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工しやすいという点でCuが好ましい。該負極集電体に負極活物質を含む合剤を担持させる方法としては、加圧成型する方法、または溶媒などを用いてペースト化し集電体上に塗布乾燥後プレスするなどして圧着する方法が挙げられる。   As the negative electrode current collector, Cu, Ni, stainless steel, or the like can be used. In particular, in a lithium secondary battery, Cu is preferable because it is difficult to form an alloy with lithium and it can be easily processed into a thin film. As a method of supporting the mixture containing the negative electrode active material on the negative electrode current collector, a method of pressure molding, or a method of pasting into a paste using a solvent or the like and applying pressure to the current collector by pressing after drying Is mentioned.

なお、本発明の電池の形状は、特に限定されるものではなく、ペーパー型、コイン型、円筒型、角型、ラミネート型などのいずれであってもよい。   The shape of the battery of the present invention is not particularly limited, and may be any of a paper type, a coin type, a cylindrical type, a square type, a laminate type, and the like.

以下の各実施例、比較例及び参考例において、積層多孔質フィルムの各物性は、以下の方法で測定した。
(1)カール測定:積層多孔質フィルムを8cm×8cm角の正方形に切り出し、室温下、露点−30℃で1日保持した後、端部の持ち上がった高さを測定した。
また、外観を以下の基準で判断を行った。Cは完全にカールした状態を示し、A、Bの状態が好ましく、Aがより好ましい。
A:端部の持ち上がりなし。
B:端部のみ持ち上がるが、端部以外の大部分は持ち上がりなく平坦な状態でいる。
C:両端が近づき、筒状に巻き込んでいる。
(2)寸法保持率:積層多孔質フィルムを5cm×5cm角の正方形に切り出し、中央に4cm角で正方形の罫書き線を描き、紙2枚の間に挟み、150℃のオーブンで1時間保持した後、取り出して正方形の寸法を測定し、寸法保持率を計算した。寸法保持率の計算方法は次の通りである。
垂直方向(TD)の加熱前の罫書き線の長さ:W1
垂直方向(TD)の加熱後の罫書き線の長さ:W2
垂直方向(TD)の寸法保持率(%)=W2/W1×100
(3)透気度:JIS P8117に準拠して測定した。
In each of the following examples, comparative examples, and reference examples, each physical property of the laminated porous film was measured by the following method.
(1) Curl measurement: The laminated porous film was cut into an 8 cm × 8 cm square, held at room temperature for 1 day at a dew point of −30 ° C., and then the height at which the end was lifted was measured.
The appearance was judged according to the following criteria. C shows a completely curled state, A and B are preferable, and A is more preferable.
A: No lifting at the end.
B: Only the end portion is lifted, but most of the portions other than the end portion are not lifted and are flat.
C: Both ends approach and are wound into a cylindrical shape.
(2) Dimension retention: Cut a laminated porous film into a square of 5 cm x 5 cm square, draw a square ruled line at a center of 4 cm square, sandwich between two sheets of paper, and hold in a 150 ° C oven for 1 hour After that, it was taken out and the dimensions of the square were measured, and the dimensional retention was calculated. The calculation method of the dimensional retention rate is as follows.
Length of crease line before heating in the vertical direction (TD): W1
Length of ruled line after heating in the vertical direction (TD): W2
Dimensional retention (%) in the vertical direction (TD) = W2 / W1 × 100
(3) Air permeability: Measured according to JIS P8117.

(実施例1)
アルミナ微細粒子(住友化学社製;商品名「AKP3000」)100質量部、カルボキシメチルセルロース(ダイセルファインケム製、品番1110)3質量部、ポリオキシエチレンアルキルエーテル(三洋化成工業株式会社製;サンモリン(登録商標)11)0.5質量部の混合物に、固形分が29重量%となるように水を添加し、得られた混合物を自転・公転ミキサー「あわとり練太郎」(株式会社シンキー製;登録商標)で室温下、2000rpm、30秒の条件で2回攪拌・混合した。得られた混合物にイソプロピルアルコール14質量部を加え、固形分が28重量%となるような均一なスラリーとして塗工液を得た。得られた塗工液を、コロナ処理20W/(m/分)を施したポリエチレンからなる多孔質膜(厚さ12μm、空隙率41%)上に、ドクターブレード法により塗布し、得られた塗布物である積層体を65℃で5分間乾燥させて、本多孔質膜と、ポリエチレンからなる多孔質膜と、が積層された積層多孔質フィルム(1)を得た。積層多孔質フィルム(1)における本多孔質膜の目付は6.2g/mであった。積層多孔質フィルム(1)の各物性を表1に示す。
Example 1
100 parts by mass of alumina fine particles (manufactured by Sumitomo Chemical; trade name “AKP3000”), 3 parts by mass of carboxymethyl cellulose (manufactured by Daicel Finechem, product number 1110), polyoxyethylene alkyl ether (manufactured by Sanyo Chemical Industries, Ltd.); 11) Water was added to 0.5 parts by weight of the mixture so that the solid content was 29% by weight, and the resulting mixture was rotated and revolving mixer “Awatori Netaro” (manufactured by Shinky Corporation; registered trademark) The mixture was stirred and mixed twice at room temperature at 2000 rpm for 30 seconds. 14 parts by mass of isopropyl alcohol was added to the obtained mixture to obtain a coating solution as a uniform slurry having a solid content of 28% by weight. The obtained coating liquid was applied by a doctor blade method onto a porous film (thickness 12 μm, porosity 41%) made of polyethylene subjected to corona treatment 20 W / (m 2 / min). The laminate as the coated product was dried at 65 ° C. for 5 minutes to obtain a laminated porous film (1) in which the present porous membrane and a porous membrane made of polyethylene were laminated. The basis weight of the porous membrane in the laminated porous film (1) was 6.2 g / m 2 . Table 1 shows the physical properties of the laminated porous film (1).

(実施例2)
実施例1におけるポリオキシエチレンアルキルエーテル0.5質量部を、1質量部とした以外は実施例1と同様にして積層多孔質フィルム(2)を得た。積層多孔質フィルム(2)における本多孔質膜の目付は6.6g/mであった。積層多孔質フィルム(2)の各物性を表1に示す。
(Example 2)
A laminated porous film (2) was obtained in the same manner as in Example 1 except that 0.5 part by mass of the polyoxyethylene alkyl ether in Example 1 was changed to 1 part by mass. The basis weight of the porous film in the laminated porous film (2) was 6.6 g / m 2 . Table 1 shows the physical properties of the laminated porous film (2).

(比較例1)
実施例1におけるポリオキシエチレンアルキルエーテル0.5質量部を、加えなかった以外は実施例1と同様にして積層多孔質フィルム(3)を得た。積層多孔質フィルム(3)における本多孔質膜の目付は6.9g/mであった。積層多孔質フィルム(3)の各物性を表1に示す。
(Comparative Example 1)
A laminated porous film (3) was obtained in the same manner as in Example 1 except that 0.5 part by mass of the polyoxyethylene alkyl ether in Example 1 was not added. The basis weight of this porous membrane in the laminated porous film (3) was 6.9 g / m 2 . Table 1 shows the physical properties of the laminated porous film (3).

Figure 0006222296
Figure 0006222296

実施例1及び2で得られた積層多孔質フィルム(1)及び(2)は、高い寸法変化率及び透気度を保ちながら、カール量を低減することができた。   The laminated porous films (1) and (2) obtained in Examples 1 and 2 were able to reduce the curl amount while maintaining a high dimensional change rate and air permeability.

本発明によれば、カールし難い、ポリオレフィンからなる多孔質膜と、無機粉末を含む多孔質膜と、を積層した積層多孔質フィルムが得られる。   According to the present invention, a laminated porous film obtained by laminating a porous film made of polyolefin that is difficult to curl and a porous film containing an inorganic powder can be obtained.

Claims (9)

疎水性基及びノニオン性の親水性基を有する化合物と、無機粉末と、バインダー樹脂と、を含み、
前記ノニオン性の親水性基が、ポリオキシエチレン構造を有し、
前記無機粉末とバインダー樹脂との合計量に対する前記無機粉末の割合が70質量%以上であり、
水分含有量が0.15%未満である非水電解液二次電池用多孔質膜。
A compound having a hydrophobic group and a nonionic hydrophilic group, an inorganic powder, and a binder resin,
The nonionic hydrophilic group has a polyoxyethylene structure;
The ratio of the inorganic powder to the total amount of the inorganic powder and the binder resin is 70% by mass or more,
A porous membrane for a non-aqueous electrolyte secondary battery having a water content of less than 0.15%.
疎水性基及びノニオン性の親水性基を有する化合物がノニオン性界面活性剤である請求項1に記載の非水電解液二次電池用多孔質膜。   The porous membrane for a non-aqueous electrolyte secondary battery according to claim 1, wherein the compound having a hydrophobic group and a nonionic hydrophilic group is a nonionic surfactant. 無機粉末が、金属酸化物、又は金属炭酸化物である請求項1又は2に記載の非水電解液二次電池用多孔質膜。   The porous membrane for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the inorganic powder is a metal oxide or a metal carbonate. 無機粉末が、アルミナである請求項1〜3のいずれかに記載の非水電解液二次電池用多孔質膜。   The porous membrane for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the inorganic powder is alumina. 前記疎水性基及びノニオン性の親水性基を有する化合物が、ポリオキシエチレンアルキルエーテルである請求項1〜4のいずれかに記載の非水電解液二次電池用多孔膜。The porous membrane for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the compound having a hydrophobic group and a nonionic hydrophilic group is polyoxyethylene alkyl ether. バインダー樹脂が、水溶性の樹脂である請求項1〜5のいずれかに記載の非水電解液二次電池用多孔質膜。   The porous membrane for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the binder resin is a water-soluble resin. 請求項1〜6のいずれかに記載の多孔質膜と、当該多孔質膜とは異なるその他の多孔質膜と、が積層された非水電解液二次電池用セパレータ。   A separator for a non-aqueous electrolyte secondary battery in which the porous film according to claim 1 and another porous film different from the porous film are laminated. 請求項1〜6のいずれかに記載の多孔質膜を含む非水電解液二次電池用セパレータ。   The separator for nonaqueous electrolyte secondary batteries containing the porous film in any one of Claims 1-6. 請求項7または8に記載の非水電解液二次電池用セパレータを用いた非水電解液二次電池。   A non-aqueous electrolyte secondary battery using the separator for a non-aqueous electrolyte secondary battery according to claim 7 or 8.
JP2016126312A 2016-06-27 2016-06-27 Porous membrane Active JP6222296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126312A JP6222296B2 (en) 2016-06-27 2016-06-27 Porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126312A JP6222296B2 (en) 2016-06-27 2016-06-27 Porous membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014153627A Division JP6094542B2 (en) 2014-07-29 2014-07-29 Porous membrane

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017194194A Division JP6449960B2 (en) 2017-10-04 2017-10-04 Porous membrane

Publications (3)

Publication Number Publication Date
JP2017004960A JP2017004960A (en) 2017-01-05
JP2017004960A5 JP2017004960A5 (en) 2017-03-02
JP6222296B2 true JP6222296B2 (en) 2017-11-01

Family

ID=57754313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126312A Active JP6222296B2 (en) 2016-06-27 2016-06-27 Porous membrane

Country Status (1)

Country Link
JP (1) JP6222296B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447406B2 (en) 2018-11-09 2024-03-12 株式会社リコー Electrodes, electrode elements, non-aqueous electrolyte storage elements
EP4052094A1 (en) 2019-11-01 2022-09-07 Ricoh Company, Ltd. Light-source device, image projection apparatus, and light-source optical system
CN114744363B (en) * 2022-03-29 2024-05-28 中材锂膜(宁乡)有限公司 Lithium ion battery diaphragm slurry, preparation method thereof and diaphragm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958484B2 (en) * 2006-03-17 2012-06-20 三洋電機株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
JP2011018590A (en) * 2009-07-10 2011-01-27 Hitachi Maxell Ltd Slurry for insulating layer forming, separator for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
WO2012165624A1 (en) * 2011-06-03 2012-12-06 富士シリシア化学株式会社 Separator, electrochemical element, and method for manufacturing separator

Also Published As

Publication number Publication date
JP2017004960A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6094542B2 (en) Porous membrane
JP5920496B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
KR101762087B1 (en) Nonaqueous secondary battery separator, laminated body, method for producing laminated body, and nonaqueous secondary battery
US10367182B2 (en) Laminated body
JP5969683B1 (en) Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminate separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
KR101965916B1 (en) Separator
JP6056814B2 (en) Porous membrane
JP6222296B2 (en) Porous membrane
JP6449960B2 (en) Porous membrane
US11594786B2 (en) Nonaqueous electrolyte secondary battery laminated separator
JP6762349B2 (en) Porous membrane for non-aqueous electrolyte secondary battery, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017103201A (en) Separator for non-aqueous electrolyte secondary battery, laminated separator for non-aqueous electrolyte secondary battery, member for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6222296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350