JP6501984B2 - 対物光学系 - Google Patents

対物光学系 Download PDF

Info

Publication number
JP6501984B2
JP6501984B2 JP2018555778A JP2018555778A JP6501984B2 JP 6501984 B2 JP6501984 B2 JP 6501984B2 JP 2018555778 A JP2018555778 A JP 2018555778A JP 2018555778 A JP2018555778 A JP 2018555778A JP 6501984 B2 JP6501984 B2 JP 6501984B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
focusing
lens unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018555778A
Other languages
English (en)
Other versions
JPWO2018203465A1 (ja
Inventor
高頭 英泰
英泰 高頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Application granted granted Critical
Publication of JP6501984B2 publication Critical patent/JP6501984B2/ja
Publication of JPWO2018203465A1 publication Critical patent/JPWO2018203465A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Description

本発明は、合焦機能を有する光学系に関し、特に、近接観察可能な内視鏡対物レンズ、その他民生用の小型カメラ等の撮影レンズに関するものである。
一般的な内視鏡用の対物レンズは、広い被写界深度を有している。一般的な内視鏡用の対物レンズでは、被写界深度は、例えば、5mm〜100mmになる。このような対物レンズを搭載した内視鏡では、撮像素子によって物体像が撮像され、これにより物体の画像の提供が行われる。撮像素子としては、例えば、CCD(Charge Coupled Devices)やC−MOS(Complementary Metal Oxide Semiconductor)が用いられる。
近年、内視鏡を用いた診断では、診断の精度を向上させるために、画像の高画質化が求められている。この要求に応えるために、撮像素子では多画素化が進んでいる。多画素化が進んだ撮像素子、すなわち、高精細な撮像素子では、画素の面積が小さくなる。
物体の一点を対物レンズで結像すると、対物レンズの像面に点像が形成される。この点像は、回折の影響によってある程度の広がりを持つ。そのため、画素の面積が小さくなると、それに合わせて点像を小さくしなければ、高精細な撮像素子を用いても画質の高い画像を得ることができない。点像を小さくするためには、対物レンズのFナンバーを小さくする必要がある。
撮像素子のサイズが同じ場合、画素の面積を小さくすることで、画素数を多くすることができる。ただし、画素数を大幅に増加させると、画素の面積を小さくしても、撮像素子のサイズが大きくなる。撮像素子のサイズが大きくなると、対物レンズの焦点距離を長くする必要がある。
対物レンズのFナンバーが小さくなるか、又は、対物レンズの焦点距離が長くなると、対物レンズの被写界深度が狭くなる。このように、従来の画質よりも高い画質を得ようとすると、対物レンズの被写界深度が狭くなる。
被写界深度は、鮮明な物体像が得られる範囲を、物体側の範囲で表したものである。対物レンズの被写界深度が狭くなると、鮮明な物体像が得られる範囲が狭くなる。従来並みの被写界深度を確保するためには、対物レンズに合焦機能を持たせれば良い。このようなことから、合焦機能を持つ対物レンズの必要性が増してきている。
また、近年、医療用内視鏡の分野では、病変部の質的診断が行われるようになってきた。この診断では、病変部を拡大観察することが必要になる。このようなことから、医療用内視鏡では、拡大機能を持つ対物レンズ(以下、「拡大内視鏡対物レンズ」という)の必要性が強まってきている。
病変部を拡大観察するためには、病変部を見つける必要がある。拡大観察では観察範囲が狭いため、拡大観察で病変部を見つけることは容易ではない。このようなことから、拡大内視鏡対物レンズでは、拡大観察における観察範囲よりも広い範囲を、観察できることが必要になる。
拡大観察では、対物レンズから物体位置までの距離(以下、「物体距離」という)は、例えば、1mm〜3mm程度である。一方、上述のような広い範囲の観察(以下、「通常観察」という)では、物体距離は、3mmよりもはるかに長い。
通常観察時の物体位置と対物レンズの合焦位置とが一致するように、光学系を構成すると、通常観察における物体像(以下、「通常像」という)は、ピントの合った像になる。
一方、拡大観察時の物体位置は、通常観察時の物体位置から離れている。また、拡大観察時の物体位置は、対物レンズの被写界深度内に含まれない。そのため、通常像にピントが合った状態の光学系では、拡大観察における物体像(以下、「拡大像」という)は、ピントの合った像にはならない。
拡大観察でもピントの合った拡大像を得るためには、対物レンズに合焦機能を持たせれば良い。対物レンズが合焦機能を持つことで、通常像と拡大像の両方を、ピントの合った状態で観察することができる。このようなことからも、合焦機能を持つ対物レンズの必要性が増してきている。
拡大内視鏡対物レンズとして、少なくとも1つのレンズ群が光軸に沿って移動する対物レンズが特許文献1乃至7に開示されている。
特許文献1には、3つのレンズ群で構成された対物レンズが開示されている。対物レンズは、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、を有する。合焦時、第2レンズ群と第3レンズ群が移動する。
特許文献2、特許文献5及び特許文献7には、4つのレンズ群で構成された対物レンズが開示されている。対物レンズは、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、正屈折力の第4レンズ群と、を有する。合焦時、第2レンズ群と第3レンズ群が移動する。
特許文献3には、4つのレンズ群で構成された対物レンズが開示されている。対物レンズは、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、正屈折力の第4レンズ群と、を有する。合焦時、第2レンズ群と第3レンズ群が移動するか、又は第3レンズ群と第4レンズ群が移動する。
特許文献4には、3つのレンズ群で構成された対物レンズが開示されている。対物レンズは、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力を有する第3レンズ群と、を有する。合焦時、1つのレンズ群を移動するか、又は1つのレンズ群の一部が移動する。
特許文献6には、3つのレンズ群で構成された対物レンズと、4つのレンズ群で構成された対物レンズと、が開示されている。3群構成の対物レンズは、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力を有する第3レンズ群と、を有する。合焦時、第2レンズ群が移動する。
4群構成の対物レンズは、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、正屈折力の第4レンズ群と、を有する。合焦時、第2レンズ群と第3レンズ群が移動する。
特許第4723628号公報 特許第3722458号公報 特開2009−300489号公報 特許第4834799号公報 特開2015− 22161号公報 特許第5567224号公報 特許第5567225号公報
拡大観察ができる内視鏡(以下、「拡大内視鏡」という)においても、多画素化された撮像素子が使用されている。多画素化された撮像素子を使用するためには、高精細な光学像の形成が必要である。高精細な光学像の形成は、対物レンズのFナンバーを小さくすることで実現できる。そのため、拡大内視鏡対物レンズでも、Fナンバーを小さくする必要がある。
特許文献1乃至7に開示されている対物レンズは、Fナンバーが十分に小さい対物レンズとは言い難い。そのため、これらの対物レンズは、小型で高精細な撮像素子に対応した結像性能を持っているとは言い難い。
高精細な撮像素子に対応するためには、これらの対物レンズでFナンバーを小さくすることが考えられる。しかしながら、Fナンバーを小さくしたとしても、所望の結像性能の達成が難しいことは、容易に予測できる。そのため、Fナンバーを小さくしても、その対物レンズは、高精細な撮像素子に対応した対物レンズとは言い難い。
また、多画素化された撮像素子では、年々、小型化が進んでいる。そのため、拡大内視鏡対物レンズも、撮像素子の小型化に対応する必要がある。ただし、従来の対物レンズを単に小型化すると、製造誤差に対する感度が高くなる。
上述のように、拡大内視鏡対物レンズでは、合焦時にレンズ群が移動する。合焦では、レンズ群の移動と静止が行われる。移動ではレンズ群の偏心が生じ易く、静止では位置の誤差が生じ易い。偏心や位置の誤差は、合焦精度に影響を及ぼす。製造誤差に対する感度が高いと、偏心や位置の誤差による合焦精度への影響が大きくなる。
特に拡大内視鏡対物レンズでは、合焦時に移動するレンズ群の屈折力が大きくなる傾向がある。レンズ群の屈折力が大きいと、偏心や位置の誤差による合焦精度への影響が更に大きくなる。そのため、製造誤差に対する感度が高いと、合焦精度の低下を招いてしまう。
また、光学系と撮像素子との位置合わせが十分でないと、結像性能が低下する。製造誤差に対する感度は、光学系と撮像素子との位置合わせの精度に影響を及ぼす。
特にFナンバーを小さくすると、光学系と撮像素子との位置合わせがより困難になる傾向が強まる。そのため、製造誤差に対する感度が高いと、光学系と撮像素子との位置合わせの精度の低下を招いてしまう。その結果、結像性能が低下する。
このように、高い合焦精度と高い結像性能を実現するためには、製造誤差に対する感度を小さくする必要がある。
本発明は、このような問題点に鑑みてなされたものであり、様々な誤差による影響を受けにくく、明るく、諸収差が良好に補正された対物光学系を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る対物光学系は、
物体側から順に、
常時静止している負屈折力の第1レンズ群と、
正屈折力の第2レンズ群と、
負屈折力の第3レンズ群と、
常時静止している正屈折力の第4レンズ群と、からなり
遠距離物点から近距離物点への合焦時に、第2レンズ群は物体側へ移動し、第3レンズ群は像側へ移動し、
以下の条件式(1)、(5)、(7)を満足することを特徴とする。
2<fG2/f<8 (1)
0.2<(t34f−t34n)/f<0.5 (5)
−8<fG1/f<−2 (7)
ここで、
fG2は、第2レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
t34fは、遠距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
t34nは、近距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
fG1は、第1レンズ群の焦点距離、
である。
本発明の一実施形態に係る対物光学系は、様々な誤差による影響を受けにくく、明るく、諸収差が良好に補正された対物光学系を提供することができる。
本実施形態の対物光学系の具体的な構成を示す断面図である。 実施例1の対物光学系の断面図である。 実施例1の対物光学系の収差図である。 実施例2の対物光学系の断面図である。 実施例2の対物光学系の収差図である。 実施例3の対物光学系の断面図である。 実施例3の対物光学系の収差図である。 実施例4の対物光学系の断面図である。 実施例4の対物光学系の収差図である。 実施例5の対物光学系の断面図である。 実施例5の対物光学系の収差図である。
以下、本実施形態に係る対物光学系について、図面を用いて、このような構成をとった理由と作用を説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
本実施形態に係る対物光学系は、例えば、内視鏡の対物レンズに用いることができる。この場合、本実施形態に係る対物光学系は、内視鏡観察において、一つの光学系で通常観察と拡大観察とを行うことができる。そのために、対物光学系を複数のレンズ群で構成し、その複数のレンズ群の少なくとも1つのレンズ群が光軸上を移動する。これにより、遠距離物点に合焦した場合に通常観察を行うことができ、近距離物点に合焦した場合に拡大観察を行うことができる。すなわち、拡大観察の延長という形で顕微鏡観察と同等レベルの観察、より高い倍率での拡大観察ができる。
本実施形態に係る対物光学系は、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、正屈折力の第4レンズ群と、を有し、遠距離物点から近距離物点への合焦時に、第2レンズ群は物体側へ移動し、第3レンズ群は像側へ移動し、以下の条件式(1)を満足することを特徴とする。
2<fG2/f<8 (1)
ここで、
fG2は、第2レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
本実施形態に係る対物光学系は、物体側から順に、負屈折力の第1レンズ群と、正屈折力の第2レンズ群と、負屈折力の第3レンズ群と、正屈折力の第4レンズ群と、で構成されている。このようにすることで、合焦時の収差変動を、最小限に抑えることができるだけでなく、光学系全体の小型化を実現しやすくなる。
通常観察時と拡大観察時とでは、物点距離が異なる。また、通常観察時から拡大観察時までの間では、物点距離が連続的に変化する。観察では、物点距離が変化しても、鮮明な像が形成されることが好ましい。そのためには、レンズ群を少なくとも1つ動かす必要がある。
本実施形態に係る対物光学系では、第2レンズ群と第3レンズ群を移動させることで、合焦を行っている。遠距離物点から近距離物点への合焦時、第2レンズ群は物体側に移動し、第3レンズ群は像側に移動する。
第2レンズ群と第3レンズ群が移動することで、遠距離から近距離までの間のどこに物点が位置していても、合焦することができる。遠距離物点に合焦した場合に通常観察を行うことができ、近距離物点に合焦した場合に拡大観察を行うことができる。
第2レンズ群と第3レンズ群は、共に、合焦機能を担っている。物点距離が変化すると、像面の位置が変化する。第2レンズ群と第3レンズ群が移動することで、物点距離が変化しても像面の位置が変化しないようにしている。
また、合焦に用いるレンズ群を第2レンズ群と第3レンズ群にすることで、1つのレンズ群で合焦を行う場合の屈折力を、第2レンズ群と第3レンズ群とに分散させることができる。その結果、第2レンズ群の屈折力と第3レンズ群の屈折力を、共に小さくすることができる。そのため、合焦時であっても、諸収差が良好に補正された状態を維持することができる。
1つのレンズ群で合焦を行う場合、レンズ群の屈折力が小さいと、所望の合焦範囲を確保するために移動量を大きくしなくてはならない。本実施形態に係る対物光学系では、第2レンズ群の屈折力の符号と第3レンズ群の屈折力の符号が異なっている。そのため、各レンズ群の屈折力が小さくても、移動量を大きくすることなく所望の合焦範囲を確保することができる。
合焦時、第2レンズ群と第3レンズ群は、光軸に沿って移動する。一方、第1レンズ群と第4レンズ群は、常時静止している。以下の説明では、第1レンズ群を保持する枠部材と第4レンズ群を保持する枠部材を固定枠とし、第2レンズ群を保持する枠部材と第3レンズ群を保持する枠部材は移動枠とする。
第1レンズ群の固定枠と、第2レンズ群の移動枠は、別の枠部材である。また、第4レンズ群の固定枠と、第3レンズ群の移動枠は、別の枠部材である。
移動枠は、移動枠の外周面が固定枠の内周面に沿って移動するか、又は、移動枠の内周面が固定枠の外周面に沿って移動する。2つの面が完全に接していると、摩擦によって、移動枠の移動がスムーズに行えない。そのため、2つの面の間にはクリアランスが設けられている。
移動枠の移動では、固定枠の中心に対する移動枠の中心のずれ量は小さいことが好ましい。クリアランスの量が少ないほど、ずれ量は小さくなる。このずれ量は、第1レンズ群に対する第2レンズ群の偏心量や、第4レンズ群に対する第3レンズ群の偏心量に対応する。よって、クリアランスの量が少ないほど、偏心量は小さくなくなる。
ただし、上述のように、クリアランスの量はゼロにはできない。よって、第1レンズ群に対する第2レンズ群の偏心量や、第4レンズ群に対する第3レンズ群の偏心量もゼロにはできない。光学系に偏心が生じると、結像性能が劣化する。よって、偏心量はできる限り小さくすることが好ましい。
条件式(1)は、第2レンズ群の焦点距離に関する条件式である。上述のように、移動枠と固定枠との間にはクリアランスが設けられている。そのため、本実施形態に係る対物光学系では、第2レンズ群における偏心量は、第2レンズ群が固定されている場合に比べると大きくなる。そのため、条件式(1)を満足することが好ましい。
条件式(1)の下限値を下回ると、第2レンズ群の屈折力が大きくなり過ぎる。この場合、第2レンズ群における偏心量が大きくなるので、結像性能が著しく劣化する。
条件式(1)の上限値を上回ると、第2レンズ群の屈折力は小さくなり過ぎる。この場合、第2レンズ群における偏心量は小さくなる。しかしながら、第2レンズ群の移動量が大きくなる。その結果、光学系の全長が長くなる。よって、条件式(1)の上限値を上回ることは好ましくない。
条件式(1)に代えて、以下の条件式(1’)を満足することが好ましい。
2.5<fG2/f<8 (1’)
条件式(1)に代えて、以下の条件式(1”)を満足することがより好ましい。
3<fG2/f<6 (1”)
条件式(1’)又は条件式(1”)を満足することで、第1レンズ群に対して第2レンズ群が偏心しても、結像性能の劣化と光学系の全長の増大を、より効果的に抑制できる。
本実施形態に係る対物光学系の具体的な構成例を説明する。図1は、本実施形態に係る対物光学系の具体的な構成を示す断面図である。
対物光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、を備えている。
第1レンズ群G1は、物体側から順に、負の第1レンズL1と、正の第2レンズL2と、負の第3レンズL3と、を有している。第2レンズL2と第3レンズL3は接合され、接合レンズCL1を構成している。
第2レンズ群G2は正の第4レンズL4を有している。
第3レンズ群G3は、物体側から順に、負の第5レンズL5と、正の第6レンズL6と、を有している。第5レンズL5と第6レンズL6は接合され、接合レンズCL2を構成している。
第4レンズ群G4は、物体側から順に、正の第7レンズL7と、正の第8レンズL8と、負の第9レンズL9と、を有している。第8レンズL8と第9レンズL9は接合され、接合レンズCL3を構成している。
また、第2レンズ群G2と第3レンズ群G3を移動させることで、合焦を行っている。遠距離物点から近距離物点への合焦時、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
第1レンズL1と第2レンズL2との間に、第1の平行平板F1が配置されている。第1の平行平板F1は、対物光学系中の任意の位置に配置することができる。第9レンズL9の像側に、第2の平行平板F2と第3の平行平板F3が配置されている。第2の平行平板F2と第3の平行平板F3は接合されている。
第1の平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。
第2の平行平板F2と第3の平行平板F3は、撮像素子のカバーガラスである。第3の平行平板F3の像側には、撮像素子(不図示)が配置されている。第3の平行平板F3の像側面は、像面(撮像面)Iになっている。撮像素子の撮像面は、第3の平行平板F3の像側面と一致している。
本実施形態に係る対物光学系は、以下の条件式(2)を満足することが好ましい。
−8<fG3/f<−2 (2)
ここで、
fG3は、第3レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
条件式(2)は、第3レンズ群の焦点距離に関する条件式である。上述のように、移動枠と固定枠との間にはクリアランスが設けられている。そのため、本実施形態に係る対物光学系では、第3レンズ群における偏心量は、第3レンズ群が固定されている場合に比べると大きくなる。そのため、条件式(2)を満足することが好ましい。
条件式(2)の下限値を下回ると、第3レンズ群の屈折力が小さくなり過ぎる。この場合、第3レンズ群における偏心量は小さくなる。しかしながら、第3レンズ群の移動量が大きくなる。その結果、光学系の全長が長くなる。よって、条件式(2)の下限値を下回ることは好ましくない。
条件式(2)の上限値を上回ると、第2レンズ群の屈折力が大きくなり過ぎる。この場合、第3レンズ群における偏心量が大きくなるので、結像性能が著しく劣化する。
本実施形態に係る対物光学系は、以下の条件式(3)を満足することが好ましい。
0.5<(t12f−t12n)/(t34f−t34n)<4 (3)
ここで、
t12fは、遠距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t12nは、近距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t34fは、遠距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
t34nは、近距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
である。
条件式(3)は、第2レンズ群の移動量と第3レンズ群の移動量に関する条件式である。
条件式(3)の下限値を下回ると、第1レンズ群と第2レンズ群との間隔が短くなり過ぎる。そのため、第2レンズ群の移動に必要なスペースの確保が困難となる。条件式(3)の上限値を上回ると、第3レンズ群と第4レンズ群との間隔が短くなり過ぎる。そのため、第3レンズ群の移動に必要なスペースの確保が困難となる。
本実施形態に係る対物光学系では、合焦可能な距離のうちで、最も光学系に近い距離を例えば、約2mmにすることができる。そのためには、条件式(3)を満足することが好ましい。
条件式(3)を満足しない場合、第2レンズ群の移動量や第3レンズ群の移動量を確保することが困難になる。そのため、近距離に位置する物点、例えば、光学系から約2mmの距離に位置する物点に合焦することができなくなる。その結果、十分に大きな倍率での観察が困難となる。
また、移動に必要なスペースの確保ができない場合、狭いスペースに収まるように、第2レンズ群の移動量を小さくするか、又は、第3レンズ群の移動量を小さくしなければならない。
レンズ群の移動量を小さくするためは、レンズ群の屈折力を大きくしなければならない。しかしながら、レンズ群の屈折力を大きくすると、第2レンズ群における像面位置感度が大きくなるか、又は、第3レンズ群における像面位置感度が大きくなる。
その結果、製造誤差による不具合、例えば、第2レンズ群の位置ずれに対する像面位置ずれが大きくなるといった不具合や、第3レンズ群の位置ずれに対する像面位置ずれが大きくなるといった不具合が生じやすくなる。像面位置感度とは、レンズ群の位置のずれに対する像面位置のずれの比率である。
本実施形態に係る対物光学系は、以下の条件式(4)を満足することが好ましい。
0.2<(t12f−t12n)/f<1.2 (4)
ここで、
t12fは、遠距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t12nは、近距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
条件式(4)の下限値を下回ると、条件式(3)の下限値を下回るのと同様に、第2レンズ群の移動に必要なスペースを確保することが困難となる。また、条件式(4)の上限値を上回ると、第1レンズ群と第2レンズ群の間隔が大きくなり過ぎる。この場合、第2レンズ群の移動に必要なスペースを確保することはできる。しかしながら、光学系の大型化を招いてしまう。
本実施形態に係る対物光学系は、以下の条件式(5)を満足することが好ましい。
0.2<(t34f−t34n)/f<0.5 (5)
ここで、
t34fは、遠距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
t34nは、近距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
条件式(5)の下限値を下回ると、条件式(3)の上限値を上回るのと同様に、第3レンズ群の移動に必要なスペースを確保することが困難となる。また、条件式(5)の上限値を上回ると、第3レンズ群と第4レンズ群の間隔が大きくなり過ぎる。この場合、第3レンズ群の移動に必要なスペースを確保することはできる。しかしながら、光学系の大型化を招いてしまう。
本実施形態に係る対物光学系は、以下の条件式(6)を満足することが好ましい。
1<fG4/f<3.5 (6)
ここで、
fG4は、第4レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
条件式(6)は、像面湾曲の補正に関する条件式である。
条件式(6)の下限値を下回ると、像面がアンダーに傾く。条件式(6)の上限を上回ると、像面がオーバーに傾く。この場合、像の中心部と周辺部のどちらかでピントが合わなくなってしまう。よって、条件式(6)の下限値を下回ることや、上限値を上回ることとは好ましくない。
本実施形態に係る対物光学系は、以下の条件式(7)を満足することが好ましい。
−8<fG1/f<−2 (7)
ここで、
fG1は、第1レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
条件式(7)は、倍率色収差の補正に関する条件式である。
条件式(7)の下限値を下回ると、C線における倍率色収差とF線における倍率色収差が、共に補正過剰となる。よって、条件式(7)の下限値を下回ることは好ましくない。
条件式(7)の上限値を上回ると、C線における軸上色収差とF線における軸上色収差とのバランスが崩れる。また、倍率色収差が補正不足となる。この場合、像の周辺で、色にじみを伴うコントラストの低下を招いてしまう。よって、条件式(7)の上限値を上回ることは好ましくない。
本実施形態に係る対物光学系は、以下の条件式(8)を満足することが好ましい。
−1.8<fG2/fG3<−1 (8)
ここで、
fG2は、第2レンズ群の焦点距離、
fG3は、第3レンズ群の焦点距離、
である。
条件式(8)は、第2レンズ群の屈折力と第3レンズ群の屈折力を、共に適切な屈折力にするための条件式である。言い替えると、条件式(8)は、合焦時の像面位置の変動を抑え、また、光学系の小型化へ寄与する条件式である。
条件式(8)の下限値を下回ると、第2レンズ群の屈折力が小さくなり過ぎる。この場合、第2レンズ群の移動量が大きくなり過ぎる。そのため、光学系の大型化を招いてしまう。
条件式(8)の上限値を上回ると、第3レンズ群の屈折力が大きくなり過ぎる。この場合、合焦に伴う像面湾曲の変動が大きくなる。そのため、通常観察時における像面位置と近接観察時における像面位置との間に著しい差が出てくる。よって、条件式(8)の上限値を上回ることは好ましくない。
本実施形態に係る対物光学系では、第4レンズ群は、物体側から順に、第1副レンズ群と、第2副レンズ群と、を少なくとも有し、第1副レンズ群は、正レンズを有し、第2副レンズ群は、正レンズと負レンズとからなる接合レンズを有し、以下の条件式(9)を満足することが好ましい。
0.45<fG4SUB1/fG4SUB2<1.15 (9)
ここで、
fG4SUB1は、第1副レンズ群の焦点距離、
fG4SUB2は、第2副レンズ群の焦点距離、
である。
条件式(9)は、第4レンズ群を構成する2つの副レンズ群の屈折力の比に関する条件式である。2つの副レンズ群の屈折力を適切な屈折力にすることで、像面湾曲の補正に効果がある変動を最小限に抑えることが出来る。
条件式(9)の下限値を下回ると、像面湾曲がアンダーになり過ぎる。条件式(9)の上限値を上回ると、像面湾曲がオーバーになり過ぎる。よって、条件式(9)の下限値を下回ることや、上限値を上回ることは好ましくない。
本実施形態に係る対物光学系では、第1レンズ群は、物体側レンズと、正屈折力の副レンズ群と、を有し、物体側レンズは、最も物体側に位置し、副レンズ群は、物体側レンズの像側に位置し、以下の条件式(10)を満足することが好ましい。
−8<fG1Lo/fG1SUB<−3.5 (10)
ここで、
fG1Loは、物体側レンズの焦点距離、
fG1SUBは、副レンズ群の焦点距離、
である。
条件式(10)は、物点距離の変化による像面湾曲の変動の補正に関する条件式である。
条件式(10)の下限値を下回ると、遠距離物点での像面湾曲が大きくアンダーになる。条件式(10)の上限値を上回ると、近距離物点での像面湾曲が大きくアンダーになる。よって、条件式(10)の下限値を下回ることや、上限値を上回ることは好ましくない。
本実施形態に係る対物光学系では、第1レンズ群は、第1正レンズと第1負レンズとからなる接合レンズを有し、以下の条件式(11)を満足することが好ましい。
−1.6<fG1Cp/fG1Cn<−0.4 (11)
fG1Cpは、第1正レンズの焦点距離、
fG1Cnは、第1負レンズの焦点距離、
である。
条件式(11)は、軸上色収差の補正と倍率色収差の補正に関する条件式である。第1レンズ群内では、物点距離の変化による色収差の変動が発生する。条件式(11)を満足することで、この色収差の変動を小さく抑えることが可能となる。
条件式(11)の下限値を下回ると、近距離物点合焦時の倍率色収差が大きくなる。よって、条件式(11)の下限値を下回ることは好ましくない。
条件式(11)の上限値を上回ると、物点距離の変化に対する軸上色収差の変動が大きくなる。特に、遠距離物点合焦時の軸上色収差が大きくなる。このように、軸上色収差の変動や軸上色収差の増大は、コントラスト低減の要因となる。よって、条件式(11)の上限値を上回ることは好ましくない。
本実施形態に係る対物光学系は、明るさ絞りを有し、以下の条件式(12)を満足することが好ましい。
0.3<fGF/fGR<0.75 (12)
ここで、
fGFは、遠距離物点合焦時の前群の焦点距離、
fGRは、遠距離物点合焦時の後群の焦点距離、
前群は、明るさ絞りよりも物体側に位置する全てのレンズ群で構成されたレンズ群、
後群は、明るさ絞りよりも像側に位置する全てのレンズ群で構成されたレンズ群、
である。
本実施形態に係る対物光学系は、明るさ絞りを境にして、前群と後群とに分けることができる。前群は、明るさ絞りよりも物体側に位置する全てのレンズ群で構成されたレンズ群である。後群は、明るさ絞りよりも像側に位置する全てのレンズ群で構成されたレンズ群である。
前群の屈折力と後群の屈折力との比は、条件式(12)の範囲内にあることが好ましい。前群の屈折力と後群の屈折力との比が条件式(12)の範囲内であれば、像面湾曲を良好に補正することが可能となる。
条件式(12)の下限値を下回ると、像面は大きくオーバーに傾く。条件式(12)の上限値を上回ると、像面は大きくアンダーに傾く。よって、条件式(12)の下限値を下回ることや、上限値を上回ることとは好ましくない。
条件式(12)に代えて、以下の条件式(12’)を満足することが好ましい。
0.38<fGF/fGR<0.52 (12’)
前群の屈折力と後群の屈折力が条件式(12’)の範囲内であれば、像面湾曲を更に良好に補正することが可能となる。
本実施形態に係る対物光学系は、以下の条件式(13)を満足することが好ましい。
2.5<Fno<5 (13)
ここで、
Fnoは遠距離物点合焦時のFナンバー、
である。
条件式(13)は、本実施形態に係る対物光学系のFナンバーに関する条件式である。
条件式(13)の下限値を下回ると、明るい光学系が実現できるが、被写界深度が浅くなる。よって、条件式(13)の下限値を下回ることは好ましくない。
高精細な撮像素子では、再現できる空間周波数が高くなる。よって、対物光学系も、高精細な撮像素子に対応した空間周波数において高い結像性能を持つことが必要になる。そのためには、対物光学系によって形成される点像を小さくしなければならない。
点像の大きさは、回折の影響を受ける。点像を小さくするためには、対物光学系のFナンバーを小さくする必要がある。
条件式(13)の上限値を上回ると、対物光学系のFナンバーを十分に小さくすることができない。この場合、回折の影響によって点像を小さくできない。すなわち、高精細な撮像素子に対応した空間周波数における結像性能を高くすることができなくなる。
本実施形態に係る対物光学系では、明るさ絞りの物体側で、且つ明るさ絞りの近傍に、接合レンズが配置されていても良い。
高精細な撮像素子に対応した空間周波数において高い結像性能を持つには、軸上色収差の補正が重要となる。明るさ絞りの物体側で、且つ明るさ絞りの隣に接合レンズを配置することで、十分な軸上色収差の補正が可能となる。
接合レンズは、明るさ絞りの近くに配置されていれば良い。よって、接合レンズが配置される場所は、明るさ絞りの隣で無くても良い。例えば、単レンズを挟んで接合レンズを配置しても良い。このようにしても、十分な軸上色収差の補正が可能となる。
また、本実施形態に係る対物光学系は、内視鏡以外の光学機器にも使用することができる。
例えば、デジタルカメラの撮像光学系に、本実施形態に係る対物光学系を使用することができる。デジタルカメラの撮影では、等倍を超えるようなマクロ撮影を行う場合がある。このような場合には、レンズの繰り出し量が大きくなることもあって、マクロコンバータレンズを装着することが多い。しかしながら、本実施形態の対物光学系を撮像光学系として用いることによって、マクロコンバータレンズを装着することなく、今までにない高倍率のマクロ撮影を行うことができる。
また、一般的に、マクロレンズは、第1レンズ群を物体側に繰り出し、なお且つ複数のレンズ群のフローティングによって合焦を行う。一方、本実施形態の対物光学系を用いると、インナーフォーカスでのマクロ撮影が可能となる。そのため、ワーキングディスタンスを決めてから撮影する場合には有利である。
さらに、携帯型機器、例えば、携帯電話のカメラの撮像光学系に、本実施形態に係る対物光学系を使用することもできる。このようにすることで、手軽にマクロ撮影が楽しめるようになる。
以下に、対物光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
各実施例のレンズ断面図について説明する。(a)は通常観察状態における断面図、(b)は拡大観察状態における断面図である。
各実施例の収差図について説明する。(a)、(b)、(c)及び(d)は、それぞれ、通常観察状態における収差図である。(a)は球面収差(SA)、(b)は非点収差(AS)、(c)は歪曲収差(DT)、(d)は倍率色収差(CC)を示している。
(e)、(f)、(g)及び(h)は、それぞれ、拡大観察状態における収差図である。(e)は球面収差(SA)、(f)は非点収差(AS)、(g)は歪曲収差(DT)、(h)は倍率色収差(CC)を示している。
各収差図において、横軸は収差量を表している。球面収差、非点収差及び倍率収差については、収差量の単位はmmである。また、歪曲収差については、収差量の単位は%である。また、ωは半画角で単位は°(度)、FNOはFナンバーである。また、収差曲線の波長の単位はnmである。
(実施例1)
実施例1に係る対物光学系について説明する。実施例1の対物光学系は、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、を有する。
第1レンズ群G1は、物体側が平面である平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と、を有する。ここで、正メニスカスレンズL2と両凹負レンズL3とで、接合レンズCL1を形成している。
第2レンズ群G2は、両凸正レンズL4を有する。
第3レンズ群G3は、両凹負レンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、を有する。ここで、両凹負レンズL5と正メニスカスレンズL6とで、接合レンズCL2を形成している。
第4レンズ群G4は、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、を有する。ここで、両凸正レンズL8と負メニスカスレンズL9とで、接合レンズCL3を形成している。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
合焦時、第2レンズ群G2と第3レンズ群G3が移動する。遠距離物点に合焦した状態から近距離物点に合焦するとき、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
平凹負レンズL1の像側には、平行平板F1が配置されている。第4レンズ群G4の像側には、平行平板F2と、平行平板F3と、が配置されている。
平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。平行平板F2と平行平板F3は、撮像素子のカバーガラスである。
(実施例2)
実施例2に係る対物光学系について説明する。実施例2の対物光学系は、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、を有する。
第1レンズ群G1は、物体側が平面である平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、像側に凸面を向けた負メニスカスレンズL3と、を有する。ここで、正メニスカスレンズL2と負メニスカスレンズL3とで、接合レンズCL1を形成している。
第2レンズ群G2は、両凸正レンズL4を有する。
第3レンズ群G3は、両凹負レンズL5と、物体側に凸面を向けた正メニスカスレンズL6と、を有する。ここで、両凹負レンズL5と正メニスカスレンズL6とで、接合レンズCL2を形成している。
第4レンズ群G4は、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、を有する。ここで、両凸正レンズL8と負メニスカスレンズL9とで、接合レンズCL3を形成している。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
合焦時、第2レンズ群G2と第3レンズ群G3が移動する。遠距離物点に合焦した状態から近距離物点に合焦するとき、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
平凹負レンズL1の像側には、平行平板F1が配置されている。第4レンズ群G4の像側には、平行平板F2と、平行平板F3と、が配置されている。
平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。平行平板F2と平行平板F3は、撮像素子のカバーガラスである。
(実施例3)
実施例3に係る対物光学系について説明する。実施例3の対物光学系は、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、を有する。
第1レンズ群G1は、物体側が平面である平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と、両凸正レンズL4と、を有する。ここで、両凹負レンズL3と両凸正レンズL4とで、接合レンズCL1を形成している。
第2レンズ群G2は、両凸正レンズL5を有する。
第3レンズ群G3は、両凹負レンズL6と、物体側に凸面を向けた正メニスカスレンズL7と、を有する。ここで、両凹負レンズL6と正メニスカスレンズL7とで、接合レンズCL2を形成している。
第4レンズ群G4は、両凸正レンズL8と、両凸正レンズL9と、両凹負レンズL10と、を有する。ここで、両凸正レンズL9と両凹負レンズL10とで、接合レンズCL3を形成している。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
合焦時、第2レンズ群G2と第3レンズ群G3が移動する。遠距離物点に合焦した状態から近距離物点に合焦するとき、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
第4レンズ群G4の像側には、平行平板F1と、平行平板F2と、平行平板F3と、が配置されている。
平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。平行平板F2と平行平板F3は、撮像素子のカバーガラスである。
(実施例4)
実施例4に係る対物光学系について説明する。実施例4の対物光学系は、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、を有する。
第1レンズ群G1は、物体側が平面である平凹負レンズL1と、両凸正レンズL2と、両凹負レンズL3と、両凸正レンズL4と、を有する。ここで、両凹負レンズL3と両凸正レンズL4とで、接合レンズCL1を形成している。
第2レンズ群G2は、両凸正レンズL5を有する。
第3レンズ群G3は、両凹負レンズL6を有する。
第4レンズ群G4は、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、を有する。ここで、両凸正レンズL8と負メニスカスレンズL9とで、接合レンズCL3を形成している。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
合焦時、第2レンズ群G2と第3レンズ群G3が移動する。遠距離物点に合焦した状態から近距離物点に合焦するとき、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
第4レンズ群G4の像側には、平行平板F1と、平行平板F2と、平行平板F3と、が配置されている。
平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。平行平板F2と平行平板F3は、撮像素子のカバーガラスである。
(実施例5)
実施例5に係る対物光学系について説明する。実施例5の対物光学系は、物体側から順に、負屈折力の第1レンズ群G1と、正屈折力の第2レンズ群G2と、負屈折力の第3レンズ群G3と、正屈折力の第4レンズ群G4と、を有する。
第1レンズ群G1は、物体側が平面である平凹負レンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と、両凸正レンズL4と、を有する。ここで、両凹負レンズL3と両凸正レンズL4とで、接合レンズCL1を形成している。
第2レンズ群G2は、両凸正レンズL5を有する。
第3レンズ群G3は、両凹負レンズL6を有する。
第4レンズ群G4は、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、を有する。ここで、両凸正レンズL8と負メニスカスレンズL9とで、接合レンズCL3を形成している。
明るさ絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されている。
合焦時、第2レンズ群G2と第3レンズ群G3が移動する。遠距離物点に合焦した状態から近距離物点に合焦するとき、第2レンズ群G2は物体側に移動し、第3レンズ群G3は像側に移動する。
第4レンズ群G4の像側には、平行平板F1と、平行平板F2と、平行平板F3と、が配置されている。
平行平板F1は特定の波長、例えば、YAGレーザのレーザ光(波長1060nmの光)、半導体レーザのレーザ光(波長810nmの光)、あるいは近赤外領域の波長の光をカットするためのフィルタである。平行平板F2と平行平板F3は、撮像素子のカバーガラスである。
以下に、上記各実施例の数値データを示す。面データにおいて、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数、である。
各種データにおいて、fはe線における焦点距離、FnoはFナンバー、ωは半画角、IHは像高、OBJは物点距離である。近接観察状態では、拡大観察(通常観察)を行うことができる。絞りは明るさ絞りである。
数値実施例1
単位 mm

面データ
面番号 r d ne νd
1 ∞ 0.383 1.88815 40.76
2 1.4062 1.093
3 ∞ 0.638 1.49557 75.00
4 ∞ 0.606
5 -215.6063 2.049 1.77621 49.60
6 -1.7919 0.447 1.59911 39.24
7 59.7123 可変
8 2.7313 0.717 1.59667 35.31
9 -7.2342 可変
10(絞り) ∞ 可変
11 -4.1724 0.441 1.70442 30.13
12 2.7263 0.478 1.48915 70.23
13 4.4792 可変
14 5.7382 0.638 1.77621 49.60
15 -7.8439 0.032
16 5.5805 1.289 1.69979 55.53
17 -2.1954 0.4785 1.93429 18.90
18 -4.244 1.203
19 ∞ 1.45 1.51825 64.14
20 ∞ 0.55 1.88815 40.76
21(撮像面) ∞

各種データ
通常観察状態 近接観察状態
f 1.038 1.249
Fno 4.2 4.728
OBJ 26.3 4.35
d7 0.4436 0.1823
d9 0.1905 0.4518
d10 0.4492 0.7865
d13 0.6767 0.3394
IH 1.0
2ω 160.5
数値実施例2
単位 mm

面データ
面番号 r d ne νd
1 ∞ 0.383 1.88815 40.76
2 1.3878 1.099
3 ∞ 0.638 1.49557 75.00
4 ∞ 0.6
5 -6.5257 1.542 1.77621 49.60
6 -2.003 0.45 1.59911 39.24
7 -5.8083 可変
8 3.3916 0.718 1.59667 35.31
9 -8.4609 可変
10(絞り) ∞ 可変
11 -7.1747 0.44 1.70442 30.13
12 2.3594 0.473 1.48915 70.23
13 4.8045 可変
14 4.8345 0.718 1.77621 49.60
15 -7.9744 0.032
16 5.5772 1.358 1.69979 55.53
17 -2.4477 0.478 1.93429 18.90
18 -6.2241 0.964
19 ∞ 1.45 1.51825 64.14
20 ∞ 0.56 1.51825 64.14
21(撮像面) ∞

各種データ
通常観察状態 近接観察状態
f 1.015 1.184
Fno 3.725 4.042
OBJ 26.2 5.25
d7 0.5128 0.1576
d9 0.1868 0.5420
d10 0.3714 0.6516
d13 0.6258 0.3456
IH 1.0
2ω 158.3
数値実施例3
単位 mm

面データ
面番号 r d ne νd
1 ∞ 0.383 1.88815 40.76
2 1.317 1.176
3 -7.4132 0.797 1.51825 64.14
4 -2.3089 0.374
5 -1.9522 0.542 1.72733 29.23
6 11.8496 0.723 1.77621 49.60
7 -2.5443 可変
8 2.981 0.718 1.59667 35.31
9 -24.2805 可変
10(絞り) ∞ 可変
11 -5.8402 0.44 1.70442 30.13
12 25.1198 0.4585 1.48915 70.23
13 2.9224 可変
14 3.8937 0.766 1.77621 49.60
15 -17.1962 0.032
16 2.6593 1.358 1.69979 55.53
17 -2.7452 0.4785 1.97189 17.47
18 88.9617 0.382
19 ∞ 0.45 1.51825 64.14
20 ∞ 0.6586
21 ∞ 0.55 1.56606 60.67
22(撮像面) ∞

各種データ
通常観察状態 近接観察状態
f 1.049 1.334
Fno 3.615 3.956
OBJ 26.35 2.55
d7 0.9606 0.0697
d9 0.1884 1.0793
d10 0.3962 0.7026
d13 0.6377 0.3313
IH 1.0
2ω 160.2
数値実施例4
単位 mm

面データ
面番号 r d ne νd
1 ∞ 0.383 1.88815 40.76
2 1.3137 1.054
3 153.3896 0.797 1.51825 64.14
4 -3.5841 0.38
5 -2.2715 0.542 1.72733 29.23
6 7.377 0.752 1.77621 49.60
7 -2.6647 可変
8 2.832 0.718 1.59667 35.31
9 -19.9623 可変
10(絞り) ∞ 可変
11 -6.107 0.903 1.70442 30.13
12 4.5555 可変
13 3.8753 0.766 1.77621 49.60
14 -46.7115 0.032
15 2.6535 1.325 1.69979 55.53
16 -2.8117 0.478 1.97189 17.47
17 -38.5243 0.162
18 ∞ 0.32 1.51825 64.14
19 ∞ 0.5
20 ∞ 0.48 1.51825 64.14
21 ∞ 0.4 1.51825 64.14
22(撮像面) ∞

各種データ
通常観察状態 近接観察状態
f 1.075 1.318
Fno 3.454 3.752
OBJ 26.3 2.66
d7 0.772 0.0706
d9 0.1884 0.8898
d10 0.4165 0.7444
d13 0.6307 0.3028
IH 1.0
2ω 159.7
数値実施例5
単位 mm

面データ
面番号 r d ne νd
1 ∞ 0.383 1.88815 40.76
2 1.3455 1.162
3 -5.3608 0.797 1.51825 64.14
4 -2.5651 0.375
5 -2.1661 0.542 1.72733 29.23
6 3.6031 0.871 1.77621 49.60
7 -2.6936 可変
8 2.9415 0.718 1.59667 35.31
9 -27.8209 可変
10(絞り) ∞ 可変
11 -2.8799 0.901 1.48915 70.23
12 2.9507 可変
13 3.5161 0.766 1.77621 49.60
14 -10.2894 0.031
15 3.4931 1.447 1.69979 55.53
16 -2.0392 0.478 1.97189 17.47
17 -13.4569 0.082
18 ∞ 0.45 1.51825 64.14
19 ∞ 0.48
20 ∞ 1 1.51825 64.14
21 ∞ 0.55 1.56606 60.67
22(撮像面) ∞

各種データ
通常観察状態 近接観察状態
f 1.038 1.339
Fno 3.643 4.002
OBJ 28.5 2.65
d7 0.9783 0.1185
d9 0.2371 1.0969
d10 0.41 0.6936
d12 0.6329 0.3493
IH 1.0
2ω 152.8
次に、各実施例における条件式(1)〜(13)の値を掲げる。

条件式 実施例1 実施例2 実施例3
(1)fG2/f 3.290 4.091 4.284
(2)fG3/f -2.576 -3.260 -3.088
(3)(t12f-t12n)/(t34f-t34n) 0.775 1.268 2.908
(4)(t12f-t12n)/f 0.252 0.350 0.849
(5)(t34f-t34n)/f 0.325 0.276 0.292
(6)fG4/f 2.350 2.521 2.256
(7)fG1/f -2.622 -3.320 -4.937
(8)fG2/fG3 -1.278 -1.255 -1.387
(9)fG4SUB1/fG4SUB2 0.987 0.687 0.734
(10)fG1Lo/fG1SUB -7.358 -6.880 -4.656
(11)fG1Cp/fG1Cn -0.800 -0.607 -0.822
(12)fGF/fGR 0.464 0.461 0.416
(13)Fno 4.200 3.725 3.615

条件式 実施例4 実施例5
(1)fG2/f 3.913 4.334
(2)fG3/f -3.329 -2.733
(3)(t12f-t12n)/(t34f-t34n) 2.139 3.032
(4)(t12f-t12n)/f 0.652 0.829
(5)(t34f-t34n)/f 0.305 0.273
(6)fG4/f 2.254 2.236
(7)fG1/f -4.915 -4.972
(8)fG2/fG3 -1.175 -1.586
(9)fG4SUB1/fG4SUB2 0.955 0.512
(10)fG1Lo/fG1SUB -4.244 -5.008
(11)fG1Cp/fG1Cn -0.895 -0.847
(12)fGF/fGR 0.440 0.421
(13)Fno 3.454 3.643
以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
(付記)
なお、これらの実施例から以下の構成の発明が導かれる。
(付記項1)
物体側から順に、
負屈折力の第1レンズ群と、
正屈折力の第2レンズ群と、
負屈折力の第3レンズ群と、
正屈折力の第4レンズ群と、を有し、
遠距離物点から近距離物点への合焦時に、第2レンズ群は物体側へ移動し、第3レンズ群は像側へ移動し、
以下の条件式(1)を満足することを特徴とする対物光学系。
2<fG2/f<8 (1)
ここで、
fG2は、第2レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項2)
以下の条件式(2)を満足することを特徴とする付記項1に記載の対物光学系。
−8<fG3/f<−2 (2)
ここで、
fG3は、第3レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項3)
以下の条件式(3)を満足することを特徴とする付記項1又は2に記載の対物光学系。
0.5<(t12f−t12n)/(t34f−t34n)<4 (3)
ここで、
t12fは、遠距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t12nは、近距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t34fは、遠距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
t34nは、近距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
である。
(付記項4)
以下の条件式(4)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
0.2<(t12f−t12n)/f<1.2 (4)
ここで、
t12fは、遠距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
t12nは、近距離物点合焦時での第1レンズ群と第2レンズ群との間隔、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項5)
以下の条件式(5)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
0.2<(t34f−t34n)/f<0.5 (5)
ここで、
t34fは、遠距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
t34nは、近距離物点合焦時での第3レンズ群と第4レンズ群との間隔、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項6)
以下の条件式(6)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
1<fG4/f<3.5 (6)
ここで、
fG4は、第4レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項7)
以下の条件式(7)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
−8<fG1/f<−2 (7)
ここで、
fG1は、第1レンズ群の焦点距離、
fは、遠距離物点合焦時の対物光学系全系の焦点距離、
である。
(付記項8)
以下の条件式(8)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
−1.8<fG2/fG3<−1 (8)
ここで、
fG2は、第2レンズ群の焦点距離、
fG3は、第3レンズ群の焦点距離、
である。
(付記項9)
第4レンズ群は、物体側から順に、第1副レンズ群と、第2副レンズ群と、を少なくとも有し、
第1副レンズ群は、正レンズを有し、
第2副レンズ群は、正レンズと負レンズとからなる接合レンズを有し、
以下の条件式(9)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
0.45<fG4SUB1/fG4SUB2<1.15 (9)
ここで、
fG4SUB1は、第1副レンズ群の焦点距離、
fG4SUB2は、第2副レンズ群の焦点距離、
である。
(付記項10)
第1レンズ群は、物体側レンズと、正屈折力の副レンズ群と、を有し、
物体側レンズは、最も物体側に位置し、
副レンズ群は、物体側レンズの像側に位置し、
以下の条件式(10)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
−8<fG1Lo/fG1SUB<−3.5 (10)
ここで、
fG1Loは、物体側レンズの焦点距離、
fG1SUBは、副レンズ群の焦点距離、
である。
(付記項11)
第1レンズ群は、第1正レンズと第1負レンズとからなる接合レンズを有し、
以下の条件式(11)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
−1.6<fG1Cp/fG1Cn<−0.4 (11)
fG1Cpは、第1正レンズの焦点距離、
fG1Cnは、第1負レンズの焦点距離、
である。
(付記項12)
明るさ絞りを有し、
以下の条件式(12)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
0.3<fGF/fGR<0.75 (12)
ここで、
fGFは、遠距離物点合焦時の前群の焦点距離、
fGRは、遠距離物点合焦時の後群の焦点距離、
前群は、明るさ絞りよりも物体側に位置する全てのレンズ群で構成されたレンズ群、
後群は、明るさ絞りよりも像側に位置する全てのレンズ群で構成されたレンズ群、
である。
(付記項13)
以下の条件式(13)を満足することを特徴とする付記項1から3のいずれか一項に記載の対物光学系。
2.5<Fno<5 (13)
ここで、
Fnoは遠距離物点合焦時のFナンバー、
である。
本発明は、様々な誤差による影響を受けにくく、明るく、諸収差が良好に補正された対物光学系に有用である。
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
L1〜L10 レンズ
CL1、CL2、CL3 接合レンズ
S 明るさ絞り
F1、F2、F3 平行平板
I 像面(撮像面)

Claims (3)

  1. 物体側から順に、
    常時静止している負屈折力の第1レンズ群と、
    正屈折力の第2レンズ群と、
    負屈折力の第3レンズ群と、
    常時静止している正屈折力の第4レンズ群と、からなり
    遠距離物点から近距離物点への合焦時に、前記第2レンズ群は物体側へ移動し、前記第3レンズ群は像側へ移動し、
    以下の条件式(1)、(5)、(7)を満足することを特徴とする対物光学系。
    2<fG2/f<8 (1)
    0.2<(t34f−t34n)/f<0.5 (5)
    −8<fG1/f<−2 (7)
    ここで、
    fG2は、前記第2レンズ群の焦点距離、
    fは、遠距離物点合焦時の前記対物光学系全系の焦点距離、
    t34fは、遠距離物点合焦時での前記第3レンズ群と前記第4レンズ群との間隔、
    t34nは、近距離物点合焦時での前記第3レンズ群と前記第4レンズ群との間隔、
    fG1は、前記第1レンズ群の焦点距離、
    である。
  2. 以下の条件式(2)を満足することを特徴とする請求項1に記載の対物光学系。
    −8<fG3/f<−2 (2)
    ここで、
    fG3は、前記第3レンズ群の焦点距離、
    fは、遠距離物点合焦時の前記対物光学系全系の焦点距離、
    である。
  3. 以下の条件式(3)を満足することを特徴とする請求項1又は2に記載の対物光学系。
    0.5<(t12f−t12n)/(t34f−t34n)<4 (3)
    ここで、
    t12fは、遠距離物点合焦時での前記第1レンズ群と前記第2レンズ群との間隔、
    t12nは、近距離物点合焦時での前記第1レンズ群と前記第2レンズ群との間隔、
    t34fは、遠距離物点合焦時での前記第3レンズ群と前記第4レンズ群との間隔、
    t34nは、近距離物点合焦時での前記第3レンズ群と前記第4レンズ群との間隔、
    である。
JP2018555778A 2017-05-01 2018-04-11 対物光学系 Active JP6501984B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017091146 2017-05-01
JP2017091146 2017-05-01
PCT/JP2018/015169 WO2018203465A1 (ja) 2017-05-01 2018-04-11 対物光学系

Publications (2)

Publication Number Publication Date
JP6501984B2 true JP6501984B2 (ja) 2019-04-17
JPWO2018203465A1 JPWO2018203465A1 (ja) 2019-06-27

Family

ID=64016052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018555778A Active JP6501984B2 (ja) 2017-05-01 2018-04-11 対物光学系

Country Status (3)

Country Link
US (1) US10996455B2 (ja)
JP (1) JP6501984B2 (ja)
WO (1) WO2018203465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767362A1 (en) * 2019-07-18 2021-01-20 Canon Kabushiki Kaisha Optical system and optical apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929852B (zh) * 2020-10-12 2020-12-15 瑞泰光学(常州)有限公司 摄像光学镜头
CN112826421A (zh) * 2020-12-02 2021-05-25 长春理工大学 一种三晶片荧光双波段内窥镜变焦适配器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091832A (ja) * 1999-09-20 2001-04-06 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
WO2013069263A1 (ja) * 2011-11-08 2013-05-16 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
WO2013069266A1 (ja) * 2011-11-09 2013-05-16 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置
JP2015022161A (ja) * 2013-07-19 2015-02-02 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438866A (en) 1967-03-21 1969-04-15 Pfizer & Co C Serum cholinesterase test
JP2009300489A (ja) 2008-06-10 2009-12-24 Fujinon Corp 変倍光学系および撮像装置
JP4723628B2 (ja) 2008-11-07 2011-07-13 Hoya株式会社 内視鏡対物光学系および内視鏡
CN102428401B (zh) 2009-05-26 2014-06-25 奥林巴斯医疗株式会社 内窥镜的物镜
CN103917909B (zh) 2011-11-09 2016-03-09 富士胶片株式会社 内窥镜用物镜及内窥镜
US9019621B2 (en) 2011-11-11 2015-04-28 Olympus Corporation Objective optical system and observation apparatus provided with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091832A (ja) * 1999-09-20 2001-04-06 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
WO2013069263A1 (ja) * 2011-11-08 2013-05-16 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
WO2013069266A1 (ja) * 2011-11-09 2013-05-16 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
JP2013104956A (ja) * 2011-11-11 2013-05-30 Olympus Corp 対物光学系及びそれを備えた観察装置
JP2015022161A (ja) * 2013-07-19 2015-02-02 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767362A1 (en) * 2019-07-18 2021-01-20 Canon Kabushiki Kaisha Optical system and optical apparatus
CN112327468A (zh) * 2019-07-18 2021-02-05 佳能株式会社 光学系统和光学设备
US11493730B2 (en) 2019-07-18 2022-11-08 Canon Kabushiki Kaisha Optical system and optical apparatus

Also Published As

Publication number Publication date
US20200026060A1 (en) 2020-01-23
JPWO2018203465A1 (ja) 2019-06-27
WO2018203465A1 (ja) 2018-11-08
US10996455B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
JP4934233B2 (ja) 対物光学系
JP6266189B1 (ja) 対物光学系
JP6197147B1 (ja) 対物光学系
JP5117137B2 (ja) ズームレンズ系
JP4815304B2 (ja) 広角レンズ
KR102052124B1 (ko) 어안 렌즈계 및 이를 구비한 촬영 장치
JP6238103B2 (ja) 撮像光学系、カメラ装置および携帯情報端末装置
KR20130126375A (ko) 망원 줌 렌즈계 및 이를 포함한 촬영 장치
JP2008203449A (ja) ズームレンズ及び撮像装置
JP2016038418A (ja) 結像光学系及びそれを備えた光学装置
JP6501984B2 (ja) 対物光学系
JP5601572B2 (ja) 結像レンズ、撮像装置および情報装置
KR20120072959A (ko) 줌 렌즈계
CN109073864B (zh) 内窥镜对物光学系统
KR20160075235A (ko) 렌즈계 및 이를 포함하는 광학 기기
JP2020181000A (ja) 撮影レンズ及び撮影装置
JP6836466B2 (ja) 内視鏡対物光学系
CN109923458B (zh) 物镜光学系统
JP5082486B2 (ja) ズームレンズと、これを有する光学装置
JPWO2020049725A1 (ja) 対物光学系及び内視鏡
JP2019032407A (ja) 内視鏡用対物光学系
JP2008191231A (ja) 光学系及びそれを有する撮像装置
JP2019086678A (ja) 対物光学系
JP2005301031A (ja) 合成樹脂製レンズを有するズームレンズ
JP2017116702A (ja) ズームレンズ及びそれを有する撮像装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190319

R151 Written notification of patent or utility model registration

Ref document number: 6501984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250