JP6489977B2 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
JP6489977B2
JP6489977B2 JP2015171157A JP2015171157A JP6489977B2 JP 6489977 B2 JP6489977 B2 JP 6489977B2 JP 2015171157 A JP2015171157 A JP 2015171157A JP 2015171157 A JP2015171157 A JP 2015171157A JP 6489977 B2 JP6489977 B2 JP 6489977B2
Authority
JP
Japan
Prior art keywords
flow path
valve body
piston
cylinder
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015171157A
Other languages
Japanese (ja)
Other versions
JP2017048826A (en
Inventor
朋彦 飯田
朋彦 飯田
五十嵐 靖弘
靖弘 五十嵐
直人 秋葉
直人 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2015171157A priority Critical patent/JP6489977B2/en
Priority to CN201610771190.6A priority patent/CN106481714B/en
Publication of JP2017048826A publication Critical patent/JP2017048826A/en
Application granted granted Critical
Publication of JP6489977B2 publication Critical patent/JP6489977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、鉄道車両等に使用される緩衝器に関するものである。   The present invention relates to a shock absorber used for a railway vehicle or the like.

緩衝器に備えられている減衰力発生構造の従来技術として特許文献1が開示されている。すなわち、特許文献1の減衰力発生構造では、シリンダ内の下方油室とシリンダ外のリザーバ室とを区画するバルブケースに設けた透孔にカラー部材を備え、該カラー部材の外周面に螺旋溝を形成している。これにより、ピストンの速度が低速域におけるオリフィス特性を、線形特性(チョーク特性)として、操安性を確保するようにしている。   Patent Document 1 is disclosed as a prior art of a damping force generating structure provided in a shock absorber. That is, in the damping force generation structure of Patent Document 1, a collar member is provided in a through hole provided in a valve case that partitions a lower oil chamber inside a cylinder and a reservoir chamber outside the cylinder, and a spiral groove is formed on the outer peripheral surface of the collar member. Is forming. Thereby, the orifice characteristic in the low speed region of the piston is set as a linear characteristic (choke characteristic) to ensure the operability.

そこで、従来から、鉄道車両には弁機構(制御弁及びリリーフ弁)を有する鉄道車両用緩衝器が備えられており(例えば特許文献2参照)、この弁機構の制御弁に、上述した特許文献1の減衰力発生構造を適用すると、螺旋溝によって制御弁がピストン速度に比例する線形特性に近づく流路特性を有するようになるが、この流路特性(制御弁)からバルブ特性(リリーフ弁)への移行の際に減衰力特性の自由度がない、という課題が残る。   Therefore, a railway vehicle has conventionally been provided with a railcar shock absorber having a valve mechanism (control valve and relief valve) (see, for example, Patent Document 2). When the damping force generating structure 1 is applied, the control valve has a flow path characteristic that approaches a linear characteristic proportional to the piston speed by the spiral groove. From this flow path characteristic (control valve), the valve characteristic (relief valve) The problem remains that there is no degree of freedom in damping force characteristics when moving to.

特開平11−166574号公報JP-A-11-166574 特開2013−137042号公報JP2013-137042A

そして、本発明は、上述した問題に鑑みて、流路特性からバルブ特性への移行の際に減衰力特性の自由度を有する、すなわち、流路特性からバルブ特性へ滑らかに移行できる減衰力特性を有する緩衝器を提供することを目的とする。   In view of the above-described problems, the present invention has a degree of freedom in the damping force characteristic at the time of transition from the flow path characteristic to the valve characteristic, that is, the damping force characteristic that can smoothly transition from the flow path characteristic to the valve characteristic. It aims at providing the buffer which has this.

上記課題を解決するための手段として、本発明に係る第1の緩衝器は、内部に作動流体が封入されたシリンダと、該シリンダ内に挿入されて該シリンダ内を2室に分画するピストンと、該ピストンに連結され前記シリンダから外部に延出されるピストンロッドと、前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、該流路に設けられ、前記ピストンの移動に伴って前記流路を通過する作動流体の流れを調整する弁機構と、を備えてなる緩衝器であって、前記弁機構は、前記流路内に形成された弁体収容室内に移動可能に収容され、前記流路を開閉する弁体と、該弁体を、前記流路を閉塞する方向に付勢するバネ手段と、を有し、前記弁体は、前記流路内を摺動する摺動軸部を有し、該摺動軸部の外壁面と前記流路の内壁面との間に、前記弁体を介して前記流路の上流側と下流側とを連通する螺旋状通路を設け、前記弁体の移動に伴って、前記螺旋状通路を流れる作動流体の流路長が変化することを特徴とするものである。   As means for solving the above problems, a first shock absorber according to the present invention includes a cylinder in which a working fluid is sealed, and a piston that is inserted into the cylinder and divides the inside of the cylinder into two chambers. A piston rod connected to the piston and extending outward from the cylinder; a flow path in which a working fluid flows by sliding of the piston in the cylinder; and a movement of the piston provided in the flow path And a valve mechanism for adjusting the flow of the working fluid passing through the flow path, the valve mechanism being movable into a valve body housing chamber formed in the flow path. A valve body that opens and closes the flow path, and spring means that biases the valve body in a direction to close the flow path, and the valve body slides in the flow path. A sliding shaft portion, and an outer wall surface of the sliding shaft portion and the flow path A spiral passage that communicates the upstream side and the downstream side of the flow path via the valve body is provided between the inner wall surface and the working fluid that flows through the spiral passage as the valve body moves. The flow path length changes.

また、本発明に係る第2の緩衝器は、内部に作動流体が封入されたシリンダと、該シリンダ内に挿入されて該シリンダ内を2室に分画するピストンと、該ピストンに連結され前記シリンダから外部に延出されるピストンロッドと、前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、該流路に設けられ、前記ピストンの移動に伴って前記流路を通過する作動流体の流れを調整する弁機構と、を備えてなる緩衝器であって、前記弁機構は、前記流路内に形成された弁体収容室内に移動可能に収容され、前記流路を開閉する弁体と、該弁体を、前記流路を閉塞する方向に付勢するバネ手段と、を有し、
前記弁体は、該弁体を介して前記流路の上流側と下流側とを連通するように貫通して延びる内側通路を有し、前記弁体収容室内に前記内側通路内を摺動する摺動軸部を設け、該摺動軸部の外壁面と前記内側通路の内壁面との間に、前記弁体を介して前記流路の上流側と下流側とを連通する螺旋状通路を設け、前記弁体の移動に伴って、前記螺旋状通路を流れる作動流体の流路長が変化することを特徴とするものである。
The second shock absorber according to the present invention includes a cylinder in which a working fluid is sealed, a piston that is inserted into the cylinder and divides the cylinder into two chambers, and is connected to the piston. A piston rod extending from the cylinder to the outside, a flow path in which a working fluid flows by sliding of the piston in the cylinder, and the flow path provided in the flow path and passing through the flow path as the piston moves And a valve mechanism that adjusts the flow of the working fluid, wherein the valve mechanism is movably accommodated in a valve body housing chamber formed in the flow path, and the flow path is A valve body that opens and closes, and a spring means that urges the valve body in a direction to close the flow path,
The valve body has an inner passage that extends through the valve body so as to communicate the upstream side and the downstream side of the flow path, and slides in the inner passage into the valve body housing chamber. Provided with a sliding shaft portion, a spiral passage that communicates the upstream side and the downstream side of the flow path via the valve body between the outer wall surface of the sliding shaft portion and the inner wall surface of the inner passage. The flow path length of the working fluid flowing through the spiral passage is changed with the movement of the valve body.

本発明の緩衝器では、流路特性からバルブ特性へ滑らかに移行できる減衰力特性を発生させることが可能となる。   In the shock absorber according to the present invention, it is possible to generate a damping force characteristic that can smoothly shift from the flow path characteristic to the valve characteristic.

図1は、第1実施形態に係る緩衝器を示す断面図である。FIG. 1 is a cross-sectional view showing a shock absorber according to the first embodiment. 図2は、第1実施形態に係る緩衝器に備えた弁機構の断面図である。FIG. 2 is a cross-sectional view of the valve mechanism provided in the shock absorber according to the first embodiment. 図3は、図2の弁機構に備えた弁体の側面図である。FIG. 3 is a side view of a valve body provided in the valve mechanism of FIG. 図4は、図2の弁機構による減衰力特性図である。FIG. 4 is a damping force characteristic diagram of the valve mechanism of FIG. 図5は、第2実施形態に係る緩衝器に備えた弁機構の断面図である。FIG. 5 is a cross-sectional view of the valve mechanism provided in the shock absorber according to the second embodiment. 図6は、図5の弁機構による減衰力特性図である。FIG. 6 is a damping force characteristic diagram of the valve mechanism of FIG.

以下、本発明を実施するための形態を図1〜図6に基づいて詳細に説明する。
以下に説明する、第1及び第2の実施形態に係る緩衝器1a、1bは、台車と車体との間に横置き状態で取り付けられる鉄道車両用ヨーダンパとして採用される。なお、本実施形態では横置き状態で取付けられる鉄道車両用ヨーダンパを例として示すが、左右動ダンパや、上下動ダンパに用いても良い。
まず、第1実施形態に係る緩衝器1aを図1〜図4に基づいて説明する。
図1に示すように、第1実施形態に係る緩衝器1aは、外筒2と、該外筒2と同心状に配置されたシリンダ3とを備えている。これら外筒2及びシリンダ3の両端開口は後側端板5及び前側端板4によりそれぞれ閉鎖されている。外筒2の内壁面とシリンダ3の外壁面との間に環状のリザーバ室6が形成される。
なお、説明の便宜のため、以下では図中左側(符号を正立視した場合。以下同じ。)、つまりブラケット13側を前側、図中右側、つまりブラケット14側を後側としてそれぞれ説明する。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to FIGS.
The shock absorbers 1a and 1b according to the first and second embodiments, which will be described below, are employed as railway vehicle yaw dampers that are mounted horizontally between the carriage and the vehicle body. In this embodiment, a railway vehicle yaw damper mounted in a horizontal state is shown as an example, but it may be used for a left-right motion damper or a vertical motion damper.
First, the shock absorber 1a according to the first embodiment will be described with reference to FIGS.
As shown in FIG. 1, the shock absorber 1 a according to the first embodiment includes an outer cylinder 2 and a cylinder 3 arranged concentrically with the outer cylinder 2. Openings at both ends of the outer cylinder 2 and the cylinder 3 are closed by a rear end plate 5 and a front end plate 4, respectively. An annular reservoir chamber 6 is formed between the inner wall surface of the outer cylinder 2 and the outer wall surface of the cylinder 3.
For convenience of explanation, the following description will be made with the left side in the figure (when the sign is viewed upright; the same applies hereinafter), that is, the bracket 13 side as the front side and the right side in the figure, that is, the bracket 14 side as the rear side.

後側端板5は、外筒2の後端開口を閉鎖する主蓋部材11と、シリンダ3の後端開口を閉鎖する副蓋部材12とからなる分割構造となっている。なお、主蓋部材11には、車体側と連結する連結用のブラケット14が固設されている。一方、前側端板4は、外筒2及びシリンダ3の前端開口を閉鎖すると共にピストンロッド16のガイド機能も備えたロッドガイドとして構成される。   The rear end plate 5 has a divided structure including a main lid member 11 that closes the rear end opening of the outer cylinder 2 and a sub lid member 12 that closes the rear end opening of the cylinder 3. The main lid member 11 is fixedly provided with a connecting bracket 14 that is connected to the vehicle body side. On the other hand, the front end plate 4 is configured as a rod guide that closes the front end openings of the outer cylinder 2 and the cylinder 3 and also has a guide function for the piston rod 16.

シリンダ3内には、ピストン15が軸方向に摺動可能に配置されている。該ピストン15にはピストンロッド16の一端部(後端部)が連結され、該ピストンロッド16の他端部(前端部)は前側端板(ロッドガイド)4を液密的に挿通して外筒2の外部へ延びている。なお、ピストンロッド16の他端部には、台車側と連結する連結用のブラケット13が固設されている。   A piston 15 is disposed in the cylinder 3 so as to be slidable in the axial direction. One end (rear end) of a piston rod 16 is connected to the piston 15, and the other end (front end) of the piston rod 16 is inserted through a front end plate (rod guide) 4 in a liquid-tight manner. It extends to the outside of the tube 2. Note that a connecting bracket 13 is fixed to the other end portion of the piston rod 16 to be connected to the carriage side.

シリンダ3内は、ピストン15によってロッド側油室18と反ロッド側油室19とに分画されている。これらロッド側油室18及び反ロッド側油室19に、作動流体としての作動油がそれぞれ封入されている。ピストン15には、反ロッド側油室19からロッド側油室18への作動油の流通のみを許容する逆止弁20が配置される。また、後側端板5の副蓋部材12には、リザーバ室6から反ロッド側油室19への作動油の流通のみを許容する逆止弁21が配置される。   The inside of the cylinder 3 is divided into a rod side oil chamber 18 and an anti-rod side oil chamber 19 by a piston 15. The rod-side oil chamber 18 and the anti-rod-side oil chamber 19 are filled with working oil as a working fluid. The piston 15 is provided with a check valve 20 that allows only the flow of hydraulic oil from the non-rod side oil chamber 19 to the rod side oil chamber 18. Further, a check valve 21 that allows only the flow of hydraulic oil from the reservoir chamber 6 to the anti-rod-side oil chamber 19 is disposed on the sub-lid member 12 of the rear end plate 5.

図1及び図2に示すように、前側端板4には、シリンダ3内のロッド側油室18とリザーバ室6とを連通する流路25が設けられている。該流路25に、ピストン15の移動に伴って開閉して流路25を通過する作動油の流れを調整する弁機構30aが備えられている。流路25は、ロッド側油室18に連通する上流側流路25aと、上流側流路25aに連通して、弁機構30aのハウジング35を収容する凹部25b(図2参照)と、該凹部25bに連通して、リザーバ室6に連通する下流側流路25cとを備えている。なお、ハウジング35を別途設けず、前側端板4に直接弁機構30aを収容するようにしてもよい。   As shown in FIGS. 1 and 2, the front end plate 4 is provided with a flow path 25 that communicates the rod-side oil chamber 18 in the cylinder 3 with the reservoir chamber 6. The flow path 25 is provided with a valve mechanism 30 a that adjusts the flow of hydraulic oil that opens and closes as the piston 15 moves and passes through the flow path 25. The flow path 25 includes an upstream flow path 25a that communicates with the rod-side oil chamber 18, a recess 25b that communicates with the upstream flow path 25a and accommodates the housing 35 of the valve mechanism 30a (see FIG. 2), and the recess 25 b and a downstream flow path 25 c communicating with the reservoir chamber 6. Note that the valve mechanism 30a may be accommodated directly in the front end plate 4 without providing the housing 35 separately.

弁機構30aは、流路25の凹部25bに収容されるハウジング35と、ハウジング35内に備えられ、流路25を開閉する弁体36aと、該弁体36aを、流路25を閉塞する方向に付勢するバネ手段であるスプリング37と、を有している。具体的に、ハウジング35はブロック状を呈し、上流側流路25aに連通する上流側流通孔38と、該上流側流通孔38に連通して弁体36aのカップ状本体部49を収容する弁体収容室39と、該弁体収容室39に連通すると共に下流側流路25cに連通する複数の下流側流通孔40とを備えている。ハウジング35の弁体収容室39は、ハウジング35に設けた収容凹部43と、該収容凹部43を閉塞するように設けた閉塞部44aとの間に形成される。閉塞部44aは、ハウジング35の収容凹部43を閉塞する板状のベース部46と、該ベース部46から弁体収容室39に向かって突設される支持凸部47とから構成される。   The valve mechanism 30 a includes a housing 35 accommodated in the recess 25 b of the flow path 25, a valve body 36 a that opens and closes the flow path 25, and a direction in which the flow path 25 is closed. And a spring 37 which is a spring means for urging the spring. Specifically, the housing 35 has a block shape, and is an upstream flow hole 38 communicating with the upstream flow path 25a, and a valve that communicates with the upstream flow hole 38 and accommodates the cup-shaped main body 49 of the valve body 36a. A body housing chamber 39 and a plurality of downstream flow holes 40 communicating with the valve body housing chamber 39 and communicating with the downstream channel 25c are provided. The valve body accommodation chamber 39 of the housing 35 is formed between an accommodation recess 43 provided in the housing 35 and a closing portion 44 a provided so as to close the accommodation recess 43. The closing portion 44 a includes a plate-like base portion 46 that closes the housing concave portion 43 of the housing 35, and a support convex portion 47 that protrudes from the base portion 46 toward the valve body housing chamber 39.

弁体36aは、図2及び図3に示すように、ハウジング35の上流側流通孔38に沿って摺動する摺動軸部48と、該摺動軸部48の一端に一体的に接続されるカップ状本体部49とから構成される。カップ状本体部49は、筒状部51と、筒状部51の一端側を閉塞する板状部52とから構成される。カップ状本体部49の筒状部51には、径方向に貫通する貫通孔53が周方向に沿って間隔を置いて複数形成される。カップ状本体部49の板状部52に摺動軸部48の一端が一体的に接続される。摺動軸部48には、その内部に他端を開放して同心状に軸方向に延びる内側通路58が形成される。また摺動軸部48には、内側通路58に連通して径方向に貫通する開口部59が形成される。開口部59はカップ状本体部49に近接した位置に形成される。摺動軸部48の外壁面からカップ状本体部49の外壁面の一部に亘って、螺旋状に延びる溝部60が形成される。該溝部60が、弁体36aを介して上流側流路25aと下流側流路25cとを連通する螺旋状通路に相当するものである。本実施形態では、摺動軸部48の外壁面に螺旋状に延びる溝部60を形成したが、ハウジング35の上流側流通孔38の内壁面に螺旋状の溝部60を設けてもよい。   As shown in FIGS. 2 and 3, the valve body 36 a is integrally connected to a sliding shaft portion 48 that slides along the upstream flow hole 38 of the housing 35 and one end of the sliding shaft portion 48. And a cup-shaped main body portion 49. The cup-shaped main body portion 49 includes a tubular portion 51 and a plate-like portion 52 that closes one end side of the tubular portion 51. A plurality of through holes 53 penetrating in the radial direction are formed in the cylindrical portion 51 of the cup-shaped main body portion 49 at intervals along the circumferential direction. One end of the sliding shaft portion 48 is integrally connected to the plate-like portion 52 of the cup-shaped main body portion 49. The sliding shaft portion 48 is formed with an inner passage 58 concentrically extending in the axial direction with the other end opened therein. The sliding shaft 48 is formed with an opening 59 that communicates with the inner passage 58 and penetrates in the radial direction. The opening 59 is formed at a position close to the cup-shaped main body 49. A groove portion 60 that spirally extends from the outer wall surface of the sliding shaft portion 48 to a part of the outer wall surface of the cup-shaped main body portion 49 is formed. The groove portion 60 corresponds to a spiral passage that communicates the upstream flow path 25a and the downstream flow path 25c via the valve body 36a. In the present embodiment, the groove portion 60 that spirally extends is formed on the outer wall surface of the sliding shaft portion 48, but the spiral groove portion 60 may be provided on the inner wall surface of the upstream flow hole 38 of the housing 35.

そして、弁体36aの摺動軸部48がハウジング35の上流側流通孔38内に相対的に摺動自在に挿通され、弁体36aのカップ状本体部49は、その開放側がハウジング35を構成する閉塞部44a側に指向するように弁体収容室39内に配置される。その結果、弁体36aは、弁体収容室39内をハウジング35の上流側流通孔38に沿う方向に移動自在となる。また、弁体36aのカップ状本体部49の板状部52と、ハウジング35を構成する閉塞部44aのベース部46との間で、閉塞部44aの支持凸部47の周りにスプリング37が配置される。該スプリング37の付勢力により、カップ状本体部49がハウジング35の閉塞部44aから離間する方向(ハウジング35の収容凹部43の底面に当接する方向)に付勢され、ハウジング35の上流側流通孔38、ひいては流路25を閉塞する。しかしながら、弁体36aの摺動軸部48の外壁面には螺旋状の溝部60が形成されるために、カップ状本体部49の板状部52がハウジング35の収容凹部43の底面に当接した状態(図2の状態)でも、上流側流路25aと下流側流路25cとが連通するようになる。   The sliding shaft portion 48 of the valve body 36a is inserted into the upstream-side flow hole 38 of the housing 35 so as to be relatively slidable. The cup-shaped body portion 49 of the valve body 36a forms the housing 35 on its open side. It arrange | positions in the valve body storage chamber 39 so that it may point to the obstruction | occlusion part 44a side to do. As a result, the valve body 36 a is movable in the valve body accommodation chamber 39 in a direction along the upstream flow hole 38 of the housing 35. Further, a spring 37 is disposed around the support convex portion 47 of the closing portion 44a between the plate-like portion 52 of the cup-shaped main body portion 49 of the valve body 36a and the base portion 46 of the closing portion 44a constituting the housing 35. Is done. Due to the biasing force of the spring 37, the cup-shaped main body portion 49 is biased in a direction away from the closing portion 44 a of the housing 35 (a direction in contact with the bottom surface of the housing recess 43 of the housing 35). 38 and eventually the flow path 25 is closed. However, since the spiral groove portion 60 is formed on the outer wall surface of the sliding shaft portion 48 of the valve body 36a, the plate-like portion 52 of the cup-like main body portion 49 abuts against the bottom surface of the housing recess 43 of the housing 35. Even in this state (the state shown in FIG. 2), the upstream channel 25a and the downstream channel 25c communicate with each other.

次に、本発明の第1実施形態に係る緩衝器1aの作用を説明する。
第1実施形態に係る緩衝器1aは、台車と車体との間に横置き状態で取り付けられており、台車にピストンロッド16側のブラケット13が連結され、車体に外筒2側のブラケット14が連結される。
Next, the operation of the shock absorber 1a according to the first embodiment of the present invention will be described.
The shock absorber 1a according to the first embodiment is mounted horizontally between the carriage and the vehicle body, the bracket 13 on the piston rod 16 side is connected to the carriage, and the bracket 14 on the outer cylinder 2 side is connected to the vehicle body. Connected.

そして、台車と車体とが水平方向へ相対移動すると、本緩衝器1aのピストンロッド16が伸縮動作する。その結果、ピストンロッド16の伸び行程時には、ロッド側油室18の作動油は、ピストン15に設けた逆止弁20により反ロッド側油室19には流れないために、流路25内に備えた弁機構30aを開弁させてリザーバ室6に流れ、これに応じて伸び側の減衰力が発生する。なお、この伸び行程時には、ピストンロッド16の退出分の作動油が後側端板5の副蓋部材12に設けた逆止弁21を経てリザーバ室6から反ロッド側油室19へ補給される。   When the carriage and the vehicle body move relative to each other in the horizontal direction, the piston rod 16 of the shock absorber 1a expands and contracts. As a result, during the extension stroke of the piston rod 16, the hydraulic oil in the rod side oil chamber 18 does not flow into the anti-rod side oil chamber 19 by the check valve 20 provided in the piston 15, so Then, the valve mechanism 30a is opened to flow into the reservoir chamber 6, and an expansion-side damping force is generated accordingly. During this extension stroke, the hydraulic oil for the withdrawal of the piston rod 16 is replenished from the reservoir chamber 6 to the anti-rod-side oil chamber 19 via a check valve 21 provided on the sub-cover member 12 of the rear end plate 5. .

一方、ピストンロッド16の縮み行程時には、反ロッド側油室19の作動油がピストン15に設けた逆止弁20を経由してロッド側油室18に流れ、反ロッド側油室19とロッド側油室18とがほぼ同じ流体圧となり、ピストンロッド16の進入分の作動油が、流路25内に備えた弁機構30aを開弁させてリザーバ室6に流れ、これに応じて縮み側の減衰力が発生する。   On the other hand, during the contraction stroke of the piston rod 16, the hydraulic oil in the anti-rod side oil chamber 19 flows into the rod side oil chamber 18 via the check valve 20 provided in the piston 15, and the anti-rod side oil chamber 19 and the rod side The fluid pressure in the oil chamber 18 is almost the same, and the hydraulic oil corresponding to the ingress of the piston rod 16 opens the valve mechanism 30a provided in the flow path 25 to flow into the reservoir chamber 6, and in response to this, the contraction side Damping force is generated.

そして、ピストンロッド16の伸び行程及び縮み行程時、ロッド側油室18の作動油が流路30内の弁機構30aを開弁させてリザーバ室6に流入するが、このとき、ピストン15の速度が低速域、すなわち、弁体36aのカップ状本体部49の板状部52がスプリング37の付勢力によりハウジング35の収容凹部43の底面に当接した状態(図2の状態)が維持された状況では、弁体36aの摺動軸部48に設けた溝部60により、具体的には、溝部60を螺旋状に形成して出来る限り作動油が流れる流路長が長くなるようにしているので、図4に示すように、減衰力特性を、ピストン速度の2乗に比例するオリフィス特性から流路特性に変化させることができ、該流路特性をピストン速度に比例する線形特性に近づけることができる。   When the piston rod 16 extends and contracts, the hydraulic oil in the rod side oil chamber 18 opens the valve mechanism 30a in the flow path 30 and flows into the reservoir chamber 6. At this time, the speed of the piston 15 is increased. Is maintained in the low speed range, that is, the state in which the plate-like portion 52 of the cup-shaped main body portion 49 of the valve body 36a is in contact with the bottom surface of the housing recess 43 of the housing 35 by the urging force of the spring 37 is maintained. In the situation, the groove portion 60 provided in the sliding shaft portion 48 of the valve body 36a specifically has a groove portion 60 formed in a spiral shape so that the flow path length through which the hydraulic oil flows is as long as possible. As shown in FIG. 4, the damping force characteristic can be changed from the orifice characteristic proportional to the square of the piston speed to the flow path characteristic, and the flow path characteristic can be approximated to a linear characteristic proportional to the piston speed. it can.

さらに、ピストン15の速度が上昇して、弁体36aのカップ状本体部49の板状部52が、スプリング37の付勢力に抗して、ハウジング35の収容凹部43の底面から離れ、摺動軸部48の開口部59(内側通路58)が弁体収容室39に連通し始めると、弁体36aの移動に伴って、作動油が摺動軸部48に設けた螺旋状の溝部60を流れる流路長が次第に短くなるために、図4に示すように、減衰力特性が流路特性(ピストン速度に対する減衰力の比例定数が大)からバルブ特性(ピストン速度に対する減衰力の比例定数が小)へ移行する際、従来のように急激に変化することなく、流路特性とバルブ特性とを若干下方に凸する滑らかな湾曲線でつなぐことができる。
その後さらにピストン15の速度が上昇する(中高速域)と、摺動軸部48の開口部59(内側通路58)の、弁体収容室39に対する開口面積が次第に大きくなることで、減衰力特性として、バルブ特性が得られる。
Further, the speed of the piston 15 is increased, and the plate-like portion 52 of the cup-like main body portion 49 of the valve body 36 a moves away from the bottom surface of the housing recess 43 of the housing 35 against the biasing force of the spring 37. When the opening portion 59 (inner passage 58) of the shaft portion 48 begins to communicate with the valve body accommodating chamber 39, the spiral groove portion 60 provided in the sliding shaft portion 48 with hydraulic oil is moved along with the movement of the valve body 36a. Since the flow path length gradually decreases, as shown in FIG. 4, the damping force characteristic changes from the flow path characteristic (the proportional constant of the damping force to the piston speed is large) to the valve characteristic (the proportional constant of the damping force to the piston speed is When shifting to (Small), the flow path characteristic and the valve characteristic can be connected with a smooth curved line that protrudes slightly downward, without a sudden change as in the prior art.
Thereafter, when the speed of the piston 15 further increases (medium / high speed range), the opening area of the opening 59 (inner passage 58) of the sliding shaft portion 48 with respect to the valve body housing chamber 39 gradually increases, thereby reducing damping force characteristics. As a result, valve characteristics can be obtained.

以上説明した、第1実施形態に係る緩衝器1aでは、特に、ハウジング35の上流側流通孔38に沿って摺動する弁体36aの摺動軸部48の外壁面に、螺旋状に延びる溝部60を形成しているので、ピストン速度が低速域時の減衰力特性、すなわち流路特性を、ピストンの速度に比例する線形特性に近づけることができる。しかも、減衰力特性として、流路特性とバルブ特性とを下方に若干凸する滑らかな湾曲線でつなぐことができる。これにより、異なる減衰力特性の境目に発生し得る異音(弁体36aの振動音等)やごつごつ感を抑制することができる。また、鉄道車両に採用される緩衝器は、常用領域が流路特性であり、第1実施形態に係る緩衝器1aでは、弁体36aの摺動軸部48の外壁面に設けた溝部60により流路特性を発生させるように構成されているので、弁体36aの摺動軸部48とハウジング35の上流側流通孔38との摺動による摩耗の影響が少なく、溝部60の断面積を略一定に保つことができ、安定した減衰力特性を発生させることができる。さらに、第1実施形態に係る緩衝器1aでは、簡素な構成である一つの弁機構30aにより、減衰力特性として、流路特性及びバルブ特性を発生させることができるので、部品点数及び加工工数を削減することができ、ひいてはコスト低減につながる。なお、本実施の形態では、常用領域を流路特性域となるように構成したが、常用領域をバルブ特性域としてもよい。   In the shock absorber 1a according to the first embodiment described above, in particular, the groove portion extending spirally on the outer wall surface of the sliding shaft portion 48 of the valve body 36a that slides along the upstream flow hole 38 of the housing 35. 60 is formed, the damping force characteristic when the piston speed is low, that is, the flow path characteristic can be brought close to a linear characteristic proportional to the piston speed. In addition, as the damping force characteristic, the flow path characteristic and the valve characteristic can be connected by a smooth curved line that slightly protrudes downward. As a result, it is possible to suppress abnormal noise (vibration sound of the valve body 36a, etc.) and a sensation that can occur at the boundary between different damping force characteristics. In addition, the shock absorber employed in the railway vehicle has a flow path characteristic in the normal region, and in the shock absorber 1a according to the first embodiment, the groove portion 60 provided on the outer wall surface of the sliding shaft portion 48 of the valve body 36a. Since the flow path characteristics are generated, the influence of wear caused by sliding between the sliding shaft portion 48 of the valve body 36a and the upstream flow hole 38 of the housing 35 is small, and the cross-sectional area of the groove portion 60 is substantially reduced. It can be kept constant and a stable damping force characteristic can be generated. Further, in the shock absorber 1a according to the first embodiment, the flow path characteristic and the valve characteristic can be generated as the damping force characteristic by the single valve mechanism 30a having a simple configuration. Therefore, the number of parts and the number of processing steps can be reduced. Can be reduced, which leads to cost reduction. In the present embodiment, the normal area is configured to be the flow path characteristic area, but the normal area may be the valve characteristic area.

次に、第2実施形態に係る緩衝器1bを図5及び図6に基づいて説明する。該第2実施形態に係る緩衝器1bを説明する際には、第1実施形態に係る緩衝器1aとの相違点を説明する。
第2実施形態に係る緩衝器1bには、第1実施形態に係る緩衝器1aに採用した弁機構30aとは異なる弁機構30bが採用される。
図5に示すように、弁機構30bの弁体36bは、ハウジング35の上流側流通孔38に沿って摺動する摺動軸部48と、該摺動軸部48の一端に一体的に接続される断面T字状のT字状本体部65とから構成される。T字状本体部65は、軸部66と、軸部66の一端に一体的に接続される円盤状部67とから構成される。T字状本体部65の円盤状部67に摺動軸部48の一端が一体的に接続される。摺動軸部48の外径は、T字状本体部65の軸部66の外径よりも小径である。摺動軸部48及びT字状本体部65には、それぞれの内部に同心状に軸方向に貫通して延びる内側通路58が形成される。また摺動軸部48には、内側通路58に連通して径方向に貫通する開口部59が形成される。開口部59はT字状本体部65に近接した位置に形成される。弁体36bに設けた内側通路58により、上流側流路25aと下流側流路25cとが連通される。
Next, the shock absorber 1b according to the second embodiment will be described with reference to FIGS. When describing the shock absorber 1b according to the second embodiment, differences from the shock absorber 1a according to the first embodiment will be described.
The shock absorber 1b according to the second embodiment employs a valve mechanism 30b different from the valve mechanism 30a employed in the shock absorber 1a according to the first embodiment.
As shown in FIG. 5, the valve element 36 b of the valve mechanism 30 b is integrally connected to a sliding shaft portion 48 that slides along the upstream flow hole 38 of the housing 35 and one end of the sliding shaft portion 48. And a T-shaped main body portion 65 having a T-shaped cross section. The T-shaped main body portion 65 includes a shaft portion 66 and a disk-shaped portion 67 that is integrally connected to one end of the shaft portion 66. One end of the sliding shaft portion 48 is integrally connected to the disk-shaped portion 67 of the T-shaped main body portion 65. The outer diameter of the sliding shaft portion 48 is smaller than the outer diameter of the shaft portion 66 of the T-shaped main body portion 65. In the sliding shaft portion 48 and the T-shaped main body portion 65, an inner passage 58 extending concentrically and penetrating in the axial direction is formed. The sliding shaft 48 is formed with an opening 59 that communicates with the inner passage 58 and penetrates in the radial direction. The opening 59 is formed at a position close to the T-shaped main body 65. The upstream flow path 25a and the downstream flow path 25c are communicated by the inner passage 58 provided in the valve body 36b.

ハウジング35の弁体収容室39は、ハウジング35に設けた収容凹部43と、該収容凹部43を閉塞するように設けた閉塞部44bとの間に形成される。閉塞部44bは、ハウジング35の収容凹部43を閉塞する板状のベース部46と、該ベース部46から弁体収容室39に向かって突設され、弁体36bの内側通路58内を相対的に軸方向に摺動する摺動軸部70とから構成される。ベース部46の外周縁にはスプリング37を位置決めする環状突設部68が形成される。摺動軸部70の外壁面に螺旋状に延びる溝部60が形成される。該溝部60が、弁体36bを介して上流側流路25aと下流側流路25cとを連通する螺旋状通路に相当するものである。本実施形態では、閉塞部44bの摺動軸部70の外壁面に螺旋状に延びる溝部60を形成したが、弁体36bの内側通路58の内壁面に螺旋状の溝部60を設けてもよい。   The valve body accommodation chamber 39 of the housing 35 is formed between an accommodation recess 43 provided in the housing 35 and a closing portion 44 b provided so as to close the accommodation recess 43. The closing portion 44b is provided so as to project from the base portion 46 toward the valve body housing chamber 39 and close to the inside passage 58 of the valve body 36b. And a sliding shaft portion 70 that slides in the axial direction. An annular projecting portion 68 for positioning the spring 37 is formed on the outer peripheral edge of the base portion 46. A groove portion 60 extending in a spiral shape is formed on the outer wall surface of the sliding shaft portion 70. The groove portion 60 corresponds to a spiral passage that communicates the upstream flow path 25a and the downstream flow path 25c via the valve body 36b. In the present embodiment, the groove portion 60 extending spirally is formed on the outer wall surface of the sliding shaft portion 70 of the closing portion 44b. However, the spiral groove portion 60 may be provided on the inner wall surface of the inner passage 58 of the valve body 36b. .

そして、弁体36bの摺動軸部48がハウジング35の上流側流通孔38内に相対的に摺動自在に挿通され、また弁体36bのT字状本体部65は、その軸部66側がハウジング35を構成する閉塞部44b側に指向するように弁体収容室39内に配置され、さらに閉塞部44bの摺動軸部70が弁体36bの内側通路58に沿って相対的に摺動自在に挿通される。その結果、弁体36bは弁体収容室39内をハウジング35の上流側流通孔38に沿う方向に移動自在となる。また、弁体36bのT字状本体部65の円盤状部67と、ハウジング35の閉塞部44bのベース部46との間で、T字状本体部65の軸部66の周りで閉塞部44bの環状突設部68の内側にスプリング37が配置される。該スプリング37の付勢力により、T字状本体部65がハウジング35の閉塞部44bから離間する方向(ハウジング35の収容凹部43の底面に当接する方向)に付勢され、ハウジング35の上流側流通孔38、ひいては流路25を閉塞する。しかしながら、閉塞部44bの摺動軸部70の外壁面には螺旋状の溝部60が形成されるために、T字状本体部65の円盤状部67がハウジング35の収容凹部43の底面に当接した状態(図5の状態)でも、上流側流路25aと下流側流路25cとが連通するようになる。   The sliding shaft portion 48 of the valve body 36b is inserted into the upstream flow hole 38 of the housing 35 so as to be relatively slidable. The T-shaped main body portion 65 of the valve body 36b has a shaft portion 66 side thereof. Arranged in the valve body accommodating chamber 39 so as to be directed toward the closing portion 44b constituting the housing 35, and the sliding shaft portion 70 of the closing portion 44b slides relatively along the inner passage 58 of the valve body 36b. It can be inserted freely. As a result, the valve body 36b is movable in the valve body accommodating chamber 39 in a direction along the upstream flow hole 38 of the housing 35. Further, between the disc-shaped portion 67 of the T-shaped main body portion 65 of the valve body 36b and the base portion 46 of the closing portion 44b of the housing 35, the closed portion 44b around the shaft portion 66 of the T-shaped main body portion 65. The spring 37 is disposed inside the annular projecting portion 68. By the biasing force of the spring 37, the T-shaped main body portion 65 is biased in a direction away from the closing portion 44 b of the housing 35 (direction in contact with the bottom surface of the housing recess 43 of the housing 35). The hole 38 and thus the flow path 25 are closed. However, since the spiral groove portion 60 is formed on the outer wall surface of the sliding shaft portion 70 of the closing portion 44b, the disk-shaped portion 67 of the T-shaped main body portion 65 contacts the bottom surface of the housing recess 43 of the housing 35. Even in the contacted state (the state shown in FIG. 5), the upstream channel 25a and the downstream channel 25c communicate with each other.

次に、本発明の第2実施形態に係る緩衝器1bの作用を説明する。ピストンロッド16の伸び行程及び縮み行程時、ロッド側油室18の作動油が流路25内の弁機構30bを開弁させてリザーバ室6に流入する。このとき、第1実施形態に係る緩衝器1aと同様に、ピストン15の速度が低速域、すなわち、弁体36bのT字状本体部65がスプリング37の付勢力によりハウジング35の収容凹部43の底面に当接した状態(図5の状態)が維持された状況では、閉塞部44bの摺動軸部70に設けた螺旋状の溝部60により、具体的には、溝部60を螺旋状に形成して出来る限り作動油が流れる流路長が長くなるようにしているので、図6に示すように、減衰力特性を、ピストン速度の2乗に比例するオリフィス特性から流路特性に変化させることができ、該流路特性をピストン速度に比例する線形特性に近づけることができる。   Next, the operation of the shock absorber 1b according to the second embodiment of the present invention will be described. When the piston rod 16 extends and contracts, the hydraulic oil in the rod-side oil chamber 18 opens the valve mechanism 30b in the flow path 25 and flows into the reservoir chamber 6. At this time, like the shock absorber 1a according to the first embodiment, the speed of the piston 15 is in a low speed range, that is, the T-shaped main body portion 65 of the valve body 36b is moved by the biasing force of the spring 37 of the housing recess 43 of the housing 35. In a situation where the state of contact with the bottom surface (the state of FIG. 5) is maintained, specifically, the groove portion 60 is formed in a spiral shape by the spiral groove portion 60 provided in the sliding shaft portion 70 of the closing portion 44b. Since the flow path length through which the hydraulic oil flows is made as long as possible, the damping force characteristic is changed from the orifice characteristic proportional to the square of the piston speed to the flow path characteristic as shown in FIG. And the flow path characteristic can be brought close to a linear characteristic proportional to the piston speed.

さらに、ピストン15の速度が上昇して、弁体36bのT字状本体部65の円盤状部67が、スプリング37の付勢力に抗して、ハウジング35の収容凹部43の底面から離れ、弁体36bの摺動軸部48の開口部59(内側通路58)が弁体収容室39に連通し始めると、弁体36bの移動に伴って、作動油が閉塞部44bの摺動軸部70に設けた螺旋状の溝部60を流れる流路長が次第に長くなるために、図6に示すように、減衰力特性が流路特性(ピストン速度に対する減衰力の比例定数が大)からバルブ特性(ピストン速度に対する減衰力の比例定数が小)へ移行する際、従来のように急激に変化することなく、流路特性とバルブ特性とを若干上方に凸する滑らかな湾曲線でつなぐことができる。
その後さらにピストン15の速度が上昇する(中高速域)と、摺動軸部48の開口部59(内側通路58)の、弁体収容室39に対する開口面積が次第に大きくなることで、減衰力特性として、バルブ特性が得られる。
Further, when the speed of the piston 15 is increased, the disc-shaped portion 67 of the T-shaped main body portion 65 of the valve body 36 b is separated from the bottom surface of the housing recess 43 of the housing 35 against the biasing force of the spring 37, When the opening 59 (inner passage 58) of the sliding shaft portion 48 of the body 36b begins to communicate with the valve body housing chamber 39, the hydraulic oil moves along with the sliding shaft portion 70 of the closing portion 44b as the valve body 36b moves. As shown in FIG. 6, the damping force characteristic is changed from the flow path characteristic (the proportional constant of the damping force with respect to the piston speed is large) to the valve characteristic (as shown in FIG. 6). When the proportional constant of the damping force with respect to the piston speed is small), the flow path characteristic and the valve characteristic can be connected by a smooth curved line that slightly protrudes upward without changing abruptly as in the prior art.
Thereafter, when the speed of the piston 15 further increases (medium / high speed range), the opening area of the opening 59 (inner passage 58) of the sliding shaft portion 48 with respect to the valve body housing chamber 39 gradually increases, thereby reducing damping force characteristics. As a result, valve characteristics can be obtained.

以上説明した、第2実施形態に係る緩衝器1bでは、特に、弁体36bの内側通路58に沿って摺動する閉塞部44bの摺動軸部70の外壁面に、螺旋状に延びる溝部60を形成したので、減衰力特性として、流路特性とバルブ特性とを上方に若干凸する滑らかな湾曲線でつなぐことができる。これにより、第1実施形態に係る緩衝器1aと同様に、異なる減衰力特性の境目に発生し得る異音(弁体36bの振動音等)やごつごつ感を抑制することができる。   In the shock absorber 1b according to the second embodiment described above, in particular, the groove portion 60 extending spirally on the outer wall surface of the sliding shaft portion 70 of the closing portion 44b that slides along the inner passage 58 of the valve body 36b. As a damping force characteristic, the flow path characteristic and the valve characteristic can be connected by a smooth curved line that slightly protrudes upward. As a result, similar to the shock absorber 1a according to the first embodiment, it is possible to suppress abnormal noise (such as vibration sound of the valve body 36b) and a sensation that may occur at the boundary between different damping force characteristics.

1a、1b 緩衝器,2 外筒,3 シリンダ,6 リザーバ室,15 ピストン,16 ピストンロッド,18 ロッド側油室,19 反ロッド側油室,25 流路,25a 上流側流路,25c 下流側流路,30a、30b 弁機構,36a、36b 弁体,37 スプリング(バネ手段),39 弁体収容室,48 摺動軸部,58 内側通路,59 開口部,60 螺旋状の溝部(螺旋状通路),70 摺動軸部
1a, 1b shock absorber, 2 outer cylinder, 3 cylinder, 6 reservoir chamber, 15 piston, 16 piston rod, 18 rod side oil chamber, 19 anti-rod side oil chamber, 25 channel, 25a upstream channel, 25c downstream Flow path, 30a, 30b Valve mechanism, 36a, 36b Valve body, 37 Spring (spring means), 39 Valve body storage chamber, 48 Sliding shaft portion, 58 Inner passage, 59 Opening portion, 60 Spiral groove portion (spiral) Passage), 70 Sliding shaft

Claims (4)

内部に作動流体が封入されたシリンダと、
該シリンダ内に挿入されて該シリンダ内を2室に分画するピストンと、
該ピストンに連結され前記シリンダから外部に延出されるピストンロッドと、
前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、
該流路に設けられ、前記ピストンの移動に伴って前記流路を通過する作動流体の流れを調整する弁機構と、を備えてなる緩衝器であって、
前記弁機構は、
前記流路内に形成された弁体収容室内に移動可能に収容され、前記流路を開閉する弁体と、
該弁体を、前記流路を閉塞する方向に付勢するバネ手段と、を有し、
前記弁体は、前記流路内を摺動する摺動軸部を有し、
該摺動軸部の外壁面と前記流路の内壁面との間に、前記弁体を介して前記流路の上流側と下流側とを連通する螺旋状通路を設け、
前記弁体の移動に伴って、前記螺旋状通路を流れる作動流体の流路長が変化することを特徴とする緩衝器。
A cylinder filled with working fluid inside,
A piston inserted into the cylinder and dividing the cylinder into two chambers;
A piston rod connected to the piston and extending outward from the cylinder;
A flow path in which a working fluid flows by sliding the piston in the cylinder;
A valve mechanism that is provided in the flow path and adjusts the flow of the working fluid that passes through the flow path as the piston moves,
The valve mechanism is
A valve body that is movably accommodated in a valve body housing chamber formed in the flow path, and opens and closes the flow path;
Spring means for biasing the valve body in a direction to close the flow path,
The valve body has a sliding shaft portion that slides in the flow path,
Provided between the outer wall surface of the sliding shaft and the inner wall surface of the flow path is a spiral passage that communicates the upstream side and the downstream side of the flow path via the valve body,
A shock absorber characterized in that the flow path length of the working fluid flowing through the spiral passage changes with the movement of the valve body.
前記摺動軸部は、その内部に端面から軸方向に沿って延びる内側通路と、その外壁面から前記内側通路に連通するように開口した開口部と、を有し、
前記弁体の移動に伴って、前記開口部が前記弁体収容室に対して開閉することで、前記流路が開閉されることを特徴とする請求項1に記載の緩衝器。
The sliding shaft portion has an inner passage extending in the axial direction from the end surface in the inside thereof, and an opening portion opened from the outer wall surface so as to communicate with the inner passage,
2. The shock absorber according to claim 1, wherein the flow path is opened and closed by opening and closing the opening with respect to the valve body housing chamber as the valve body moves.
内部に作動流体が封入されたシリンダと、
該シリンダ内に挿入されて該シリンダ内を2室に分画するピストンと、
該ピストンに連結され前記シリンダから外部に延出されるピストンロッドと、
前記シリンダ内の前記ピストンの摺動によって作動流体の流れが生じる流路と、
該流路に設けられ、前記ピストンの移動に伴って前記流路を通過する作動流体の流れを調整する弁機構と、を備えてなる緩衝器であって、
前記弁機構は、
前記流路内に形成された弁体収容室内に移動可能に収容され、前記流路を開閉する弁体と、
該弁体を、前記流路を閉塞する方向に付勢するバネ手段と、を有し、
前記弁体は、該弁体を介して前記流路の上流側と下流側とを連通するように貫通して延びる内側通路を有し、
前記弁体収容室内に前記内側通路内を摺動する摺動軸部を設け、該摺動軸部の外壁面と前記内側通路の内壁面との間に、前記弁体を介して前記流路の上流側と下流側とを連通する螺旋状通路を設け、
前記弁体の移動に伴って、前記螺旋状通路を流れる作動流体の流路長が変化することを特徴とする緩衝器。
A cylinder filled with working fluid inside,
A piston inserted into the cylinder and dividing the cylinder into two chambers;
A piston rod connected to the piston and extending outward from the cylinder;
A flow path in which a working fluid flows by sliding the piston in the cylinder;
A valve mechanism that is provided in the flow path and adjusts the flow of the working fluid that passes through the flow path as the piston moves,
The valve mechanism is
A valve body that is movably accommodated in a valve body housing chamber formed in the flow path, and opens and closes the flow path;
Spring means for biasing the valve body in a direction to close the flow path,
The valve body has an inner passage extending through the valve body so as to communicate with the upstream side and the downstream side of the flow path,
A sliding shaft that slides in the inner passage is provided in the valve body housing chamber, and the flow path is interposed between the outer wall surface of the sliding shaft portion and the inner wall surface of the inner passage through the valve body. A spiral passage that communicates the upstream side and the downstream side of
A shock absorber characterized in that the flow path length of the working fluid flowing through the spiral passage changes with the movement of the valve body.
前記弁体は、その外壁面から前記内側通路に連通するように開口した開口部を有し、
前記弁体の移動に伴って、前記開口部が前記弁体収容室に対して開閉することで、前記流路が開閉されることを特徴とする請求項3に記載の緩衝器。
The valve body has an opening that is open from the outer wall surface thereof to communicate with the inner passage,
4. The shock absorber according to claim 3, wherein the flow path is opened and closed by opening and closing the opening with respect to the valve body housing chamber as the valve body moves.
JP2015171157A 2015-08-31 2015-08-31 Shock absorber Active JP6489977B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015171157A JP6489977B2 (en) 2015-08-31 2015-08-31 Shock absorber
CN201610771190.6A CN106481714B (en) 2015-08-31 2016-08-30 Buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171157A JP6489977B2 (en) 2015-08-31 2015-08-31 Shock absorber

Publications (2)

Publication Number Publication Date
JP2017048826A JP2017048826A (en) 2017-03-09
JP6489977B2 true JP6489977B2 (en) 2019-03-27

Family

ID=58273941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171157A Active JP6489977B2 (en) 2015-08-31 2015-08-31 Shock absorber

Country Status (2)

Country Link
JP (1) JP6489977B2 (en)
CN (1) CN106481714B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114761700A (en) * 2019-12-06 2022-07-15 日立安斯泰莫株式会社 Buffer device
CN113944716B (en) * 2021-10-18 2023-08-22 湖南闽湘消防设备有限公司 High-temperature-resistant self-extinguishing shock absorber

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4324634Y1 (en) * 1964-04-15 1968-10-17
JPS4821076Y1 (en) * 1969-04-04 1973-06-19
JPS506827U (en) * 1973-05-15 1975-01-24
JPS5176639A (en) * 1974-12-26 1976-07-02 Keiji Inochi GENATSURYURYOCHOSETSUBEN
JPS5787804U (en) * 1980-11-19 1982-05-31
JPH0788741B2 (en) * 1987-02-23 1995-09-27 石油公団 Fuel control shutoff valve for mine bottom boiler
JPH1122773A (en) * 1997-07-01 1999-01-26 Kayaba Ind Co Ltd Oil damper
JP3992087B2 (en) * 1997-10-02 2007-10-17 カヤバ工業株式会社 Damping force generation structure
JP4165933B2 (en) * 1998-07-28 2008-10-15 株式会社大林組 Hydraulic shock absorber
JP2000087918A (en) * 1998-09-11 2000-03-28 Taiyo Ltd Fluid pressure cylinder cushion device
JP2001012627A (en) * 1999-06-30 2001-01-16 Iseki & Co Ltd Hydraulic relief valve
JP3859466B2 (en) * 2001-06-19 2006-12-20 株式会社クボタ Relief valve device for pressure oil passage
DE10307363B3 (en) * 2003-02-21 2004-09-09 Zf Sachs Ag Vibration damper with stroke-dependent damping force
JP4902483B2 (en) * 2007-09-28 2012-03-21 株式会社ショーワ Hydraulic shock absorber
JP2011179550A (en) * 2010-02-26 2011-09-15 Hitachi Automotive Systems Ltd Shock absorber
JP5466539B2 (en) * 2010-03-10 2014-04-09 カヤバ工業株式会社 Damping valve
JP5584110B2 (en) * 2010-12-28 2014-09-03 日立オートモティブシステムズ株式会社 Damping force adjustable shock absorber
JP5681518B2 (en) * 2011-02-16 2015-03-11 カヤバ工業株式会社 Fluid pressure buffer
JP5659055B2 (en) * 2011-03-22 2015-01-28 カヤバ工業株式会社 Damping valve
JP5617038B2 (en) * 2011-07-17 2014-10-29 本田技研工業株式会社 Variable damping force damper
JP5917140B2 (en) * 2011-12-28 2016-05-11 日立オートモティブシステムズ株式会社 Fluid pressure buffer
JP6214227B2 (en) * 2012-08-31 2017-10-18 日立オートモティブシステムズ株式会社 Hydraulic shock absorber
JP6014444B2 (en) * 2012-09-28 2016-10-25 日立オートモティブシステムズ株式会社 Shock absorber

Also Published As

Publication number Publication date
CN106481714A (en) 2017-03-08
JP2017048826A (en) 2017-03-09
CN106481714B (en) 2019-08-16

Similar Documents

Publication Publication Date Title
JP6654955B2 (en) Shock absorber
JP5639870B2 (en) Hydraulic shock absorber for vehicles
JP2017180705A (en) Shock absorber
JP6863667B2 (en) Buffer
JP2013133896A (en) Damping force adjustment type shock absorber
JP6489977B2 (en) Shock absorber
JP6462457B2 (en) Fluid pressure buffer
JP6580262B2 (en) Shock absorber and manufacturing method thereof
JP5917140B2 (en) Fluid pressure buffer
JP2004257507A (en) Hydraulic damper
JP2017180706A (en) Shock absorber and attenuation force generation device
JP6116267B2 (en) Fluid pressure buffer
JP6047035B2 (en) Hydraulic shock absorber for vehicles
JP6251137B2 (en) Pressure buffer and damping force generation mechanism
JP6972352B2 (en) Buffer
JP2009236196A (en) Hydraulic shock absorber
JP4815482B2 (en) Hydraulic shock absorber
JP5897955B2 (en) Damping force adjustable shock absorber
JP2012013117A (en) Damping valve
JP2020097997A (en) Fluid pressure shock absorber
JP2010007817A (en) Hydraulic shock absorber
JP2012197880A (en) Damping valve
JP5369058B2 (en) Damping valve
JP5642606B2 (en) Hydraulic shock absorber
JP2011094691A (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190226

R150 Certificate of patent or registration of utility model

Ref document number: 6489977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250