JP6475815B1 - Recycling method for lithium ion battery - Google Patents

Recycling method for lithium ion battery Download PDF

Info

Publication number
JP6475815B1
JP6475815B1 JP2017241593A JP2017241593A JP6475815B1 JP 6475815 B1 JP6475815 B1 JP 6475815B1 JP 2017241593 A JP2017241593 A JP 2017241593A JP 2017241593 A JP2017241593 A JP 2017241593A JP 6475815 B1 JP6475815 B1 JP 6475815B1
Authority
JP
Japan
Prior art keywords
cell
target cell
ion battery
energization
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241593A
Other languages
Japanese (ja)
Other versions
JP2019110006A (en
Inventor
西田 武次
武次 西田
Original Assignee
株式会社Brs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Brs filed Critical 株式会社Brs
Priority to JP2017241593A priority Critical patent/JP6475815B1/en
Application granted granted Critical
Publication of JP6475815B1 publication Critical patent/JP6475815B1/en
Publication of JP2019110006A publication Critical patent/JP2019110006A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】一般的な直流電源を使用して再生処理する。【解決手段】休止期間T2 を挟みながらベース電流Ib 、パルス電流Ip を重畳して充電電流Ic とする充電期間T1 を繰り返して対象セルBに通電し、セル温度Tが設定値Ts を超えることにより通電を中断し、充電電圧Vc が設定値Vs に達するか充電量Qが所定値Qs に達することにより通電を終了する。【選択図】図3Regeneration processing is performed using a general DC power supply. By charging a target cell B by repeating a charging period T1 in which a base current Ib and a pulse current Ip are overlapped to form a charging current Ic with a pause period T2 interposed therebetween, and the cell temperature T exceeds a set value Ts. The energization is interrupted, and the energization is terminated when the charge voltage Vc reaches the set value Vs or the charge amount Q reaches the predetermined value Qs. [Selection] Figure 3

Description

この発明は、劣化したリチウムイオン電池を電気的に再生し、再使用するためのリチウムイオン電池の再生処理方法に関する。   The present invention relates to a method for regenerating a lithium ion battery for electrically regenerating and reusing a deteriorated lithium ion battery.

劣化したリチウムイオン電池を電気的に再生処理する方法が提案されている(特許文献1)。   A method of electrically regenerating a deteriorated lithium ion battery has been proposed (Patent Document 1).

従来の再生処理方法は、リチウムイオン電池の負極を正極よりも高い電位とした後、負極の電位を正極よりも低い電位とする電位制御工程を少なくとも1サイクル実施することによる。なお、負極の電位は、正極の電位より0.1〜2Vの範囲で高くした後、正極の電位より0.1〜5Vの範囲で低くするものとし、両者の電位の保持時間は、たとえば中間に1秒の休止時間を挟んでそれぞれ10秒程度とする。ただし、前者の保持時間は、0.1〜30秒とし、後者の保持時間はパルス的に逆電位制御してもよい。   The conventional regeneration treatment method is based on performing at least one cycle of a potential control step of setting the potential of the negative electrode lower than that of the positive electrode after setting the negative electrode of the lithium ion battery to a potential higher than that of the positive electrode. The potential of the negative electrode is set higher than the potential of the positive electrode in the range of 0.1 to 2 V, and then lower than the potential of the positive electrode in the range of 0.1 to 5 V. And about 10 seconds each with a rest time of 1 second. However, the former holding time may be 0.1 to 30 seconds, and the latter holding time may be pulse-wise controlled by the reverse potential.

特開2012−169094号公報JP 2012-169094 A

かかる従来技術によるときは、リチウムイオン電池の再生処理用の外部電源は、出力電位を反転制御するとともに、電池の充放電電流を通電させる特殊な電源装置が必要であるという問題があった。   According to such a conventional technique, there is a problem that the external power supply for the regeneration process of the lithium ion battery requires a special power supply device that reversely controls the output potential and energizes the charge / discharge current of the battery.

そこで、この発明の目的は、かかる従来技術の問題に鑑み、パルス性の充電電流を採用することによって、一般的な直流電源を使用することができるリチウムイオン電池の再生処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a regeneration processing method for a lithium ion battery in which a general DC power source can be used by adopting a pulsed charging current in view of the problems of the prior art. is there.

かかる目的を達成するためのこの発明の構成は、劣化したリチウムイオン電池をセルごとに再生処理するに際し、休止期間を挟みながら直流のベース電流と方形波のパルス電流とを重畳して充電電流とする充電期間を周期的に繰り返して対象セルに通電するとともに、対象セルのセル温度が設定値を超えると通電を中断し、通電を中断したら対象セルのセル温度が設定値より低い所定の再開温度以下に低下するのを待って通電を再開し、充電電圧が対象セルの定格充電電圧に基づく所定の設定値に達するか対象セルの充電量が所定値に達することにより通電を終了することをその要旨とする。   In order to achieve this object, the configuration of the present invention, when regenerating a deteriorated lithium ion battery for each cell, superimposes a DC base current and a square-wave pulse current while interposing a pause period, The charging period is periodically repeated to energize the target cell. When the cell temperature of the target cell exceeds the set value, the energization is interrupted, and when the energization is interrupted, the cell temperature of the target cell is lower than the set value. The energization is resumed after waiting for the voltage to drop below, and the energization is terminated when the charge voltage reaches a predetermined set value based on the rated charge voltage of the target cell or the charge amount of the target cell reaches a predetermined value. The gist.

なお、充電電圧は、通電中の対象セルの端子電圧を1秒ごと以下の頻度でサンプリングして瞬時値を検出することができる。   The charging voltage can be detected instantaneously by sampling the terminal voltage of the target cell being energized at a frequency of 1 second or less.

また、通電を終了したら、所定時間の静置後、容量試験を実施してもよく、所定時間の静置後、セル温度が規定値を超えているときは、セル温度が規定値以下に低下するのを待って容量試験を実施してもよく、セル温度の低下を待つとき、対象セルを強制冷却してもよい。   In addition, after energization, the capacity test may be performed after standing for a predetermined time. When the cell temperature exceeds a specified value after standing for a predetermined time, the cell temperature drops below the specified value. The capacity test may be carried out after waiting for this, and the target cell may be forcibly cooled when waiting for the cell temperature to decrease.

かかる発明の構成によるときは、劣化したリチウムイオン電池をセルごとに有効に再生処理することができる。なお、方形波のパルス電流は、0.5C±10%程度とし、直流のベース電流は、パルス電流の1/10程度に設定するとよい。ただし、ここでいうCは、いわゆるCレートであり、再生対象のセル、すなわち対象セルが1時間で満充電状態から完全な放電状態にまで放電される時の電流値を1Cとする。そこで、たとえば定格容量Qo Ahのセルの1C相当の電流値は、Qo Aである。また、パルス電流は、パルス周波数1〜20kHz 程度、デューティ25〜40%程度に設定するのがよく、1回当りの充電期間、休止期間は、それぞれ5分程度、1分程度に設定するのがよい。ただし、これらの再生処理用のパラメータは、対象セルの種別、容量などにより実験的に最適値を定めるものとする。   According to the configuration of the invention, it is possible to effectively regenerate a deteriorated lithium ion battery for each cell. The square-wave pulse current is preferably about 0.5 C ± 10%, and the DC base current is preferably set to about 1/10 of the pulse current. However, C here is a so-called C rate, and the current value when the cell to be reproduced, that is, the target cell is discharged from the fully charged state to the fully discharged state in 1 hour is 1C. Therefore, for example, the current value corresponding to 1C of the cell having the rated capacity Qo Ah is Qo A. The pulse current is preferably set to a pulse frequency of about 1 to 20 kHz and a duty of about 25 to 40%. The charging period and the pause period per time are set to about 5 minutes and 1 minute, respectively. Good. However, these reproduction processing parameters are experimentally determined to be optimum values depending on the type and capacity of the target cell.

一方、再生処理中のリチウムイオン電池の対象セルは、セル温度を常時検出して監視し、セル温度が設定値を超えると通電を中断して有害な熱暴走の発生を阻止する。なお、セル温度は、たとえば対象セルの上面温度および/または端子温度を検出することが好ましい。また、充電電圧(通電中の対象セルの端子電圧)が設定値に達するか、充電電流による対象セルの充電量が所定値に達することにより、通電を終了して再生処理を完了させることができる。ただし、再生処理を完了させるための充電電圧の設定値、充電量の所定値は、それぞれたとえば対象セルの定格充電電圧の10%増程度、定格容量の10〜20%増程度に定めることができる。   On the other hand, the target cell of the lithium ion battery that is being regenerated is constantly detected and monitored, and when the cell temperature exceeds a set value, energization is interrupted to prevent harmful thermal runaway. The cell temperature is preferably detected, for example, the upper surface temperature and / or the terminal temperature of the target cell. Further, when the charging voltage (terminal voltage of the target cell being energized) reaches a set value or the amount of charge of the target cell due to the charging current reaches a predetermined value, the energization is terminated and the regeneration process can be completed. . However, the set value of the charging voltage and the predetermined value of the charge amount for completing the regeneration process can be set to about 10% increase of the rated charge voltage of the target cell and about 10 to 20% increase of the rated capacity, respectively. .

セル温度が設定値を超えて通電を中断したときは、セル温度が設定値より低い所定の再開温度以下に低下するのを待って通電を再開することにより、対象セルの再生処理を一層安全に続行することができる。   When the energization is interrupted when the cell temperature exceeds the set value, the process of regenerating the target cell is made safer by resuming energization after waiting for the cell temperature to fall below the predetermined restart temperature lower than the set value. You can continue.

通電を終了して再生処理が完了したら、たとえば1時間以上の所定時間の静置後、容量試験を実施して再生処理の成否を確認する。なお、所定時間の静置後のセル温度が所定の規定値を超えるときは、そのまま静置を継続し、または、たとえば風冷の強制冷却によりセル温度が規定値以下に低下するのを待つ。容量試験は、たとえば0.2Cの一定放電電流により所定の放電終止電圧まで放電させるとき、定格容量の80%以上の容量が確認できたら再生処理を合格とする。なお、容量試験に先き立って対象セルのセル電圧、内部抵抗を計測して記録することにより、以後のクレーム調査等に資することができる。また、容量試験中のセル温度も併せて計測記録してもよい。   When the energization is finished and the regeneration process is completed, for example, after standing for a predetermined time of 1 hour or more, a capacity test is performed to confirm the success or failure of the regeneration process. When the cell temperature after standing for a predetermined time exceeds a predetermined specified value, the standing is continued as it is, or waiting for the cell temperature to fall below a specified value by forced cooling of air cooling, for example. In the capacity test, for example, when discharging to a predetermined end-of-discharge voltage with a constant discharge current of 0.2 C, if the capacity of 80% or more of the rated capacity is confirmed, the regeneration process is accepted. Prior to the capacity test, by measuring and recording the cell voltage and internal resistance of the target cell, it is possible to contribute to subsequent claims investigation and the like. Further, the cell temperature during the capacity test may also be measured and recorded.

再生処理装置のブロック系統図Block diagram of playback processor 再生処理フローチャート(1)Reproduction processing flowchart (1) 再生処理フローチャート(2)Reproduction processing flowchart (2) 充電電流波形図Charging current waveform diagram 再生処理結果データ表(1)Reproduction processing result data table (1) 再生処理結果データ表(2)Reproduction processing result data table (2)

以下、図面を以って発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

リチウムイオン電池の再生処理方法は、マイクロコンピュータ11、直流電源12、トランジスタスイッチ13を主要部材とする再生処理装置によって実施する(図1)。   The regeneration processing method of the lithium ion battery is carried out by a regeneration processing apparatus including a microcomputer 11, a DC power source 12, and a transistor switch 13 as main components (FIG. 1).

直流電源12の出力は、トランジスタスイッチ13と、再生処理対象となるリチウムイオン電池の対象セルBとを介して接地されている。トランジスタスイッチ13には、マイクロコンピュータ11からの制御信号Sが入力されており、トランジスタスイッチ13は、制御信号Sに従って、対象セルBに対する直流電源12からの充電電流Ic を任意に制御することができる。なお、トランジスタスイッチ13と対象セルBとの間には、充電電流Ic を検出する電流センサ14が付設されている。ただし、トランジスタスイッチ13は、図示のトランジスタ素子以外の半導体スイッチ素子に代えてもよい。   The output of the DC power source 12 is grounded via the transistor switch 13 and the target cell B of the lithium ion battery that is the target of the regeneration process. A control signal S from the microcomputer 11 is input to the transistor switch 13, and the transistor switch 13 can arbitrarily control the charging current Ic from the DC power source 12 for the target cell B according to the control signal S. . A current sensor 14 for detecting the charging current Ic is attached between the transistor switch 13 and the target cell B. However, the transistor switch 13 may be replaced with a semiconductor switch element other than the illustrated transistor element.

マイクロコンピュータ11には、対象セルBの端子電圧Vt の他、電流センサ14からの充電電流Ic 、温度センサ15からのセル温度Tが入力されている。ただし、温度センサ15は、たとえば放射温度計であって、対象セルBの上面温度および/または端子温度を検出して電気信号として出力することができる。なお、温度センサ15は、対象セルBの複数箇所の温度を検出するとき、その中の最高温度をセル温度Tとして出力してもよい。   In addition to the terminal voltage Vt of the target cell B, the microcomputer 11 receives the charging current Ic from the current sensor 14 and the cell temperature T from the temperature sensor 15. However, the temperature sensor 15 is, for example, a radiation thermometer, and can detect the upper surface temperature and / or the terminal temperature of the target cell B and output it as an electrical signal. Note that the temperature sensor 15 may output the highest temperature among them as the cell temperature T when detecting temperatures at a plurality of locations in the target cell B.

リチウムイオン電池の再生処理の手順は、たとえば図2のフローチャートのとおりである。ただし、以下の説明は、対象セルBとして、中国Winston Battery社製リチウムイオン電池セルWB−LYP40AHA(LiFePO4 正極、定格容量40Ah、定格電圧3.4V、充電電圧4.0V、放電終止電圧2.8V)を再生対象とする場合を例示している。   The procedure of the lithium ion battery regeneration process is, for example, as shown in the flowchart of FIG. However, in the following description, the target cell B is a lithium ion battery cell WB-LYP40AHA (LiFePO4 positive electrode, rated capacity 40 Ah, rated voltage 3.4 V, charging voltage 4.0 V, discharge end voltage 2.8 V, manufactured by Winston Battery, China. ) Is a reproduction target.

再生すべきリチウムイオン電池は、まず、セルごとに受入検査を実施する(図2のステップ(1)、以下単に(1)のように記す)。すなわち、リチウムイオン電池は、たとえば電槽の亀裂や割れ、端子の溶着・破損などの機械的な損傷の有無をチェックして不良品を再生処理の対象から除外する。   The lithium-ion battery to be regenerated is first subjected to an acceptance test for each cell (step (1) in FIG. 2, hereinafter simply referred to as (1)). That is, the lithium ion battery is checked for the presence or absence of mechanical damage such as cracking or cracking of the battery case, welding or breakage of the terminal, and the defective product is excluded from the object of the regeneration process.

受入検査済みのリチウムイオン電池は、セルごとにセル電圧、内部抵抗を計測し(2)、セル電圧が規定の放電終止電圧以上のものについて、たとえば放電電流0.2Cにより放電終止電圧まで放電処理を実施した上で(3)、再生処理工程に移行する(4)。なお、ステップ(2)の事前計測において、セル電圧が放電終止電圧未満のものは、ステップ(3)の放電処理を省略する。   A lithium-ion battery that has undergone acceptance inspection measures cell voltage and internal resistance for each cell (2), and discharges the cell voltage to a discharge end voltage with a discharge current of 0.2 C, for example, when the cell voltage exceeds a specified discharge end voltage. (3), the process proceeds to the regeneration process (4). In the preliminary measurement in step (2), the discharge process in step (3) is omitted if the cell voltage is lower than the discharge end voltage.

ステップ(4)の再生処理の詳細は、後述する。再生処理が終了すると(4)、1時間以上の所定時間の静置後(5)、セル電圧、内部抵抗を計測記録した上(6)、容量試験を実施する(7)。ただし、ステップ(5)において、所定時間経過後のセル温度Tがたとえば35℃の規定値を超える場合は、静置したまま自然冷却または強制冷却によりセル温度Tが規定値以下に低下するのを待つ。また、ステップ(7)の容量試験は、たとえば放電電流0.2Cにより放電終止電圧まで放電させ、定格容量の80%以上の容量を確認して再生処理の合否を判定する。その後、たとえば充電電流0.2Cで6時間定電流充電し、定格容量の1.2倍の充電量を仕上充電して(8)、一連の処理を完了することができる。   Details of the reproduction processing in step (4) will be described later. When the regeneration process is completed (4), after standing for a predetermined time of 1 hour or more (5), the cell voltage and the internal resistance are measured and recorded (6), and a capacity test is performed (7). However, in step (5), when the cell temperature T after a predetermined time elapses exceeds a specified value of 35 ° C., for example, the cell temperature T decreases to a specified value or less by natural cooling or forced cooling while standing still. wait. In the capacity test in step (7), for example, the battery is discharged to a discharge end voltage with a discharge current of 0.2 C, and a capacity of 80% or more of the rated capacity is confirmed to determine whether the regeneration process is acceptable. Thereafter, for example, constant current charging is performed at a charging current of 0.2 C for 6 hours, and a charging amount 1.2 times the rated capacity is finish-charged (8), thereby completing a series of processes.

図2のステップ(4)の再生処理は、マイクロコンピュータ11を含む図1の再生処理装置により、たとえば図3のプログラムフローチャートに従う。   The reproduction process in step (4) of FIG. 2 is performed according to the program flowchart of FIG. 3, for example, by the reproduction processing apparatus of FIG.

プログラムは、まず、マイクロコンピュータ11によりトランジスタスイッチ13を制御し、対象セルBに対して直流電源12からの充電電流Ic の通電を開始する(図3のステップ(1)、以下、単に(1)のように記す)。なお、充電電流Ic は、ベース電流Ib =0.05C=2Aとパルス電流Ip =0.5C=20Aとを重畳し(図4)、休止期間T2 =1分を挟みながら充電期間T1 =5分のサイクルを繰り返すものとする。また、パルス電流Ip のパルス周波数10kHz とし、デューティd=30%とする。なお、図4の横軸は、時間tである。   The program first controls the transistor switch 13 by the microcomputer 11 and starts energizing the charging current Ic from the DC power source 12 to the target cell B (step (1) in FIG. 3, hereinafter, simply (1)). ). The charging current Ic is obtained by superimposing the base current Ib = 0.05C = 2A and the pulse current Ip = 0.5C = 20A (FIG. 4), and charging period T1 = 5 minutes with a pause period T2 = 1 minute. The cycle is repeated. The pulse frequency of the pulse current Ip is 10 kHz, and the duty d is 30%. The horizontal axis in FIG. 4 is time t.

つづいて、プログラムは、対象セルBのセル温度Tが設定値Ts を超えていないことを確認しながら(2)、通電中の対象セルBの端子電圧Vt 、すなわち充電電圧Vc が所定の設定値Vs =4.4Vに達するか(3)、または充電電流Ic による対象セルBの充電量Qが所定値Qs =1.2Qo =48Ahに到達するまで通電を継続し((4)、(2)…(4))、ステップ(3)、(4)のいずれかの条件成立により充電電流Ic の通電を終了して再生処理を完了する(5)。ここで、Qo =40Ahは、対象セルBの定格容量である。   Subsequently, the program confirms that the cell temperature T of the target cell B does not exceed the set value Ts (2), while the terminal voltage Vt of the target cell B being energized, that is, the charging voltage Vc is a predetermined set value. The energization is continued until Vs = 4.4V is reached (3) or the charge amount Q of the target cell B due to the charging current Ic reaches a predetermined value Qs = 1.2Qo = 48 Ah ((4), (2) (4)), the energization of the charging current Ic is terminated when the condition in any one of steps (3) and (4) is satisfied, and the regeneration process is completed (5). Here, Qo = 40Ah is the rated capacity of the target cell B.

なお、通電中の対象セルBの端子電圧Vt 、すなわち充電電圧Vc は、対象セルBの定格電圧3.4V付近では再生の進行により殆ど変化しないが、対象セルBが満充電に近付くと急激に上昇する傾向がある。そこで、マイクロコンピュータ11は、ステップ(3)の判断のために、端子電圧Vt をたとえば1秒ごと以下の高頻度でサンプリングし、充電電圧Vc の瞬時値を検出して計測するものとする。また、ステップ(4)の判断に使用する充電量Qは、充電電流Ic の充電期間T1 、休止期間T2 の現時点までの現実の通電サイクル数Nとして、たとえばQ=(dIp +(1−d)Ib )T1 ・N/60Ahとして算出することができ、通電サイクル数Nは、たとえば充電電流Ic に基づき、マイクロコンピュータ11により計数することができる。   Note that the terminal voltage Vt of the target cell B being energized, that is, the charging voltage Vc, hardly changes with the progress of regeneration near the rated voltage 3.4 V of the target cell B, but suddenly when the target cell B approaches full charge. There is a tendency to rise. Therefore, the microcomputer 11 samples the terminal voltage Vt at a high frequency of, for example, every 1 second or less, and detects and measures the instantaneous value of the charging voltage Vc for the determination of step (3). Further, the charge amount Q used for the determination in step (4) is, for example, Q = (dIp + (1-d)) as the actual number N of energization cycles up to the present time of the charging period T1 and the suspension period T2 of the charging current Ic. Ib) T1 · N / 60Ah, and the number N of energization cycles can be counted by the microcomputer 11 based on the charging current Ic, for example.

一方、充電電流Ic の通電中に対象セルBのセル温度Tが設定値Ts =45℃を超えると(2)、充電電流Ic の通電を中断して(6)、セル温度Tが再開温度Tr =40℃以下に低下するのを待つ(7)。また、セル温度T≦Tr になると(7)、充電電流Ic の通電を再開し(1)、再生処理を続行する((1)、(2)、(3)…(2))。   On the other hand, when the cell temperature T of the target cell B exceeds the set value Ts = 45 ° C. during the energization of the charging current Ic (2), the energization of the charging current Ic is interrupted (6), and the cell temperature T becomes the restart temperature Tr. Wait for the temperature to fall below 40 ° C. (7). When the cell temperature T ≦ Tr (7), the charging current Ic is resumed (1) and the regeneration process is continued ((1), (2), (3)... (2)).

図2、図3のフローチャートによる再生処理結果データの一例を示すと、図5、図6のとおりである。すなわち、再生処理の事前計測において容量0Ah、放電不可状態にまで劣化していた12個の対象セルB(図5)は、その全数が容量再生率99〜105.5%に良好に再生処理することができた(図6)。   An example of the reproduction processing result data according to the flowcharts of FIGS. 2 and 3 is as shown in FIGS. In other words, the 12 target cells B (FIG. 5) that have deteriorated to a capacity of 0 Ah and are incapable of discharge in the pre-measurement of the regeneration process are well regenerated to a capacity regeneration rate of 99 to 105.5%. (Fig. 6).

以上の説明において、直流電源12は、所定のベース電流Ib 、パルス電流Ip からなる充電電流Ic を対象セルBに通電するに際し、マイクロコンピュータ11により出力電圧を併せて制御してもよい。また、対象セルBは、同一種別、同一仕様の複数個を直列接続し、充電電流Ic を一挙に通電開始してもよい。ただし、この場合であっても、各対象セルBの端子電圧Vt 、セル温度Tを個別に計測監視することにより、図3のステップ(1)以外の各ステップ、図2のステップ(5)以降の各ステップを対象セルBごとに実行するものとする。なお、この発明は、正極がLiFePO4 、LiCoO2 、LiMn2 O4 、LiNix Mny Co2 O2 、LiNix Coy Al2 O2 などの各種のリチウムイオン電池に適用可能である。また、図1の再生処理装置は、一般的な直流電源12を使用することができ、実質的にそのまま鉛蓄電池の再生処理にも適用可能である(たとえば特許第3723795号公報参照)。   In the above description, the DC power supply 12 may control the output voltage together with the microcomputer 11 when the target cell B is energized with the charging current Ic including the predetermined base current Ib and the pulse current Ip. Further, the target cell B may be connected in series with a plurality of the same type and the same specification and start energizing the charging current Ic all at once. However, even in this case, the terminal voltage Vt and the cell temperature T of each target cell B are individually measured and monitored, so that each step other than step (1) in FIG. 3 and after step (5) in FIG. Each step is executed for each target cell B. The present invention can be applied to various lithium ion batteries whose positive electrodes are LiFePO4, LiCoO2, LiMn2 O4, LiNix Mny Co2 O2, LiNix Coy Al2 O2, and the like. The regeneration processing apparatus of FIG. 1 can use a general DC power supply 12 and can be applied to regeneration processing of a lead storage battery substantially as it is (see, for example, Japanese Patent No. 3723795).

この発明は、電気自動車用、電動工具用、電動自転車用などを含むあらゆる用途のリチウムイオン電池に対し、広く好適に適用することができる。   The present invention can be widely and suitably applied to lithium ion batteries for all uses including electric vehicles, electric tools, electric bicycles, and the like.

B…対象セル
Ic …充電電流
Ib …ベース電流
Ip …パルス電流
T1 …充電期間
T2 …休止期間
T…セル温度
Ts …設定値
Tr …再開温度
Vc …充電電圧
Vs …設定値
Q…充電量
Qs …所定値

特許出願人 株式会社 BRS
B ... Target cell Ic ... Charging current Ib ... Base current Ip ... Pulse current T1 ... Charging period T2 ... Suspension period T ... Cell temperature Ts ... Set value Tr ... Restart temperature Vc ... Charge voltage Vs ... Set value Q ... Charge amount Qs ... Predetermined value

Patent Applicant BRS Inc.

Claims (5)

劣化したリチウムイオン電池をセルごとに再生処理するに際し、休止期間を挟みながら直流のベース電流と方形波のパルス電流とを重畳して充電電流とする充電期間を周期的に繰り返して対象セルに通電するとともに、対象セルのセル温度が設定値を超えると通電を中断し、通電を中断したら対象セルのセル温度が設定値より低い所定の再開温度以下に低下するのを待って通電を再開し、充電電圧が対象セルの定格充電電圧に基づく所定の設定値に達するか対象セルの充電量が所定値に達することにより通電を終了することを特徴とするリチウムイオン電池の再生処理方法。 When a deteriorated lithium-ion battery is regenerated for each cell, the target cell is energized by periodically repeating a charging period in which a DC base current and a square-wave pulse current are superimposed with a pause period in between. In addition, when the cell temperature of the target cell exceeds the set value, the energization is interrupted, and when the energization is interrupted, the energization is resumed after waiting for the cell temperature of the target cell to fall below a predetermined restart temperature lower than the set value, A method for regenerating a lithium ion battery, wherein energization is terminated when a charging voltage reaches a predetermined set value based on a rated charging voltage of the target cell or a charging amount of the target cell reaches a predetermined value. 充電電圧は、通電中の対象セルの端子電圧を1秒ごと以下の頻度でサンプリングして瞬時値を検出することを特徴とする請求項1記載のリチウムイオン電池の再生処理方法。 2. A method for regenerating a lithium ion battery according to claim 1 , wherein the charging voltage is obtained by sampling the terminal voltage of the target cell being energized at a frequency of 1 second or less to detect an instantaneous value . 通電を終了したら、所定時間の静置後、容量試験を実施することを特徴とする請求項1または請求項2記載のリチウムイオン電池の再生処理方法。   3. The method for regenerating a lithium ion battery according to claim 1, wherein after the energization is finished, a capacity test is performed after standing for a predetermined time. 4. 所定時間の静置後、セル温度が規定値を超えているときは、セル温度が規定値以下に低下するのを待って容量試験を実施することを特徴とする請求項3記載のリチウムイオン電池の再生処理方法。   4. The lithium ion battery according to claim 3, wherein when the cell temperature exceeds a specified value after standing for a predetermined time, a capacity test is carried out after waiting for the cell temperature to fall below a specified value. Playback processing method. セル温度の低下を待つとき、対象セルを強制冷却することを特徴とする請求項4記載のリチウムイオン電池の再生処理方法。   5. The method for regenerating a lithium ion battery according to claim 4, wherein the target cell is forcibly cooled when waiting for a decrease in the cell temperature.
JP2017241593A 2017-12-18 2017-12-18 Recycling method for lithium ion battery Active JP6475815B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241593A JP6475815B1 (en) 2017-12-18 2017-12-18 Recycling method for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241593A JP6475815B1 (en) 2017-12-18 2017-12-18 Recycling method for lithium ion battery

Publications (2)

Publication Number Publication Date
JP6475815B1 true JP6475815B1 (en) 2019-02-27
JP2019110006A JP2019110006A (en) 2019-07-04

Family

ID=65516989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241593A Active JP6475815B1 (en) 2017-12-18 2017-12-18 Recycling method for lithium ion battery

Country Status (1)

Country Link
JP (1) JP6475815B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307134A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Charging method of alkaline aqueous solution secondary battery for backup
JP2004134139A (en) * 2002-10-08 2004-04-30 Takeji Nishida Recycling treatment method of storage battery
JP2007080552A (en) * 2005-09-12 2007-03-29 Nishida Tomoe Regeneration method of storage battery
JP2012059517A (en) * 2010-09-08 2012-03-22 Waizu System Engineering Co Ltd Regeneration device and regeneration method for storage battery
JP2014158414A (en) * 2013-01-21 2014-08-28 Semiconductor Energy Lab Co Ltd Vehicle having power storage body
JP2015060775A (en) * 2013-09-20 2015-03-30 シャープ株式会社 Maintenance management system for power storage system
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system
JP2016518807A (en) * 2013-05-17 2016-06-23 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
JP2017045621A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery
JP2017091923A (en) * 2015-11-13 2017-05-25 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307134A (en) * 1998-04-20 1999-11-05 Nippon Telegr & Teleph Corp <Ntt> Charging method of alkaline aqueous solution secondary battery for backup
JP2004134139A (en) * 2002-10-08 2004-04-30 Takeji Nishida Recycling treatment method of storage battery
JP2007080552A (en) * 2005-09-12 2007-03-29 Nishida Tomoe Regeneration method of storage battery
JP2012059517A (en) * 2010-09-08 2012-03-22 Waizu System Engineering Co Ltd Regeneration device and regeneration method for storage battery
JP2014158414A (en) * 2013-01-21 2014-08-28 Semiconductor Energy Lab Co Ltd Vehicle having power storage body
JP2016518807A (en) * 2013-05-17 2016-06-23 ハー−テク アーゲー Method and apparatus for charging a rechargeable battery
JP2015060775A (en) * 2013-09-20 2015-03-30 シャープ株式会社 Maintenance management system for power storage system
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system
JP2017045621A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery
JP2017091923A (en) * 2015-11-13 2017-05-25 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2019110006A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
TWI633694B (en) Detection method of li plating, method and apparatus for charging secondary battery and secondary battery system using the same
JP6656396B2 (en) Control device for charging storage battery and method for charging storage battery
EP3059113B1 (en) Method for reusing vehicle rechargeable battery
CN106505693B (en) Low temperature charge control method
EP1571747A1 (en) Battery charging method and apparatus using extrapolation of voltage curve
US12061241B2 (en) Rechargeable battery short circuit early detection device and rechargeable battery short circuit early detection method
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
US11143708B2 (en) Electronic device and method for obtaining a correct battery temperature
WO2015019874A1 (en) Battery control system and vehicle control system
KR101738846B1 (en) Charging apparatus and method for cooling overheated battery
JP5959566B2 (en) Storage battery control device
JP2008243440A (en) Abnormality detecting device of secondary battery and abnormality detecting method of battery
JP2015104139A (en) Charging method of secondary battery, and charging device employing the same
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
WO2004021498A1 (en) Method for testing precursor of secondary cell, its testing instrument, and method for manufacturing secondary cell using the method
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP7074731B2 (en) Inspection method of power storage device and manufacturing method of power storage device
JP2015104138A (en) Charging method of secondary battery, and charging device employing the same
CN103427128A (en) Quick charge method and device for secondary battery
JP6475815B1 (en) Recycling method for lithium ion battery
JP2009284571A (en) Battery regenerator and battery regeneration method
RU2326473C1 (en) Electric method of accumulator batteries quality control
JP6472838B2 (en) Battery testing apparatus and method
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
TW201530971A (en) Charge control method and apparatus for battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180724

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190201

R150 Certificate of patent or registration of utility model

Ref document number: 6475815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250