JP7515327B2 - Substrate removal method and plasma processing apparatus - Google Patents

Substrate removal method and plasma processing apparatus Download PDF

Info

Publication number
JP7515327B2
JP7515327B2 JP2020120189A JP2020120189A JP7515327B2 JP 7515327 B2 JP7515327 B2 JP 7515327B2 JP 2020120189 A JP2020120189 A JP 2020120189A JP 2020120189 A JP2020120189 A JP 2020120189A JP 7515327 B2 JP7515327 B2 JP 7515327B2
Authority
JP
Japan
Prior art keywords
substrate
electrostatic chuck
plasma
gas
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020120189A
Other languages
Japanese (ja)
Other versions
JP2022024265A (en
Inventor
康史 宇津木
務 里吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020120189A priority Critical patent/JP7515327B2/en
Priority to KR1020210086345A priority patent/KR102616554B1/en
Priority to TW110124478A priority patent/TW202209487A/en
Priority to CN202110762462.7A priority patent/CN113936986A/en
Publication of JP2022024265A publication Critical patent/JP2022024265A/en
Application granted granted Critical
Publication of JP7515327B2 publication Critical patent/JP7515327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、基板離脱方法及びプラズマ処理装置に関する。 This disclosure relates to a substrate removal method and a plasma processing apparatus.

静電チャックの電極に正の直流電圧を印加して基板を静電チャックに吸着させ、基板に処理を行った後、基板を静電チャックから離脱させる際、除電用のプラズマを生成して基板をリフトピンにより上昇させることにより残留電荷を除去する除電処理が行われる。例えば、特許文献1は、基板を静電チャックから離脱させる際、プラズマの導電性を利用して基板表面の電荷を除去する除電処理を行うことを提案する。特許文献1では、プラズマの存在下においてリフトピンを上昇させ、基板を静電チャックから持ち上げる。 A positive DC voltage is applied to the electrode of the electrostatic chuck to attract the substrate to the electrostatic chuck, and after processing the substrate, when the substrate is to be detached from the electrostatic chuck, a discharging plasma is generated and the substrate is raised by lift pins to remove residual charge. For example, Patent Document 1 proposes that when the substrate is to be detached from the electrostatic chuck, a discharging process is performed that utilizes the conductivity of plasma to remove charge from the substrate surface. In Patent Document 1, the lift pins are raised in the presence of plasma to lift the substrate from the electrostatic chuck.

例えば、特許文献2は、基板を第1の圧力を有する処理ガスのプラズマによってプラズマ除電しながら、基板の裏面に第2の圧力を有する伝熱ガスを供給することを提案する。特許文献2では、除電処理において、プラズマ処理時に基板を静電吸着するために静電チャックの電極に印加した直流電圧とは反対の極性の直流電圧を該電極に印加する。 For example, Patent Document 2 proposes supplying a heat transfer gas having a second pressure to the back surface of the substrate while plasma-discharging the substrate with a processing gas having a first pressure. In Patent Document 2, in the charge-discharging process, a DC voltage of the opposite polarity to the DC voltage applied to the electrode of the electrostatic chuck to electrostatically attract the substrate during plasma processing is applied to the electrode.

特開2002-134489号公報JP 2002-134489 A 特開2015-95396号公報JP 2015-95396 A

本開示は、基板の静電吸着力の低下を抑制することができる基板離脱方法及びプラズマ処理装置を提供する。 This disclosure provides a substrate removal method and plasma processing apparatus that can suppress a decrease in the electrostatic adsorption force of the substrate.

本開示の一の態様によれば、処理容器の内部の静電チャックに埋設された吸着電極に直流電圧を印加することにより静電吸着された基板を前記静電チャックから離脱させる方法であって、プラズマ処理を施した前記基板が前記静電チャックに静電吸着された状態において、前記処理容器の内部に除電用ガスを供給し、該除電用ガスのプラズマを生成する工程と、前記除電用ガスのプラズマを維持しながら、リフトピンにより前記基板を上昇させて前記静電チャックから剥離し前記基板を前記静電チャックから離脱する工程と、前記基板を前記静電チャックから剥離した後に前記吸着電極に負の直流電圧を印加する工程と、を有する基板離脱方法が提供される。 According to one aspect of the present disclosure, there is provided a method for de-chucking an electrostatically attracted substrate from an electrostatic chuck by applying a DC voltage to an attracting electrode embedded in an electrostatic chuck inside a processing vessel, the method comprising: supplying a static elimination gas into the processing vessel while the substrate that has been subjected to plasma processing is electrostatically attracted to the electrostatic chuck, generating plasma of the static elimination gas; lifting the substrate with a lift pin while maintaining the plasma of the static elimination gas to de-chuck the substrate from the electrostatic chuck , and de -chucking the substrate from the electrostatic chuck; and applying a negative DC voltage to the attracting electrode after the substrate has been de-chucked from the electrostatic chuck .

一の側面によれば、基板の静電吸着力の低下を抑制することができる。 According to one aspect, it is possible to suppress a decrease in the electrostatic adsorption force of the substrate.

一実施形態に係るプラズマ処理装置を示す断面模式図である。1 is a schematic cross-sectional view showing a plasma processing apparatus according to an embodiment of the present invention; 従来の基板離脱方法の一例を示す図である。1A to 1C are diagrams illustrating an example of a conventional substrate removal method. 剥離帯電を説明するための図である。FIG. 1 is a diagram for explaining peeling electrification. 剥離帯電を説明するための図である。FIG. 1 is a diagram for explaining peeling electrification. 一実施形態に係る基板離脱方法を説明するための図である。1A to 1C are diagrams for explaining a substrate removal method according to an embodiment. 一実施形態に係る基板離脱方法を示すフローチャートである。1 is a flowchart illustrating a substrate removal method according to an embodiment.

以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Below, a description will be given of a mode for carrying out the present disclosure with reference to the drawings. In each drawing, the same components are given the same reference numerals, and duplicate descriptions may be omitted.

[プラズマ処理装置]
はじめに、図1を参照して、本開示の一実施形態に係るプラズマ処理装置100の一例について説明する。図1は、一実施形態に係るプラズマ処理装置100の一例を示す断面模式図である。
[Plasma Processing Apparatus]
First, an example of a plasma processing apparatus 100 according to an embodiment of the present disclosure will be described with reference to Fig. 1. Fig. 1 is a schematic cross-sectional view showing an example of the plasma processing apparatus 100 according to an embodiment.

プラズマ処理装置100は、FPD用の平面視矩形の基板(以下、単に「基板」という)Gに対して、各種の基板処理方法を実行する誘導結合型プラズマ(Inductive Coupled Plasma: ICP)処理装置である。基板の材料としては、主にガラスが用いられ、用途によっては透明の合成樹脂などが用いられることもある。ここで、基板処理には、エッチング処理や、CVD(Chemical Vapor Deposition)法を用いた成膜処理等が含まれる。FPDとしては、液晶ディスプレイ(Liquid Crystal Display: LCD)が例示される。エレクトロルミネセンス(Electro Luminescence: EL)、プラズマディスプレイパネル(Plasma Display Panel;PDP)等であってもよい。基板Gは、その表面に回路がパターニングされる形態の他、支持基板も含まれる。また、FPD用基板の平面寸法は世代の推移と共に大規模化している。プラズマ処理装置100によって処理される基板Gの平面寸法は、例えば、第6世代の約1500mm×1800mm程度の寸法から、第10.5世代の3000mm×3400mm程度の寸法までを少なくとも含む。また、基板Gの厚みは0.2mm乃至数mm程度である。 The plasma processing apparatus 100 is an inductively coupled plasma (ICP) processing apparatus that performs various substrate processing methods on a rectangular substrate (hereinafter simply referred to as "substrate") G for FPDs in plan view. The substrate is mainly made of glass, and transparent synthetic resin may be used depending on the application. Here, the substrate processing includes etching processing and film formation processing using a chemical vapor deposition (CVD) method. An example of an FPD is a liquid crystal display (LCD). It may also be an electroluminescence (EL) or plasma display panel (PDP). The substrate G includes a support substrate as well as a form in which a circuit is patterned on its surface. In addition, the planar dimensions of FPD substrates are becoming larger with each generation. The planar dimensions of the substrate G processed by the plasma processing apparatus 100 include at least dimensions ranging from approximately 1500 mm x 1800 mm for the sixth generation to approximately 3000 mm x 3400 mm for the 10.5th generation. The thickness of the substrate G is approximately 0.2 mm to several mm.

プラズマ処理装置100は、直方体状の箱型の処理容器10と、処理容器10内に配設されて基板Gが載置される平面視矩形の外形の基板載置台60と、制御部90とを有する。処理容器10は、円筒状の箱型や楕円筒状の箱型などの形状であってもよく、この形態では、基板載置台60も円形もしくは楕円形となり、基板載置台60に載置される基板Gも円形等になる。 The plasma processing apparatus 100 has a rectangular parallelepiped box-shaped processing vessel 10, a substrate mounting stage 60 with a rectangular outer shape in a plan view that is disposed in the processing vessel 10 and on which a substrate G is mounted, and a control unit 90. The processing vessel 10 may be shaped as a cylindrical box or an elliptical cylindrical box, and in this form, the substrate mounting stage 60 is also circular or elliptical, and the substrate G mounted on the substrate mounting stage 60 is also circular, etc.

処理容器10は誘電体板11により上下2つの空間に区画されており、上方空間であるアンテナ室は上チャンバ12により形成され、下方空間である処理室Sは下チャンバ13により形成される。処理容器10はアルミニウム等の金属により形成されており、誘電体板11はアルミナ(Al)等のセラミックスや石英により形成されている。 The processing vessel 10 is divided into two spaces, an upper space and an lower space, by a dielectric plate 11, with the upper space, or antenna chamber, being formed by an upper chamber 12, and the lower space, or processing chamber S, being formed by a lower chamber 13. The processing vessel 10 is made of a metal such as aluminum, and the dielectric plate 11 is made of a ceramic such as alumina ( Al2O3 ) or quartz.

処理容器10において、下チャンバ13と上チャンバ12の境界となる位置には矩形環状の支持枠14が処理容器10の内側に突設するようにして配設されており、支持枠14に誘電体板11が載置されている。処理容器10は、接地線13eにより接地されている。 In the processing vessel 10, a rectangular ring-shaped support frame 14 is disposed at the boundary between the lower chamber 13 and the upper chamber 12 so as to protrude into the inside of the processing vessel 10, and a dielectric plate 11 is placed on the support frame 14. The processing vessel 10 is grounded by a ground wire 13e.

下チャンバ13の側壁13aには、下チャンバ13に対して基板Gを搬出入するための搬出入口13bが開設されており、搬出入口13bはゲートバルブ20により開閉自在となっている。下チャンバ13には搬送機構を内包する搬送室(いずれも図示せず)が隣接しており、ゲートバルブ20を開閉制御し、搬送機構にて搬出入口13bを介して基板Gの搬出入が行われる。 A loading/unloading port 13b is provided in the side wall 13a of the lower chamber 13 for loading and unloading the substrate G into and from the lower chamber 13, and the loading/unloading port 13b can be opened and closed by a gate valve 20. A transfer chamber (neither shown) containing a transfer mechanism is adjacent to the lower chamber 13, and the gate valve 20 is controlled to open and close, and the substrate G is loaded and unloaded by the transfer mechanism through the loading/unloading port 13b.

また、下チャンバ13の有する底板13dには複数の排気口13fが開設されている。排気口13fにはガス排気管51が接続され、ガス排気管51は圧力制御バルブ52を介して排気装置53に接続されている。ガス排気管51、圧力制御バルブ52及び排気装置53により、ガス排気部50が形成される。排気装置53はターボ分子ポンプ等の真空ポンプを有し、プロセス中に下チャンバ13内を所定の真空度まで真空引き自在となっている。 The lower chamber 13 has a bottom plate 13d with multiple exhaust ports 13f. A gas exhaust pipe 51 is connected to the exhaust port 13f, and the gas exhaust pipe 51 is connected to an exhaust device 53 via a pressure control valve 52. The gas exhaust pipe 51, the pressure control valve 52, and the exhaust device 53 form a gas exhaust section 50. The exhaust device 53 has a vacuum pump such as a turbo molecular pump, and can freely evacuate the inside of the lower chamber 13 to a predetermined vacuum level during the process.

誘電体板11の下面において、誘電体板11を支持するための支持梁が設けられており、支持梁はシャワーヘッド30を兼ねている。シャワーヘッド30は、アルミニウム等の金属により形成されており、陽極酸化による表面処理が施されていてよい。シャワーヘッド30内には、水平方向に延設するガス流路31が形成されている。ガス流路31には、下方に延設してシャワーヘッド30の下方にある処理室Sに臨むガス吐出孔32が連通している。 A support beam for supporting the dielectric plate 11 is provided on the underside of the dielectric plate 11, and the support beam also serves as a shower head 30. The shower head 30 is made of a metal such as aluminum, and may be subjected to a surface treatment by anodization. A gas flow path 31 extending horizontally is formed within the shower head 30. The gas flow path 31 is connected to a gas discharge hole 32 that extends downward and faces the processing chamber S below the shower head 30.

誘電体板11の上面にはガス流路31に連通するガス導入管45が接続されている。ガス導入管45は上チャンバ12の天井12aに開設されている供給口12bを気密に貫通し、ガス導入管45と気密に結合されたガス供給管41を介して処理ガス供給源44に接続されている。ガス供給管41の途中位置には開閉バルブ42とマスフローコントローラのような流量制御器43が介在している。ガス導入管45、ガス供給管41、開閉バルブ42、流量制御器43及び処理ガス供給源44により、処理ガス供給部40が形成される。処理ガス供給部40から供給される処理ガスがガス供給管41及びガス導入管45を介してシャワーヘッド30に供給され、ガス流路31及びガス吐出孔32を介して処理室Sに吐出される。 A gas inlet pipe 45 communicating with the gas flow path 31 is connected to the upper surface of the dielectric plate 11. The gas inlet pipe 45 airtightly penetrates the supply port 12b opened in the ceiling 12a of the upper chamber 12, and is connected to the processing gas supply source 44 via a gas supply pipe 41 airtightly coupled to the gas inlet pipe 45. An opening/closing valve 42 and a flow rate controller 43 such as a mass flow controller are interposed in the middle of the gas supply pipe 41. The gas inlet pipe 45, the gas supply pipe 41, the opening/closing valve 42, the flow rate controller 43, and the processing gas supply source 44 form a processing gas supply unit 40. The processing gas supplied from the processing gas supply unit 40 is supplied to the shower head 30 via the gas supply pipe 41 and the gas inlet pipe 45, and is discharged to the processing chamber S via the gas flow path 31 and the gas discharge hole 32.

アンテナ室を形成する上チャンバ12内には、高周波アンテナ15が配設されている。高周波アンテナ15は、銅等の導電性の金属から形成されるアンテナ線15aを、環状もしくは渦巻き状に巻装することにより形成される。例えば、環状のアンテナ線15aを多重に配設してもよい。 A high-frequency antenna 15 is disposed within the upper chamber 12 that forms the antenna room. The high-frequency antenna 15 is formed by winding an antenna wire 15a made of a conductive metal such as copper in a circular or spiral shape. For example, multiple circular antenna wires 15a may be disposed.

アンテナ線15aの端子には上チャンバ12の上方に延設する給電部材16が接続されており、給電部材16の上端には給電線17が接続され、給電線17はインピーダンス整合を行う整合器18を介して高周波電源19に接続されている。高周波アンテナ15に対して高周波電源19から例えば10MHz~15MHzの高周波電力が印加されることにより、下チャンバ13内に誘導電界が形成される。この誘導電界により、シャワーヘッド30から処理室Sに供給された処理ガスがプラズマ化されて誘導結合型プラズマが生成され、プラズマ中のイオンや中性ラジカル等が基板Gに提供される。高周波電源19はプラズマ発生用のソース源であり、基板載置台60に接続されている高周波電源73は、発生したイオンを引き付けて運動エネルギを付与するバイアス源となる。このように、イオンソース源には誘導結合を利用してプラズマを生成し、別電源であるバイアス源を基板載置台60に接続してイオンエネルギの制御を行う。これにより、プラズマの生成とイオンエネルギの制御が独立して行われ、プロセスの自由度を高めることができる。高周波電源19から出力される高周波電力の周波数は、0.1乃至500MHzの範囲内で設定されるのが好ましい。 A power supply member 16 extending above the upper chamber 12 is connected to the terminal of the antenna line 15a, and a power supply line 17 is connected to the upper end of the power supply member 16, which is connected to a high-frequency power supply 19 via a matching device 18 that performs impedance matching. When high-frequency power of, for example, 10 MHz to 15 MHz is applied to the high-frequency antenna 15 from the high-frequency power supply 19, an induced electric field is formed in the lower chamber 13. This induced electric field converts the processing gas supplied from the shower head 30 to the processing chamber S into plasma, generating an inductively coupled plasma, and ions and neutral radicals in the plasma are provided to the substrate G. The high-frequency power supply 19 is a source source for generating plasma, and the high-frequency power supply 73 connected to the substrate mounting table 60 is a bias source that attracts the generated ions and imparts kinetic energy. In this way, the ion source generates plasma using inductive coupling, and a bias source, which is a separate power source, is connected to the substrate mounting table 60 to control the ion energy. This allows the generation of plasma and the control of ion energy to be performed independently, increasing the degree of freedom of the process. The frequency of the high-frequency power output from the high-frequency power source 19 is preferably set within the range of 0.1 to 500 MHz.

基板載置台60は、基材63と、基材63の上面63aに形成されている静電チャック66とを有する。基材63の平面視形状は矩形であり、基板載置台60に載置される基板Gと同程度の平面寸法を有し、長辺の長さは1800mm乃至3400mm程度であり、短辺の長さは約1500mm乃至3000mm程度の寸法に設定できる。この平面寸法に対して、基材63の厚みは、例えば50mm乃至100mm程度となり得る。基材63は、ステンレス鋼やアルミニウム、アルミニウム合金等により形成される。基材63には、矩形平面の全領域をカバーするように蛇行した温調媒体流路62aが設けられている。なお、温調媒体流路62aは、例えば静電チャック66に設けられてもよい。また、基材63が、図示例のように一部材による単体でなく、二部材の積層体で形成されてもよい。 The substrate mounting table 60 has a base material 63 and an electrostatic chuck 66 formed on the upper surface 63a of the base material 63. The base material 63 has a rectangular shape in plan view and has planar dimensions similar to those of the substrate G mounted on the substrate mounting table 60, with the long side length being about 1800 mm to 3400 mm and the short side length being about 1500 mm to 3000 mm. For these planar dimensions, the thickness of the base material 63 can be, for example, about 50 mm to 100 mm. The base material 63 is formed of stainless steel, aluminum, aluminum alloy, etc. The base material 63 is provided with a temperature control medium flow path 62a that meanders to cover the entire area of the rectangular plane. The temperature control medium flow path 62a may be provided, for example, in the electrostatic chuck 66. The base material 63 may also be formed of a laminate of two members, rather than a single member as in the illustrated example.

温調媒体流路62aの両端には、温調媒体流路62aに対して温調媒体が供給される送り配管62bと、温調媒体流路62aを流通して昇温された温調媒体が排出される戻り配管62cとが連通している。送り配管62bと戻り配管62cにはそれぞれ、送り流路82と戻り流路83が連通しており、送り流路82と戻り流路83はチラー81に連通している。チラー81は、温調媒体の温度や吐出流量を制御する本体部と、温調媒体を圧送するポンプとを有する(いずれも図示せず)。なお、温調媒体としては冷媒が適用され、この冷媒には、ガルデン(登録商標)やフロリナート(登録商標)等が適用される。図示例の温調形態は、基材63に温調媒体を流通させる形態であるが、基材63がヒータ等を内蔵し、ヒータにより温調する形態であってもよいし、温調媒体とヒータの双方により温調する形態であってもよい。また、ヒータの代わりに、高温の温調媒体を流通させることにより加熱を伴う温調を行ってもよい。なお、抵抗体であるヒータは、タングステンやモリブデン、もしくはこれらの金属のいずれか一種とアルミナやチタン等との化合物から形成される。また、図示例は、基材63に温調媒体流路62aが形成されているが、例えば静電チャック66が温調媒体流路を有していてもよい。 At both ends of the temperature control medium flow path 62a, a feed pipe 62b through which the temperature control medium is supplied to the temperature control medium flow path 62a and a return pipe 62c through which the temperature control medium that has been heated by flowing through the temperature control medium flow path 62a is discharged are connected. The feed pipe 62b and the return pipe 62c are connected to a feed flow path 82 and a return flow path 83, respectively, and the feed flow path 82 and the return flow path 83 are connected to a chiller 81. The chiller 81 has a main body that controls the temperature and discharge flow rate of the temperature control medium, and a pump that pressurizes the temperature control medium (both not shown). A refrigerant is used as the temperature control medium, and Galden (registered trademark) or Fluorinert (registered trademark) is used as the refrigerant. The temperature control form in the illustrated example is a form in which the temperature control medium is circulated through the substrate 63, but the substrate 63 may have a built-in heater or the like and the temperature may be controlled by the heater, or the temperature may be controlled by both the temperature control medium and the heater. Also, instead of using a heater, a high-temperature temperature control medium may be circulated to control the temperature by heating. The heater, which is a resistor, is made of tungsten or molybdenum, or a compound of one of these metals with alumina, titanium, or the like. In the illustrated example, the temperature control medium flow path 62a is formed in the base material 63, but for example, the electrostatic chuck 66 may have a temperature control medium flow path.

下チャンバ13の底板13dの上には、絶縁材料により形成されて内側に段部を有する箱型の台座68が固定されており、台座68の段部の上に基板載置台60が載置される。基材63の上面には、基板Gが直接載置される静電チャック66が形成されている。静電チャック66は、アルミナ等のセラミックスを溶射して形成される誘電体被膜であるセラミックス層64と、セラミックス層64の内部に埋設されていて静電吸着機能を有する導電層の吸着電極65とを有する。吸着電極65は、給電線74及びスイッチ76を介して直流電源75に接続されている。制御部90により、スイッチ76がオンされると、直流電源75から吸着電極65に直流電圧が印加されることによりクーロン力が発生する。このクーロン力により、基板Gが静電チャック66に静電吸着され、基材63の上面に載置された状態で保持される。また、スイッチ76がオフされ、給電線74から分岐したグランドラインに介在するスイッチ77がオンされると、吸着電極65に溜まった電荷がグランドに流れる。このように、基板載置台60は、基板Gを載置する下部電極を形成する。 A box-shaped pedestal 68 made of an insulating material and having a step on the inside is fixed on the bottom plate 13d of the lower chamber 13, and the substrate mounting table 60 is placed on the step of the pedestal 68. An electrostatic chuck 66 on which the substrate G is directly placed is formed on the upper surface of the base material 63. The electrostatic chuck 66 has a ceramic layer 64, which is a dielectric coating formed by spraying ceramics such as alumina, and an adsorption electrode 65, which is a conductive layer embedded inside the ceramic layer 64 and has an electrostatic adsorption function. The adsorption electrode 65 is connected to a DC power source 75 via a power supply line 74 and a switch 76. When the control unit 90 turns on the switch 76, a DC voltage is applied from the DC power source 75 to the adsorption electrode 65, generating a Coulomb force. Due to this Coulomb force, the substrate G is electrostatically adsorbed to the electrostatic chuck 66 and held in a state where it is placed on the upper surface of the base material 63. Also, when switch 76 is turned off and switch 77, which is interposed in the ground line branched off from power supply line 74, is turned on, the charge accumulated in chucking electrode 65 flows to ground. In this way, substrate mounting table 60 forms a lower electrode on which substrate G is placed.

基材63には熱電対等の温度センサが配設されており、温度センサによるモニター情報は、制御部90に随時送信される。制御部90は、送信された温度のモニター情報に基づいて、基材63及び基板Gの温調制御を実行する。より具体的には、制御部90により、チラー81から送り流路82に供給される温調媒体の温度や流量が調整される。そして、温度調整や流量調整が行われた温調媒体が温調媒体流路62aに循環されることにより、基板載置台60の温調制御が実行される。なお、熱電対等の温度センサは、例えば静電チャック66に配設されてもよい。 A temperature sensor such as a thermocouple is provided on the substrate 63, and the monitor information from the temperature sensor is sent to the control unit 90 at any time. The control unit 90 performs temperature control of the substrate 63 and the substrate G based on the transmitted temperature monitor information. More specifically, the control unit 90 adjusts the temperature and flow rate of the temperature control medium supplied from the chiller 81 to the feed flow path 82. The temperature control medium that has been temperature-adjusted and flow-adjusted is then circulated through the temperature control medium flow path 62a, thereby performing temperature control of the substrate mounting table 60. The temperature sensor such as a thermocouple may be provided, for example, in the electrostatic chuck 66.

静電チャック66の外周であって台座68の上面には、矩形枠状のフォーカスリング69が載置され、フォーカスリング69の上面の方が静電チャック66の上面よりも低くなるよう設定されている。フォーカスリング69は、アルミナ等のセラミックスもしくは石英等から形成される。 A rectangular frame-shaped focus ring 69 is placed on the outer periphery of the electrostatic chuck 66, on the upper surface of the pedestal 68, so that the upper surface of the focus ring 69 is lower than the upper surface of the electrostatic chuck 66. The focus ring 69 is made of ceramics such as alumina or quartz.

基材63の下面には、給電部材70が接続されている。給電部材70の下端には給電線71が接続されており、給電線71はインピーダンス整合を行う整合器72を介してバイアス源である高周波電源73に接続されている。基板載置台60に対して高周波電源73から例えば2MHz~6MHzの高周波電力が印加されることにより、プラズマ発生用のソース源である高周波電源19にて生成されたイオンを基板Gに引き付けることができる。従って、プラズマエッチング処理においては、エッチングレートとエッチング選択比を共に高めることが可能になる。 A power supply member 70 is connected to the underside of the substrate 63. A power supply line 71 is connected to the lower end of the power supply member 70, and the power supply line 71 is connected to a high-frequency power supply 73, which is a bias source, via a matcher 72 that performs impedance matching. By applying high-frequency power of, for example, 2 MHz to 6 MHz from the high-frequency power supply 73 to the substrate mounting table 60, ions generated by the high-frequency power supply 19, which is a source for generating plasma, can be attracted to the substrate G. Therefore, in the plasma etching process, it is possible to increase both the etching rate and the etching selectivity.

基板載置台60の内部には、外部の図示しない搬送アームとの間で基板Gの受け渡しを行うために基板Gを昇降させるリフトピン78が複数、例えば12本設けられている。図1では簡略化し、2本のリフトピン78が図示されている。複数のリフトピン78は、基板載置台60を貫通し、連結部材を介して伝えられるモータの動力によって上下動する。処理容器の外部へ向けて貫通するリフトピン78の貫通孔には、底部ベローズが設けられ(図示せず)、処理容器内の真空側と大気方との間の気密を保持する。 Inside the substrate mounting table 60, there are provided a number of lift pins 78 (for example, 12) that raise and lower the substrate G in order to transfer the substrate G between the substrate mounting table 60 and an external transport arm (not shown). For simplicity, two lift pins 78 are shown in FIG. 1. The multiple lift pins 78 penetrate the substrate mounting table 60 and move up and down by the power of a motor transmitted via a connecting member. A bottom bellows (not shown) is provided in the through hole of the lift pin 78 that penetrates toward the outside of the processing vessel, maintaining airtightness between the vacuum side and the atmosphere inside the processing vessel.

制御部90は、プラズマ処理装置100の各構成部、例えば、チラー81、高周波電源19,73、直流電源75、処理ガス供給部40、ガス排気部50等の動作を制御する。制御部90は、CPU(Central Processing Unit)及びROM(Read Only Memory)、RAM(Random Access Memory)等のメモリを有する。CPUは、メモリの記憶領域に格納されたレシピ(プロセスレシピ)に従い、所定の処理を実行する。レシピには、プロセス条件に対するプラズマ処理装置100の制御情報が設定されている。制御情報には、例えば、ガス流量や処理容器10内の圧力、処理容器10内の温度や基材63の温度、プロセス時間等が含まれる。 The control unit 90 controls the operation of each component of the plasma processing apparatus 100, such as the chiller 81, the high frequency power supplies 19 and 73, the DC power supply 75, the processing gas supply unit 40, and the gas exhaust unit 50. The control unit 90 has a CPU (Central Processing Unit) and memories such as a ROM (Read Only Memory) and a RAM (Random Access Memory). The CPU executes a predetermined process according to a recipe (process recipe) stored in a storage area of the memory. The recipe contains control information for the plasma processing apparatus 100 with respect to the process conditions. The control information includes, for example, the gas flow rate, the pressure in the processing vessel 10, the temperature in the processing vessel 10, the temperature of the substrate 63, and the process time.

レシピ及び制御部90が適用するプログラムは、例えば、ハードディスクやコンパクトディスク、光磁気ディスク等に記憶されてもよい。また、レシピ等は、CD-ROM、DVD、メモリカード等の可搬性のコンピュータによる読み取りが可能な記憶媒体に収容された状態で制御部90にセットされ、読み出される形態であってもよい。制御部90はその他、コマンドの入力操作等を行うキーボードやマウス等の入力装置、プラズマ処理装置100の稼働状況を可視化して表示するディスプレイ等の表示装置、及びプリンタ等の出力装置といったユーザーインターフェイスを有している。 The recipe and the program applied by the control unit 90 may be stored, for example, on a hard disk, a compact disk, a magneto-optical disk, etc. The recipe, etc. may be stored in a portable computer-readable storage medium such as a CD-ROM, DVD, or memory card and set in the control unit 90 and read out. The control unit 90 also has user interfaces such as input devices such as a keyboard or mouse for inputting commands, a display device such as a display that visualizes and displays the operating status of the plasma processing device 100, and an output device such as a printer.

[従来の基板離脱方法と剥離帯電]
次に、従来の基板離脱方法と剥離帯電について、図2~図4を参照しながら説明する。図2は、従来の基板離脱方法の一例を示す図である。図3及び図4は、剥離帯電を説明するための図である。
[Conventional substrate removal method and peeling electrification]
Next, a conventional substrate detachment method and peeling electrification will be described with reference to Fig. 2 to Fig. 4. Fig. 2 is a diagram showing an example of a conventional substrate detachment method. Fig. 3 and Fig. 4 are diagrams for explaining peeling electrification.

従来の基板離脱方法では、まず図2(a)に示すように、吸着電極65は、給電線74を介して直流電源75に接続されている。制御部90により、スイッチ76がオンに制御されると、直流電源75から吸着電極65に直流電圧が印加される。これによりクーロン力が発生し、基板Gが静電チャック66の上面に静電吸着され、保持される。図2(a)の例では、プラズマP1による基板Gのエッチング時、直流電源75から吸着電極65に正の直流電圧が印加され、吸着電極65上に正電荷が発生し、基板G上には負電荷が生じる。しかしながら、これに限らず、直流電源75から吸着電極65に負の直流電圧が印加された場合には、吸着電極65上に負電荷が発生し、基板G上には正電荷が生じる。 In the conventional substrate removal method, first, as shown in FIG. 2(a), the adsorption electrode 65 is connected to a DC power supply 75 via a power supply line 74. When the control unit 90 controls the switch 76 to be turned on, a DC voltage is applied from the DC power supply 75 to the adsorption electrode 65. This generates a Coulomb force, and the substrate G is electrostatically adsorbed and held on the upper surface of the electrostatic chuck 66. In the example of FIG. 2(a), when the substrate G is etched by the plasma P1, a positive DC voltage is applied from the DC power supply 75 to the adsorption electrode 65, a positive charge is generated on the adsorption electrode 65, and a negative charge is generated on the substrate G. However, this is not limited to this, and when a negative DC voltage is applied from the DC power supply 75 to the adsorption electrode 65, a negative charge is generated on the adsorption electrode 65, and a positive charge is generated on the substrate G.

基板Gをエッチングする際、反応生成物が発生する。反応生成物は、基板Gと静電チャック66との間に入り込み、静電チャック66の基板載置面上に付着する。基板Gの処理回数を重ねるうちに反応生成物は、基板載置面上に堆積する。以下、堆積した反応生成物をデポRとする。 When substrate G is etched, reaction products are generated. The reaction products enter between substrate G and electrostatic chuck 66 and adhere to the substrate mounting surface of electrostatic chuck 66. As substrate G is processed multiple times, the reaction products accumulate on the substrate mounting surface. Hereinafter, the accumulated reaction products are referred to as deposit R.

図3は、デポRが基板載置面上に堆積している状態を示す。図3の左図は、直流電源75から吸着電極65に直流電圧が印加され、基板Gが静電チャック66の上面に静電吸着されている状態である。この状態で基板Gにプラズマによるエッチングが行われる。 Figure 3 shows the state in which the deposit R has accumulated on the substrate mounting surface. The left diagram in Figure 3 shows the state in which a DC voltage is applied from the DC power supply 75 to the adsorption electrode 65, and the substrate G is electrostatically adsorbed to the upper surface of the electrostatic chuck 66. In this state, the substrate G is etched by plasma.

図3の右図は、エッチング終了後、直流電源75から吸着電極65への直流電圧の印加を停止し、リフトピン78を上昇させて基板Gを静電チャック66から離脱させている状態である。その際、除電用ガスを供給し、除電用ガスのプラズマPを生成し、プラズマPの導電性を利用して基板Gの表面の電荷を除く除電(以下、「プラズマ除電」ともいう。)を行う。プラズマ除電では、プラズマの存在下においてリフトピン78を上昇させ、基板Gを静電チャック66から持ち上げる。 The right diagram in Figure 3 shows the state after etching is completed, when the application of DC voltage from the DC power supply 75 to the attraction electrode 65 is stopped and the lift pins 78 are raised to detach the substrate G from the electrostatic chuck 66. At this time, a discharge gas is supplied, plasma P of the discharge gas is generated, and discharge (hereinafter also referred to as "plasma discharge") is performed to remove the charge on the surface of the substrate G using the conductivity of the plasma P. In the plasma discharge, the lift pins 78 are raised in the presence of plasma to lift the substrate G from the electrostatic chuck 66.

基板Gのエッチングに使用するエッチングガスは、フッ素を含有する。また、基板Gのエッチングでは、基板Gに形成された有機材料のマスクを介してマスクの下地の絶縁膜をエッチングする。絶縁膜としては、SiO膜、SiN膜等がある。エッチング時にマスクの一部が削られる。この結果、静電チャック66の基板載置面上に堆積するデポRは、エッチングガス中のフッ素及びマスクに含まれる炭素を含む。 The etching gas used for etching the substrate G contains fluorine. In addition, when etching the substrate G, an insulating film underlying the mask is etched through a mask made of an organic material formed on the substrate G. Examples of the insulating film include a SiO2 film and a SiN film. Part of the mask is removed during etching. As a result, the deposit R deposited on the substrate mounting surface of the electrostatic chuck 66 contains fluorine in the etching gas and carbon contained in the mask.

図4は、物質間の摩擦帯電列を示す。矢印の下に記載された物質は、矢印の左に行くほど正(+)に帯電し易く、右に行くほど負(-)に帯電し易いことを示す。たとえば、「ガラス」と「ポリテトラフルオロエチレン(四フッ化エチレン(CF2=CF2))」の組合せでは、「ガラス」は正(+)に帯電し易く、「ポリテトラフルオロエチレン」は、負(-)に帯電し易い。また、いずれの物質とも摩擦帯電列で示されている同じ極性側、例えば左側の正(+)に近い位置にある場合、相対的に左側にある物質が正(+)に帯電し、相対的に右側にある物質が負(-)に帯電する。例えば、「ガラス」と「毛皮」の組合せでは、「ガラス」が正(+)に帯電し、「毛皮」が負(-)に帯電する。剥離帯電は接触した2つの物質を引き離すときに夫々の物質が帯電することにより発生するものであり、その時に発生する帯電の極性は上記の摩擦帯電列に示された物質と極性との関係に基づく。 FIG. 4 shows the triboelectric series between materials. The materials written under the arrows are more likely to be positively (+) charged as they move to the left of the arrow, and more likely to be negatively (-) charged as they move to the right. For example, in the combination of "glass" and "polytetrafluoroethylene (tetrafluoroethylene (CF 2 =CF 2 )),""glass" is more likely to be positively (+) charged, and "polytetrafluoroethylene" is more likely to be negatively (-). In addition, when both materials are on the same polarity side shown in the triboelectric series, for example, close to the positive (+) on the left side, the material relatively to the left will be positively (+) charged, and the material relatively to the right will be negatively (-). For example, in the combination of "glass" and "fur,""glass" will be positively (+) charged, and "fur" will be negatively (-). Peeling electrification occurs when two contacting materials are pulled apart, and the polarity of the electrification that occurs at that time is based on the relationship between the materials and polarities shown in the triboelectric series above.

以上から、図3に示すように、直流電源75から吸着電極65に印加する直流電圧を停止し、基板G上の負電荷を、プラズマを介してグランドに流しながら除電し、リフトピン78を上昇させたとき、基板GとデポRとの間に剥離帯電が生じる。図3の基板離脱時には、基板Gの「ガラス」と基板載置面上のCとFとを含む「デポR」との間の剥離帯電であるから、図4に示すように基板Gは正に帯電し、デポRは負に帯電する。ここで「デポR」は必ずしもポリテトラフルオロエチレンであるとは限らないが、ともにCとFを含む組成であることから、同様の電気的性質を有するであろうと推察される。 From the above, as shown in FIG. 3, when the DC voltage applied from the DC power supply 75 to the chucking electrode 65 is stopped, the negative charge on the substrate G is discharged while flowing to ground via plasma, and the lift pin 78 is raised, peeling electrification occurs between the substrate G and the deposit R. When the substrate is released in FIG. 3, peeling electrification occurs between the "glass" of the substrate G and the "depot R" containing C and F on the substrate placement surface, so that the substrate G is positively charged and the deposit R is negatively charged as shown in FIG. 4. Here, the "depot R" is not necessarily polytetrafluoroethylene, but since both have compositions containing C and F, it is presumed that they will have similar electrical properties.

静電チャック66に残留する残留電荷と剥離帯電によるデポR上の負電荷とは発生原因が異なる。静電チャック66に残留する残留電荷は、直流電源75から吸着電極65に印加する直流電圧によって生じ、吸着電極65に印加する直流電圧の正負によって残留電荷の正負は変わる。プラズマ除電時には、例えばプラズマ処理時に直流電源75から吸着電極65に印加した直流電圧と極性が逆であって大きさが同一の直流電圧を吸着電極65に印加し、基板G上の残留電荷を、プラズマを介してグランドに流しながら除電する。 The causes of the residual charge remaining on the electrostatic chuck 66 and the negative charge on the deposit R due to peeling electrification are different. The residual charge remaining on the electrostatic chuck 66 is generated by the DC voltage applied to the adsorption electrode 65 from the DC power supply 75, and the positive and negative of the residual charge change depending on the positive and negative of the DC voltage applied to the adsorption electrode 65. During plasma de-electrification, for example, a DC voltage of the same magnitude but opposite polarity to the DC voltage applied to the adsorption electrode 65 from the DC power supply 75 during plasma processing is applied to the adsorption electrode 65, and the residual charge on the substrate G is de-electrified while flowing to ground via the plasma.

一方、基板離脱時に生じる剥離帯電は、物質の電気的特性に依存し、剥離した物質の組合せに基づく帯電である。よって、直流電源75から吸着電極65に印加した直流電圧の正負にかかわらず、図4の摩擦帯電例に示すように、基板Gは常に「正」に帯電し、デポRは常に「負」に帯電する。 On the other hand, the peeling charge that occurs when the substrate is detached depends on the electrical properties of the materials, and is based on the combination of materials that are peeled off. Therefore, regardless of whether the DC voltage applied from the DC power supply 75 to the chucking electrode 65 is positive or negative, as shown in the example of frictional charging in Figure 4, the substrate G is always positively charged and the deposit R is always negatively charged.

よって、本実施形態に係る基板離脱方法では、リフトピン78により基板Gを剥離時又は剥離後、デポR上の負電荷を除去するために、直流電源75から吸着電極65に負の直流電圧を印加する。これにより、デポR上の負電荷と中和させる正電荷を静電チャック66の表面に生じさせる。この結果、デポR上の負電荷を中和させ、除去することができる。これにより、次の基板Gの吸着時にデポR上の負電荷によって基板Gの吸着力が低くなることを回避し、基板Gが剥がれることを抑制できる。 Therefore, in the substrate detachment method according to this embodiment, when or after the substrate G is peeled off by the lift pins 78, a negative DC voltage is applied from the DC power supply 75 to the chucking electrode 65 in order to remove the negative charge on the deposit R. This generates a positive charge on the surface of the electrostatic chuck 66 that neutralizes the negative charge on the deposit R. As a result, the negative charge on the deposit R can be neutralized and removed. This makes it possible to avoid a decrease in the chucking force of the substrate G due to the negative charge on the deposit R when the next substrate G is attracted, and to suppress peeling of the substrate G.

つまり、図2に示す従来の基板離脱方法では、図2(b)に示す直流電源75から吸着電極65に印加する直流電圧を停止した後、図2(c)に示すリフトピン78を上昇させながら除電用ガスのプラズマ(以下、「除電用プラズマP2」ともいう。)によるプラズマ除電を行う。ここでは、基板G上の残留電荷が除電される。しかし、リフトピン78により基板Gを剥離時に発生する剥離帯電によるデポR上の負電荷は残ってしまう。デポR上に負電荷が残ったまま次の基板Gが基板載置面上に載置されると、図2(d)に示すように、次の基板Gの処理時に直流電源75から吸着電極65に印加する正の直流電圧に対して発生した吸着電極65上の正電荷の一部と、デポR上の負電荷とが引き合う。これにより、吸着電極65上の正電荷と引き合う基板G上の負電荷が不足して吸着力が低下する。この結果、基板Gが静電チャック66から剥がれ易くなる。また、基板Gの温調効率を向上させるために基板Gと静電チャック66との間には伝熱ガスが充填されているが、吸着電極65による吸着力が低下するために、基板Gと静電チャック66との間から許容範囲以上の伝熱ガスが漏れる課題が生じる。 That is, in the conventional substrate removal method shown in FIG. 2, after the DC voltage applied to the adsorption electrode 65 from the DC power source 75 shown in FIG. 2(b) is stopped, the lift pin 78 shown in FIG. 2(c) is raised and plasma de-electrification is performed using the plasma of the de-electrification gas (hereinafter also referred to as "de-electrification plasma P2"). Here, the residual charge on the substrate G is removed. However, the negative charge on the deposit R due to the peeling charge generated when the substrate G is peeled off by the lift pin 78 remains. When the next substrate G is placed on the substrate placement surface with the negative charge remaining on the deposit R, as shown in FIG. 2(d), a part of the positive charge on the adsorption electrode 65 generated in response to the positive DC voltage applied from the DC power source 75 to the adsorption electrode 65 during processing of the next substrate G attracts the negative charge on the deposit R. As a result, the negative charge on the substrate G that attracts the positive charge on the adsorption electrode 65 is insufficient, and the adsorption force is reduced. As a result, the substrate G becomes more likely to peel off from the electrostatic chuck 66. In addition, to improve the efficiency of temperature control of the substrate G, a heat transfer gas is filled between the substrate G and the electrostatic chuck 66, but the adsorption force of the adsorption electrode 65 decreases, causing a problem that the heat transfer gas leaks from between the substrate G and the electrostatic chuck 66 in an amount greater than the allowable range.

これに対して、プラズマ処理装置100内に基板Gを載置していない状態で、フッ素系ガスを供給し、フッ素系ガスのプラズマを生成することで、クリーニングにより静電チャック66上のデポRを除去することが考えられる。しかし、この場合、基板載置台60の基板載置面も同時にプラズマに暴露させることで劣化し、基板載置台60の寿命を縮めることになる。 In response to this, it is conceivable to supply a fluorine-based gas and generate a fluorine-based gas plasma in the plasma processing apparatus 100 when no substrate G is placed inside, thereby removing the deposit R on the electrostatic chuck 66 by cleaning. However, in this case, the substrate mounting surface of the substrate mounting table 60 is also exposed to the plasma at the same time, which deteriorates the surface, shortening the life of the substrate mounting table 60.

そこで、以下に説明する一実施形態に係る基板離脱方法では、図5に示すように、(a)エッチング、(b)直流電圧オフ、(c)リフトピンアップによる除電、(d)次の基板Gのエッチングを行う。図5(a)及び(b)の処理は、図2(a)及び(b)に示す従来の基板離脱方法と同じである。図5(b)の直流電圧をオフした後、図5(c)に示すように、プラズマ除電中に直流電源75から吸着電極65に負の直流電圧を印加する。これにより、デポR上の剥離帯電の負電荷を除去できる。この結果、図5(d)に示すように、次の基板Gの処理時に基板Gを静電チャック66に吸着させるときの吸着力の低下を回避し、基板Gの剥離を抑制することができる。 In the substrate removal method according to the embodiment described below, as shown in FIG. 5, (a) etching, (b) turning off the DC voltage, (c) de-electrifying by lifting the lift pin up, and (d) etching the next substrate G are performed. The processes in FIG. 5(a) and (b) are the same as the conventional substrate removal method shown in FIG. 2(a) and (b). After turning off the DC voltage in FIG. 5(b), as shown in FIG. 5(c), a negative DC voltage is applied from the DC power source 75 to the adsorption electrode 65 during plasma de-electrification. This makes it possible to remove the negative charge of the peeling charge on the deposit R. As a result, as shown in FIG. 5(d), it is possible to avoid a decrease in the adsorption force when the substrate G is adsorbed to the electrostatic chuck 66 during processing of the next substrate G, and to suppress peeling of the substrate G.

[基板離脱方法]
本実施形態に係る基板離脱方法MTについて、図6を参照しながら説明する。図6は、一実施形態に係る基板離脱方法MTを示すフローチャートである。本方法MTは、制御部90の制御によりプラズマ処理装置100にて実行される。
[How to remove the board]
A substrate removing method MT according to this embodiment will be described with reference to Fig. 6. Fig. 6 is a flowchart showing the substrate removing method MT according to one embodiment. This method MT is executed in the plasma processing apparatus 100 under the control of the control unit 90.

本方法MTが開始されると、有機材料のマスクとその下地の絶縁膜とが積層された基板Gを下チャンバ13内に搬入し、静電チャック66の基板載置面上に載置する(ステップS1)。 When the method MT is started, a substrate G having an organic material mask and an underlying insulating film laminated thereon is brought into the lower chamber 13 and placed on the substrate placement surface of the electrostatic chuck 66 (step S1).

次に、直流電源75から吸着電極65に正の直流電圧を印加し、基板Gを静電チャック66に吸着する(ステップS2)。次に、処理ガス供給源44からフッ素含有ガスを供給し、高周波電源19から高周波電力を印加し、フッ素含有ガスのプラズマを生成し(ステップS3)、フッ素含有ガスのプラズマにより基板G上の絶縁膜をエッチングする(ステップS4)。この時点では、図5(a)に示すように、スイッチ76をオンして直流電源75から吸着電極65に正の直流電圧を印加する。このときスイッチ77はオフに制御されている。フッ素含有ガスのプラズマP1により、基板G上の有機材料のマスクを介して絶縁膜がエッチングされる。 Next, a positive DC voltage is applied from the DC power supply 75 to the adsorption electrode 65, and the substrate G is adsorbed to the electrostatic chuck 66 (step S2). Next, a fluorine-containing gas is supplied from the processing gas supply source 44, and high-frequency power is applied from the high-frequency power supply 19 to generate a plasma of the fluorine-containing gas (step S3), and the insulating film on the substrate G is etched by the plasma of the fluorine-containing gas (step S4). At this point, as shown in FIG. 5(a), the switch 76 is turned on to apply a positive DC voltage from the DC power supply 75 to the adsorption electrode 65. At this time, the switch 77 is controlled to be off. The insulating film on the substrate G is etched by the plasma P1 of the fluorine-containing gas through the organic material mask.

次に、絶縁膜のエッチングを終了するかを判定する(ステップS5)。例えば、EPD(終点検出)等の方法によりエッチングを終了するかを判定できる。絶縁膜のエッチングを終了しないと判定された場合、ステップS4に戻り、基板Gのエッチングを続ける。一方、絶縁膜のエッチングを終了すると判定された場合、フッ素含有ガスの供給を停止し、高周波電力の印加を停止し、スイッチ76をオフに制御して吸着電極65への正の直流電圧の印加を停止し、エッチングを終了する(ステップS6)。この時点では、図5(b)に示すように、スイッチ76をオフに制御して吸着電極65への正の直流電圧の印加を停止する。スイッチ77はオンに制御され、吸着電極65上の正電荷はグランドに流れる。 Next, it is determined whether to end the etching of the insulating film (step S5). For example, whether to end the etching can be determined by a method such as EPD (end point detection). If it is determined that the etching of the insulating film is not to be ended, the process returns to step S4, and etching of the substrate G is continued. On the other hand, if it is determined that the etching of the insulating film is to be ended, the supply of the fluorine-containing gas is stopped, the application of the high-frequency power is stopped, and the switch 76 is controlled to be turned off to stop the application of the positive DC voltage to the adsorption electrode 65, and the etching is ended (step S6). At this point, as shown in FIG. 5(b), the switch 76 is controlled to be turned off to stop the application of the positive DC voltage to the adsorption electrode 65. The switch 77 is controlled to be turned on, and the positive charge on the adsorption electrode 65 flows to ground.

次に、処理ガス供給源44から除電用ガスを供給し、高周波電源19から高周波電力を印加し、除電用プラズマを生成する(ステップS7)。除電用ガスの一例としては、Oガス、アルゴンガス、ヘリウムガスが挙げられる。なお、ステップ7における高周波電力は、高周波電源19から印加される高周波電力であり、高周波電源73からは高周波電力を印加しない。 Next, a charge removal gas is supplied from the processing gas supply source 44, and high frequency power is applied from the high frequency power supply 19 to generate charge removal plasma (step S7). Examples of charge removal gas include O2 gas, argon gas, and helium gas. Note that the high frequency power in step 7 is the high frequency power applied from the high frequency power supply 19, and the high frequency power is not applied from the high frequency power supply 73.

次に、リフトピン78を上昇させ、基板Gを静電チャック66から離脱する(ステップS8)。この時点では、図5(c)に示すように、除電用プラズマP2の導電性を利用して基板G表面の残留電荷を除くプラズマ除電を行いながら、基板Gは、リフトピン78により静電チャック66の基板載置面から離脱する。次に、直流電源75から吸着電極65に負の直流電圧を印加し、デポR上の負電荷を除去する(ステップS9)。この結果、デポR上の負電荷が除去されているため、図5(d)に示すように、次の基板Gを搬入し、静電吸着させるときにデポR上の負電荷による吸着力の低下を防ぎ、基板Gが静電チャック66から剥がれ易くなることを抑制できる。これにより、基板Gと静電チャック66との間から漏れる伝熱ガスの漏れ量が許容範囲を超えることを防止できる。 Next, the lift pins 78 are raised to remove the substrate G from the electrostatic chuck 66 (step S8). At this time, as shown in FIG. 5(c), the substrate G is removed from the substrate mounting surface of the electrostatic chuck 66 by the lift pins 78 while performing plasma discharge to remove residual charges on the surface of the substrate G using the conductivity of the discharge plasma P2. Next, a negative DC voltage is applied from the DC power source 75 to the adsorption electrode 65 to remove the negative charge on the deposit R (step S9). As a result, since the negative charge on the deposit R has been removed, as shown in FIG. 5(d), when the next substrate G is carried in and electrostatically adsorbed, a decrease in the adsorption force due to the negative charge on the deposit R is prevented, and the substrate G is prevented from easily peeling off from the electrostatic chuck 66. This prevents the amount of heat transfer gas leaking between the substrate G and the electrostatic chuck 66 from exceeding the allowable range.

次に、除電用ガスの供給を停止し、高周波電力の印加を停止し、除電用プラズマの生成を停止する(ステップS10)。次に、直流電源75から吸着電極65への負の直流電圧の印加を停止する(ステップS11)。これにより、本方法MTを終了する。 Next, the supply of the static elimination gas is stopped, the application of high frequency power is stopped, and the generation of the static elimination plasma is stopped (step S10). Next, the application of the negative DC voltage from the DC power supply 75 to the chucking electrode 65 is stopped (step S11). This ends the method MT.

なお、上記の説明では、ステップS8の処理後にステップS9の処理を実行したが、ステップS8の処理とステップS9の処理とは並行して実行してもよい。例えばステップS8の処理が開始され、基板Gが基板載置面から剥離された後にステップS9の処理を実行してもよい。ステップS8の処理とステップS9の処理とは同時に開始してもよい。つまり、ステップS9の処理は、ステップS8の処理と同時又はステップS8の処理が開始された後に開始することができる。 In the above description, the process of step S9 is performed after the process of step S8, but the process of step S8 and the process of step S9 may be performed in parallel. For example, the process of step S8 may be started, and the process of step S9 may be performed after the substrate G is peeled off from the substrate mounting surface. The process of step S8 and the process of step S9 may be started simultaneously. In other words, the process of step S9 can be started simultaneously with the process of step S8 or after the process of step S8 has been started.

以上に説明したように、本実施形態の基板離脱方法によれば、基板の静電吸着力の低下を回避することができる。これより、基板の剥がれを抑制することができる。また、基板と静電チャックとの間に供給される伝熱ガスの漏れ量を許容範囲内にすることができる。 As described above, the substrate removal method of this embodiment can avoid a decrease in the electrostatic adsorption force of the substrate. This can suppress peeling of the substrate. In addition, the amount of leakage of the heat transfer gas supplied between the substrate and the electrostatic chuck can be kept within an acceptable range.

なお、基板Gを静電チャック66から離脱する工程は、制御部90は、リフトピン78を静電チャック66の基板載置面から30mm以上の高さまで上昇させるように制御してもよい。これにより、除電用プラズマが基板Gの裏面まで回り込み易くなる。これにより、基板Gの裏面の電荷及びデポR上の負電荷をより除去し易くすることができる。 In the process of removing the substrate G from the electrostatic chuck 66, the control unit 90 may control the lift pins 78 to rise to a height of 30 mm or more from the substrate placement surface of the electrostatic chuck 66. This makes it easier for the static electricity removal plasma to reach the back surface of the substrate G. This makes it easier to remove the charge on the back surface of the substrate G and the negative charge on the deposit R.

今回開示された一実施形態に係る基板離脱方法及びプラズマ処理装置は、すべての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。 The substrate removal method and plasma processing apparatus according to the disclosed embodiment should be considered in all respects as illustrative and not restrictive. The above-described embodiment can be modified and improved in various ways without departing from the spirit and scope of the appended claims. The matters described in the above-described embodiments can be configured in other ways without any inconsistency, and can be combined without any inconsistency.

本開示のプラズマ処理装置は、Atomic Layer Deposition(ALD)装置、Capacitively Coupled Plasma(CCP)、Inductively Coupled Plasma(ICP)、Radial Line Slot Antenna(RLSA)、Electron Cyclotron Resonance Plasma(ECR)、Helicon Wave Plasma(HWP)のいずれのタイプのプラズマ処理装置にも適用可能である。 The plasma processing apparatus disclosed herein can be applied to any type of plasma processing apparatus, including Atomic Layer Deposition (ALD) apparatus, Capacitively Coupled Plasma (CCP), Inductively Coupled Plasma (ICP), Radial Line Slot Antenna (RLSA), Electron Cyclotron Resonance Plasma (ECR), and Helicon Wave Plasma (HWP).

また、プラズマ処理装置は、エッチングに限られず、プラズマを用いて基板に成膜処理等の所定のプラズマ処理を行う装置であれば適用可能である。 The plasma processing apparatus is not limited to etching, and can be any apparatus that performs a specific plasma process, such as a film formation process, on a substrate using plasma.

10 処理容器
12 上チャンバ
12a 天井
13 下チャンバ
13a 側壁
13d 底板
13f 排気口
30 シャワーヘッド
50 ガス排気部
60 基板載置台
65 吸着電極
66 静電チャック
74 給電線
75 直流電源
78 リフトピン
90 制御部
100 プラズマ処理装置
G 基板
S 処理室
REFERENCE SIGNS LIST 10 Processing vessel 12 Upper chamber 12a Ceiling 13 Lower chamber 13a Side wall 13d Bottom plate 13f Exhaust port 30 Shower head 50 Gas exhaust unit 60 Substrate mounting table 65 Adsorption electrode 66 Electrostatic chuck 74 Power supply line 75 DC power supply 78 Lift pin 90 Control unit 100 Plasma processing apparatus G Substrate S Processing chamber

Claims (7)

処理容器の内部の静電チャックに埋設された吸着電極に直流電圧を印加することにより静電吸着された基板を前記静電チャックから離脱させる方法であって、
プラズマ処理を施した前記基板が前記静電チャックに静電吸着された状態において、前記処理容器の内部に除電用ガスを供給し、該除電用ガスのプラズマを生成する工程と、
前記除電用ガスのプラズマを維持しながら、リフトピンにより前記基板を上昇させて前記静電チャックから剥離し前記基板を前記静電チャックから離脱する工程と、
前記基板を前記静電チャックから剥離した後に前記吸着電極に負の直流電圧を印加する工程と、
を有する基板離脱方法。
A method for removing an electrostatically attracted substrate from an electrostatic chuck by applying a DC voltage to an attracting electrode embedded in the electrostatic chuck inside a processing vessel, the method comprising the steps of:
supplying a static elimination gas into the processing vessel while the plasma-treated substrate is electrostatically attracted to the electrostatic chuck, and generating plasma of the static elimination gas;
lifting the substrate by a lift pin while maintaining the plasma of the static electricity removing gas, thereby removing the substrate from the electrostatic chuck;
applying a negative DC voltage to the attracting electrode after the substrate is detached from the electrostatic chuck ;
The substrate removal method includes the steps of:
処理容器の内部の静電チャックに埋設された吸着電極に直流電圧を印加することにより静電吸着された基板を前記静電チャックから離脱させる方法であって、
プラズマ処理を施した前記基板が前記静電チャックに静電吸着された状態において、前記処理容器の内部に除電用ガスを供給し、該除電用ガスのプラズマを生成する工程と、
前記除電用ガスのプラズマを維持しながら、リフトピンにより前記基板を上昇させ、前記静電チャックから離脱する工程と、
前記吸着電極に負の直流電圧を印加する工程と、
前記吸着電極に負の直流電圧を印加する工程を実行している間に、前記除電用ガスのプラズマを停止する工程と、
を有する基板離脱方法。
A method for removing an electrostatically attracted substrate from an electrostatic chuck by applying a DC voltage to an attracting electrode embedded in the electrostatic chuck inside a processing vessel, the method comprising the steps of:
supplying a static elimination gas into the processing vessel while the plasma-treated substrate is electrostatically attracted to the electrostatic chuck, and generating plasma of the static elimination gas;
while maintaining the plasma of the static electricity removing gas, lifting the substrate by a lift pin and removing the substrate from the electrostatic chuck;
applying a negative DC voltage to the chucking electrode;
stopping the plasma of the static elimination gas while performing the step of applying a negative DC voltage to the chucking electrode ;
The substrate removal method includes the steps of:
前記除電用ガスのプラズマを生成する工程の前に、前記プラズマ処理において前記吸着電極に印加した直流電圧を停止する工程を有する、
請求項1又は2に記載の基板離脱方法。
a step of stopping the DC voltage applied to the attraction electrode in the plasma treatment before the step of generating plasma of the static electricity removing gas;
The substrate removing method according to claim 1 or 2 .
前記プラズマ処理は、フッ素含有ガスを供給し、該フッ素含有ガスのプラズマによって、有機材料で形成されたマスクを介して前記基板の上の所与の膜をエッチングする処理であ
前記基板はガラス基板である、
請求項1~3のいずれか一項に記載の基板離脱方法。
the plasma treatment is a process of supplying a fluorine-containing gas and etching a given film on the substrate through a mask made of an organic material by plasma of the fluorine-containing gas;
The substrate is a glass substrate.
The substrate removing method according to any one of claims 1 to 3 .
前記吸着電極に負の直流電圧を印加する工程は、前記基板を前記静電チャックから離脱する工程を実行している間において、前記基板が前記静電チャックから剥離した後に実行される、
請求項1~4のいずれか一項に記載の基板離脱方法。
the step of applying a negative DC voltage to the attracting electrode is performed after the substrate is peeled off from the electrostatic chuck during the step of removing the substrate from the electrostatic chuck .
The substrate removing method according to any one of claims 1 to 4.
前記基板を前記静電チャックから離脱する工程は、前記リフトピンを前記静電チャックの基板載置面から30mm以上の高さまで上昇させる、
請求項1~5のいずれか一項に記載の基板離脱方法。
The step of removing the substrate from the electrostatic chuck includes raising the lift pins to a height of 30 mm or more from a substrate mounting surface of the electrostatic chuck.
The substrate removing method according to any one of claims 1 to 5.
処理容器と、前記処理容器の内部に配置される静電チャックと、前記静電チャックに埋設された吸着電極に直流電圧を印加することにより基板を静電吸着させるように制御する制御部と、を有するプラズマ処理装置であって、
前記制御部は、
プラズマ処理を施した前記基板が前記静電チャックに静電吸着された状態において、前記処理容器の内部に除電用ガスを供給し、該除電用ガスのプラズマを生成する工程と、
前記除電用ガスのプラズマを維持しながら、リフトピンにより前記基板を上昇させて前記静電チャックから剥離し前記基板を前記静電チャックから離脱する工程と、
前記基板を前記静電チャックから剥離した後に前記吸着電極に負の直流電圧を印加する工程と、
を制御する、プラズマ処理装置。
1. A plasma processing apparatus comprising: a processing vessel; an electrostatic chuck disposed inside the processing vessel; and a control unit configured to apply a DC voltage to an attraction electrode embedded in the electrostatic chuck to electrostatically attract a substrate,
The control unit is
supplying a static elimination gas into the processing vessel while the plasma-treated substrate is electrostatically attracted to the electrostatic chuck, and generating plasma of the static elimination gas;
lifting the substrate by a lift pin while maintaining the plasma of the static electricity removing gas, thereby removing the substrate from the electrostatic chuck;
applying a negative DC voltage to the attracting electrode after the substrate is detached from the electrostatic chuck ;
The plasma processing apparatus controls the
JP2020120189A 2020-07-13 2020-07-13 Substrate removal method and plasma processing apparatus Active JP7515327B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020120189A JP7515327B2 (en) 2020-07-13 Substrate removal method and plasma processing apparatus
KR1020210086345A KR102616554B1 (en) 2020-07-13 2021-07-01 Substrate release method and plasma processing apparatus
TW110124478A TW202209487A (en) 2020-07-13 2021-07-02 Substrate detaching method and plasma processing device characterized by suppressing the decrease of the electrostatic adhesion force of a substrate
CN202110762462.7A CN113936986A (en) 2020-07-13 2021-07-06 Substrate separation method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020120189A JP7515327B2 (en) 2020-07-13 Substrate removal method and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2022024265A JP2022024265A (en) 2022-02-09
JP7515327B2 true JP7515327B2 (en) 2024-07-12

Family

ID=

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056928A (en) 2012-09-12 2014-03-27 Tokyo Electron Ltd Releasing control method, and plasma processing apparatus
JP2015225890A (en) 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
JP2018006392A (en) 2016-06-28 2018-01-11 ルネサスエレクトロニクス株式会社 Method of manufacturing semiconductor device
JP2018186179A (en) 2017-04-25 2018-11-22 東京エレクトロン株式会社 Substrate processing apparatus and substrate removal method
WO2020026549A1 (en) 2018-07-30 2020-02-06 アルバックテクノ株式会社 Substrate lift device and substrate transfer method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056928A (en) 2012-09-12 2014-03-27 Tokyo Electron Ltd Releasing control method, and plasma processing apparatus
JP2015225890A (en) 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and method
JP2018006392A (en) 2016-06-28 2018-01-11 ルネサスエレクトロニクス株式会社 Method of manufacturing semiconductor device
JP2018186179A (en) 2017-04-25 2018-11-22 東京エレクトロン株式会社 Substrate processing apparatus and substrate removal method
WO2020026549A1 (en) 2018-07-30 2020-02-06 アルバックテクノ株式会社 Substrate lift device and substrate transfer method

Similar Documents

Publication Publication Date Title
JP4421874B2 (en) Plasma processing apparatus and plasma processing method
US8236109B2 (en) Component cleaning method and storage medium
JP5371238B2 (en) Plasma processing apparatus and plasma processing method
US10410902B2 (en) Plasma processing apparatus
US7541283B2 (en) Plasma processing method and plasma processing apparatus
US9087676B2 (en) Plasma processing method and plasma processing apparatus
US9530657B2 (en) Method of processing substrate and substrate processing apparatus
US20170221684A1 (en) Plasma processing method
JP7138418B2 (en) Desorption control method and plasma processing apparatus
US20080230181A1 (en) Plasma processing apparatus and structure therein
US9253862B2 (en) Plasma processing method and plasma processing apparatus
TW201526098A (en) Cleaning method and substrate processing device
JP2007123796A (en) Structure for plasma treatment chamber, plasma treatment chamber, and plasma treatment device
US9147556B2 (en) Plasma processing method and plasma processing apparatus
JP5503503B2 (en) Plasma processing equipment
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
JP2009224385A (en) Annular component for plasma processing, plasma processing apparatus, and outer annular member
TW201933471A (en) Plasma treating apparatus which increases the tolerance of a loading table to plasma even when dry cleaning is performed
KR102538188B1 (en) Plasma processing apparatus cleaning method
JP4709047B2 (en) Substrate processing apparatus and side wall parts
JP2014187231A (en) Plasma etching method, and plasma etching apparatus
JP7515327B2 (en) Substrate removal method and plasma processing apparatus
KR102616554B1 (en) Substrate release method and plasma processing apparatus
JP2021090025A (en) Substrate processing method and substrate processing device
JP2022019549A (en) Plasma processing apparatus