JP6496579B2 - Substrate processing method and substrate processing apparatus - Google Patents
Substrate processing method and substrate processing apparatus Download PDFInfo
- Publication number
- JP6496579B2 JP6496579B2 JP2015053349A JP2015053349A JP6496579B2 JP 6496579 B2 JP6496579 B2 JP 6496579B2 JP 2015053349 A JP2015053349 A JP 2015053349A JP 2015053349 A JP2015053349 A JP 2015053349A JP 6496579 B2 JP6496579 B2 JP 6496579B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- frequency power
- substrate processing
- voltage
- mounting table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims description 218
- 238000003672 processing method Methods 0.000 title claims description 13
- 238000001179 sorption measurement Methods 0.000 claims description 39
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 12
- 238000012806 monitoring device Methods 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 10
- 238000005513 bias potential Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 67
- 238000001020 plasma etching Methods 0.000 description 22
- 230000002159 abnormal effect Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 17
- 230000008859 change Effects 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 239000003990 capacitor Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 10
- 238000001514 detection method Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000015067 sauces Nutrition 0.000 description 2
- 101000574352 Mus musculus Protein phosphatase 1 regulatory subunit 17 Proteins 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67259—Position monitoring, e.g. misposition detection or presence detection
- H01L21/67265—Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68381—Details of chemical or physical process used for separating the auxiliary support from a device or wafer
- H01L2221/68386—Separation by peeling
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Chemical & Material Sciences (AREA)
- Plasma Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
Description
本発明は、フラットパネルディスプレイ(FPD)用基板等の大型基板にプラズマ処理を施す基板処理方法及び基板処理装置に関する。 The present invention relates to a substrate processing method and a substrate processing apparatus for performing plasma processing on a large substrate such as a flat panel display (FPD) substrate.
FPD用のパネル製造では、ガラス等の絶縁体からなる基板上に画素のデバイス又は電極や配線等が形成される。このようなパネル製造の様々な工程のうち、エッチング、CVD、アッシング、スパッタリング等の微細加工工程は、多くの場合、プラズマを用いる基板処理装置によって行われる。基板処理装置は、例えば、減圧可能な処理室の内部において基板を下部電極としてのサセプタを有する載置台の上に載置し、サセプタに高周波電力を供給することによって基板上に処理ガスからプラズマを生成し、該プラズマを用いて基板に、例えば、エッチングを施す。 In manufacturing an FPD panel, a pixel device, an electrode, a wiring, or the like is formed on a substrate made of an insulator such as glass. Of these various panel manufacturing processes, microfabrication processes such as etching, CVD, ashing, and sputtering are often performed by a substrate processing apparatus using plasma. The substrate processing apparatus, for example, places a substrate on a mounting table having a susceptor as a lower electrode in a process chamber capable of depressurization, and supplies high frequency power to the susceptor to generate plasma from a processing gas on the substrate. For example, etching is performed on the substrate using the plasma.
一般に、プラズマを用いるエッチング(以下、「プラズマエッチング」という。)は基板の温度によって進展速度が変化するため、エッチング中は基板の温度を制御する必要がある。これに対応して、温調された冷媒を載置台内の冷媒流路に循環供給するとともに、Heガス等の伝熱性の良いガス(以下、「伝熱ガス」という。)を載置台の基板載置面に開口するガス穴から基板の裏面に供給し、伝熱ガスの伝熱によって基板を載置台によって間接的に冷却する。このとき、伝熱ガスの圧力によって基板が載置台から浮き上がるのを防止するために、基板は載置台へ静電吸着力等によって吸着保持される。 In general, the etching rate using plasma (hereinafter referred to as “plasma etching”) changes in the growth rate depending on the temperature of the substrate, and therefore it is necessary to control the temperature of the substrate during etching. Correspondingly, a temperature-controlled refrigerant is circulated and supplied to the refrigerant flow path in the mounting table, and a gas having a good heat transfer property such as He gas (hereinafter referred to as “heat transfer gas”) is mounted on the substrate of the mounting table. The substrate is supplied to the back surface of the substrate through a gas hole opened on the mounting surface, and the substrate is indirectly cooled by the mounting table by heat transfer of the heat transfer gas. At this time, in order to prevent the substrate from floating from the mounting table due to the pressure of the heat transfer gas, the substrate is adsorbed and held on the mounting table by an electrostatic adsorption force or the like.
ところで、プラズマエッチング中、基板が載置台から剥離すると、載置台の基板載置面が露出し、耐圧の低いガス穴の縁とプラズマの間において異常放電が生じるおそれがある。異常放電はしばしば、その発生部位及びその近傍を破壊し、この破壊に伴ってパーティクルを発生させるだけでなく基板上のデバイス等を損傷させるため、基板の載置台からの剥離を検知し、剥離を検知すると高周波電力の供給を直ちに停止してプラズマを消滅させる必要がある。 By the way, if the substrate is peeled off from the mounting table during the plasma etching, the substrate mounting surface of the mounting table is exposed, and abnormal discharge may occur between the edge of the gas hole having a low pressure resistance and the plasma. Abnormal discharge often destroys the site and its vicinity, and not only generates particles along with this destruction, but also damages devices on the substrate. When detected, it is necessary to immediately stop the supply of high-frequency power to extinguish the plasma.
基板の載置台から剥離を検知する方法としては、基板の載置台から剥離すると伝熱ガスの流量が乱れることから、伝熱ガスの流量を監視し、伝熱ガスの流量が乱れて閾値を複数回超えたときに基板が載置台から剥離したと判定する方法が知られている(例えば、特許文献1参照。)。 As a method of detecting separation from the substrate mounting table, the heat transfer gas flow rate is disturbed when peeling from the substrate mounting table, so the heat transfer gas flow rate is monitored, and the heat transfer gas flow rate is disturbed to set multiple thresholds. A method is known in which it is determined that the substrate has been peeled off from the mounting table when the number of times has exceeded (for example, see Patent Document 1).
しかしながら、近年、FPD用のパネルの大型化に伴って基板処理装置も大型化し、伝熱ガスの供給経路が長くなっているため、当該供給経路のコンダクタンスが低下している。したがって、基板が載置台から剥離しても伝熱ガスの流量が直ちには変化せず、伝熱ガスの流量が閾値を超えたときには、基板が載置台から剥離してから数秒も経過していることがある。 However, in recent years, as the size of the FPD panel is increased, the substrate processing apparatus is also increased in size, and the heat transfer gas supply path has become longer. Therefore, the conductance of the supply path has decreased. Therefore, even if the substrate is peeled off from the mounting table, the flow rate of the heat transfer gas does not change immediately. When the flow rate of the heat transfer gas exceeds the threshold, several seconds have passed since the substrate was peeled off from the mounting table. Sometimes.
また、プラズマエッチングではプラズマが生成されると静電吸着力が増すことから基板の冷却能力を向上させるために伝熱ガスの流量や圧力を途中で増加させること、すなわち、エッチングを行うためのプログラムであるレシピにおいて伝熱ガスの流量を意図的に増加させることがある。このときも、伝熱ガスの流量は供給経路のコンダクタンスの低下に起因して時間をかけて変化するため、レシピに起因する伝熱ガスの流量の変化と基板の載置台からの剥離に起因する伝熱ガスの流量の変化とが重なることがある。したがって、伝熱ガスの流量の変化を検知しても、該変化の要因がレシピに起因するのか基板の載置台からの剥離に起因するのかが不明となることがある。 In plasma etching, electrostatic attraction increases when plasma is generated, so the flow rate and pressure of the heat transfer gas are increased in the middle to improve the cooling capacity of the substrate, that is, a program for performing etching. In some recipes, the flow rate of the heat transfer gas may be intentionally increased. Also at this time, since the flow rate of the heat transfer gas changes over time due to a decrease in the conductance of the supply path, it results from the change in the flow rate of the heat transfer gas caused by the recipe and the separation of the substrate from the mounting table. Changes in the flow rate of heat transfer gas may overlap. Therefore, even if a change in the flow rate of the heat transfer gas is detected, it may be unclear whether the cause of the change is caused by the recipe or by peeling the substrate from the mounting table.
以上より、伝熱ガスの流量を監視しても基板の載置台からの剥離を正確に検知することは困難である。 As described above, it is difficult to accurately detect the peeling of the substrate from the mounting table even if the flow rate of the heat transfer gas is monitored.
本発明の目的は、基板の載置台からの剥離を正確に検知することができる基板処理方法及び基板処理装置を提供することにある。 An object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of accurately detecting peeling of a substrate from a mounting table.
上記目的を達成するために、本発明の基板処理方法は、基板を収容して該基板へプラズマによって処理を施す処理室と、該処理室の内部に設置されて前記基板を載置する載置台と、該載置台に内蔵されて前記基板を前記載置台へ静電吸着する静電吸着電極と、該静電吸着電極へ直流電圧を印加する直流電源と、前記プラズマを生成するための高周波電力を供給する高周波電源とを備える基板処理装置における基板処理方法であって、前記基板処理装置は、前記静電吸着電極へ印加される直流電圧を監視する電圧監視装置と、前記基板処理装置の動作を制御する制御装置と、該制御装置を介さずに前記電圧監視装置及び前記高周波電源を接続する信号線とをさらに備え、 前記監視された直流電圧が所定の閾値を超えたとき、前記電圧監視装置は前記信号線を経由して前記高周波電源へ前記高周波電力の供給を停止するための停止信号を送信し、前記停止信号を受信した前記高周波電源は前記高周波電力の供給を停止することを特徴とする。
In order to achieve the above object, a substrate processing method of the present invention includes a processing chamber that accommodates a substrate and performs processing on the substrate by plasma, and a mounting table that is installed inside the processing chamber and mounts the substrate. An electrostatic adsorption electrode that is built in the mounting table and electrostatically attracts the substrate to the mounting table, a DC power source that applies a DC voltage to the electrostatic adsorption electrode, and a high-frequency power for generating the plasma A substrate processing method in a substrate processing apparatus comprising a high frequency power supply for supplying a voltage , the substrate processing apparatus monitoring a DC voltage applied to the electrostatic chucking electrode, and an operation of the substrate processing apparatus a control device for controlling the further a signal line for connecting the voltage monitoring device and the high frequency power source not through the control device, when the monitored DC voltage exceeds the predetermined threshold, the voltage monitoring Equipment A stop signal for stopping the supply of the high-frequency power is transmitted to the high-frequency power source via the signal line, and the high-frequency power source that has received the stop signal stops the supply of the high-frequency power. .
上記目的を達成するために、本発明の基板処理装置は、基板を収容して該基板へプラズマによって処理を施す処理室と、該処理室の内部に設置されて前記基板を載置する載置台と、該載置台に内蔵されて前記基板を前記載置台へ静電吸着する静電吸着電極と、該静電吸着電極へ直流電圧を印加する直流電源と、前記プラズマを生成するための高周波電力を供給する高周波電源とを備える基板処理装置において、前記静電吸着電極へ印加される直流電圧を監視する電圧監視装置と、前記基板処理装置の動作を制御する制御装置と、該制御装置を介さずに前記電圧監視装置及び前記高周波電源を接続する信号線とをさらに備え、前記電圧監視装置によって監視された直流電圧が所定の閾値を超えたとき、前記電圧監視装置は前記信号線を経由して前記高周波電源へ前記高周波電力の供給を停止するための停止信号を送信し、前記停止信号を受信した前記高周波電源は前記高周波電力の供給を停止することを特徴とする。
In order to achieve the above object, a substrate processing apparatus of the present invention includes a processing chamber that accommodates a substrate and performs processing on the substrate by plasma, and a mounting table that is installed inside the processing chamber and mounts the substrate. An electrostatic adsorption electrode that is built in the mounting table and electrostatically attracts the substrate to the mounting table, a DC power source that applies a DC voltage to the electrostatic adsorption electrode, and a high-frequency power for generating the plasma A substrate processing apparatus comprising: a high-frequency power supply that supplies a voltage; a voltage monitoring apparatus that monitors a DC voltage applied to the electrostatic chucking electrode; a control apparatus that controls the operation of the substrate processing apparatus; The voltage monitoring device further includes a signal line connecting the voltage monitoring device and the high-frequency power source, and when the DC voltage monitored by the voltage monitoring device exceeds a predetermined threshold, the voltage monitoring device passes through the signal line. The Serial sending a stop signal for stopping the supply of the high frequency power to the high frequency power source, said high frequency power source which receives the stop signal is characterized by stopping the supply of the high frequency power.
本発明によれば、載置台へ静電吸着する静電吸着電極へ印加される直流電圧が監視され、該監視された直流電圧が所定の閾値を超えたとき、高周波電源は高周波電力の供給を停止する。載置台に載置された基板と静電吸着電極はコンデンサを形成するが、基板が載置台から剥離すると、該コンデンサの静電容量が変化するために基板及び静電吸着電極の電位差が変化して静電吸着電極へ印加される直流電圧が変動する。したがって、静電吸着電極へ印加される直流電圧を監視することにより、基板の載置台からの剥離を検知することができる。また、基板と静電吸着電極が形成するコンデンサの電荷量は一定であり、基板が載置台から剥離してコンデンサの静電容量が変化すると、直ちに基板及び静電吸着電極の電位差も変化するため、静電吸着電極へ印加される直流電圧を監視することにより、基板の載置台からの剥離を迅速に検知することができる。さらに、通常、レシピに従って静電吸着電極へ印加される直流電圧を変化させる場合、該直流電圧は短時間で変化する一方、基板が載置台から剥離したときも静電吸着電極へ印加される直流電圧は短時間で変化する。したがって、レシピに起因する静電吸着電極へ印加される直流電圧の変化と基板の載置台からの剥離に起因する静電吸着電極へ印加される直流電圧の変化とが重なることがなく、静電吸着電極へ印加される直流電圧の変化を検知したとき、該変化の要因がレシピに起因するのか基板の載置台からの剥離に起因するのかが不明となることがない。以上により、基板の載置台からの剥離を正確に検知することができる。 According to the present invention, the DC voltage applied to the electrostatic adsorption electrode that is electrostatically attracted to the mounting table is monitored, and when the monitored DC voltage exceeds a predetermined threshold, the high frequency power supply supplies the high frequency power. Stop. The substrate placed on the mounting table and the electrostatic chucking electrode form a capacitor. However, when the substrate is peeled off from the mounting table, the capacitance of the capacitor changes, so the potential difference between the substrate and the electrostatic chucking electrode changes. As a result, the DC voltage applied to the electrostatic adsorption electrode varies. Therefore, it is possible to detect the peeling of the substrate from the mounting table by monitoring the DC voltage applied to the electrostatic adsorption electrode. In addition, the amount of electric charge of the capacitor formed by the substrate and the electrostatic chucking electrode is constant, and the potential difference between the substrate and the electrostatic chucking electrode immediately changes when the substrate peels off from the mounting table and the capacitance of the capacitor changes. By monitoring the DC voltage applied to the electrostatic chucking electrode, it is possible to quickly detect the peeling of the substrate from the mounting table. Furthermore, normally, when changing the DC voltage applied to the electrostatic chucking electrode according to the recipe, the DC voltage changes in a short time, while the DC voltage applied to the electrostatic chucking electrode also when the substrate is peeled off from the mounting table. The voltage changes in a short time. Therefore, the change in the DC voltage applied to the electrostatic adsorption electrode due to the recipe does not overlap with the change in the DC voltage applied to the electrostatic adsorption electrode due to the peeling of the substrate from the mounting table. When a change in the DC voltage applied to the suction electrode is detected, it is not unclear whether the cause of the change is due to the recipe or the peeling of the substrate from the mounting table. As described above, peeling of the substrate from the mounting table can be accurately detected.
以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本実施の形態に係る基板処理装置を複数備える基板処理システムの構成を概略的に示す斜視図である。 FIG. 1 is a perspective view schematically showing a configuration of a substrate processing system including a plurality of substrate processing apparatuses according to the present embodiment.
図1において、基板処理システム10は、ガラス基板等のFPD用の基板Gへプラズマ処理、例えば、プラズマエッチングを施す3つの基板処理装置11を備える。 In FIG. 1, a substrate processing system 10 includes three substrate processing apparatuses 11 that perform plasma processing, for example, plasma etching, on an FPD substrate G such as a glass substrate.
各基板処理装置11はそれぞれ、水平断面が多角形状(例えば、水平断面が矩形状)の搬送室12の側面へゲートバルブ13を介して連結される。搬送室12には、さらに、ロードロック室14がゲートバルブ15を介して連結される。ロードロック室14には、基板搬出入機構16がゲートバルブ17を介して隣設される。基板搬出入機構16には2つのインデックサ18が隣設される。インデックサ18には基板Gを収納するカセット19が載置される。カセット19は複数枚(例えば、25枚)の基板Gを収納する。 Each substrate processing apparatus 11 is connected via a gate valve 13 to a side surface of a transfer chamber 12 having a polygonal horizontal section (for example, a rectangular horizontal section). A load lock chamber 14 is further connected to the transfer chamber 12 via a gate valve 15. A substrate carry-in / out mechanism 16 is provided adjacent to the load lock chamber 14 via a gate valve 17. Two indexers 18 are provided adjacent to the substrate carry-in / out mechanism 16. A cassette 19 for storing the substrate G is placed on the indexer 18. The cassette 19 stores a plurality of (for example, 25) substrates G.
基板処理システム10において、基板Gへプラズマエッチングを施す際、まず、基板搬出入機構16によってカセット19に収納された基板Gをロードロック室14の内部へ搬入する。このとき、ロードロック室14の内部にプラズマエッチング済みの基板Gが存在すれば、当該プラズマエッチング済みの基板Gをロードロック室14内から搬出し、未エッチングの基板Gと置き換える。ロードロック室14の内部へ基板Gが搬入されると、ゲートバルブ17を閉じる。 When plasma etching is performed on the substrate G in the substrate processing system 10, first, the substrate G stored in the cassette 19 is loaded into the load lock chamber 14 by the substrate loading / unloading mechanism 16. At this time, if the plasma-etched substrate G exists in the load-lock chamber 14, the plasma-etched substrate G is taken out of the load-lock chamber 14 and replaced with the unetched substrate G. When the substrate G is loaded into the load lock chamber 14, the gate valve 17 is closed.
次いで、ロードロック室14の内部を所定の真空度まで減圧した後、搬送室12とロードロック室14の間のゲートバルブ15を開き、ロードロック室14の内部の基板Gを搬送室12の内部の搬送機構(図示しない)によって搬送室12の内部へ搬入し、その後、ゲートバルブ15を閉じる。 Next, after the inside of the load lock chamber 14 is depressurized to a predetermined degree of vacuum, the gate valve 15 between the transfer chamber 12 and the load lock chamber 14 is opened, and the substrate G inside the load lock chamber 14 is placed inside the transfer chamber 12. Is carried into the transfer chamber 12 by the transfer mechanism (not shown), and then the gate valve 15 is closed.
次いで、搬送室12と基板処理装置11の間のゲートバルブ13を開き、上記搬送機構によって基板処理装置11の内部に未エッチングの基板Gを搬入する。このとき、基板処理装置11の内部にプラズマエッチング済みの基板Gがあれば、当該プラズマエッチング済みの基板Gを搬出し、未エッチングの基板Gと置き換える。その後、基板処理装置11は搬入された基板Gにプラズマエッチングを施す。 Next, the gate valve 13 between the transfer chamber 12 and the substrate processing apparatus 11 is opened, and the unetched substrate G is carried into the substrate processing apparatus 11 by the transfer mechanism. At this time, if there is a plasma-etched substrate G inside the substrate processing apparatus 11, the plasma-etched substrate G is taken out and replaced with an unetched substrate G. Thereafter, the substrate processing apparatus 11 performs plasma etching on the loaded substrate G.
図2は、図1における基板処理装置の構成を概略的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing the configuration of the substrate processing apparatus in FIG.
図2において、基板処理装置11は誘導結合型のプラズマ処理装置からなり、略矩形状のチャンバ20(処理室)と、該チャンバ20内の下方に配置されて基板Gを頂部に載置する台状の載置台21と、載置台21と対向するようにチャンバ20内の上方に誘電体、若しくは金属からなる窓部材(図示しない)を介して配置される渦巻き状の導体からなる誘導結合アンテナ50と、窓部材の下方においてチャンバ20内に処理ガスを供給するガス供給部22を備え、載置台21及びガス供給部22の間には処理空間Sが形成される。 In FIG. 2, a substrate processing apparatus 11 is formed of an inductively coupled plasma processing apparatus, and has a substantially rectangular chamber 20 (processing chamber) and a table placed below the chamber 20 to place the substrate G on the top. And an inductive coupling antenna 50 made of a spiral conductor disposed through a window member (not shown) made of a dielectric or metal so as to face the mounting table 21. A gas supply unit 22 for supplying a processing gas into the chamber 20 below the window member, and a processing space S is formed between the mounting table 21 and the gas supply unit 22.
載置台21は、導体からなるサセプタ23を内蔵し、該サセプタ23にはバイアス用高周波電源24(他の高周波電源)が整合器25を介して接続される。また、載置台21の上部には層状の誘電体から形成される静電吸着部(ESC)26が配置され、該静電吸着部26は、上層の誘電体層と下層の誘電体層によって挟み込むようにして静電吸着電極27を内蔵する。静電吸着電極27には直流電源28が接続され、直流電源28が静電吸着電極27へ直流電圧を印加すると、静電吸着部26は静電気力によって載置台21に載置された基板Gを静電吸着する。載置台21において、バイアス用高周波電源24は比較的低い周波数の高周波電力をサセプタ23へ供給して静電吸着部26に静電吸着された基板Gに直流バイアス電位を生じさせる。なお、静電吸着部26は、板部材として形成されてもよく、また、載置台21上に溶射膜として形成されてもよい。 The mounting table 21 incorporates a susceptor 23 made of a conductor, and a bias high-frequency power source 24 (another high-frequency power source) is connected to the susceptor 23 via a matching unit 25. Further, an electrostatic chuck (ESC) 26 formed of a layered dielectric is disposed on the mounting table 21, and the electrostatic chuck 26 is sandwiched between an upper dielectric layer and a lower dielectric layer. Thus, the electrostatic chucking electrode 27 is incorporated. When the DC power supply 28 is connected to the electrostatic chucking electrode 27 and the DC power supply 28 applies a DC voltage to the electrostatic chucking electrode 27, the electrostatic chucking unit 26 moves the substrate G mounted on the mounting table 21 by electrostatic force. Electrostatic adsorption. In the mounting table 21, the bias high frequency power supply 24 supplies a relatively low frequency high frequency power to the susceptor 23 to generate a DC bias potential on the substrate G electrostatically attracted to the electrostatic attracting unit 26. In addition, the electrostatic attraction | suction part 26 may be formed as a plate member, and may be formed on the mounting base 21 as a sprayed film.
さらに、載置台21は載置された基板Gを冷却する冷媒流路29を内蔵し、伝熱ガス、例えば、ヘリウムガスを供給する伝熱ガス供給機構30に接続される。伝熱ガス供給機構30は伝熱ガス供給源31とガス流量制御器32とを有し、伝熱ガスを載置台21へ供給する。載置台21は、上部において開口する複数の伝熱ガス穴33と、各伝熱ガス穴33及び伝熱ガス供給機構30を連通させる伝熱ガス供給経路34とを有する。載置台21では、静電吸着部26に静電吸着された基板Gの裏面と載置台21の上部との間に微少な隙間が生じるが、各伝熱ガス穴33から供給される伝熱ガスは当該隙間を充填し、基板Gと載置台21の熱伝達効率を向上させる。これにより、載置台21による基板Gの冷却効率を向上することができる。 Furthermore, the mounting table 21 has a built-in refrigerant flow path 29 for cooling the mounted substrate G, and is connected to a heat transfer gas supply mechanism 30 that supplies a heat transfer gas, for example, helium gas. The heat transfer gas supply mechanism 30 includes a heat transfer gas supply source 31 and a gas flow rate controller 32, and supplies the heat transfer gas to the mounting table 21. The mounting table 21 includes a plurality of heat transfer gas holes 33 that open at the top, and a heat transfer gas supply path 34 that allows the heat transfer gas holes 33 and the heat transfer gas supply mechanism 30 to communicate with each other. In the mounting table 21, a slight gap is generated between the back surface of the substrate G electrostatically attracted to the electrostatic chuck 26 and the upper part of the mounting table 21, but the heat transfer gas supplied from each heat transfer gas hole 33. Fills the gap and improves the heat transfer efficiency between the substrate G and the mounting table 21. Thereby, the cooling efficiency of the board | substrate G by the mounting base 21 can be improved.
ガス供給部22は処理ガス供給機構35に接続される。処理ガス供給機構35は処理ガス供給源36、ガス流量制御器37及び圧力制御バルブ38を有する。ガス供給部22は処理ガス供給機構35と連通するバッファ39を内蔵し、載置台21に載置される基板Gの全面に亘って配置される。バッファ39は処理ガス供給機構35と連通し、バッファ39には処理ガス供給機構35から処理ガスが供給される。また、ガス供給部22はバッファ39及び処理空間Sを連通させる多数のガス供給穴40を有し、バッファ39へ供給された処理ガスを処理空間Sへ導入する。ガス供給部22において多数のガス供給穴40は載置台21に載置される基板Gの全面に亘って分散して配置されるため、処理ガスは処理空間Sにおいて基板Gの全面に行きわたる。 The gas supply unit 22 is connected to the processing gas supply mechanism 35. The processing gas supply mechanism 35 includes a processing gas supply source 36, a gas flow rate controller 37, and a pressure control valve 38. The gas supply unit 22 includes a buffer 39 that communicates with the processing gas supply mechanism 35, and is disposed over the entire surface of the substrate G placed on the mounting table 21. The buffer 39 communicates with the processing gas supply mechanism 35, and the processing gas is supplied from the processing gas supply mechanism 35 to the buffer 39. The gas supply unit 22 has a large number of gas supply holes 40 that allow the buffer 39 and the processing space S to communicate with each other, and introduces the processing gas supplied to the buffer 39 into the processing space S. In the gas supply unit 22, a large number of gas supply holes 40 are distributed over the entire surface of the substrate G placed on the mounting table 21, so that the processing gas reaches the entire surface of the substrate G in the processing space S.
誘導結合アンテナ50にはプラズマ生成用高周波電源41が整合器42を介して接続され、プラズマ生成用高周波電源41は比較的高い周波数のプラズマ生成用の高周波電力を誘導結合アンテナ50へ供給する。プラズマ生成用の高周波電力を供給される誘導結合アンテナ50は処理空間Sに電界を生じさせる。 A high frequency power source 41 for plasma generation is connected to the inductive coupling antenna 50 via a matching unit 42, and the high frequency power source 41 for plasma generation supplies high frequency power for plasma generation with a relatively high frequency to the inductive coupling antenna 50. The inductively coupled antenna 50 supplied with high frequency power for generating plasma generates an electric field in the processing space S.
また、基板処理装置11はチャンバ20の内部と連通する排気管43を備え、該排気管43はチャンバ20の内部を減圧し、若しくはチャンバ20の内部に残留するガスを排気する。 Further, the substrate processing apparatus 11 includes an exhaust pipe 43 that communicates with the inside of the chamber 20, and the exhaust pipe 43 decompresses the inside of the chamber 20 or exhausts the gas remaining inside the chamber 20.
この基板処理装置11では、基板Gへプラズマエッチングを施す際、処理空間Sを減圧し、処理ガスを処理空間Sへ導入するとともに誘導結合アンテナ50へプラズマ生成用の高周波電力を印加して処理空間Sに電界を生じさせる。処理空間Sへ導入された処理ガスは電界によって励起されてプラズマを生成するが、該プラズマ中の陽イオンは載置台21を介して基板Gに生じる直流バイアス電位によって基板Gへ引きこまれて基板Gにプラズマエッチングを施す。また、プラズマ中のラジカルは基板Gへ到達して基板Gにプラズマエッチングを施す。 In this substrate processing apparatus 11, when plasma etching is performed on the substrate G, the processing space S is decompressed, a processing gas is introduced into the processing space S, and high-frequency power for generating plasma is applied to the inductive coupling antenna 50. An electric field is generated in S. The processing gas introduced into the processing space S is excited by an electric field to generate plasma, and positive ions in the plasma are attracted to the substrate G by the DC bias potential generated in the substrate G through the mounting table 21. Plasma etching is applied to G. Further, radicals in the plasma reach the substrate G and perform plasma etching on the substrate G.
基板処理装置11では、誘導結合アンテナ50が基板Gの全面を覆うように配置されるため、基板Gの全面を覆うようにプラズマが生成され、該プラズマによって基板Gの全面へ均一にプラズマエッチングが施される。 In the substrate processing apparatus 11, since the inductive coupling antenna 50 is disposed so as to cover the entire surface of the substrate G, plasma is generated so as to cover the entire surface of the substrate G, and plasma etching is uniformly performed on the entire surface of the substrate G by the plasma. Applied.
基板処理装置11が基板Gへプラズマエッチングを施す際、基板処理装置11の各構成要素の動作は装置コントローラ44(制御装置)により、所定のプログラムに従って制御される。 When the substrate processing apparatus 11 performs plasma etching on the substrate G, the operation of each component of the substrate processing apparatus 11 is controlled by the apparatus controller 44 (control apparatus) according to a predetermined program.
ところで、本発明者は、本発明に先立ち、基板処理装置11において基板Gにプラズマエッチングを施す際の静電吸着電極27に印加される直流電圧、バイアス用高周波電源24が供給する高周波電力、及びプラズマ生成用高周波電源41が供給する高周波電力の変遷記録(以下、「ログ」という)を、基板Gが載置台21から剥離せずに異常放電が発生しなかった場合、及び基板Gが載置台21から剥離して異常放電が発生した場合のそれぞれについて確認した。なお、以下、静電吸着電極27に印加される直流電圧は「DC」として示され、バイアス用高周波電源24が供給する高周波電力は「バイアス」として示され、プラズマ生成用高周波電源41が供給する高周波電力は「ソース」として示される。 By the way, prior to the present invention, the present inventor has a DC voltage applied to the electrostatic chucking electrode 27 when the substrate G is subjected to plasma etching in the substrate processing apparatus 11, a high frequency power supplied from the bias high frequency power supply 24, and The transition record (hereinafter referred to as “log”) of the high frequency power supplied by the plasma generating high frequency power supply 41 is not peeled off from the mounting table 21 and no abnormal discharge occurs, and the substrate G is mounted on the mounting table. Each of the cases where an abnormal discharge occurred after peeling from 21 was confirmed. Hereinafter, the DC voltage applied to the electrostatic chucking electrode 27 is indicated as “DC”, the high-frequency power supplied from the bias high-frequency power supply 24 is indicated as “bias”, and the plasma-generating high-frequency power supply 41 supplies it. High frequency power is indicated as “source”.
図3は、プラズマエッチング中に異常放電が発生しなかった場合のDC、ソース及びバイアスのログを示すグラフである。 FIG. 3 is a graph showing a log of DC, source, and bias when abnormal discharge does not occur during plasma etching.
図3において、まず、ソースが先に立ち上がり、ソースが一定値に安定した後、バイアスが立ち上がり、その後、バイアスも一定値に安定したが、プラズマエッチング中、DCは一定値のまま安定していた。すなわち、異常放電が発生しない場合、DCは一定値に安定し、ソース及びバイアスも一定値に達した後は安定することが確認された。 In FIG. 3, first, the source rises first, the source stabilizes to a constant value, the bias rises, and then the bias also stabilizes to a constant value. However, during plasma etching, DC remains stable at a constant value. . That is, it was confirmed that when abnormal discharge does not occur, DC is stabilized at a constant value, and the source and bias are also stabilized after reaching a certain value.
図4は、プラズマエッチング中に異常放電が発生した場合のDC、ソース及びバイアスのログを示すグラフである。 FIG. 4 is a graph showing DC, source and bias logs when abnormal discharge occurs during plasma etching.
図4において、まず、ソースが先に立ち上がり、ソースが一定値に安定した後、バイアスが立ち上がり、その後、バイアスも一定値に安定したが、時間t2において異常放電が発生すると、ソース及びバイアスのいずれも変動し、ソースはやや上昇し、バイアスは急激に低下した。また、一定値で安定していたDCも急激に低下した。 4, first, the source rises above, after the source is stabilized to a constant value, the bias rises, then, when the bias was also stable at a constant value, the abnormal discharge occurs at time t 2, the source and bias Both fluctuated, the source rose slightly and the bias dropped sharply. In addition, DC, which was stable at a constant value, also dropped rapidly.
ここで、異常放電に先立ち、時間t1において基板Gが載置台21から剥離したことが確認されたが、本発明者は時間t1においてDCが一度上昇していることに注目し、基板Gが載置台21から剥離するとDCが上昇する理由について以下のように推察した。 Here, prior to the abnormal discharge, but it was confirmed that peeled from the substrate G mounting table 21 at time t 1, the present inventor has noted that DC is increased at a time at time t 1, the substrate G The reason for the increase in DC when peeled from the mounting table 21 was presumed as follows.
基板処理装置11において、基板G及び静電吸着電極27は、静電吸着部26の上層の誘電体層を介することによって互いに離間しているため、コンデンサ45を構成する(図5(A))。このとき、基板Gはプラズマを介して接地し、静電吸着電極27には直流電源28から直流電圧が印加されるため、基板Gには負の電荷が帯電し、静電吸着電極27には正の電荷が帯電する。なお、この場合における基板G及び静電吸着電極27の間隔(ギャップ)g1は静電吸着電極27の上方に存在する静電吸着部26の上層の誘電体層の厚さと同じである。 In the substrate processing apparatus 11, the substrate G and the electrostatic chucking electrode 27 are separated from each other through the upper dielectric layer of the electrostatic chucking portion 26, and thus constitute a capacitor 45 (FIG. 5A). . At this time, the substrate G is grounded through the plasma, and a DC voltage is applied to the electrostatic chucking electrode 27 from the DC power supply 28. A positive charge is charged. In this case, the distance (gap) g 1 between the substrate G and the electrostatic chucking electrode 27 is the same as the thickness of the upper dielectric layer of the electrostatic chucking portion 26 existing above the electrostatic chucking electrode 27.
基板Gが載置台21から剥離すると、基板G及び静電吸着電極27の間隔がg1からg2へ拡大する(図5(B))。このとき、基板G及び静電吸着電極27の間隔の拡大に従ってコンデンサ45の静電容量Cが減少するが、コンデンサ45の電荷量Qは基板Gが載置台21から剥離する前後で変わらないため、基板G及び静電吸着電極27の電位差が拡大する。そして、基板Gはプラズマを介して接地したままなので、静電吸着電極27の電位のみが変化する。すなわち、静電吸着電極27の電位(DC)が上昇する。 When the substrate G is separated from the mounting table 21, the distance between the substrate G and the electrostatic chucking electrode 27 is enlarged from g 1 to g 2 (Fig. 5 (B)). At this time, the capacitance C of the capacitor 45 decreases as the distance between the substrate G and the electrostatic adsorption electrode 27 increases, but the charge amount Q of the capacitor 45 does not change before and after the substrate G is peeled off from the mounting table 21. The potential difference between the substrate G and the electrostatic chucking electrode 27 increases. Since the substrate G remains grounded via the plasma, only the potential of the electrostatic adsorption electrode 27 changes. That is, the potential (DC) of the electrostatic adsorption electrode 27 increases.
本発明は上述した知見に基くものであり、本実施の形態では、静電吸着電極27の電位が上昇すると基板Gが載置台21から剥離したと判定して異常放電の発生を予想する。 The present invention is based on the above-described knowledge. In the present embodiment, when the potential of the electrostatic adsorption electrode 27 rises, it is determined that the substrate G has been peeled off from the mounting table 21, and an abnormal discharge is expected.
図6は、従来の基板処理装置の基板剥離判定システムのブロック図である。 FIG. 6 is a block diagram of a substrate peeling determination system of a conventional substrate processing apparatus.
図6に示すように、従来の基板処理装置では、伝熱ガスの供給経路に設けられた圧力制御バルブ(PCV)と、装置コントローラと、プラズマ生成用高周波電源とによって基板剥離判定システムが構成され、該基板剥離判定システムでは、圧力制御バルブと装置コントローラが接続されるとともに、装置コントローラとプラズマ生成用高周波電源が接続されるため、圧力制御バルブとプラズマ生成用高周波電源は装置コントローラを介して接続される。すなわち、圧力制御バルブとプラズマ生成用高周波電源は間接的に接続される。 As shown in FIG. 6, in a conventional substrate processing apparatus, a substrate peeling determination system is configured by a pressure control valve (PCV) provided in a heat transfer gas supply path, an apparatus controller, and a plasma generating high frequency power source. In the substrate peeling determination system, the pressure control valve and the apparatus controller are connected, and the apparatus controller and the high frequency power supply for plasma generation are connected. Therefore, the pressure control valve and the high frequency power supply for plasma generation are connected via the apparatus controller. Is done. That is, the pressure control valve and the plasma generating high frequency power supply are indirectly connected.
この基板剥離判定システムでは、装置コントローラが圧力制御バルブの伝熱ガスの流量モニタから流量検知結果の信号を受け取り、装置コントローラが流量検知結果の信号に基づき、基板が載置台から剥離して伝熱ガス流量が乱れたと判定したとき、装置コントローラはプラズマ生成用高周波電源へ高周波電力の供給を停止するための停止信号を送信する。停止信号を受信したプラズマ生成用高周波電源は、その後、高周波電力の供給を停止する。 In this substrate peeling determination system, the device controller receives a flow rate detection result signal from the heat transfer gas flow rate monitor of the pressure control valve, and the device controller peels off from the mounting table based on the flow rate detection result signal. When it is determined that the gas flow rate is disturbed, the apparatus controller transmits a stop signal for stopping the supply of the high frequency power to the plasma generating high frequency power supply. The high frequency power supply for plasma generation that has received the stop signal then stops the supply of high frequency power.
ここで、装置コントローラは流量モニタから流量検知結果の信号を所定の間隔、例えば、100msec毎で受信するため、最悪、基板が載置台から剥離してから100msec経過した後に伝熱ガス流量が乱れたと判定することがある。一方、異常放電は基板が載置台から剥離してから数10msec後に発生することがある。したがって、装置コントローラが、基板が載置台から剥離して伝熱ガス流量が乱れたと判定したときには既に異常放電が発生しているおそれがある。特に、基板剥離判定システムが、流量検知結果の信号におけるノイズの影響を避けるために複数回ほど伝熱ガス流量が乱れた後、始めて基板が載置台から剥離したと判定する場合、基板が載置台から実際に剥離してから約1sec経過した後に伝熱ガス流量が乱れたと判定することになるため、異常放電の発生を防止することができない。 Here, since the apparatus controller receives the signal of the flow rate detection result from the flow rate monitor at a predetermined interval, for example, every 100 msec, the heat transfer gas flow rate is disturbed after 100 msec has elapsed since the substrate peeled off from the mounting table. Judgment may be made. On the other hand, abnormal discharge may occur several tens of milliseconds after the substrate peels from the mounting table. Therefore, when the apparatus controller determines that the substrate peels off from the mounting table and the heat transfer gas flow rate is disturbed, there is a possibility that abnormal discharge has already occurred. In particular, when the substrate peeling determination system determines that the substrate has peeled from the mounting table for the first time after the heat transfer gas flow rate has been disturbed several times in order to avoid the influence of noise in the flow rate detection result signal, the substrate is mounted on the mounting table. Therefore, it is determined that the heat transfer gas flow rate has been disturbed after about 1 sec has elapsed since the actual peeling, so that the occurrence of abnormal discharge cannot be prevented.
これに対応して、本実施の形態では、静電吸着電極27の電位を監視する直流電圧モニタ46を設け、該直流電圧モニタ46はプラズマ生成用高周波電源41へ装置コントローラ44を介さずに接続される。直流電圧モニタ46は、直流電源28から静電吸着電極27に直流電圧を供給する供給ライン51上の特定の部位と接地電位との電位差を監視してもよく、また、供給ライン51上の特定の抵抗要素、例えば、抵抗52における電圧降下を監視してもよく、その他、静電吸着電極27における電位の変化を直接的あるいは間接的に監視できる手法が直流電圧モニタ46において用いられ得る。図2において、便宜上、供給ライン51と直流電圧モニタ46が一本の配線で接続されているが、供給ライン51と直流電圧モニタ46の接続方法は、これに限定されるものではなく、監視手法に応じて適切な接続方法が選択される。 Correspondingly, in the present embodiment, a DC voltage monitor 46 for monitoring the potential of the electrostatic chucking electrode 27 is provided, and the DC voltage monitor 46 is connected to the plasma generating high frequency power supply 41 without the device controller 44. Is done. The DC voltage monitor 46 may monitor a potential difference between a specific part on the supply line 51 that supplies a DC voltage from the DC power supply 28 to the electrostatic adsorption electrode 27 and the ground potential, and also a specific voltage on the supply line 51. The voltage drop in the resistance element, for example, the resistance 52 may be monitored, and other methods that can directly or indirectly monitor the potential change in the electrostatic adsorption electrode 27 may be used in the DC voltage monitor 46. In FIG. 2, for convenience, the supply line 51 and the DC voltage monitor 46 are connected by a single wiring. However, the connection method of the supply line 51 and the DC voltage monitor 46 is not limited to this, and a monitoring method is used. An appropriate connection method is selected depending on the situation.
図7は、本実施の形態に係る基板処理装置の基板剥離判定システムのブロック図である。 FIG. 7 is a block diagram of the substrate peeling determination system of the substrate processing apparatus according to the present embodiment.
図7に示すように、基板処理装置11では、直流電源28が静電吸着電極27へ印加する直流電圧(以下、「静電吸着用直流電圧」という。)を監視する直流電圧モニタ46(電圧監視装置)を設け、直流電圧モニタ46と、装置コントローラ44と、プラズマ生成用高周波電源41とによって基板剥離判定システム47が構成される。該基板剥離判定システム47では、直流電圧モニタ46とプラズマ生成用高周波電源41が装置コントローラ44を介さずに信号線48によって直接接続されるとともに、プラズマ生成用高周波電源41と装置コントローラ44が接続される。また、直流電圧モニタ46と装置コントローラ44も信号線49によって直接接続される。直流電圧モニタ46は静電吸着用直流電圧が増加し、所定の閾値を超えたとき、基板Gが載置台21から剥離したと判定してプラズマ生成用高周波電源41へ高周波電力の供給を停止するための停止信号(以下、単に「停止信号」という。)を送信する。停止信号を受信したプラズマ生成用高周波電源41は、直ちに高周波電力の供給を停止する。 As shown in FIG. 7, in the substrate processing apparatus 11, a DC voltage monitor 46 (voltage) that monitors a DC voltage applied to the electrostatic chucking electrode 27 by the DC power supply 28 (hereinafter referred to as “electrostatic chucking DC voltage”). A substrate peeling determination system 47 is configured by the DC voltage monitor 46, the device controller 44, and the plasma generating high frequency power supply 41. In the substrate peeling determination system 47, the DC voltage monitor 46 and the plasma generating high frequency power supply 41 are directly connected by the signal line 48 without passing through the apparatus controller 44, and the plasma generating high frequency power supply 41 and the apparatus controller 44 are connected. The Further, the DC voltage monitor 46 and the device controller 44 are also directly connected by a signal line 49. The DC voltage monitor 46 determines that the substrate G has peeled from the mounting table 21 when the electrostatic chucking DC voltage increases and exceeds a predetermined threshold value, and stops the supply of the high frequency power to the plasma generating high frequency power supply 41. Stop signal (hereinafter simply referred to as “stop signal”). Receiving the stop signal, the plasma generating high frequency power supply 41 immediately stops the supply of the high frequency power.
図8は、本実施の形態に係る基板処理方法としてのプラズマエッチング停止処理を示すフローチャートである。 FIG. 8 is a flowchart showing plasma etching stop processing as the substrate processing method according to the present embodiment.
まず、基板処理装置11において基板Gにプラズマエッチングを施すために、直流電源28から静電吸着電極27へ静電吸着用直流電圧が印加され(ステップS81)、基板Gが静電吸着部26へ静電吸着される。 First, in order to perform plasma etching on the substrate G in the substrate processing apparatus 11, a DC voltage for electrostatic adsorption is applied from the DC power source 28 to the electrostatic adsorption electrode 27 (step S81), and the substrate G is applied to the electrostatic adsorption unit 26. It is electrostatically attracted.
次いで、プラズマ生成用高周波電源41が誘導結合アンテナ50へプラズマ生成用の高周波電力の供給を開始し(ステップS82)、バイアス用高周波電源24がサセプタ23へ直流バイアス電位生成用の高周波電力の供給を開始する(ステップS83)。このとき、処理空間Sにおいて処理ガスからプラズマが生じ、プラズマ中の陽イオンが基板Gに引きこまれて該基板Gへプラズマエッチングが施される。 Next, the high frequency power supply 41 for plasma generation starts supplying high frequency power for generating plasma to the inductive coupling antenna 50 (step S82), and the high frequency power supply 24 for bias supplies high frequency power for generating DC bias potential to the susceptor 23. Start (step S83). At this time, plasma is generated from the processing gas in the processing space S, positive ions in the plasma are attracted to the substrate G, and plasma etching is performed on the substrate G.
次いで、ステップS84では、直流電圧モニタ46は、静電吸着用直流電圧が所定の閾値、例えば、プラズマエッチング中に維持されるべき一定値の2%乃至5%増しの値のうち、直流電圧モニタ46の検出精度に応じて設定される閾値を超えたか否かを判定し、静電吸着用直流電圧が所定の閾値以下であると判定した場合、ステップS84に戻り、静電吸着用直流電圧が所定の閾値を超えたと判定した場合、プラズマ生成用高周波電源41へ停止信号を信号線48を経由して直ちに送信する(ステップS85)。直流電圧モニタ46の検出精度はノイズによっても左右され、除去しきれないノイズが大きい場合には閾値も大きくせざるを得ないが、その場合でも閾値は上限を一定値の5%増しの値とする。直流電圧モニタ46は数10μsec間隔、例えば、80μsec間隔で静電吸着用直流電圧を監視するため、基板Gが載置台21から剥離したとしても数10μsec後には、その旨を検知することができ、基板Gの剥離が発生してから短時間で停止信号を送信することができる。なお、直流電圧モニタ46は、プラズマ生成用高周波電源41へ停止信号を送信する場合、静電吸着用直流電圧が所定の閾値を超えた旨の信号を信号線49を経由して装置コントローラ44へ送信する。 Next, in step S84, the DC voltage monitor 46 determines whether the DC voltage for electrostatic adsorption is a predetermined threshold value, for example, a DC voltage monitor out of a value that is 2% to 5% higher than a certain value to be maintained during plasma etching. When it is determined whether or not the threshold value set in accordance with the detection accuracy of 46 is exceeded and it is determined that the electrostatic adsorption DC voltage is equal to or lower than the predetermined threshold value, the process returns to step S84, and the electrostatic adsorption DC voltage is If it is determined that the predetermined threshold value has been exceeded, a stop signal is immediately transmitted to the plasma generating high frequency power supply 41 via the signal line 48 (step S85). The detection accuracy of the DC voltage monitor 46 is also affected by noise, and if the noise that cannot be removed is large, the threshold value must be increased, but even in this case, the threshold value is increased by 5% of the fixed value. To do. Since the DC voltage monitor 46 monitors the DC voltage for electrostatic adsorption at intervals of several tens of microseconds, for example, at intervals of 80 microseconds, even if the substrate G is peeled off from the mounting table 21, it can be detected after several tens of microseconds. A stop signal can be transmitted in a short time after the substrate G is peeled off. When the DC voltage monitor 46 transmits a stop signal to the plasma generating high frequency power supply 41, a signal indicating that the electrostatic adsorption DC voltage has exceeded a predetermined threshold is sent to the device controller 44 via the signal line 49. Send.
次いで、停止信号を受信したプラズマ生成用高周波電源41は直ちにプラズマ生成用の高周波電力の供給を停止し(ステップS86)、処理空間Sからプラズマを消滅させる。その後、本処理を終了する。なお、処理空間Sからプラズマが消滅した後、基板Gに除電処理を施すことが好ましい。 Next, the high frequency power supply 41 for plasma generation that has received the stop signal immediately stops the supply of high frequency power for plasma generation (step S86), and the plasma is extinguished from the processing space S. Thereafter, this process is terminated. In addition, after the plasma is extinguished from the processing space S, it is preferable that the substrate G is subjected to a charge removal process.
図8の処理によれば、静電吸着用直流電圧が直流電圧モニタ46によって監視され、該静電吸着用直流電圧が所定の閾値を超えたとき、プラズマ生成用高周波電源41はプラズマ生成用の高周波電力の供給を停止する。載置台21に載置された基板Gと静電吸着部26の静電吸着電極27はコンデンサ45を形成するが、基板Gが載置台21から剥離すると、該コンデンサ45の静電容量Cが変化するために基板G及び静電吸着電極27の電位差が拡大して静電吸着用直流電圧が上昇する。 According to the process of FIG. 8, the DC voltage for electrostatic attraction is monitored by the DC voltage monitor 46, and when the DC voltage for electrostatic attraction exceeds a predetermined threshold, the high frequency power supply 41 for plasma generation is used for generating plasma. Stop supplying high-frequency power. The substrate G placed on the mounting table 21 and the electrostatic chucking electrode 27 of the electrostatic chucking unit 26 form a capacitor 45, but when the substrate G peels from the mounting table 21, the capacitance C of the capacitor 45 changes. Therefore, the potential difference between the substrate G and the electrostatic chucking electrode 27 is enlarged, and the electrostatic chucking DC voltage is increased.
また、基板Gと静電吸着電極27が形成するコンデンサ45の電荷量Qは一定であり、基板Gが載置台21から剥離してコンデンサ45の静電容量Cが変化すると、直ちに基板G及び静電吸着電極27の電位差も変化する。さらに、直流電圧モニタ46は数10μsec間隔で静電吸着用直流電圧を監視する。 Further, the charge amount Q of the capacitor 45 formed by the substrate G and the electrostatic chucking electrode 27 is constant, and immediately after the substrate G is peeled off from the mounting table 21 and the capacitance C of the capacitor 45 changes, the substrate G and The potential difference of the electroadsorption electrode 27 also changes. Further, the DC voltage monitor 46 monitors the electrostatic adsorption DC voltage at intervals of several tens of microseconds.
その結果、静電吸着用直流電圧を直流電圧モニタ46で監視することにより、基板Gの載置台21からの剥離を迅速に検知することができる。 As a result, by monitoring the electrostatic adsorption DC voltage with the DC voltage monitor 46, it is possible to quickly detect the separation of the substrate G from the mounting table 21.
図8の処理では、基板Gの載置台21からの剥離を検知したときにプラズマ生成用の高周波電力の供給を停止する。すなわち、基板Gの載置台21からの剥離を異常放電の発生の予兆ととらえ、該予兆が検知されたときにプラズマを消滅させるため、異常放電を検知した後にプラズマを消滅させる場合に比べ、基板G上のデバイス等が損傷するリスクを低減することができる。 In the process of FIG. 8, the supply of high-frequency power for plasma generation is stopped when the separation of the substrate G from the mounting table 21 is detected. That is, the separation of the substrate G from the mounting table 21 is regarded as a sign of the occurrence of abnormal discharge, and the plasma is extinguished when the sign is detected. The risk of damaging devices on G can be reduced.
また、図8の処理では、静電吸着用直流電圧が所定の閾値を超えたとき、直流電圧モニタ46は、装置コントローラ44を介さずにプラズマ生成用高周波電源41へ停止信号を信号線48を経由して直接送信する。これにより、所定の間隔、例えば、100msec毎にしか行われない装置コントローラ44における基板Gの剥離判断を待つこと無くプラズマ生成用の高周波電力の供給が停止されるため、当該高周波電力の供給の停止が遅れたために異常放電が生じるのを防止することができる。特に、停止信号を含む電気信号の伝達時間は、基板処理装置11が多少大型化しても変化しないため、プラズマ生成用高周波電源41による停止信号の受信が遅れることが無く、基板処理装置11が大型化しても迅速にプラズマ生成用の高周波電力の供給を停止することができる。 In the process of FIG. 8, when the DC voltage for electrostatic attraction exceeds a predetermined threshold, the DC voltage monitor 46 sends a stop signal to the plasma generating high frequency power supply 41 without passing through the device controller 44. Send directly via. Accordingly, the supply of the high frequency power for plasma generation is stopped without waiting for the peeling determination of the substrate G in the apparatus controller 44 performed only at a predetermined interval, for example, every 100 msec. It is possible to prevent abnormal discharge from occurring due to the delay. In particular, the transmission time of the electric signal including the stop signal does not change even if the substrate processing apparatus 11 is somewhat increased in size, so that the reception of the stop signal by the plasma generating high frequency power supply 41 is not delayed, and the substrate processing apparatus 11 is large. The supply of high-frequency power for plasma generation can be quickly stopped even if the change is made.
さらに、図8の処理では、静電吸着用直流電圧が所定の閾値を超えたとき、直流電圧モニタ46は静電吸着用直流電圧が所定の閾値を超えた旨の信号を装置コントローラ44へ送信するので、直流電圧モニタ46だけでなく、装置コントローラ44も基板Gの剥離判断を行うことができ、よって、停止信号に起因する高周波電力の供給の停止が妥当であるか否かを検証することができる。 Further, in the process of FIG. 8, when the electrostatic chucking DC voltage exceeds a predetermined threshold, the DC voltage monitor 46 transmits a signal to the device controller 44 that the electrostatic chucking DC voltage exceeds the predetermined threshold. Therefore, not only the DC voltage monitor 46 but also the apparatus controller 44 can determine whether the substrate G is peeled off. Therefore, it is verified whether or not the stop of the supply of the high frequency power due to the stop signal is appropriate. Can do.
以上、本発明について、上記実施の形態を用いて説明したが、本発明は上記実施の形態に限定されるものではない。 Although the present invention has been described using the above embodiment, the present invention is not limited to the above embodiment.
例えば、上述した図8の処理では、静電吸着用直流電圧が一度でも所定の閾値を超えると、基板Gが載置台21から剥離したと判定するが、静電吸着用直流電圧におけるノイズの影響を避けるために複数回ほど静電吸着用直流電圧が所定の閾値を超えたときに、始めて基板Gが載置台21から剥離したと判定してもよい。但し、この場合、ステップS84を繰り返すことになるが、ステップS84の繰り返し回数は、真に基板Gが載置台21から剥離して異常放電が開始するまでの時間内にステップS84の繰り返しが収まるように設定されなければならない。 For example, in the process of FIG. 8 described above, it is determined that the substrate G has been detached from the mounting table 21 once the electrostatic adsorption DC voltage exceeds a predetermined threshold, but the influence of noise on the electrostatic adsorption DC voltage is determined. In order to avoid this, it may be determined that the substrate G has peeled from the mounting table 21 for the first time when the electrostatic adsorption DC voltage exceeds a predetermined threshold value a plurality of times. However, in this case, step S84 is repeated, but the number of repetitions of step S84 is such that the repetition of step S84 falls within the time until the substrate G is truly detached from the mounting table 21 and abnormal discharge starts. Must be set to
また、基板処理装置11は、載置台21と対向する誘導結合アンテナ50を備え、誘導結合によって処理空間Sにおいてプラズマを生成したが、基板処理装置が、誘導結合アンテナ50の代わりに、下部電極としての載置台21と対向し、且つプラズマ生成用高周波電源41に接続された上部電極を備え、プラズマ生成用高周波電力が供給された上部電極と下部電極の容量結合によって処理空間Sにおいてプラズマを生成してもよく、また、下部電極としての載置台21に、バイアス用高周波電源とともにプラズマ生成用高周波電源を接続するとともに、上部電極を接地させて上部電極と下部電極の容量結合により、処理空間Sにおいてプラズマを生成してもよい。これらの容量結合の場合、上部電極はガス供給部22を兼ね、基板Gの全面を覆って処理ガスを供給するシャワーヘッドを構成してもよい。 The substrate processing apparatus 11 includes the inductive coupling antenna 50 facing the mounting table 21 and generates plasma in the processing space S by inductive coupling. However, the substrate processing apparatus serves as a lower electrode instead of the inductive coupling antenna 50. The plasma is generated in the processing space S by capacitive coupling of the upper electrode and the lower electrode to which the high-frequency power for plasma generation is supplied. In addition, a plasma generating high frequency power source is connected to a mounting table 21 as a lower electrode together with a bias high frequency power source, and the upper electrode is grounded and capacitive coupling between the upper electrode and the lower electrode is performed in the processing space S. Plasma may be generated. In the case of these capacitive couplings, the upper electrode may serve as the gas supply unit 22 and may constitute a shower head that covers the entire surface of the substrate G and supplies the processing gas.
さらに、基板処理装置11の基板剥離判定システム47では、直流電圧モニタ46と装置コントローラ44が別個に設けられたが、直流電圧モニタ46と装置コントローラ44を一体化、具体的には、装置コントローラ44が直流電圧モニタの機能を有していてもよい。この場合、装置コントローラ44の信号受信間隔と独立して静電吸着電極27の電位を監視することにより、プラズマ生成用高周波電源への迅速な停止信号の発信を行うことができ、異常放電の発生を確実に防止することができる。 Further, in the substrate peeling determination system 47 of the substrate processing apparatus 11, the DC voltage monitor 46 and the apparatus controller 44 are provided separately. However, the DC voltage monitor 46 and the apparatus controller 44 are integrated, specifically, the apparatus controller 44. May have a function of a DC voltage monitor. In this case, by monitoring the potential of the electrostatic adsorption electrode 27 independently of the signal reception interval of the device controller 44, a rapid stop signal can be transmitted to the plasma generating high-frequency power source, and abnormal discharge occurs. Can be reliably prevented.
また、本発明の目的は、上述した実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、装置コントローラ44に供給し、装置コントローラ44のCPUが記憶媒体に格納されたプログラムコードを読み出して実行することによっても達成される。 Another object of the present invention is to supply a storage medium storing software program codes for realizing the functions of the above-described embodiments to the apparatus controller 44, and the CPU of the apparatus controller 44 stores the program codes stored in the storage medium. It is also achieved by reading and executing.
この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施の形態の機能を実現することになり、プログラムコード及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。 In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.
また、プログラムコードを供給するための記憶媒体としては、例えば、RAM、NV−RAM、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD(DVD−ROM、DVD−RAM、DVD−RW、DVD+RW)等の光ディスク、磁気テープ、不揮発性のメモリカード、他のROM等の上記プログラムコードを記憶できるものであればよい。或いは、上記プログラムコードは、インターネット、商用ネットワーク、若しくはローカルエリアネットワーク等に接続される不図示の他のコンピュータやデータベース等からダウンロードすることにより装置コントローラ44に供給されてもよい。 Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD (DVD). -ROM, DVD-RAM, DVD-RW, DVD + RW) and other optical disks, magnetic tapes, non-volatile memory cards, other ROMs, etc., as long as they can store the program code. Alternatively, the program code may be supplied to the apparatus controller 44 by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.
また、装置コントローラ44が読み出したプログラムコードを実行することにより、上記実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、CPU上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部又は全部を行い、その処理によって上述した実施の形態の機能が実現される場合も含まれる。 Further, by executing the program code read by the device controller 44, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the CPU based on the instruction of the program code. Includes a case where the functions of the above-described embodiment are realized by performing part or all of the actual processing.
さらに、記憶媒体から読み出されたプログラムコードが、装置コントローラ44に挿入された機能拡張ボードや装置コントローラ44に接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した実施の形態の機能が実現される場合も含まれる。 Further, after the program code read from the storage medium is written to the memory provided in the function expansion board inserted into the device controller 44 or the function expansion unit connected to the device controller 44, the program code is read based on the instruction of the program code. Also included is a case where the CPU of the function expansion board or function expansion unit performs part or all of the actual processing and the functions of the above-described embodiments are realized by the processing.
上記プログラムコードの形態は、オブジェクトコード、インタプリタにより実行されるプログラムコード、OSに供給されるスクリプトデータ等の形態から成ってもよい。 The form of the program code may include an object code, a program code executed by an interpreter, script data supplied to the OS, and the like.
G 基板
11 基板処理装置
20 チャンバ
22 ガス供給部
23 サセプタ
24 バイアス用高周波電源
26 静電吸着部
27 静電吸着電極
28 直流電源
41 プラズマ生成用高周波電源
44 装置コントローラ
45 コンデンサ
G substrate 11 substrate processing apparatus 20 chamber 22 gas supply unit 23 susceptor 24 high frequency power supply 26 for bias electrostatic adsorption unit 27 electrostatic adsorption electrode 28 direct current power supply 41 high frequency power supply 44 for plasma generation device controller 45 capacitor
Claims (6)
前記基板処理装置は、前記静電吸着電極へ印加される直流電圧を監視する電圧監視装置と、前記基板処理装置の動作を制御する制御装置と、該制御装置を介さずに前記電圧監視装置及び前記高周波電源を接続する信号線とをさらに備え、
前記監視された直流電圧が所定の閾値を超えたとき、前記電圧監視装置は前記信号線を経由して前記高周波電源へ前記高周波電力の供給を停止するための停止信号を送信し、前記停止信号を受信した前記高周波電源は前記高周波電力の供給を停止することを特徴とする基板処理方法。 A processing chamber for accommodating a substrate and processing the substrate with plasma, a mounting table installed inside the processing chamber for mounting the substrate, and a substrate built in the mounting table into the mounting table described above A substrate processing method in a substrate processing apparatus, comprising: an electrostatic chucking electrode for electrostatic chucking; a DC power source for applying a DC voltage to the electrostatic chucking electrode; and a high-frequency power source for supplying high-frequency power for generating the plasma. There,
The substrate processing apparatus includes: a voltage monitoring apparatus that monitors a DC voltage applied to the electrostatic adsorption electrode; a control apparatus that controls the operation of the substrate processing apparatus; and the voltage monitoring apparatus that does not pass through the control apparatus; A signal line for connecting the high-frequency power source ,
When the monitored DC voltage exceeds a predetermined threshold, the voltage monitoring device transmits a stop signal for stopping the supply of the high-frequency power to the high-frequency power source via the signal line, and the stop signal The substrate processing method according to claim 1, wherein the high frequency power supply that has received the signal stops the supply of the high frequency power.
該他の高周波電源は前記載置台に接続されることを特徴とする請求項1又は2に記載の基板処理方法。 The substrate processing apparatus further includes another high frequency power source that generates a DC bias potential on the substrate,
The substrate processing method according to claim 1 or 2, characterized in that it is connected to the mounting table said other high-frequency power source.
前記高周波電源は前記誘導結合アンテナに接続され、
前記高周波電力が供給された前記誘導結合アンテナは、誘導結合によって前記プラズマを生成することを特徴とする請求項3記載の基板処理方法。 The substrate processing apparatus further includes an inductively coupled antenna,
The high frequency power source is connected to the inductively coupled antenna;
The substrate processing method according to claim 3 , wherein the inductively coupled antenna supplied with the high frequency power generates the plasma by inductive coupling.
前記高周波電源は前記上部電極に接続され、
前記高周波電力が供給されることにより、前記上部電極及び前記下部電極は容量結合によって前記プラズマを生成することを特徴とする請求項3記載の基板処理方法。 The substrate processing apparatus further includes an upper electrode facing the lower electrode while using the mounting table as a lower electrode,
The high frequency power source is connected to the upper electrode,
The substrate processing method according to claim 3, wherein the high-frequency power is supplied to cause the upper electrode and the lower electrode to generate the plasma by capacitive coupling.
前記静電吸着電極へ印加される直流電圧を監視する電圧監視装置と、
前記基板処理装置の動作を制御する制御装置と、
該制御装置を介さずに前記電圧監視装置及び前記高周波電源を接続する信号線とをさらに備え、
前記電圧監視装置によって監視された直流電圧が所定の閾値を超えたとき、前記電圧監視装置は前記信号線を経由して前記高周波電源へ前記高周波電力の供給を停止するための停止信号を送信し、前記停止信号を受信した前記高周波電源は前記高周波電力の供給を停止することを特徴とする基板処理装置。 A processing chamber for accommodating a substrate and processing the substrate with plasma, a mounting table installed inside the processing chamber for mounting the substrate, and a substrate built in the mounting table into the mounting table described above In a substrate processing apparatus comprising: an electrostatic adsorption electrode for electrostatic adsorption; a direct current power source for applying a direct current voltage to the electrostatic adsorption electrode; and a high frequency power source for supplying high frequency power for generating the plasma.
A voltage monitoring device for monitoring a DC voltage applied to the electrostatic adsorption electrode ;
A control device for controlling the operation of the substrate processing apparatus;
Anda the voltage monitoring device and a signal line connecting the high-frequency power source not through the control device,
When the DC voltage monitored by the voltage monitoring device exceeds a predetermined threshold, the voltage monitoring device transmits a stop signal for stopping the supply of the high-frequency power to the high-frequency power source via the signal line. The substrate processing apparatus, wherein the high frequency power supply that has received the stop signal stops the supply of the high frequency power.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015053349A JP6496579B2 (en) | 2015-03-17 | 2015-03-17 | Substrate processing method and substrate processing apparatus |
TW105107031A TWI686844B (en) | 2015-03-17 | 2016-03-08 | Substrate processing method and substrate processing device |
KR1020160027463A KR101918810B1 (en) | 2015-03-17 | 2016-03-08 | Substrate processing method and substrate processing apparatus |
CN201610153582.6A CN105990194B (en) | 2015-03-17 | 2016-03-17 | Substrate processing method and substrate processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015053349A JP6496579B2 (en) | 2015-03-17 | 2015-03-17 | Substrate processing method and substrate processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016174081A JP2016174081A (en) | 2016-09-29 |
JP6496579B2 true JP6496579B2 (en) | 2019-04-03 |
Family
ID=57009086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015053349A Active JP6496579B2 (en) | 2015-03-17 | 2015-03-17 | Substrate processing method and substrate processing apparatus |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6496579B2 (en) |
KR (1) | KR101918810B1 (en) |
CN (1) | CN105990194B (en) |
TW (1) | TWI686844B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6851270B2 (en) * | 2017-06-16 | 2021-03-31 | 東京エレクトロン株式会社 | Electrostatic adsorption method |
CN111066135B (en) * | 2017-08-28 | 2023-08-22 | 株式会社创意科技 | Electrostatic workpiece holding method and electrostatic workpiece holding system |
EP3748668B1 (en) * | 2018-01-29 | 2022-08-24 | ULVAC, Inc. | Reactive ion etching device |
JP7020311B2 (en) * | 2018-06-14 | 2022-02-16 | 東京エレクトロン株式会社 | Board processing equipment and board processing method |
JP7052584B2 (en) * | 2018-06-15 | 2022-04-12 | 東京エレクトロン株式会社 | Plasma processing equipment and plasma processing method |
JP7306083B2 (en) * | 2019-06-11 | 2023-07-11 | 日新電機株式会社 | Control device and control method |
KR102073789B1 (en) * | 2019-07-05 | 2020-02-05 | 김태화 | Pump back stream preventing structure for semiconductor manufacturing device |
KR20210006682A (en) | 2019-07-09 | 2021-01-19 | 세메스 주식회사 | Apparatus for treating substrate |
JP7515327B2 (en) * | 2020-07-13 | 2024-07-12 | 東京エレクトロン株式会社 | Substrate removal method and plasma processing apparatus |
CN111933565B (en) * | 2020-09-27 | 2021-01-29 | 北京京仪自动化装备技术有限公司 | Wafer adsorption force adjusting system and method for conveying manipulator and arm |
JP7519877B2 (en) | 2020-10-29 | 2024-07-22 | 東京エレクトロン株式会社 | Plasma processing method and plasma processing apparatus |
CN114582763A (en) * | 2022-05-06 | 2022-06-03 | 拓荆科技(北京)有限公司 | Detection method and device for adsorption state of wafer and controller |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06244146A (en) * | 1993-02-16 | 1994-09-02 | Tokyo Electron Ltd | Plasma treating device |
JP4282100B2 (en) * | 1997-08-20 | 2009-06-17 | 東京エレクトロン株式会社 | Method for removing object to be attracted in electrostatic chuck and electrostatic chuck |
JPH11260897A (en) * | 1998-03-12 | 1999-09-24 | Matsushita Electric Ind Co Ltd | Method and apparatus handling substrate, and vacuum chucking and inspecting method and apparatus used therefor |
US6492612B1 (en) | 1998-12-28 | 2002-12-10 | Tokyo Electron Limited | Plasma apparatus and lower electrode thereof |
JP4590031B2 (en) * | 2000-07-26 | 2010-12-01 | 東京エレクトロン株式会社 | Placement mechanism of workpiece |
JP2005072521A (en) * | 2003-08-28 | 2005-03-17 | Hitachi Ltd | Plasma processing apparatus |
JP5127147B2 (en) * | 2006-03-08 | 2013-01-23 | 東京エレクトロン株式会社 | Substrate adsorption / desorption method |
KR100690136B1 (en) * | 2006-05-29 | 2007-03-08 | 우범제 | Apparatus for removing residual charge of electrostatic chuck and method thereof |
JP5315942B2 (en) * | 2008-05-21 | 2013-10-16 | 東京エレクトロン株式会社 | Mounting table mechanism, plasma processing apparatus using the same, and method of applying voltage to electrostatic chuck |
JP5401343B2 (en) * | 2010-01-28 | 2014-01-29 | 株式会社日立ハイテクノロジーズ | Power supply circuit for electrostatic chuck and electrostatic chuck device |
JP5503503B2 (en) * | 2010-11-09 | 2014-05-28 | 東京エレクトロン株式会社 | Plasma processing equipment |
JP2013033726A (en) * | 2011-06-27 | 2013-02-14 | Tokyo Electron Ltd | Abnormality detection device and abnormality detection method |
US8927985B2 (en) | 2012-09-20 | 2015-01-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP5971144B2 (en) * | 2013-02-06 | 2016-08-17 | 東京エレクトロン株式会社 | Substrate processing apparatus and film forming method |
-
2015
- 2015-03-17 JP JP2015053349A patent/JP6496579B2/en active Active
-
2016
- 2016-03-08 KR KR1020160027463A patent/KR101918810B1/en active IP Right Grant
- 2016-03-08 TW TW105107031A patent/TWI686844B/en active
- 2016-03-17 CN CN201610153582.6A patent/CN105990194B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105990194B (en) | 2019-12-06 |
TW201705194A (en) | 2017-02-01 |
JP2016174081A (en) | 2016-09-29 |
KR20160111848A (en) | 2016-09-27 |
CN105990194A (en) | 2016-10-05 |
KR101918810B1 (en) | 2018-11-14 |
TWI686844B (en) | 2020-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6496579B2 (en) | Substrate processing method and substrate processing apparatus | |
KR20160140420A (en) | Plasma processing apparatus and substrate separation detecting method | |
JP5102500B2 (en) | Substrate processing equipment | |
US8236109B2 (en) | Component cleaning method and storage medium | |
JP6948822B2 (en) | Board processing device and board removal method | |
KR101697285B1 (en) | Chamber cleaning method | |
TWI721062B (en) | Plasma processing method and plasma processing device | |
TWI559359B (en) | Bypass capacitors for high voltage bias power in the mid frequency rf range | |
KR20070095241A (en) | Substrate processing apparatus, deposit monitoring apparatus, and deposit monitoring method | |
JP4922705B2 (en) | Plasma processing method and apparatus | |
US20070227663A1 (en) | Substrate processing apparatus and side wall component | |
JP5461759B2 (en) | Plasma processing apparatus, plasma processing method, and storage medium | |
KR101757818B1 (en) | Apparatus for monitoring pulsed radio frequency power, and apparatus for treating substrate comprising the same | |
JP6671464B2 (en) | Processing device maintenance control method and control device | |
KR20120046702A (en) | Substrate processing method and recoding medium for storing program execuing the same | |
KR20130038199A (en) | Substrate attachment and detachment method | |
JP4642809B2 (en) | Plasma processing method and plasma processing apparatus | |
US9925571B2 (en) | Method of cleaning substrate processing apparatus | |
US20090223450A1 (en) | Member of substrate processing apparatus and substrate processing apparatus | |
KR101124795B1 (en) | Plasma process apparatus, component within the chamber and method for detecting the life of the same | |
US20140209453A1 (en) | Method for predicting plasma micro-arcing, and method for controlling plasma process of production equipment using the same | |
JP4673601B2 (en) | Plasma processing equipment | |
JP5638682B2 (en) | Plasma processing apparatus, plasma processing method, and storage medium | |
JP5677482B2 (en) | Particle adhesion suppressing method and substrate processing apparatus | |
JP7020311B2 (en) | Board processing equipment and board processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190311 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6496579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |