JPH11307134A - Charging method of alkaline aqueous solution secondary battery for backup - Google Patents

Charging method of alkaline aqueous solution secondary battery for backup

Info

Publication number
JPH11307134A
JPH11307134A JP10109359A JP10935998A JPH11307134A JP H11307134 A JPH11307134 A JP H11307134A JP 10109359 A JP10109359 A JP 10109359A JP 10935998 A JP10935998 A JP 10935998A JP H11307134 A JPH11307134 A JP H11307134A
Authority
JP
Japan
Prior art keywords
charging
battery
voltage
time
alkaline aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10109359A
Other languages
Japanese (ja)
Other versions
JP3428895B2 (en
Inventor
Toshiro Hirai
敏郎 平井
Yukiyasu Kano
幸泰 鹿野
Kaoru Asakura
薫 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10935998A priority Critical patent/JP3428895B2/en
Publication of JPH11307134A publication Critical patent/JPH11307134A/en
Application granted granted Critical
Publication of JP3428895B2 publication Critical patent/JP3428895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging method of an alkaline aqueous solution secondary battery not affected by the variations in ambient temperature or the deterioration state of the battery. SOLUTION: This charging method of an alkaline aqueous solution secondary battery leaves the alkaline aqueous solution secondary battery for a backup until the voltage of the battery drops and reaches a predetermined voltage value V1 after it is fully charged, and the charging of the battery is resumed when its voltage reaches the predetermined voltage value V1. In this case, a pause period R1 is set every time a predetermined number (n) of pulses are counted and the charging by the repetition of pulse charging and pause is continuously performed until the voltage at the time of termination of the pause period R1 reaches a value not less than a predetermined voltage value V2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、商用電源の停止時
に動作することを目的に種々の装置に設置されているバ
ックアップ用アルカリ水溶液二次電池(バックアップ用
各種アルカリ電解液系二次電池、および該電池パック)
の充電方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backup alkaline aqueous solution secondary battery (various alkaline electrolyte secondary batteries for backup, installed in various devices for the purpose of operating when commercial power is stopped, and The battery pack)
The present invention relates to an improvement of a charging method of the present invention.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化、高性能
化、携帯型化によって、電池の需要が高まっている。そ
れに応じて電池の改良、開発はますます活発化してい
る。また、電池の新しい適用領域も拡大してきている。
2. Description of the Related Art In recent years, demands for batteries have been increasing due to miniaturization, high performance, and portableness of various electronic devices. In response, battery improvements and developments are becoming more active. Also, new application areas of batteries are expanding.

【0003】電池の普及とともに、各種電子機器に搭載
された電池の信頼性向上の要求も高くなってきている。
特に、従来の鉛電池やニッケルカドミウム電池(以下、
Ni/Cd電池と称す)に比べて大幅な高エネルギー密
度であるニッケル水素電池(以下、Ni/MH電池と称
す)やリチウムイオン電池では、事故による被害の程度
もより深刻となりうるので、信頼性の確保が重要な課題
となっている。
[0003] With the spread of batteries, there is an increasing demand for improved reliability of batteries mounted on various electronic devices.
In particular, conventional lead batteries and nickel cadmium batteries (hereinafter
Nickel-metal hydride batteries (hereinafter referred to as Ni / MH batteries) and lithium-ion batteries, which have significantly higher energy densities than those of Ni / Cd batteries, and the degree of damage due to accidents can be more serious, so reliability is high. Is an important issue.

【0004】信頼性のひとつとして、電池寿命の伸長が
挙げられる。特に停電時のバックアップ用途に使用され
る二次電池、および電池パック(以下、電池とまとめて
称す)は通常電池を使用している感覚が薄れているた
め、電池寿命が短いと、いったん停電が発生した際に電
池の使用ができなくなって重大事態に陥る危険性があ
る。また、電池寿命が短いと頻繁に取り替えが必要とな
り、人件費や維持費が高騰して好ましくない。
[0004] One of the reliability factors is the extension of battery life. In particular, secondary batteries and battery packs (hereinafter collectively referred to as “batteries”) used for backup purposes during power outages are usually less likely to use batteries. When this occurs, there is a risk that the battery cannot be used and a serious situation may occur. In addition, if the battery life is short, frequent replacement is required, and labor and maintenance costs rise, which is not preferable.

【0005】二次電池の寿命は電池構成材料が経時的な
化学劣化を起こしたり、充放電サイクルなどにより電気
化学的に劣化することによって容量が減少することに起
因する。
[0005] The life of a secondary battery is attributable to a reduction in capacity due to a chemical deterioration of the battery constituent material with time or an electrochemical deterioration due to a charge / discharge cycle or the like.

【0006】化学劣化の原因は、完全に明らかにされて
いるとは言いがたいが、セパレータの材質劣化や、電極
を構成する高分子化合物の結着剤に含まれる出発物質の
モノマーの劣化がその主要因と考えられている。また、
充放電サイクルに伴って生じる副反応によって電池反応
に関わる鉛、硫酸鉛、ニッケル化合物、水素吸蔵合金、
あるいはカドミウムなどの活物質や活物質の吸蔵物質が
消耗したり構造変化したりすることも原因として指摘さ
れている。
Although it is hard to say that the cause of the chemical deterioration has been completely clarified, deterioration of the material of the separator and deterioration of the monomer of the starting material contained in the binder of the polymer compound constituting the electrode are not considered. It is considered the main factor. Also,
Lead, lead sulfate, nickel compound, hydrogen storage alloy,
Alternatively, it has been pointed out that the active material such as cadmium or the occlusion material of the active material is consumed or structurally changed.

【0007】化学劣化の抑制には、電極、電解液の構成
材料から劣化が容易に起こりうる不純物を除去したり、
充放電に伴って起こりうる副反応の化学反応を抑制する
ことによって対処している。
In order to suppress chemical deterioration, it is necessary to remove impurities that can easily deteriorate from the constituent materials of the electrodes and the electrolyte,
The problem is dealt with by suppressing a chemical reaction of a side reaction that can occur with charge and discharge.

【0008】一方、電気化学劣化については、サイクル
における充電、放電に伴う電極活物質の構造変化に伴う
密度の変化が電極の膨れと収縮を繰り返し機械的に劣化
したり、放電によって変化した活物質が充電によっても
完全に元の構造や化合物に回復しなかったり、あるい
は、充電の上限、放電の下限電圧の不適切によって過充
電、過放電状態となり、副反応として電解液などの電気
化学分解が生じたりすることが主要因として考えられ
る。
On the other hand, regarding the electrochemical deterioration, the change in density due to the structural change of the electrode active material due to charge and discharge in the cycle repeatedly causes the electrode to swell and shrink, resulting in mechanical deterioration, and the active material changed by discharge. May not be completely restored to the original structure or compound by charging, or may become overcharged or overdischarged due to improper upper limit of charge or lower limit voltage of discharge, and electrochemical decomposition of electrolyte etc. may occur as a side reaction. Is considered to be the main factor.

【0009】電気化学劣化の抑制には、電極の膨脹、収
縮に耐えられる強固な結着剤の選定、充放電サイクルに
よる密度変化が小さく、反応可逆性の高い活物質材料の
選定、耐過充電、耐過放電特性を向上させる添加剤の採
用、電極材料や電解液材料の組成最適化、正極・負極の
活物質量バランス最適化などを行うことによって対処し
ている。
In order to suppress electrochemical deterioration, selection of a strong binder that can withstand expansion and contraction of the electrode, selection of an active material having a small change in density due to charge / discharge cycles and high reaction reversibility, and overcharge resistance This is addressed by adopting additives to improve the overdischarge resistance, optimizing the composition of the electrode and electrolyte materials, and optimizing the balance of the active materials of the positive and negative electrodes.

【0010】バックアップ用途の電池においては、待機
時のほとんどを充電状態におくため、主に化学劣化と過
充電による電気化学劣化の程度が電池寿命を左右する。
過充電による電気化学劣化としては、アルカリ水溶液系
電池においては、充電末期における発生酸素の処理反応
による負極性活物質(カドミウム、水素)が挙げられ
る。過充電による電気化学劣化に対しては、電極構成材
料に添加物を混合したり、適当な金属メッキを施したり
して耐過充電特性を改善する方策が一般的に採用されて
いる。
[0010] In a battery for backup use, most of the standby state is kept in a charged state, so that the degree of chemical deterioration and electrochemical deterioration due to overcharge mainly affect the battery life.
As the electrochemical deterioration due to overcharging, in an alkaline aqueous battery, a negative electrode active material (cadmium, hydrogen) due to a treatment reaction of oxygen generated at the end of charging is exemplified. With respect to electrochemical deterioration due to overcharge, a method of improving the overcharge resistance by mixing an additive into an electrode constituent material or performing appropriate metal plating is generally adopted.

【0011】しかしながら、これら対策を施しても、充
電末期の過電圧による劣化は電池反応機構上避けられな
い。そのため、特に過電圧による劣化低減を目的の一つ
として種々の充電方法が提案されてきた。
However, even if these measures are taken, deterioration due to overvoltage at the end of charging is unavoidable due to the battery reaction mechanism. For this reason, various charging methods have been proposed, particularly with the aim of reducing deterioration due to overvoltage.

【0012】バックアップ用アルカリ水溶液系二次電池
に対する従来の充電方法としては、一定の電流値で充電
を実施する方法が最も一般的に用いられてきた。最も普
及している方法としては、電池を負荷から切り放し0.
1CmA以下の微小電流で充電し続けるトリクル充電と
いう方法が知られている。この方法は充電に関わる装置
・部品が単純で安価であることがその大きな特徴であ
る。しかしながら、電池の充電電圧は環境温度や劣化の
程度で大きく変わり、過充電による電池の劣化がきわめ
て深刻であった。
As a conventional charging method for an alkaline aqueous secondary battery for backup, a method of charging with a constant current value has been most commonly used. The most prevalent method is to disconnect the battery from the load.
There is known a trickle charging method in which charging is performed with a very small current of 1 CmA or less. The major feature of this method is that devices and parts related to charging are simple and inexpensive. However, the charging voltage of the battery greatly changes depending on the environmental temperature and the degree of deterioration, and the deterioration of the battery due to overcharging was extremely serious.

【0013】これに対して、一定期間充電を実施した
後、放置し、一定の電圧に降下すると再び充電を行う間
欠充電方式が提案された。この充電方法によると、一度
満充電した後、あらかじめ設定した電圧まで放置し、自
己放電などによって電圧が降下してこの設定値に達する
と再び一定の電流で一定時間充電し、以後、この放置と
再充電を繰り返して容量を維持するものである。あるい
は、再充電を時間ではなく、充電終了の電圧を設定し
て、この2つの設定電圧値の間で放置と再充電を繰り返
す方法も提案されている。また、電圧を設定する代わり
に、単純に放置と再充電の時間を設定してこれを経時的
に繰り返す方法もある。
On the other hand, there has been proposed an intermittent charging method in which charging is performed for a certain period of time, then the battery is left to stand, and when the voltage drops to a certain voltage, charging is performed again. According to this charging method, once the battery is fully charged, the battery is left to a preset voltage, and when the voltage drops due to self-discharge or the like and reaches this set value, the battery is charged again with a constant current for a certain period of time. The capacity is maintained by repeating recharging. Alternatively, a method has been proposed in which recharging is not time, but a voltage at the end of charging is set, and between the two set voltage values, standing and recharging are repeated. Instead of setting the voltage, there is also a method of simply setting the time for leaving and recharging and repeating this with time.

【0014】しかしながら、この方法では上記の単純に
充電を続ける方法に比較して過充電に晒される機会は若
干改善されるものの、この方法においても環境温度や電
池の劣化状態によって充電電圧が変化していく問題は解
決されず、根本的な電気化学劣化の抑制はできなかっ
た。
However, in this method, although the chances of being exposed to overcharging are slightly improved as compared with the above-described method of simply continuing charging, the charging voltage also changes in this method depending on the environmental temperature and the state of deterioration of the battery. Problems were not solved, and fundamental electrochemical degradation could not be suppressed.

【0015】上記とは別に、充電を一定電流で行うので
はなく、充電電流をある時間的幅を有するパルスとして
供給して行う方法も提案されている。この方法では、一
定の電流値に比べ、電流パルス間は休止となるため、一
定電流での充電に比べて過充電に晒される機会は減少す
るものの、この方法においても同様に、環境温度や電池
の劣化状態によって充電電圧が変化していく問題は解決
されず、根本的な電気化学劣化の抑制はできなかった。
Apart from the above, there has also been proposed a method in which charging is not performed with a constant current but is performed by supplying a charging current as a pulse having a certain time width. In this method, the pause between the current pulses is smaller than the constant current value, so the chances of being exposed to overcharging are reduced as compared with charging with a constant current. However, the problem that the charging voltage changes depending on the state of deterioration cannot be solved, and fundamental electrochemical deterioration cannot be suppressed.

【0016】[0016]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、環境温度の変化や電池の劣化状
態に影響されないバックアップ用アルカリ水溶液二次電
池の充電方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of charging an alkaline aqueous secondary battery for backup which is not affected by changes in environmental temperature or deterioration of the battery. Aim.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に本発明は、バックアップ用アルカリ水溶液二次電池を
満充電した後、あらかじめ設定された電圧値V1に電池
電圧が降下し到達するまで放置し、該電圧値V1に到達
すると再び充電を行うバックアップ用アルカリ水溶液二
次電池の充電方法であって、パルスの所定数nごとに休
止時間R1を設けてこのパルス充電と休止の繰り返しに
よる充電を、前記休止時間R1の終了時点での電圧があ
らかじめ設定した電圧値V2以上になるまで継続して行
うことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a backup alkaline aqueous solution secondary battery which is fully charged and then left until the battery voltage drops to and reaches a preset voltage value V1. This is a method for charging a backup alkaline aqueous solution secondary battery that recharges when the voltage value V1 is reached. A pause time R1 is provided for each predetermined number n of pulses to perform charging by repeating this pulse charging and pause. The operation is continuously performed until the voltage at the end of the pause time R1 becomes equal to or higher than the voltage value V2 set in advance.

【0018】前記パルス充電のピーク電流値が、0.1
CmA以上0.2CmA以下であることを特徴とする。
前記休止時間R1が、前回の休止時間との間に行ったパ
ルス充電時間(パルスOFF時間も含める)総計の1倍
以下の時間であることを特徴とする。
The peak current value of the pulse charging is 0.1
It is not less than CmA and not more than 0.2 CmA.
The pause time R1 is a time that is not more than one time the total of the pulse charging time (including the pulse OFF time) performed during the previous pause time.

【0019】前記休止時間R1を含めた総充電時間の平
均電流値が、0.033CmA以上0.1CmA以下で
あることを特徴とする。前記電圧値V1が、1.25V
/セル以上1.3V/セル以下であり、前記電圧値V2
が、1.3V/セル以上1.35V/セル以下であり、
該電圧値V1とV2との電圧差が、0.5V/セル以上
であることを特徴とする。
The average current value of the total charging time including the pause time R1 is not less than 0.033 CmA and not more than 0.1 CmA. When the voltage value V1 is 1.25 V
/ Cell or more and 1.3 V / cell or less, and the voltage value V2
Is not less than 1.3 V / cell and not more than 1.35 V / cell,
The voltage difference between the voltage values V1 and V2 is 0.5 V / cell or more.

【0020】前記バックアップ用アルカリ水溶液二次電
池が、電池パックであることを特徴とする。本発明にお
けるバックアップ用アルカリ水溶液二次電池の充電方法
は、充電に放置期間を挟むことにより充電に伴う副反応
や過電圧の電気化学劣化を抑制することができ、かつ充
電を2つのあらかじめ設定した適切な電圧値の間で実施
することによって、過充電に晒される期間を根絶し、か
つ、使用に必要な容量を確保する。さらに、パルスで充
電することによって、充電不足も解消できうるという大
きな利点がある。また、本発明による充電方法は基本的
に環境温度の変化によって条件を変更する必要がなく、
温度モニタなどの必要もない。
[0020] The alkaline aqueous secondary battery for backup is a battery pack. The method for charging a backup alkaline aqueous solution secondary battery according to the present invention can suppress side reactions and overvoltage electrochemical degradation caused by charging by leaving a period of time for charging, and perform charging by two predetermined appropriate values. By performing the operation at a proper voltage value, the period during which the battery is exposed to overcharge is eliminated, and the capacity required for use is secured. In addition, there is a great advantage that charging by pulse can eliminate insufficient charging. In addition, the charging method according to the present invention basically does not need to change conditions according to changes in environmental temperature,
There is no need for a temperature monitor.

【0021】[0021]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。図1は本発明の一実施形態
例の概念を示した図であり、使用途中からの電池電圧と
電流値の経時変化を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing the concept of an embodiment of the present invention, and shows the change over time in battery voltage and current value during use.

【0022】本発明におけるバックアップ用アルカリ水
溶液二次電池の充電方法において、図1に示してある状
態に至る前の、電池を設置した後、最初に実施する充電
は、従来使用されている充電方法によって定電流で満充
電したり、満充電に至る前のある電圧まで1CmA以上
の大電流で急速充電を行った後電流値を下げて充電を続
けて満充電にすることができる。
In the charging method of the alkaline aqueous secondary battery for backup according to the present invention, the charging performed first after the battery is installed before reaching the state shown in FIG. 1 is a conventional charging method. Thus, the battery can be fully charged with a constant current, or can be fully charged by performing rapid charging with a large current of 1 CmA or more to a certain voltage before full charging, and then lowering the current value to continue charging.

【0023】図1において、電池をいったん満充電した
後、放置し、あらかじめ設定した電圧の値V1に電池電
圧が到達すると再び充電を行うが、この充電は、ピーク
電流Ipの電流パルスを一定回数繰り返すものであり、
このパルス充電の後に休止を設け、パルス充電と休止と
を1サイクルとしてこれを繰り返す方法を採用してい
る。パルス充電と休止とのセットにおいて、1サイクル
当たりの充電開始電圧Vsと休止終端電圧Veとの差は
規定サイクル繰り返されるようあらかじめパルス幅と休
止時間を調整する。こうして繰り返されるパルス充電と
休止のサイクルの最終サイクルにおいて、休止終端電圧
Veeがあらかじめ設定された電圧V2に到達するか、
これを上回った場合にこの充電は終了され、再び電池
は、あらかじめ設定された電圧V1に電圧が降下するま
で放置状態に置かれる。
In FIG. 1, the battery is fully charged, left to stand, and then charged again when the battery voltage reaches a preset voltage value V1. This charging is performed by repeating a current pulse of a peak current Ip for a certain number of times. Is a repetition,
A pause is provided after the pulse charging, and a method in which the pulse charging and the pause are repeated as one cycle is adopted. In the set of pulse charging and pause, the pulse width and pause time are adjusted in advance so that the difference between the charge start voltage Vs and the pause termination voltage Ve per cycle is repeated for a prescribed cycle. In the last cycle of the pulse charging and rest cycle repeated in this manner, the rest termination voltage Vee reaches the preset voltage V2, or
If this is exceeded, the charging is terminated and the battery is again left unattended until the voltage drops to a preset voltage V1.

【0024】本発明の一実施形態例におけるバックアッ
プ用アルカリ水溶液二次電池の充電方法は、充電に関わ
るパルスのピーク電流値Ipを0.1CmA以上0.2
CmA以下にすることが有効である。0.1CmA未満
であると、特に高温環境下において自己放電速度に充電
量が対応できず、充電不良となる恐れが大であり、0.
2CmAより電流値が大きいと過充電となって電池の劣
化を進行させ本発明の効果が損なわれる。
In the method of charging an alkaline aqueous secondary battery for backup according to one embodiment of the present invention, the peak current value Ip of a pulse related to charging is set to 0.1 CmA or more and 0.2 CmA or more.
It is effective to make it CmA or less. If it is less than 0.1 CmA, the charge amount cannot correspond to the self-discharge rate particularly in a high-temperature environment, and there is a high possibility that charging failure will occur.
If the current value is larger than 2 CmA, the battery is overcharged, the battery is deteriorated, and the effect of the present invention is impaired.

【0025】本発明の一実施形態例におけるバックアッ
プ用アルカリ水溶液二次電池の充電方法において、充電
期間中に一定の充電パルス回数ごとに設置した休止時間
R1は、前休止と該休止の間に行われた総パルス充電時
間(パルスOFF時間も含める)の1倍以下の時間であ
ることが有効である。1倍より長い休止時間であると、
特に高温の環境下で充電量を上回る自己放電量となり充
電不良となる可能性が生じて好ましくない。
In the method of charging an alkaline aqueous secondary battery for backup according to an embodiment of the present invention, the pause time R1 set for each predetermined number of charging pulses during the charging period is set between the previous pause and the pause. It is effective that the time is one time or less of the total pulse charging time (including the pulse OFF time). If the pause is longer than one time,
Particularly, in a high-temperature environment, the self-discharge amount exceeds the charge amount, which may result in poor charging, which is not preferable.

【0026】また、本発明の一実施形態例におけるバッ
クアップ用アルカリ水溶液二次電池の充電方法では、1
回の充電におけるパルス充電と休止時間との総時間でパ
ルス充電電気量を除した値、すなわち平均充電電流値が
0.033CmA以上0.1CmA以下であることが有
効である。0.033CmAより小さい平均電流値の場
合には、高温環境下での充電不足が深刻となり、一方
0.1CmAより大きな平均電流値では、低温環境下な
どで過充電となりやすく好ましくない。
Further, in the charging method of the alkaline aqueous secondary battery for backup according to one embodiment of the present invention,
It is effective that the value obtained by dividing the amount of pulsed charging electricity by the total time of the pulsed charging and the pause time in each charging, that is, the average charging current value is 0.033 CmA or more and 0.1 CmA or less. When the average current value is less than 0.033 CmA, insufficient charging in a high-temperature environment becomes serious. On the other hand, when the average current value is greater than 0.1 CmA, overcharging tends to occur in a low-temperature environment, which is not preferable.

【0027】さらに本発明の一実施形態例におけるバッ
クアップ用アルカリ水溶液二次電池の充電方法では、休
止を挟んだ電流パルスによる再充電を、あらかじめ設定
した電圧V1から、休止の終端電圧が、別にあらかじめ
設定した電圧V2に達するか、または上回るまで行い、
その設定電圧値は、V1が1.25V/セル(直列の場
合、以下同様)以上1.3V/セル以下であり、V2が
1.3V/セル以上1.35V/セル以下であり、か
つ、2つの電圧V1とV2との差が0.5V/セル以上
であるのが有効である。V1が1.25V/セルより低
い電圧の場合には、使用する場合の容量が10%以上も
小さくなり、特に電池の寿命末期において機器の仕様に
なる使用時間を満たさない可能性が生じてくる。また、
V1が1.3V/セルより高い電圧に設定されると、放
置時間がほとんどなくなり、連続充電と大差ない過充電
劣化を来たす恐れがあり好ましくない。一方、他の設定
電圧であるV2の値については、V2が1.3V/セル
より低い電圧だと、充電が十分に果たせず容量が低下
し、V2が1.35V/セルより高い電圧だと過充電劣
化が進行して電池寿命を縮めることになっていずれも好
ましくない。
Further, in the method of charging the alkaline aqueous secondary battery for backup according to the embodiment of the present invention, the recharging by the current pulse having the pause is performed by changing the termination voltage of the pause from the preset voltage V1 separately. Until the set voltage V2 is reached or exceeded,
The set voltage value is such that V1 is 1.25 V / cell (in the case of series connection, the same applies hereinafter) or more and 1.3 V / cell or less, V2 is 1.3 V / cell or more and 1.35 V / cell or less, and It is effective that the difference between the two voltages V1 and V2 is 0.5 V / cell or more. When V1 is a voltage lower than 1.25 V / cell, the capacity when used is reduced by 10% or more, and there is a possibility that the use time which is specified in the device at the end of the battery life may not be satisfied. . Also,
If V1 is set to a voltage higher than 1.3 V / cell, there is almost no dwell time, and overcharge deterioration that is not much different from continuous charge may occur, which is not preferable. On the other hand, with respect to the value of V2, which is another set voltage, if V2 is lower than 1.3 V / cell, charging cannot be performed sufficiently and the capacity decreases, and if V2 is higher than 1.35 V / cell. Overcharge deterioration progresses to shorten the battery life, which is not preferable.

【0028】設定電圧V1とV2との電圧差が0.5V
/セルより小さいといわゆるメモリー効果を起こす恐れ
があり、放電電圧が低下して出力低下となり好ましくな
い。さらに好ましくは、本発明の一実施形態例における
バックアップ用アルカリ水溶液二次電池の充電方法に関
して、パルス充電と休止とを1充電サイクルとすると、
このサイクルが5回以上繰り返されるよう該充電サイク
ルの充電開始電圧と休止終端電圧との差を調整すること
が有効である。5サイクル末端となるように充電開始電
圧と休止終端電圧との差を設定すると最終サイクルの休
止終端電圧Veeが、あらかじめ設定された電圧V2を
大きく上回って終了し、過充電劣化が深刻になる恐れが
あって好ましくない。
The voltage difference between the set voltages V1 and V2 is 0.5 V
If it is smaller than / cell, a so-called memory effect may be caused, and the output is lowered due to a decrease in discharge voltage, which is not preferable. More preferably, with respect to the method of charging the alkaline aqueous secondary battery for backup in one embodiment of the present invention, the pulse charging and the pause are defined as one charge cycle,
It is effective to adjust the difference between the charge start voltage and the pause termination voltage in the charge cycle so that this cycle is repeated five times or more. If the difference between the charge start voltage and the pause termination voltage is set so as to be at the end of the five cycles, the pause termination voltage Vee in the final cycle will end up greatly exceeding the preset voltage V2, and the overcharge deterioration may become serious. Is not preferred.

【0029】本発明の一実施形態例におけるバックアッ
プ用アルカリ水溶液二次電池の充電方法は、これを具体
的に使用する場合、上記に示した機能を充足しうる構成
の充電制御回路として装置電源部に搭載したり、あるい
は、上記機能を充足しうる構成の充電制御回路を制御対
象の電池とともに電池パック内に収納する。
According to the method of charging an alkaline aqueous secondary battery for backup in one embodiment of the present invention, when the method is specifically used, the device power supply unit is configured as a charge control circuit having a configuration capable of satisfying the functions described above. Or a charging control circuit having a configuration capable of satisfying the above functions is housed in a battery pack together with a battery to be controlled.

【0030】図2に、本発明における充電方法の機能を
満たす充電制御回路のブロック概念の一例を示した。第
2図において、1は本発明の充電方法を具体的機能とし
て示す充電制御回路であり、2は充電制御の対象となる
電池であり、3は充電制御回路1に搭載された本発明に
おける充電方法に基づいて充電制御を実施する充電制御
用マイコンであり、4は商用電源あるいは装置本体側か
ら端子10および11によって供給される電力を制御す
るためのマイコンであり、5は充電制御用マイコン3に
よって制御される電源のスイッチであり、6は回路にお
ける温度異常を検知するためのサーミスタであり、これ
ら温度異常を含めて充電制御用マイコン3による出力異
常の検出を端子7によって本体側に送出する。これらの
部品を搭載した該充電制御回路1は、端子8および9に
よって制御対象の電池2に連結される。
FIG. 2 shows an example of a block concept of a charge control circuit satisfying the function of the charging method according to the present invention. In FIG. 2, reference numeral 1 denotes a charge control circuit showing the charging method of the present invention as a specific function, 2 denotes a battery to be subjected to charge control, and 3 denotes a charge in the present invention mounted on the charge control circuit 1. A charge control microcomputer for performing charge control based on the method, 4 is a microcomputer for controlling electric power supplied from terminals 10 and 11 from a commercial power supply or the apparatus main body side, and 5 is a charge control microcomputer 3 A thermistor 6 for detecting a temperature abnormality in the circuit, and sends a detection of an output abnormality by the charge control microcomputer 3 including the temperature abnormality to the main body via a terminal 7. . The charging control circuit 1 on which these components are mounted is connected to the battery 2 to be controlled by terminals 8 and 9.

【0031】第2図は本発明における充電方法を実施す
るための充電制御回路の一概念を示したものだが、本発
明の充電方法を実現することができれば何らこれに限定
されることはない。
FIG. 2 shows a concept of a charge control circuit for implementing the charging method of the present invention, but the present invention is not limited to this as long as the charging method of the present invention can be realized.

【0032】本発明における充電方法の制御対象となる
バックアップ用アルカリ水溶液二次電池は、電解液にア
ルカリ水溶液を用いた電池であり、具体的にはNi/C
d電池、Ni/MH電池が考えられるが、上述の条件に
適合すればこれ以外の電池も制御可能である。
The backup alkaline aqueous secondary battery to be controlled by the charging method according to the present invention is a battery using an alkaline aqueous solution as an electrolytic solution.
A d battery and a Ni / MH battery are conceivable, but other batteries can also be controlled if the above conditions are met.

【0033】本発明におけるバックアップ用アルカリ水
溶液二次電池の充電方法は、特に高信頼性を必要とする
機器が考えられ、該充電方法によって必要な使用時間の
確保と電池の長寿命化とを実現することによって、停電
時の動作を確実のものにする。しかしながら、アルカリ
水溶液二次電池をバックアップ電池として搭載する機器
であれば何ら使用上問題なく、しかも従来を上回る使用
時間と長寿命を実現することができるため使用する利点
はきわめて大きい。
In the method of charging an alkaline aqueous secondary battery for backup according to the present invention, a device requiring particularly high reliability can be considered, and the charging method realizes a necessary use time and a long battery life. By doing so, the operation at the time of power failure is ensured. However, there is no problem in using the device in which the alkaline aqueous solution secondary battery is mounted as a backup battery, and the use time and the long life can be realized more than before.

【0034】[0034]

【実施例】以下に本発明におけるバックアップ用アルカ
リ水溶液二次電池の充電方法について具体的実施例によ
って説明するが、本発明は何らこれに限定されるもので
はない。
EXAMPLES The method of charging an alkaline aqueous secondary battery for backup in the present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

【0035】[実施例1]単三型トリクルNi/Cd電
池(公称容量600mAh)を試験電池とするため、あ
らかじめ、最初の満充電を0.2CmA、15時間で行
うようにし、放置後の再充電開始の電圧V1を1.25
V、充電終了の判断となる電圧V2を1.35Vにそれ
ぞれ設定し、充電パルスのピーク電流値を0.2Cm
A、パルス幅1sec、パルス間隔2sec、パルス充
電時間とその後の休止時間との比を1/1にし、休止時
間は10分に設定して充電平均電流を0.033CmA
となるように充電を制御する充電制御用マイコンを搭載
した図2に示す構造の充電制御回路を作製して試験に用
いた。
Example 1 In order to use an AA trickle Ni / Cd battery (nominal capacity 600 mAh) as a test battery, the first full charge was performed in advance at 0.2 CmA for 15 hours, and the battery was recharged after standing. Charge start voltage V1 is 1.25
V, the voltage V2 for determining the end of charging is set to 1.35 V, and the peak current value of the charging pulse is set to 0.2 Cm.
A, a pulse width of 1 sec, a pulse interval of 2 sec, a ratio of a pulse charging time to a rest time thereafter is set to 1/1, a rest time is set to 10 minutes, and a charging average current is 0.033 CmA.
A charge control circuit having a structure shown in FIG. 2 equipped with a charge control microcomputer for controlling charge so as to satisfy the following condition was prepared and used for the test.

【0036】該試験電池を、この充電制御回路の端子
8、9に接続し、さらに電源側の端子10、11を充放
電装置に接続して電池特性測定に供した。該試験電池
は、充電制御回路に接続する前に、あらかじめ、容量確
認試験を実施して初期容量を求めた。すなわち、該試験
電池は、上位充放電装置に直接接続して、25℃、充電
電流0.1CmA(60mA)で15時間最初に充電
し、その後、25℃、放電電流0.2CmAで1.0V
まで放電し、この充放電を3サイクル繰り返して3サイ
クル目の放電容量、652mAhを求め、これを初期容
量とした。
The test battery was connected to the terminals 8 and 9 of the charge control circuit, and the terminals 10 and 11 on the power supply side were connected to a charging / discharging device to be used for measuring battery characteristics. Before connecting the test battery to the charge control circuit, a capacity confirmation test was performed to determine an initial capacity in advance. That is, the test battery was directly connected to a higher-order charging / discharging device, first charged for 15 hours at 25 ° C. and a charging current of 0.1 CmA (60 mA), and then charged at 1.0 V at 25 ° C. and a discharging current of 0.2 CmA.
The charge / discharge was repeated three cycles, and the discharge capacity at the third cycle, 652 mAh, was determined, and this was defined as the initial capacity.

【0037】次に、試験電池を接続した本発明における
充電方法に従った制御を行う充電制御回路を55℃の恒
温槽に設置して充放電装置に接続し、充放電装置の充電
電流値を120mA(0.2CmA)、充電期間28
日、放電電流値を600mA(1.0CmA)、終止電
圧1.1Vとしてトリクル寿命試験を行った。
Next, a charge control circuit for controlling according to the charging method of the present invention connected to a test battery is installed in a 55 ° C. constant temperature bath and connected to the charge / discharge device, and the charge current value of the charge / discharge device is measured. 120 mA (0.2 CmA), charging period 28
On the day, a trickle life test was performed with a discharge current value of 600 mA (1.0 CmA) and a cut-off voltage of 1.1 V.

【0038】比較のために、同種の単三型トリクルNi
/Cd電池を同じく55℃の恒温槽に設置して直接充放
電装置に接続し、充電電流20mA(0.033Cm
A)、充電期間28日、放電電流値600mA(1.0
CmA)、終止電圧1.1Vに設定してトリクル充電試
験を行った。
For comparison, the same type of AA type trickle Ni
/ Cd battery was placed in a 55 ° C. constant temperature bath and connected directly to the charging / discharging device, and the charging current was 20 mA (0.033 Cm
A), charging period 28 days, discharge current value 600 mA (1.0
CmA) and a final voltage of 1.1 V, and a trickle charge test was performed.

【0039】結果を図3に示す。図3は、各サイクルご
との試験電池の放電容量変化を示した図である。図3に
おいて、31は本発明における充電方法に従った制御を
行った試験電池の容量の変化を示す曲線であり、32は
比較例として従来の方法によるトリクル充電を行った試
験電池の容量変化を示す曲線である。
FIG. 3 shows the results. FIG. 3 is a diagram showing a change in the discharge capacity of the test battery for each cycle. In FIG. 3, reference numeral 31 denotes a curve showing a change in the capacity of the test battery that has been controlled according to the charging method of the present invention, and reference numeral 32 represents a change in the capacity of the test battery that has been subjected to trickle charging by the conventional method as a comparative example. FIG.

【0040】図3の結果から明らかなように、本発明に
おける充電方法に従って充電を制御した電池の放電容量
は、従来法によるトリクル充電を行った電池の放電容量
に比べ、同一サイクルにおける容量が大きく、また、サ
イクルごとの容量低下が少なく、優れた寿命向上が期待
できる。
As is apparent from the results shown in FIG. 3, the discharge capacity of the battery whose charging is controlled according to the charging method of the present invention is larger than the discharge capacity of the battery that has been trickle-charged by the conventional method in the same cycle. In addition, the capacity is less reduced in each cycle, and an excellent life expectancy can be expected.

【0041】[実施例2]単三型トリクルNi/Cd電
池(公称容量600mAh)を試験電池にえらび、実施
例1と同様の条件、方法によってまず容量確認試験を実
施、初期容量、667mAhを求めた。次に、該試験電
池を、本発明における充電方法に従って実施例1に示し
たのと同一条件の充電制御を行う充電制御用マイコンを
搭載した図2に示す概念の充電制御回路を用意し、実施
例1と同様に試験電池に接続し、該試験電池と制御回路
とを、異なる温度の恒温槽に設置した以外は同じ方法に
よって容量試験を実施した。
Example 2 AA type trickle Ni / Cd battery (nominal capacity: 600 mAh) was selected as a test battery, and a capacity confirmation test was first performed under the same conditions and method as in Example 1 to obtain an initial capacity, 667 mAh. Was. Next, a charge control circuit of the concept shown in FIG. 2 equipped with a charge control microcomputer for performing the charge control of the test battery under the same conditions as shown in Example 1 according to the charging method of the present invention was prepared. A capacity test was performed in the same manner as in Example 1, except that the test battery was connected to a test battery, and the test battery and the control circuit were installed in thermostats at different temperatures.

【0042】次に、試験電池を接続した本発明における
充電方法に従った制御を行う充電制御回路を−20℃か
ら60℃までの異なる温度に設定した恒温槽にそれぞれ
設置して充放電装置に接続し、充放電装置の充電電流値
を120mA(0.2CmA)、充電期間28日で充電
を行った後、25℃において放電電流値を120mA
(0.2CmA)、終止電圧1.0Vとして放電を行う
温度特性試験を行った。
Next, a charge control circuit for controlling according to the charging method of the present invention connected to a test battery is installed in a constant temperature bath set at different temperatures from -20 ° C. to 60 ° C., and the charge / discharge device is mounted on the charge / discharge device. After charging, the charging current value of the charging / discharging device was 120 mA (0.2 CmA) and charging was performed for a charging period of 28 days.
(0.2 CmA) and a temperature characteristic test for performing discharge at a final voltage of 1.0 V was performed.

【0043】比較のために、同種の単三型トリクルNi
/Cd電池を各温度に設定した上記と同じ恒温槽にそれ
ぞれ設置して直接充放電装置に接続し、充電電流20m
A(0.033CmA)、充電期間28日で充電を行っ
た後、25℃において放電電流値120mA(0.2C
mA)、終止電圧1.0Vに設定して放電を行う温度特
性試験を行った。
For comparison, the same type of AA type trickle Ni
/ Cd batteries were placed in the same constant temperature bath set at each temperature and connected directly to the charging / discharging device, and the charging current was 20 m
A (0.033 CmA), after charging for 28 days, the discharge current value was 120 mA (0.2 C
mA), a temperature characteristic test was performed in which discharge was performed with the final voltage set to 1.0 V.

【0044】結果を図4に示す。図4は、28日充電後
の放電容量を各温度に対してプロットした図であり、図
中、41は本発明における充電方法によって28日間充
電した後の放電容量を示した曲線であり、42は比較例
として、従来のトリクル充電によって28日間充電した
後の放電容量を示した曲線である。
FIG. 4 shows the results. FIG. 4 is a diagram in which the discharge capacity after 28 days of charging is plotted against each temperature, in which 41 is a curve showing the discharge capacity after 28 days of charging by the charging method of the present invention, and 42 Is a curve showing the discharge capacity after 28 days of charging by conventional trickle charging as a comparative example.

【0045】図4から明らかなように、本発明における
充電方法によって充電を行った場合、温度による容量低
下の影響は従来のトリクル充電方法より小さく、優れた
充電方法であることがわかる。
As is apparent from FIG. 4, when charging is performed by the charging method of the present invention, the effect of the capacity decrease due to temperature is smaller than that of the conventional trickle charging method, and it is understood that the charging method is superior.

【0046】[実施例3]最初の満充電を0.2Cm
A、15時間で行うようにし、放置後の再充電開始の電
圧V1を1.25V、充電終了の判断となる電圧V2を
1.35Vにそれぞれ設定し、パルス幅1sec、パル
ス間隔1sec、パルス充電時間とその後の休止時間と
の比を2/1にし、休止時間は10分に設定して充電制
御をする充電制御用マイコンについて、パルスのピーク
電流はそれぞれ異なる値にした該充電制御用マイコンを
搭載した図2に示す構造の充電制御回路を作製して試験
に用いた。
[Embodiment 3] First full charge is 0.2 Cm
A, which is performed in 15 hours, the recharge start voltage V1 after standing is set to 1.25 V, the voltage V2 for judging the charge end is set to 1.35 V, respectively, the pulse width is 1 sec, the pulse interval is 1 sec, and the pulse charge is performed. The ratio between the time and the rest time is set to 2/1, and the rest time is set to 10 minutes. A mounted charge control circuit having the structure shown in FIG. 2 was manufactured and used for the test.

【0047】試験電池として単二型トリクルNi/Cd
電池(公称容量1800mAh)を選び、実施例1と同
様にして充電制御回路に接続し、55℃の恒温槽に設置
して充放電試験装置に接続した。
As a test battery, single-type trickle Ni / Cd
A battery (nominal capacity: 1800 mAh) was selected, connected to a charge control circuit in the same manner as in Example 1, installed in a 55 ° C. constant temperature bath, and connected to a charge / discharge test apparatus.

【0048】充放電試験装置は、充電電流360mA
(0.2CmA)、充電期間28日、放電電流1800
mA(1.0CmA)、放電終止電圧1.1Vに設定し
て充放電を行った。
The charging / discharging test apparatus has a charging current of 360 mA.
(0.2 CmA), charge period 28 days, discharge current 1800
The battery was charged and discharged at a set current of 1.0 mA (1.0 CmA) and a discharge end voltage of 1.1 V.

【0049】結果を図5及び図6に示す。図5は、異な
るピーク電流値に設定した充電制御回路に接続した各試
験電池のサイクルに伴う容量変化を示した図である。
The results are shown in FIGS. FIG. 5 is a diagram showing a change in capacity of each test battery connected to a charge control circuit set to a different peak current value with a cycle.

【0050】図5において、51は、ピーク電流値を
0.05CmAに、52はピーク電流値を0.1CmA
に、53は、ピーク電流値を0.2CmAに、54はピ
ーク電流値を0.25CmAに、それぞれ設定した充電
制御回路に接続した試験電池の容量変化を示した曲線で
ある。
In FIG. 5, reference numeral 51 denotes a peak current value of 0.05 CmA, and 52 denotes a peak current value of 0.1 CmA.
In addition, 53 is a curve showing the change in capacity of the test battery connected to the charge control circuit set to a peak current value of 0.2 CmA and 54 to a peak current value of 0.25 CmA.

【0051】図6はピーク電流値(CmA)に対する5
サイクル目公称容量比(%)を示す特性図である。図5
及び図6から、ピーク電流値を0.1CmA以上0.2
CmA以下に設定した場合、他の条件の場合と比較する
と容量減少も小さく優れた特性を示すことが明らかとな
った。
FIG. 6 shows the relationship between the peak current value (CmA) and the peak current value.
It is a characteristic view which shows the nominal capacity ratio (%) of the cycle. FIG.
From FIG. 6 and FIG. 6, the peak current value is set to 0.1 CmA or more and 0.2
It was clarified that, when it was set to CmA or less, the capacity was small and excellent characteristics were exhibited as compared with the case of other conditions.

【0052】[実施例4]最初の満充電を0.2Cm
A、15時間で行うようにし、放置後の再充電開始の電
圧V1を1.25V、充電終了の判断となる電圧V2を
1.35Vにそれぞれ設定し、充電パルスのピーク電流
値を0.2CmA、パルス幅1sec、パルス間隔1s
ec、パルス充電時間(パルスOFF時間もふくめる)
は10分に設定して充電制御をする充電制御用マイコン
について、パルス充電時間とその後の休止時間との比を
異なった値になるように休止時間を変えたいくつかの充
電制御用マイコンを作製し、これを搭載した充電制御回
路を作製して試験に供した。
[Embodiment 4] First full charge is 0.2 Cm
A, 15 hours, the recharge start voltage V1 after standing is set to 1.25 V, the voltage V2 for judging the end of charge is set to 1.35 V, and the peak current value of the charge pulse is set to 0.2 CmA. , Pulse width 1 sec, pulse interval 1 s
ec, pulse charging time (including pulse OFF time)
Made several charge control microcomputers with different pause times so that the ratio between the pulse charge time and the rest time was different for the charge control microcomputer that sets the charge to 10 minutes. Then, a charge control circuit equipped with this was manufactured and subjected to a test.

【0053】試験電池として単二型トリクルNi/Cd
電池(公称容量1800mAh)を選び、実施例3と同
様にして充電制御回路に接続し、55℃の恒温槽に設置
して充放電試験装置に接続し、実施例3と同様の試験を
行った。
As a test battery, single-type trickle Ni / Cd
A battery (nominal capacity: 1800 mAh) was selected, connected to a charge control circuit in the same manner as in Example 3, installed in a 55 ° C. constant temperature bath, connected to a charge / discharge test device, and tested in the same manner as in Example 3. .

【0054】結果を図7及び図8に示す。図7は、異な
る休止時間に設定した充電制御回路に接続した各試験電
池のサイクルに伴う容量変化を示した図である。
The results are shown in FIG. 7 and FIG. FIG. 7 is a diagram illustrating a change in capacity of each test battery connected to the charge control circuit set at different pause times with the cycle.

【0055】図7において、61は、休止時間を5分
に、62は休止時間を10分に、63は、休止時間を1
5分に、それぞれ設定した充電制御回路に接続した試験
電池の容量変化を示した曲線である。
In FIG. 7, reference numeral 61 denotes a pause time of 5 minutes, 62 denotes a pause time of 10 minutes, and 63 denotes a pause time of 1 minute.
It is a curve which showed the change of the capacity of the test battery connected to the charge control circuit set up at 5 minutes.

【0056】図8は休止時間(分)に対する5サイクル
目公称容量比(%)を示す特性図である。図7及び図8
から、パルス充電時間とその後の休止時間との比を1/
1以下、好ましくは1/2に設定した場合、これを1/
1より大きな値にした場合と比較すると容量減少も小さ
く優れた特性を示すことが明らかとなった。
FIG. 8 is a characteristic diagram showing the nominal capacity ratio (%) at the fifth cycle with respect to the pause time (minutes). 7 and 8
From the ratio of the pulse charging time to the rest time
When set to 1 or less, preferably 1/2, this is set to 1 /
Compared to the case where the value is set to a value larger than 1, it is clear that the capacity decrease is small and excellent characteristics are exhibited.

【0057】[実施例5]最初の満充電を0.2Cm
A、15時間で行うようにし、放置後の再充電開始の電
圧V1を1.25V、充電終了の判断となる電圧V2を
1.35Vにそれぞれ設定し、充電パルスのピーク電流
値を0.2CmA、パルス充電時間とその後の休止時間
との比を2/1にし、休止時間は10分に設定して充電
制御をする充電制御用マイコンについて、パルス幅と、
パルス間隔とを変えて平均充電電流値を異なった値にな
るようにしたいくつかの充電制御用マイコンを作製し、
これを搭載した充電制御回路を作製して試験に供した。
[Embodiment 5] First full charge is 0.2 Cm
A, 15 hours, the recharge start voltage V1 after standing is set to 1.25 V, the voltage V2 for judging the end of charge is set to 1.35 V, and the peak current value of the charge pulse is set to 0.2 CmA. The pulse width and the pulse width of the microcomputer for controlling the charging by setting the ratio between the pulse charging time and the rest time to 2/1, and setting the rest time to 10 minutes,
Several charge control microcomputers with different pulse intervals and different average charge current values were fabricated.
A charge control circuit on which this was mounted was manufactured and subjected to a test.

【0058】試験電池としてA型Ni/MH電池(公称
容量2300mAh)を選び、実施例3と同様にして充
電制御回路に接続し、45℃の恒温槽に設置して充放電
試験装置に接続した。
An A-type Ni / MH battery (nominal capacity: 2300 mAh) was selected as a test battery, connected to a charge control circuit in the same manner as in Example 3, installed in a 45 ° C. constant temperature bath, and connected to a charge / discharge test apparatus. .

【0059】充放電試験装置は、充電電流460mA
(0.2CmA)、充電期間28日、放電電流2300
mA(1.0CmA)、放電終止電圧1.1Vに設定し
て充放電を行った。
The charging / discharging test apparatus has a charging current of 460 mA.
(0.2 CmA), charge period 28 days, discharge current 2300
The battery was charged and discharged at a set current of 1.0 mA (1.0 CmA) and a discharge end voltage of 1.1 V.

【0060】結果を図9及び図10に示す。図9は、異
なる平均電流値に設定した充電制御回路に接続した各試
験電池のサイクルに伴う容量変化を示した図である。
The results are shown in FIGS. 9 and 10. FIG. 9 is a diagram showing a change in capacity of each test battery connected to a charge control circuit set to a different average current value with a cycle.

【0061】図9において、71は、充電パルス幅(時
間)を1secにし、パルス間間隔を4secにして平
均電流値を0.027CmA(61.3mA)に設定し
た充電制御回路に接続した試験電池の容量変化、72
は、充電パルス幅(時間)を1secにし、パルス間間
隔を3secにして平均電流値を0.033CmA(7
6.7mA)に設定した充電制御回路に接続した試験電
池の容量変化、73は、充電パルス幅(時間)を1se
cにし、パルス間間隔を1secにしてい平均電流値を
0.067CmA(154mA)に設定した充電制御回
路に接続した試験電池の容量変化、74は、充電パルス
幅(時間)を4secにし、パルス間間隔を1secに
して平均電流値を0.107CmA(245mA)に設
定した充電制御回路に接続した試験電池の容量変化を示
した曲線である。
In FIG. 9, reference numeral 71 denotes a test battery connected to a charge control circuit having a charging pulse width (time) of 1 sec, an interval between pulses of 4 sec, and an average current value of 0.027 CmA (61.3 mA). Capacity change, 72
Sets the charging pulse width (time) to 1 sec, sets the interval between pulses to 3 sec, and sets the average current value to 0.033 CmA (7
6.7 mA), a change in the capacity of the test battery connected to the charge control circuit set to 6.7 mA, 73 indicates a charge pulse width (time) of 1 second.
c, the inter-pulse interval was 1 sec, the average current value was set to 0.067 CmA (154 mA), and the change in capacity of the test battery connected to the charge control circuit was 74. The charging pulse width (time) was set to 4 sec. It is a curve which showed the capacity change of the test battery connected to the charge control circuit which set the average current value to 0.107 CmA (245 mA) at intervals of 1 sec.

【0062】図10はパルス幅(sec)/パルス間隔
(sec)に対する5サイクル目公称容量比(%)を示
す特性図である。図9及び図10から、パルス充電の平
均充電電流値を0.033CmA以上0.1CmA以下
に設定した場合、これを0.033CmAより小さくし
たり、あるいは0.1CmAより大きな値にした場合と
比較すると容量減少も小さく優れた特性を示すことが明
らかとなった。
FIG. 10 is a characteristic diagram showing the fifth cycle nominal capacity ratio (%) with respect to the pulse width (sec) / pulse interval (sec). 9 and 10, when the average charging current value of the pulse charging is set to 0.033 CmA or more and 0.1 CmA or less, it is compared with the case where the average charging current value is set to be smaller than 0.033 CmA or set to a value larger than 0.1 CmA. As a result, it was found that the capacity was small and excellent characteristics were exhibited.

【0063】[実施例6]最初の満充電を0.2Cm
A、15時間で行うようにし、放置後の再充電終了の判
断となる電圧V2を1.35Vに設定し、充電パルスの
ピーク電流値を0.2CmA、充電パルス幅(時間)を
1secにし、パルス間間隔を1secにし、パルス充
電時間とその後の休止時間との比を2/1にし、休止時
間は10分に設定して充電制御をする充電制御用マイコ
ンについて、放置後の再充電開始の電圧V1を異なった
値になるようにしたいくつかの充電制御用マイコンを作
製し、これを搭載した充電制御回路を作製して試験に供
した。
[Embodiment 6] First full charge is 0.2 Cm
A, which is performed in 15 hours, the voltage V2 for determining the end of recharging after standing is set to 1.35 V, the peak current value of the charging pulse is set to 0.2 CmA, and the charging pulse width (time) is set to 1 sec. The charge control microcomputer that controls the charge by setting the interval between the pulses to 1 sec, setting the ratio of the pulse charging time to the resting time to 2/1, and setting the resting time to 10 minutes. Several charge control microcomputers having different voltages V1 were produced, and charge control circuits equipped with the microcomputers were produced and subjected to tests.

【0064】試験電池としてA型Ni/MH電池(公称
容量2300mAh)を選び、実施例3と同様にして充
電制御回路に接続し、45℃の恒温槽に設置して充放電
試験装置に接続した。
A type Ni / MH battery (nominal capacity: 2300 mAh) was selected as a test battery, connected to a charge control circuit in the same manner as in Example 3, installed in a 45 ° C. constant temperature bath, and connected to a charge / discharge test apparatus. .

【0065】充放電試験装置は、充電電流460mA
(0.2CmA)、充電期間28日、放電電流2300
mA(1.0CmA)、放電終止電圧1.1Vに設定し
て充放電を行った。
The charging / discharging test apparatus has a charging current of 460 mA.
(0.2 CmA), charge period 28 days, discharge current 2300
The battery was charged and discharged at a set current of 1.0 mA (1.0 CmA) and a discharge end voltage of 1.1 V.

【0066】結果を図11及び図12に示す。図11
は、異なる再充電開始電圧に設定した充電制御回路に接
続した各試験電池のサイクルに伴う容量変化を示した図
である。
The results are shown in FIG. 11 and FIG. FIG.
FIG. 4 is a diagram showing a change in capacity of each test battery connected to a charge control circuit set to a different recharge start voltage with a cycle.

【0067】図11において、81は、再充電開始電圧
を1.2Vに設定した充電制御回路に接続した試験電池
の容量変化、82は、再充電開始電圧を1.25Vに設
定した充電制御回路に接続した試験電池の容量変化、8
3は、再充電開始電圧を1.3Vに設定した充電制御回
路に接続した試験電池の容量変化、84は、再充電開始
電圧を1.32Vに設定した充電制御回路に接続した試
験電池の容量変化を示した曲線である。
In FIG. 11, reference numeral 81 denotes a change in the capacity of the test battery connected to the charge control circuit whose recharge start voltage is set to 1.2 V, and 82 denotes a charge control circuit whose recharge start voltage is set to 1.25 V Change of the test battery connected to
3 is a change in the capacity of the test battery connected to the charge control circuit whose recharge start voltage is set to 1.3 V, 84 is the capacity of the test battery connected to the charge control circuit whose recharge start voltage is set to 1.32 V It is a curve which showed a change.

【0068】図12は再充電開始電圧(V)に対する7
サイクル目公称容量比(%)を示す特性図である。図1
1及び図12から、再充電開始電圧を1.25V以上
1.3V以下に設定した場合、これを1.25Vより低
くしたり、あるいは1.3Vより高い値にした場合と比
較すると容量減少も小さく優れた特性を示すことが明ら
かとなった。1.25Vより低い値に設定すると、放電
開始電圧が極端に低い電圧となり、容量が小さい場合が
しばしば生じ、1.3Vより高い値の場合には、0.5
Vより小さい電圧範囲で頻繁に充電、休止(自己放電)
が繰り返されることになり、メモリー効果と見られる電
圧低下が起こり容量低下が大きくなっている。
FIG. 12 shows the relationship between the recharge starting voltage (V) and
It is a characteristic view which shows the nominal capacity ratio (%) of the cycle. FIG.
From FIG. 1 and FIG. 12, when the recharge start voltage is set to be 1.25 V or more and 1.3 V or less, the capacity decreases as compared with the case where the recharge start voltage is set lower than 1.25 V or higher than 1.3 V. It was clarified to show small and excellent characteristics. If it is set to a value lower than 1.25 V, the discharge starting voltage becomes extremely low, and the capacity often becomes small.
Frequent charging and resting in the voltage range smaller than V (self-discharge)
Are repeated, and a voltage drop which is regarded as a memory effect occurs, and the capacity drop is large.

【0069】[実施例7]最初の満充電を0.2Cm
A、15時間で行うようにし、放置後の再充電開始電圧
を1.25Vに設定し、充電パルスのピーク電流値を
0.2CmA、充電パルス幅(時間)を1secにし、
パルス間間隔を1secにし、パルス充電時間とその後
の休止時間との比を2/1にし、休止時間は10分に設
定して充電制御をする充電制御用マイコンについて、放
置後の再充電終了の判断となる電圧V2を異なった値に
なるようにしたいくつかの充電制御用マイコンを作製
し、これを搭載した充電制御回路を作製して試験に供し
た。
[Embodiment 7] First full charge is 0.2 Cm
A, 15 hours, the recharge start voltage after standing is set to 1.25 V, the peak current value of the charge pulse is 0.2 CmA, the charge pulse width (time) is 1 sec,
The charge control microcomputer that controls the charging by setting the interval between the pulses to 1 sec, setting the ratio of the pulse charging time to the resting time to 2/1, and setting the resting time to 10 minutes, ends the recharging after the standing. Several charge control microcomputers were prepared in which the voltage V2 to be determined was set to a different value, and a charge control circuit equipped with the microcomputer was prepared and subjected to a test.

【0070】試験電池として単三型Ni/MH電池(公
称容量1100mAh)を選び、実施例3と同様にして
充電制御回路に接続し、0℃の恒温槽に設置して充放電
試験装置に接続した。
An AA Ni / MH battery (nominal capacity 1100 mAh) was selected as a test battery, connected to a charge control circuit in the same manner as in Example 3, installed in a thermostat at 0 ° C., and connected to a charge / discharge test apparatus. did.

【0071】充放電試験装置は、充電電流220mA
(0.2CmA)、充電期間28日、放電電流220m
A(0.2CmA)、放電終止電圧1.0Vに設定して
充放電を行った。
The charging / discharging test apparatus has a charging current of 220 mA.
(0.2 CmA), charge period 28 days, discharge current 220 m
A (0.2 CmA) and the discharge end voltage were set to 1.0 V to perform charging and discharging.

【0072】結果を図13及び図14に示す。図13
は、再充電終了判断となる電圧V2を異なる値に設定し
た充電制御回路に接続した各試験電池のサイクルに伴う
容量変化を示した図である。
The results are shown in FIGS. 13 and 14. FIG.
FIG. 3 is a diagram showing a change in capacity of each test battery connected to a charge control circuit in which a voltage V2 for determining recharge termination is set to a different value, according to a cycle.

【0073】図13において、91は、該電圧V2を
1.28Vに設定した充電制御回路に接続した試験電池
の容量変化、92は、該電圧V2を1.3Vに設定した
充電制御回路に接続した試験電池の容量変化、93は、
該電圧V2を1.35Vに設定した充電制御回路に接続
した試験電池の容量変化、94は、該電圧V2を1.4
Vに設定した充電制御回路に接続した試験電池の容量変
化を示した曲線である。
In FIG. 13, reference numeral 91 denotes a change in the capacity of the test battery connected to the charge control circuit in which the voltage V2 is set to 1.28V, and reference numeral 92 denotes a connection to the charge control circuit in which the voltage V2 is set to 1.3V. The test battery capacity change, 93,
A change 94 in the capacity of the test battery connected to the charge control circuit in which the voltage V2 was set to 1.35 V, 94 indicates that the voltage V2 was 1.4.
5 is a curve showing a change in capacity of a test battery connected to a charge control circuit set to V.

【0074】図14は再充電終了判断の電圧V2(V)
に対する5サイクル目公称容量比(%)を示す特性図で
ある。図13及び図14から、再充電終了の判断となる
電圧V2を1.3V以上に1.35以下に設定した場
合、これを1.3Vより低くしたり、あるいは1.35
Vより高い値にした場合と比較すると容量減少も小さく
優れた特性を示すことが明らかとなった。
FIG. 14 shows the voltage V2 (V) for recharge termination determination.
FIG. 9 is a characteristic diagram showing a nominal capacity ratio (%) at the fifth cycle with respect to FIG. From FIGS. 13 and 14, when the voltage V2 for judging the end of recharging is set to 1.3V or more and 1.35 or less, this is set to be lower than 1.3V or 1.35.
It was clarified that the capacity was small and the characteristics were excellent as compared with the case where the value was higher than V.

【0075】[0075]

【発明の効果】以上述べたように、本発明における充電
方法を用いることにより、バックアップ用二次電池を充
電し、容量を維持しておく場合、環境温度の影響を最小
限におさえ、電池劣化を少なくして充電することがで
き、バックアップ用二次電池の使用においてきわめて大
きな貢献を果たすことができる。
As described above, when the backup secondary battery is charged and its capacity is maintained by using the charging method of the present invention, the influence of the environmental temperature is minimized and the deterioration of the battery is suppressed. And a very large contribution can be made in using a backup secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例の概念を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing the concept of an embodiment of the present invention.

【図2】本発明の一実施形態例における充電制御回路を
示す構成説明図である。
FIG. 2 is an explanatory diagram illustrating a configuration of a charge control circuit according to an embodiment of the present invention.

【図3】本発明の実施例1における試験結果で、サイク
ル数に対する公称容量比(%)を示す特性図である。
FIG. 3 is a characteristic diagram showing a nominal capacity ratio (%) with respect to the number of cycles in a test result in Example 1 of the present invention.

【図4】本発明の実施例2における試験結果で、充電温
度(℃)に対する相対容量(%)を示す特性図である。
FIG. 4 is a characteristic diagram showing a relative capacity (%) with respect to a charging temperature (° C.) in a test result in Example 2 of the present invention.

【図5】本発明の実施例3における試験結果で、サイク
ル数に対する公称容量比(%)を示す特性図である。
FIG. 5 is a characteristic diagram showing a test result in Example 3 of the present invention and showing a nominal capacity ratio (%) to the number of cycles.

【図6】本発明の実施例3における試験結果で、ピーク
電流値(CmA)に対する5サイクル目公称容量比
(%)を示す特性図である。
FIG. 6 is a characteristic diagram showing a test result in Example 3 of the present invention, showing a nominal capacity ratio (%) at the fifth cycle to a peak current value (CmA).

【図7】本発明の実施例4における試験結果で、サイク
ル数に対する公称容量比(%)を示す特性図である。
FIG. 7 is a characteristic diagram showing a test result in Example 4 of the present invention, showing a nominal capacity ratio (%) to the number of cycles.

【図8】本発明の実施例4における試験結果で、休止時
間(分)に対する5サイクル目公称容量比(%)を示す
特性図である。
FIG. 8 is a characteristic diagram showing a test result in Example 4 of the present invention, showing a nominal capacity ratio (%) at a fifth cycle with respect to a pause time (minutes).

【図9】本発明の実施例5における試験結果で、サイク
ル数に対する公称容量比(%)を示す特性図である。
FIG. 9 is a characteristic diagram showing a test result in Example 5 of the present invention, showing a nominal capacity ratio (%) with respect to the number of cycles.

【図10】本発明の実施例5における試験結果で、パル
ス幅(sec)/パルス間隔(sec)に対する5サイ
クル目公称容量比(%)を示す特性図である。
FIG. 10 is a characteristic diagram showing a nominal capacity ratio (%) at a fifth cycle with respect to a pulse width (sec) / pulse interval (sec) in test results in Example 5 of the present invention.

【図11】本発明の実施例6における試験結果で、サイ
クル数に対する公称容量比(%)を示す特性図である。
FIG. 11 is a characteristic diagram showing a nominal capacity ratio (%) with respect to the number of cycles in test results in Example 6 of the present invention.

【図12】本発明の実施例6における試験結果で、再充
電開始電圧(V)に対する7サイクル目公称容量比
(%)を示す特性図である。
FIG. 12 is a characteristic diagram showing a nominal capacity ratio (%) at the seventh cycle with respect to a recharge starting voltage (V) in a test result in Example 6 of the present invention.

【図13】本発明の実施例7における試験結果で、サイ
クル数に対する公称容量比(%)を示す特性図である。
FIG. 13 is a characteristic diagram showing a nominal capacity ratio (%) with respect to the number of cycles in a test result in Example 7 of the present invention.

【図14】本発明の実施例7における試験結果で、再充
電終了判断の電圧V2(V)に対する5サイクル目公称
容量比(%)を示す特性図である。
FIG. 14 is a characteristic diagram showing a nominal capacity ratio (%) at a fifth cycle with respect to a voltage V2 (V) for recharge termination determination in a test result in Example 7 of the present invention.

【符号の説明】[Explanation of symbols]

1 充電制御回路 2 電池 3 充電制御用マイコン 4 電源マイコン 5 スイッチ 6 サーミスタ 7 異常出力検出端子 8 電池接続プラス端子 9 電池接続マイナス端子 10 電源接続プラス端子 11 電源接続マイナス端子 DESCRIPTION OF SYMBOLS 1 Charge control circuit 2 Battery 3 Charge control microcomputer 4 Power supply microcomputer 5 Switch 6 Thermistor 7 Abnormal output detection terminal 8 Battery connection plus terminal 9 Battery connection minus terminal 10 Power supply plus terminal 11 Power supply minus terminal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 バックアップ用アルカリ水溶液二次電池
を満充電した後、あらかじめ設定された電圧値V1に電
池電圧が降下し到達するまで放置し、該電圧値V1に到
達すると再び充電を行うバックアップ用アルカリ水溶液
二次電池の充電方法であって、 パルスの所定数nごとに休止時間R1を設けてこのパル
ス充電と休止の繰り返しによる充電を、前記休止時間R
1の終了時点での電圧があらかじめ設定した電圧値V2
以上になるまで継続して行うことを特徴とするバックア
ップ用アルカリ水溶液二次電池の充電方法。
1. After fully charging an alkaline aqueous secondary battery for backup, leave it until the battery voltage drops to and reaches a preset voltage value V1, and when it reaches the voltage value V1, recharge the battery. A method of charging an alkaline aqueous solution secondary battery, wherein a pause R1 is provided for each predetermined number n of pulses, and charging by repeating this pulse charging and pause is performed by the pause R
The voltage at the end of step 1 is a predetermined voltage value V2
A method for charging a backup alkaline aqueous solution secondary battery, wherein the method is continuously performed until the above is reached.
【請求項2】 パルス充電のピーク電流値が、0.1C
mA以上0.2CmA以下であることを特徴とする請求
項1記載のバックアップ用アルカリ水溶液二次電池の充
電方法。
2. The method according to claim 1, wherein a peak current value of the pulse charging is 0.1 C.
2. The method for charging a backup alkaline aqueous solution secondary battery according to claim 1, wherein the charge is not less than mA and not more than 0.2 CmA.
【請求項3】 休止時間R1が、前回の休止時間との間
に行ったパルス充電時間(パルスOFF時間も含める)
総計の1倍以下の時間であることを特徴とする請求項1
記載のバックアップ用アルカリ水溶液二次電池の充電方
法。
3. The pulse charging time (including the pulse OFF time) performed between the pause time R1 and the previous pause time.
2. The time is less than one time of the total.
A method for charging an alkaline aqueous solution secondary battery for backup as described in the above.
【請求項4】 休止時間R1を含めた総充電時間の平均
電流値が、0.033CmA以上0.1CmA以下であ
ることを特徴とする請求項1記載のバックアップ用アル
カリ水溶液二次電池の充電方法。
4. The method for charging an alkaline aqueous secondary battery for backup according to claim 1, wherein the average current value of the total charging time including the pause time R1 is not less than 0.033 CmA and not more than 0.1 CmA. .
【請求項5】 電圧値V1が、1.25V/セル以上
1.3V/セル以下であり、電圧値V2が、1.3V/
セル以上1.35V/セル以下であり、該電圧値V1と
V2との電圧差が、0.5V/セル以上であることを特
徴とする請求項1記載のバックアップ用アルカリ水溶液
二次電池の充電方法。
5. A voltage value V1 is 1.25 V / cell or more and 1.3 V / cell or less, and a voltage value V2 is 1.3 V / cell.
2. The charging of the alkaline aqueous secondary battery for backup according to claim 1, wherein the voltage is not less than the cell and not more than 1.35 V / cell, and the voltage difference between the voltage values V1 and V2 is not less than 0.5 V / cell. Method.
【請求項6】 バックアップ用アルカリ水溶液二次電池
が、電池パックであることを特徴とする請求項1記載の
バックアップ用アルカリ水溶液二次電池の充電方法。
6. The method for charging a backup alkaline aqueous secondary battery according to claim 1, wherein the backup alkaline aqueous secondary battery is a battery pack.
JP10935998A 1998-04-20 1998-04-20 Charging method of alkaline aqueous secondary battery for backup Expired - Lifetime JP3428895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10935998A JP3428895B2 (en) 1998-04-20 1998-04-20 Charging method of alkaline aqueous secondary battery for backup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10935998A JP3428895B2 (en) 1998-04-20 1998-04-20 Charging method of alkaline aqueous secondary battery for backup

Publications (2)

Publication Number Publication Date
JPH11307134A true JPH11307134A (en) 1999-11-05
JP3428895B2 JP3428895B2 (en) 2003-07-22

Family

ID=14508239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10935998A Expired - Lifetime JP3428895B2 (en) 1998-04-20 1998-04-20 Charging method of alkaline aqueous secondary battery for backup

Country Status (1)

Country Link
JP (1) JP3428895B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
JP2018022577A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Method for reproducing nickel-hydrogen battery
JP6475815B1 (en) * 2017-12-18 2019-02-27 株式会社Brs Recycling method for lithium ion battery
US10903673B2 (en) 2016-01-06 2021-01-26 Samsung Electronics Co., Ltd. Battery charging method and battery charging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
US10903673B2 (en) 2016-01-06 2021-01-26 Samsung Electronics Co., Ltd. Battery charging method and battery charging apparatus
US11489358B2 (en) 2016-01-06 2022-11-01 Samsung Electronics Co., Ltd. Battery charging method and battery charging apparatus using variant pulse current
JP2018022577A (en) * 2016-08-01 2018-02-08 トヨタ自動車株式会社 Method for reproducing nickel-hydrogen battery
JP6475815B1 (en) * 2017-12-18 2019-02-27 株式会社Brs Recycling method for lithium ion battery
JP2019110006A (en) * 2017-12-18 2019-07-04 株式会社Brs Reproduction processing method of lithium ion battery

Also Published As

Publication number Publication date
JP3428895B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US11735940B2 (en) Methods and systems for recharging a battery
US6137265A (en) Adaptive fast charging of lithium-ion batteries
JP5952913B2 (en) Method and apparatus for charging a rechargeable battery
US9240696B2 (en) Method and apparatus for recharging a battery
JP5281843B2 (en) Battery pack and charging method thereof
JP3216133B2 (en) Non-aqueous electrolyte secondary battery charging method
US7135839B2 (en) Battery pack and method of charging and discharging the same
JP2003132955A (en) Charging and discharging method of nonaqueous electrolyte secondary battery
Wong et al. Charge regimes for valve-regulated lead-acid batteries: Performance overview inclusive of temperature compensation
JPH10304589A (en) Complementary charging of battery by charging battery with pulse current and keeping it in full-charged state
EP0921620B1 (en) Method for temperature dependent charging of a back-up power source which is subject to self-discharging
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
JP3545972B2 (en) Charging the secondary battery pack for backup
JP2006092901A (en) Charge-discharge system
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JP2000150000A (en) Backup power supply control method
JP2000278874A (en) Charging of storage battery
Brost Performance of valve-regulated lead acid batteries in EV1 extended series strings
JP3594879B2 (en) Charging method of alkaline aqueous secondary battery for backup
Matsushima et al. Fundamental characteristics of stationary lithium-ion secondary cells and a cell-voltage-management system
Barsukov Battery selection, safety, and monitoring in mobile applications
JP2903954B2 (en) Rechargeable battery charger
JPH1174001A (en) Charging method for lead-acid battery
JP3328025B2 (en) Charging device
JPH1092473A (en) Method and device for controlling charge of battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term