JP2006092901A - Charge-discharge system - Google Patents

Charge-discharge system Download PDF

Info

Publication number
JP2006092901A
JP2006092901A JP2004276837A JP2004276837A JP2006092901A JP 2006092901 A JP2006092901 A JP 2006092901A JP 2004276837 A JP2004276837 A JP 2004276837A JP 2004276837 A JP2004276837 A JP 2004276837A JP 2006092901 A JP2006092901 A JP 2006092901A
Authority
JP
Japan
Prior art keywords
charge
discharge
charging
battery
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004276837A
Other languages
Japanese (ja)
Inventor
Hiroki Saito
弘樹 齊藤
Koji Morimoto
弘次 森元
Hideji Asano
秀二 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004276837A priority Critical patent/JP2006092901A/en
Publication of JP2006092901A publication Critical patent/JP2006092901A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge-discharge system capable of heating a secondary battery without imposing load thereon regardless of residual capacity even in any environment including a cold one and thereafter executing rapid charge or high-output discharge. <P>SOLUTION: This charge-discharge system includes a secondary battery, a means for charging/discharging it, a means for controlling the charging/discharging and a means for detecting the temperature of the battery. When the battery temperature is below an appropriate temperature T<SB>0</SB>for charging/discharging, a pulse charging/discharging condition is carried out until reaching T<SB>0</SB>and thereafter charging/discharging is started. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池を電源とする充放電システムに関し、より詳しくは低温下で充放電を効率的に行うための二次電池の温度上昇手段に関する。   The present invention relates to a charging / discharging system using a secondary battery as a power source, and more particularly, to a secondary battery temperature increasing means for efficiently charging / discharging at a low temperature.

二次電池はポータブル機器の電源として頻繁に用いられている。特に近年においては、電動工具など野外で用いられることの多い機器の電源にも展開が進んでいる。これら二次電池の課題として、常温下では問題ないものの、寒冷下で充放電を行う際、主に電解液のイオン伝導性の低下や電極活物質の反応性低下のために抵抗が大きくなることが挙げられる。この現象のために大電流での充放電ができなくなり、微弱電流で長時間の充電を強いられたり、出力値の大きい放電ができず機器が動作しないなどの不具合が生じる。   Secondary batteries are frequently used as a power source for portable devices. In particular, in recent years, the development of power sources for devices such as electric tools that are often used outdoors is also progressing. As a problem of these secondary batteries, although there is no problem at room temperature, when charging / discharging in cold, the resistance increases mainly due to a decrease in the ionic conductivity of the electrolyte and a decrease in the reactivity of the electrode active material. Is mentioned. Due to this phenomenon, charging / discharging with a large current cannot be performed, and there are problems such as being forced to charge for a long time with a weak current, or being unable to discharge with a large output value so that the device does not operate.

そこでこれらの二次電池に対し急速充電を行い、短時間で電池を昇温させた後にトリクル充電を行う提案がなされている(例えば、特許文献1)。または所定温度に達するまでパルス充電を行って電池を昇温させ、しかる後に急速充電を行う提案がなされている(例えば、特許文献2)。
特開平8−222277号公報 特開平10−210675号公報
Therefore, a proposal has been made to charge these secondary batteries quickly and perform trickle charging after raising the temperature in a short time (for example, Patent Document 1). Alternatively, a proposal has been made in which pulse charging is performed until a predetermined temperature is reached, the temperature of the battery is increased, and then rapid charging is performed (for example, Patent Document 2).
JP-A-8-222277 Japanese Patent Laid-Open No. 10-210675

しかしながら、特許文献1の方法を用いて充電する場合、抵抗値が大きい状態で急速充電するため、急速充電にて充電される充電電気量が電池容量に対して僅かであり、結局トリクル充電を行う時間が長くなる。また特許文献2の方法を用いて充電する場合、電池の残存容量が少なければ問題ないが、残存容量が多ければパルス充電にて残存容量はさらに多くなり、過充電されることになる。さらには特許文献2の技術を展開して、寒冷下で機器を動作させる前にパルス放電を行う場合、電池の残存容量が多ければ問題ないが、残存容量が少なければパルス放電にて残存容量はさらに少なくなり、機器が動作可能な電池温度に達する前に容量が尽きる、若しくは過放電されるという課題が生じる。   However, when charging using the method of Patent Document 1, rapid charging is performed in a state where the resistance value is large. Therefore, the amount of charge charged by rapid charging is small relative to the battery capacity, and trickle charging is eventually performed. The time will be longer. Further, when charging using the method of Patent Document 2, there is no problem if the remaining capacity of the battery is small, but if the remaining capacity is large, the remaining capacity is further increased by pulse charging and overcharge is performed. Furthermore, when the technology of Patent Document 2 is developed and pulse discharge is performed before the device is operated in a cold state, there is no problem if the remaining capacity of the battery is large, but if the remaining capacity is small, the remaining capacity is reduced by pulse discharge. Further, there is a problem that the capacity is exhausted or overdischarged before reaching the battery temperature at which the device can operate.

本発明は上記課題に基づいてなされたものであり、残存容量の如何に関わらず、二次電池に負担をかけることなく昇温させ、しかる後に急速充電あるいは高出力放電ができる充放電システムを提供することを目的とするものである。   The present invention has been made on the basis of the above problems, and provides a charge / discharge system that can raise the temperature of the secondary battery without imposing a burden on the secondary battery, and then perform rapid charge or high-output discharge. It is intended to do.

上記の課題を解決するために、本発明の充放電システムは、二次電池と、これを充放電するための手段と、この充放電を制御する手段と、電池温度を検出する手段とを含み、かつ電池温度が充放電適正温度T未満である場合、Tに達するまでパルス充放電条件を行った後に、充放電を開始することを特徴とする。 In order to solve the above problems, a charge / discharge system of the present invention includes a secondary battery, means for charging / discharging the battery, means for controlling the charge / discharge, and means for detecting the battery temperature. When the battery temperature is lower than the proper charge / discharge temperature T 0 , charge / discharge is started after performing the pulse charge / discharge conditions until T 0 is reached.

電池を昇温させる手段をパルス充放電にすることにより、このパルス充放電中の電池の残存容量は一定となる。よって充電側であれば残存容量が多くても過充電されることはなく、放電側であれば残存容量が少なくても容量が尽きる、若しくは過放電されることはなくなる。従って寒冷下においても二次電池に負担をかけることなく、短時間で充電を完了させたり、高出力放電をさせることができるようになる。   By using pulse charge / discharge as the means for raising the temperature of the battery, the remaining capacity of the battery during the pulse charge / discharge is constant. Therefore, even if the remaining capacity is large on the charging side, the battery is not overcharged. On the discharging side, the capacity is not exhausted or overdischarged even if the remaining capacity is small. Accordingly, even under cold conditions, charging can be completed in a short time or high power discharge can be performed without imposing a burden on the secondary battery.

本発明の充放電システムを活用することで、電池の残存容量を一定にしたまま充放電適正温度にまで上昇させることができるので、電池の残存容量を配慮することなく、常温下と同じように二次電池を充放電することができる。   By utilizing the charge / discharge system of the present invention, it is possible to raise the battery's remaining capacity to a proper charge / discharge temperature while keeping the battery's remaining capacity constant. The secondary battery can be charged and discharged.

以下、発明を実施するための最良の形態について、図を用いて説明する。なおここで示す図は一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   Hereinafter, the best mode for carrying out the invention will be described with reference to the drawings. In addition, the figure shown here is an example, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

図1は本発明の充放電システムの一例を示すブロック図である。二次電池1に隣接してサーミスタ2が設置されており、測定した二次電池の温度を処理部6に送っている。   FIG. 1 is a block diagram showing an example of the charge / discharge system of the present invention. A thermistor 2 is installed adjacent to the secondary battery 1, and the measured temperature of the secondary battery is sent to the processing unit 6.

図2は本発明のシステムを用いた充電のフローチャートである。充電をする旨の指令が処理部6に入力されると、サーミスタ2から送られた二次電池1の温度と、充放電適正温度Tとの対比を行う。二次電池1の温度がT以上であれば常温と判定し、切替回路7において、端子8が外部電源5を伴った充電回路4から来る端子10と固定されることにより、通常充電(急速充電を含む)を行う。一方、二次電池1の温度がT未満であれば低温と判定し、切替回路7において、端子8が放電回路3から来る端子9および端子10と短い間隔で交互に固定されることにより、パルス充放電を行う。短い間隔で高率充放電を繰り返すことにより、二次電池1の抵抗値に応じてジュール熱が発生して昇温する。二次電池1の温度がTに達した段階で、抵抗値は十分に低下したと判断し、以降は端子8と端子10とを固定することにより、通常充電を行う。この間、パルス充電電気量とパルス放電電気量との差を小さくすることにより、二次電池1の残存容量は変化しないので、例えば残存容量が多い場合でも、過充電されることはない。この時の適正なパルス充電電気量とパルス放電電気量との差は、二次電池1の容量に対し±10%の範囲内である。パルス充電電気量がパルス放電電気量に対し電池容量の10%を超えて大きい場合、残存容量によっては電池が過充電される可能性が生じる。 FIG. 2 is a flowchart of charging using the system of the present invention. When instruction to the charging is input to the processing unit 6 performs a temperature of the secondary battery 1 transmitted from the thermistor 2, the contrast between the discharge proper temperature T 0. If the temperature of the secondary battery 1 is equal to or higher than T 0 , it is determined that the temperature is normal, and the switching circuit 7 fixes the terminal 8 to the terminal 10 coming from the charging circuit 4 with the external power supply 5, thereby performing normal charging (rapid charging (Including charging). On the other hand, if the temperature of the secondary battery 1 is less than T 0 , it is determined that the temperature is low, and in the switching circuit 7, the terminals 8 are alternately fixed at short intervals with the terminals 9 and 10 coming from the discharge circuit 3, Perform pulse charge / discharge. By repeating high-rate charging / discharging at short intervals, Joule heat is generated according to the resistance value of the secondary battery 1 to increase the temperature. When the temperature of the secondary battery 1 reaches T 0 , it is determined that the resistance value has sufficiently decreased, and thereafter, the terminal 8 and the terminal 10 are fixed to perform normal charging. During this time, the remaining capacity of the secondary battery 1 does not change by reducing the difference between the pulse charge electricity quantity and the pulse discharge electricity quantity, so that even if the remaining capacity is large, for example, it is not overcharged. At this time, the difference between the proper amount of pulse charge electricity and the amount of pulse discharge electricity is within ± 10% of the capacity of the secondary battery 1. When the pulse charge electricity amount is larger than 10% of the battery capacity with respect to the pulse discharge electricity amount, the battery may be overcharged depending on the remaining capacity.

図3は本発明のシステムを用いた放電のフローチャートである。放電をする旨の指令が処理部6に入力されると、サーミスタ2から送られた二次電池1の温度と、充放電適正温度Tとの対比を行う。二次電池1の温度がT以上であれば常温と判定し、切替回路7において、端子8が端子9と固定されることにより、通常放電(高出力放電を含む)を行う。一方、二次電池1の温度がT未満であれば低温と判定し、切替回路7において、端子8が端子9および端子10と短い間隔で交互に固定されることにより、パルス充放電を行う。短い間隔で高率充放電を繰り返すことにより、二次電池1の抵抗値に応じてジュール熱が発生して昇温する。二次電池1の温度がTに達した段階で、抵抗値は十分に低下したと判断し、以降は端子8と端子9とを固定することにより、通常放電を行う。この間、パルス充電電気量とパルス放電電気量との差を小さくすることにより、二次電池1の残存容量は変化しないので、例えば残存容量が少ない場合でも、容量が尽きるたり過放電されることはない。この時の適正なパルス充電電気量とパルス放電電気量との差は、二次電池1の容量に対し±10%の範囲内である。パルス放電電気量がパルス充電電気量に対し電池容量の10%を超えて大きい場合、残存容量によっては電池容量が尽きたり、過放電される可能性が生じる。 FIG. 3 is a flowchart of discharge using the system of the present invention. When instruction to the discharge is input to the processing unit 6, and the temperature of the secondary battery 1 transmitted from the thermistor 2, the contrast between the discharge proper temperature T 0 performed. If the temperature of the secondary battery 1 is equal to or higher than T 0 , it is determined that the temperature is normal, and the switching circuit 7 fixes the terminal 8 to the terminal 9 to perform normal discharge (including high output discharge). On the other hand, if the temperature of the secondary battery 1 is less than T 0 , it is determined that the temperature is low. In the switching circuit 7, the terminal 8 is alternately fixed to the terminal 9 and the terminal 10 at short intervals, thereby performing pulse charge / discharge. . By repeating high-rate charging / discharging at short intervals, Joule heat is generated according to the resistance value of the secondary battery 1 to increase the temperature. When the temperature of the secondary battery 1 reaches T 0 , it is determined that the resistance value has sufficiently decreased. Thereafter, the terminal 8 and the terminal 9 are fixed to perform normal discharge. During this time, the remaining capacity of the secondary battery 1 does not change by reducing the difference between the pulse charge electricity amount and the pulse discharge electricity amount. For example, even when the remaining capacity is small, the capacity is exhausted or overdischarged. Absent. At this time, the difference between the proper amount of pulse charge electricity and the amount of pulse discharge electricity is within ± 10% of the capacity of the secondary battery 1. If the pulse discharge electricity amount is larger than 10% of the battery capacity with respect to the pulse charge electricity amount, the battery capacity may be exhausted or overdischarge may occur depending on the remaining capacity.

本発明の充放電システムに用いることができる二次電池としては、ニッケル水素蓄電池やニッケルカドミウム蓄電池などのアルカリ蓄電池のほかに、リチウムイオン二次電池を挙げることができる。中でも重量エネルギー密度の高さや高率充放電のしやすさの観点から、ニッケル水素蓄電池を用いるのが本発明の主旨に最も合致している。ここで二次電池としてニッケル水素蓄電池を用いた場合、電解液や活物質の組成を勘案して、充放電適正温度Tを0〜20℃に設定するのが好ましい。 Examples of the secondary battery that can be used in the charge / discharge system of the present invention include lithium ion secondary batteries in addition to alkaline storage batteries such as nickel metal hydride storage batteries and nickel cadmium storage batteries. Among these, from the viewpoint of high weight energy density and ease of high rate charge / discharge, the use of a nickel metal hydride storage battery is most consistent with the gist of the present invention. Here, when a nickel metal hydride storage battery is used as the secondary battery, it is preferable to set the proper charge / discharge temperature T 0 to 0 to 20 ° C. in consideration of the composition of the electrolytic solution and the active material.

以下に、本発明の実施例を示す。なお実施例には代表例としてニッケル水素蓄電池の場合を示すが、ニッケルカドミウム蓄電池やリチウムイオン蓄電池にも本発明の技術が展開可能なことはいうまでもない。   Examples of the present invention are shown below. In addition, although the case of a nickel metal hydride storage battery is shown in a Example as a typical example, it cannot be overemphasized that the technique of this invention is expandable also to a nickel cadmium storage battery or a lithium ion storage battery.

<検討1.充電時のパルス充放電条件>
(実施例1)
発泡ニッケル3次元多孔体に活物質として水酸化ニッケルを、導電剤として酸化コバルトおよび金属コバルト粉末を充填・圧延し、所定の寸法に切断して正極を得た。一方、パンチングメタル(鉄板に穿孔を施した後にニッケル鍍金を行った2次元多孔体)に、水素吸蔵合金粉末(活物質)・ケッチェンブラック(導電剤)・スチレン−ブタジエンゴム共重合体(結着剤)・カルボキシメチルセルロース(増粘剤)からなるペーストを塗布乾燥した後、圧延を行い、所定の寸法に切断して負極を得た。これら正負極を、ポリプロピレン製不織布からなるセパレータを介して捲回し、円筒型の有底缶に挿入した。ここに水酸化カリウム水溶液からなる電解液を注入し、公称容量3Ahのニッケル水素蓄電池を構成した。
<Examination 1. Pulse charge / discharge conditions during charging>
Example 1
A three-dimensional porous nickel foam was filled and rolled with nickel hydroxide as an active material, cobalt oxide and metal cobalt powder as a conductive agent, and cut into predetermined dimensions to obtain a positive electrode. On the other hand, a hydrogen storage alloy powder (active material), ketjen black (conducting agent), styrene-butadiene rubber copolymer (condensation) is applied to punching metal (two-dimensional porous body that has been plated with nickel after being perforated on an iron plate). After applying and drying a paste composed of (adhesive) / carboxymethylcellulose (thickener), rolling was performed, and the resultant was cut into predetermined dimensions to obtain a negative electrode. These positive and negative electrodes were wound through a separator made of polypropylene nonwoven fabric and inserted into a cylindrical bottomed can. The electrolyte solution which consists of potassium hydroxide aqueous solution was inject | poured here, and the nickel metal hydride storage battery of nominal capacity 3Ah was comprised.

続いて、この電池を5セルずつ直列に抵抗溶接してモジュールを構成した。このモジュールの真中の電池に隣接する形でサーミスタを設置し、図1に示す充放電システムを構成した。   Subsequently, this battery was resistance-welded in series by 5 cells to form a module. A thermistor was installed adjacent to the battery in the middle of this module to configure the charge / discharge system shown in FIG.

この充放電システムに対し、電池を昇温させるため、9Aで2s充電し、2s休止した後、9Aで2s放電し、さらに2s休止するというサイクルのパルス充放電を行い、電池温度が10℃に到達した時にパルス充放電を停止する(T=10℃)ように入力した。これを実施例1の充放電システムとする。
(実施例2)
実施例1の充放電システムに対し、パルス充放電における充電時間を2.2sとした以外は、実施例1と同様の充放電システムを構成した。これを実施例2の充放電システムとする。
(実施例3)
実施例1の充放電システムに対し、パルス充放電における充電時間を2.4sとした以外は、実施例1と同様の充放電システムを構成した。これを実施例3の充放電システムとする。
(実施例4)
実施例1の充放電システムに対し、T=−5℃とした以外は、実施例1と同様の充放電システムを構成した。これを実施例4の充放電システムとする。
(実施例5)
実施例1の充放電システムに対し、T=0℃とした以外は、実施例1と同様の充放電システムを構成した。これを実施例5の充放電システムとする。
(実施例6)
実施例1の充放電システムに対し、T=20℃とした以外は、実施例1と同様の充放電システムを構成した。これを実施例6の充放電システムとする。
(実施例7)
実施例1の充放電システムに対し、T=25℃とした以外は、実施例1と同様の充放電システムを構成した。これを実施例7の充放電システムとする。
(比較例1)
実施例1の充放電システムに対し、パルス充放電に替わり、9Aで2s充電した後2s休止するというサイクルのパルス充電を行うよう入力した以外は、実施例1と同様の充放電システムを構成した。これを比較例1の充放電システムとする。
In order to raise the temperature of the battery for this charging / discharging system, pulse charging / discharging of a cycle of charging for 2 s at 9 A, resting for 2 s, discharging for 2 s at 9 A, and then resting for 2 s is performed, and the battery temperature reaches 10 ° C. The pulse charging / discharging was stopped when it reached (T 0 = 10 ° C.). This is the charge / discharge system of Example 1.
(Example 2)
For the charge / discharge system of Example 1, a charge / discharge system similar to that of Example 1 was configured except that the charge time in pulse charge / discharge was set to 2.2 s. This is the charge / discharge system of Example 2.
(Example 3)
The charge / discharge system of Example 1 was configured in the same manner as Example 1 except that the charge time in pulse charge / discharge was set to 2.4 s. This is the charge / discharge system of Example 3.
Example 4
A charge / discharge system similar to that of Example 1 was configured except that T 0 = −5 ° C. with respect to the charge / discharge system of Example 1. This is the charge / discharge system of Example 4.
(Example 5)
A charge / discharge system similar to that of Example 1 was configured except that T 0 = 0 ° C. with respect to the charge / discharge system of Example 1. This is the charge / discharge system of Example 5.
(Example 6)
The charge / discharge system of Example 1 was configured in the same manner as in Example 1 except that T 0 = 20 ° C. This is the charge / discharge system of Example 6.
(Example 7)
The charge / discharge system of Example 1 was configured in the same manner as in Example 1 except that T 0 = 25 ° C. This is the charge / discharge system of Example 7.
(Comparative Example 1)
The charge / discharge system of Example 1 was configured in the same manner as in Example 1 except that instead of pulse charge / discharge, input was performed to perform pulse charge of a cycle of charging for 2 seconds at 9A and then resting for 2 seconds. . This is the charge / discharge system of Comparative Example 1.

これらの充放電システムに対し、以下の評価を行った。
(高残存容量におけるパルス充放電)
20℃環境下で残存容量が2.7Ahとなるよう充電した後、この充放電システムを−10℃環境下に設置した。3時間放置して十分にシステム全体を冷却した後に、各実施例や比較例に入力した条件にてパルス充放電あるいはパルス充電を行った。所定の温度に達する時間と、パルス充放電中の電池1セル当りの最高到達電圧を、表1に示す。
(総充電容量)
20℃環境下で残存容量を0.3Ahに調整した後、この充放電システムを−10℃環境下に設置した。3時間放置して十分にシステム全体を冷却した後に、各実施例に入力した条件にてパルス充放電を行った。所定の温度に昇温した後、引続き9Aの急速充電を行い、電池1セル当りの電圧が1.5Vに達した時に充電を停止した。この時の総充電容量を表1に示す。
The following evaluation was performed on these charge / discharge systems.
(Pulse charge / discharge at high residual capacity)
After charging the remaining capacity to 2.7 Ah in a 20 ° C. environment, this charge / discharge system was installed in a −10 ° C. environment. After leaving the system for 3 hours to sufficiently cool the entire system, pulse charging / discharging or pulse charging was performed under the conditions input in each example and comparative example. Table 1 shows the time required to reach a predetermined temperature and the highest voltage reached per battery cell during pulse charging / discharging.
(Total charge capacity)
After adjusting the remaining capacity to 0.3 Ah in a 20 ° C. environment, the charge / discharge system was installed in a −10 ° C. environment. After leaving the system for 3 hours to sufficiently cool the entire system, pulse charging / discharging was performed under the conditions input in each example. After the temperature was raised to a predetermined temperature, 9A was rapidly charged, and the charging was stopped when the voltage per battery cell reached 1.5V. Table 1 shows the total charge capacity at this time.

表1より、電池の昇温をパルス充電にて行った比較例1は、残存容量が多い場合には電池がセル当り1.5Vを超える過充電をされるに至った。これに対し本発明の実施例1〜7の充放電システムは、何れも過充電を免れている。本発明は充電のみならず放電も加えた充放電パルスを行うことにより、残存容量を変えることなく電池を昇温できたため、残存容量が多い場合でも電池の過充電を回避できたものである。   From Table 1, in Comparative Example 1 in which the battery was heated by pulse charging, the battery was overcharged exceeding 1.5 V per cell when the remaining capacity was large. On the other hand, any of the charge / discharge systems of Examples 1 to 7 of the present invention escapes overcharge. According to the present invention, the battery can be heated without changing the remaining capacity by performing charge / discharge pulses including not only charging but also discharging, so that overcharging of the battery can be avoided even when the remaining capacity is large.

中でも、パルス充電電気量とパルス放電電気量との差が10%を超える場合、過充電には至らないものの電池電圧がやや高くなった。過充電を完全に回避する観点から、パルス充電電気量とパルス放電電気量との差は10%以下であることが望ましい。   Above all, when the difference between the amount of electricity charged by pulses and the amount of electricity discharged by pulses exceeds 10%, the battery voltage slightly increased although it did not lead to overcharge. From the viewpoint of completely avoiding overcharge, the difference between the pulse charge electricity amount and the pulse discharge electricity amount is desirably 10% or less.

またTが0℃を下回った場合、電池の抵抗が十分に低下しないため、その後の急速充電が十分になされない。さらにTが20℃を上回った場合、パルス充放電に掛かる時間が長くなるため、全体の充電時間を長引かせる傾向がある。よってTは0〜20℃であることが望ましい。 Further, when T 0 is less than 0 ° C., the resistance of the battery is not sufficiently lowered, so that subsequent rapid charging is not sufficiently performed. Further, when T 0 exceeds 20 ° C., the time required for pulse charging / discharging becomes long, so that the entire charging time tends to be prolonged. Therefore, T 0 is desirably 0 to 20 ° C.

<検討2.放電時のパルス充放電条件>
(実施例8)
発泡ニッケル3次元多孔体に活物質として水酸化ニッケルを、導電剤として酸化コバルトおよび金属コバルト粉末を充填・圧延し、所定の寸法に切断して正極を得た。一方、パンチングメタル(鉄板に穿孔を施した後にニッケル鍍金を行った2次元多孔体)に、水素吸蔵合金粉末(活物質)・ケッチェンブラック(導電剤)・スチレン−ブタジエンゴム共重合体(結着剤)・カルボキシメチルセルロース(増粘剤)からなるペーストを塗布乾燥した後、圧延を行い、所定の寸法に切断して負極を得た。これら正負極を、ポリプロピレン製不織布からなるセパレータを介して捲回し、円筒型の有底缶に挿入した。ここに水酸化カリウム水溶液からなる電解液を注入し、公称容量3Ahのニッケル水素蓄電池を構成した。
<Study 2. Pulse charge / discharge conditions during discharge>
(Example 8)
A three-dimensional porous nickel foam was filled and rolled with nickel hydroxide as an active material, cobalt oxide and metal cobalt powder as a conductive agent, and cut into predetermined dimensions to obtain a positive electrode. On the other hand, a hydrogen storage alloy powder (active material), ketjen black (conducting agent), styrene-butadiene rubber copolymer (condensation) is applied to punching metal (two-dimensional porous body that has been plated with nickel after being perforated on an iron plate). After applying and drying a paste composed of (adhesive) / carboxymethylcellulose (thickener), rolling was performed, and the resultant was cut into predetermined dimensions to obtain a negative electrode. These positive and negative electrodes were wound through a separator made of polypropylene nonwoven fabric and inserted into a cylindrical bottomed can. The electrolyte solution which consists of potassium hydroxide aqueous solution was inject | poured here, and the nickel metal hydride storage battery of nominal capacity 3Ah was comprised.

続いて、この電池を5セルずつ直列に抵抗溶接してモジュールを構成した。このモジュールの真中の電池に隣接する形でサーミスタを設置し、図1に示す充放電システムを構成した。   Subsequently, this battery was resistance-welded in series by 5 cells to form a module. A thermistor was installed adjacent to the battery in the middle of this module to configure the charge / discharge system shown in FIG.

この充放電システムに対し、電池を昇温させるため、9Aで2s充電し、2s休止した後、9Aで2s放電し、さらに2s休止するというサイクルのパルス充放電を行い、電池温度が10℃に到達した時にパルス充放電を停止する(T=10℃)ように入力した。これを実施例8の充放電システムとする。
(実施例9)
実施例8の充放電システムに対し、パルス充放電における放電時間を2.2sとした以外は、実施例8と同様の充放電システムを構成した。これを実施例9の充放電システムとする。
(実施例10)
実施例8の充放電システムに対し、パルス充放電における充電時間を2.4sとした以外は、実施例8と同様の充放電システムを構成した。これを実施例10の充放電システムとする。
(実施例11)
実施例8の充放電システムに対し、T=−5℃とした以外は、実施例8と同様の充放電システムを構成した。これを実施例11の充放電システムとする。
(実施例12)
実施例8の充放電システムに対し、T=0℃とした以外は、実施例8と同様の充放電システムを構成した。これを実施例12の充放電システムとする。
(実施例13)
実施例8の充放電システムに対し、T=20℃とした以外は、実施例8と同様の充放電システムを構成した。これを実施例13の充放電システムとする。
(実施例14)
実施例1の充放電システムに対し、T=25℃とした以外は、実施例8と同様の充放電システムを構成した。これを実施例14の充放電システムとする。
(比較例2)
実施例8の充放電システムに対し、パルス充放電に替わり、9Aで2s放電した後2s休止するというサイクルのパルス放電を行うよう入力した以外は、実施例8と同様の充放電システムを構成した。これを比較例2の充放電システムとする。
In order to raise the temperature of the battery for this charging / discharging system, pulse charging / discharging of a cycle of charging for 2 s at 9 A, resting for 2 s, discharging for 2 s at 9 A, and then resting for 2 s is performed, and the battery temperature reaches 10 ° C. The pulse charging / discharging was stopped when it reached (T 0 = 10 ° C.). This is the charge / discharge system of Example 8.
Example 9
The charge / discharge system of Example 8 was configured in the same manner as Example 8 except that the discharge time in pulse charge / discharge was set to 2.2 s. This is the charge / discharge system of Example 9.
(Example 10)
The charge / discharge system of Example 8 was configured in the same manner as in Example 8 except that the charge time in pulse charge / discharge was set to 2.4 s. This is the charge / discharge system of Example 10.
(Example 11)
A charge / discharge system similar to that of Example 8 was configured except that T 0 = −5 ° C. with respect to the charge / discharge system of Example 8. This is the charge / discharge system of Example 11.
(Example 12)
A charging / discharging system similar to that of Example 8 was configured except that T 0 = 0 ° C. with respect to the charging / discharging system of Example 8. This is the charge / discharge system of Example 12.
(Example 13)
A charge / discharge system similar to that of Example 8 was configured except that T 0 = 20 ° C. with respect to the charge / discharge system of Example 8. This is the charge / discharge system of Example 13.
(Example 14)
A charge / discharge system similar to that of Example 8 was configured except that T 0 = 25 ° C. with respect to the charge / discharge system of Example 1. This is the charge / discharge system of Example 14.
(Comparative Example 2)
The charging / discharging system of Example 8 was configured in the same manner as in Example 8 except that instead of pulse charging / discharging, an input was made to perform pulse discharging in a cycle of 2s discharging at 9A and then resting for 2s. . This is the charge / discharge system of Comparative Example 2.

これらの充放電システムに対し、以下の評価を行った。
(低残存容量におけるパルス充放電)
20℃環境下で残存容量が0.3Ahとなるよう充電した後、この充放電システムを−10℃環境下に設置した。3時間放置して十分にシステム全体を冷却した後に、各実施例や比較例に入力した条件にてパルス充放電あるいはパルス放電を行った。所定の温度に達
する時間と、パルス充放電中の電池1セル当りの最低到達電圧を、表2に示す。
(高率放電容量)
20℃環境下で残存容量を2.7Ahに調整した後、この充放電システムを−10℃環境下に設置した。3時間放置して十分にシステム全体を冷却した後に、各実施例に入力した条件にてパルス充放電を行った。所定の温度に昇温した後、引続き30Aの高率放電を行い、電池1セル当りの電圧が0.8Vに達した時に放電を停止した。この時の放電容量を表2に示す。
The following evaluation was performed on these charge / discharge systems.
(Pulse charge / discharge at low residual capacity)
After charging the remaining capacity to 0.3 Ah in a 20 ° C. environment, the charge / discharge system was installed in a −10 ° C. environment. After leaving the system for 3 hours to sufficiently cool the entire system, pulse charge / discharge or pulse discharge was performed under the conditions input in each of the examples and comparative examples. Table 2 shows the time required to reach a predetermined temperature and the lowest voltage reached per battery cell during pulse charging / discharging.
(High rate discharge capacity)
After adjusting the remaining capacity to 2.7 Ah in a 20 ° C. environment, this charge / discharge system was installed in a −10 ° C. environment. After leaving the system for 3 hours to sufficiently cool the entire system, pulse charging / discharging was performed under the conditions input in each example. After the temperature was raised to a predetermined temperature, high-rate discharge of 30 A was continued, and the discharge was stopped when the voltage per battery cell reached 0.8V. Table 2 shows the discharge capacity at this time.

表2より、電池の昇温をパルス放電にて行った比較例2は、残存容量が少ない場合には電池がセル当り0Vを超える過放電をされるに至った。これに対し本発明の実施例8〜14の充放電システムは、何れも過放電を免れている。本発明は放電のみならず充電も加えた充放電パルスを行うことにより、残存容量を変えることなく電池を昇温できたため、残存容量が少ない場合でも電池の過放電を回避できたものである。   From Table 2, in Comparative Example 2 in which the battery was heated by pulse discharge, the battery was overdischarged exceeding 0 V per cell when the remaining capacity was small. On the other hand, the charge / discharge systems of Examples 8 to 14 of the present invention are all free from overdischarge. In the present invention, the battery can be heated without changing the remaining capacity by performing the charge / discharge pulse including not only the discharge but also the charge. Therefore, even when the remaining capacity is small, the overdischarge of the battery can be avoided.

中でも、パルス充電電気量とパルス放電電気量との差が10%を超える場合、過放電には至らないものの電池電圧がやや低くなった。過放電を完全に回避する観点から、パルス充電電気量とパルス放電電気量との差は10%以下であることが望ましい。   In particular, when the difference between the pulse charge electricity amount and the pulse discharge electricity amount exceeds 10%, the battery voltage is slightly lowered although it does not lead to overdischarge. From the viewpoint of completely avoiding overdischarge, the difference between the pulse charge electricity amount and the pulse discharge electricity amount is desirably 10% or less.

またTが0℃を下回った場合、電池の抵抗が十分に低下しないため、その後の高率放電が十分になされない。さらにTが20℃を上回った場合、パルス充放電に掛かる時間が長くなるため、電池の昇温時間を長引かせる傾向がある。よってTは0〜20℃であることが望ましい。 Further, when T 0 is less than 0 ° C., the resistance of the battery is not sufficiently lowered, and the subsequent high rate discharge is not sufficiently performed. Furthermore, when T 0 exceeds 20 ° C., the time required for pulse charging / discharging becomes long, so that the battery temperature rising time tends to be prolonged. Therefore, T 0 is desirably 0 to 20 ° C.

本発明は、電動工具など寒冷下の野外で用いられる機会が多く、急速充電などのフリークエンシーが求められる機器の電源に付随させるのに好適であり、産業上の利用可能性は高いと考えられる。   The present invention has many opportunities to be used in cold outdoors such as electric tools, and is suitable for being attached to the power source of equipment that requires a frequency such as rapid charging, and is considered to have high industrial applicability.

本発明の充放電システムの一例を示すブロック図The block diagram which shows an example of the charging / discharging system of this invention 本発明のシステムを用いた充電のフローチャートFlowchart of charging using the system of the present invention 本発明のシステムを用いた放電のフローチャートFlowchart of discharge using the system of the present invention

符号の説明Explanation of symbols

1 二次電池
2 サーミスタ
3 放電回路
4 充電回路
5 外部電源
6 処理部
7 切替回路
8、9、10 端子
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Thermistor 3 Discharge circuit 4 Charging circuit 5 External power supply 6 Processing part 7 Switching circuit 8, 9, 10 terminal

Claims (4)

二次電池と、二次電池を充放電するための手段と、二次電池の充放電を制御する手段と、二次電池の温度を検出する手段とを含む充放電システムであって、
二次電池の温度が充放電適正温度T未満である場合、二次電池の温度がTに達するまでパルス充放電条件を行った後に、充放電を開始することを特徴とする充放電システム。
A charge / discharge system comprising a secondary battery, means for charging / discharging the secondary battery, means for controlling charge / discharge of the secondary battery, and means for detecting the temperature of the secondary battery,
When the temperature of the secondary battery is less than the appropriate charge / discharge temperature T 0 , the charge / discharge system is characterized by starting charge / discharge after performing pulse charge / discharge conditions until the temperature of the secondary battery reaches T 0. .
前記パルス充放電におけるパルス充電電気量とパルス放電電気量との差が、二次電池の容量に対し±10%の範囲である請求項1記載の充放電システム。   The charge / discharge system according to claim 1, wherein a difference between the pulse charge electricity amount and the pulse discharge electricity amount in the pulse charge / discharge is in a range of ± 10% with respect to the capacity of the secondary battery. 前記二次電池がニッケル水素蓄電池である請求項1記載の充放電システム。   The charge / discharge system according to claim 1, wherein the secondary battery is a nickel metal hydride storage battery. 前記Tが0〜20℃の範囲である請求項3記載の充放電システム。 The charge / discharge system according to claim 3, wherein the T0 is in the range of 0 to 20 ° C.
JP2004276837A 2004-09-24 2004-09-24 Charge-discharge system Pending JP2006092901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004276837A JP2006092901A (en) 2004-09-24 2004-09-24 Charge-discharge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004276837A JP2006092901A (en) 2004-09-24 2004-09-24 Charge-discharge system

Publications (1)

Publication Number Publication Date
JP2006092901A true JP2006092901A (en) 2006-04-06

Family

ID=36233691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004276837A Pending JP2006092901A (en) 2004-09-24 2004-09-24 Charge-discharge system

Country Status (1)

Country Link
JP (1) JP2006092901A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186691A (en) * 2007-01-30 2008-08-14 Gs Yuasa Corporation:Kk Usage and system of nonaqueous electrolyte battery
WO2012060016A1 (en) * 2010-11-05 2012-05-10 三菱電機株式会社 Charging/discharging device and method for controlling charging and discharging
WO2012093493A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Charging and discharging apparatus
CN102742068A (en) * 2010-01-28 2012-10-17 株式会社Lg化学 Battery pack system for improving operating performance using internal resistance of battery
JP2014200124A (en) * 2013-03-29 2014-10-23 カヤバ工業株式会社 Charge control apparatus and truck mixer
JP2015076920A (en) * 2013-10-07 2015-04-20 サトーホールディングス株式会社 Printer
KR20180045694A (en) * 2016-10-26 2018-05-04 현대오트론 주식회사 Apparatus and method for charging battery
CN112542870A (en) * 2020-11-28 2021-03-23 Oppo广东移动通信有限公司 Electronic device
WO2022126254A1 (en) * 2020-12-16 2022-06-23 Gbatteries Energy Canada Inc. Methods and systems for temperature-based battery charging
WO2023221053A1 (en) * 2022-05-19 2023-11-23 宁德时代新能源科技股份有限公司 Battery charging method, and charging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125326A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Battery charge control method
JP2003272712A (en) * 2002-03-18 2003-09-26 Mitsubishi Motors Corp Battery control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125326A (en) * 2000-10-12 2002-04-26 Honda Motor Co Ltd Battery charge control method
JP2003272712A (en) * 2002-03-18 2003-09-26 Mitsubishi Motors Corp Battery control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008186691A (en) * 2007-01-30 2008-08-14 Gs Yuasa Corporation:Kk Usage and system of nonaqueous electrolyte battery
CN102742068A (en) * 2010-01-28 2012-10-17 株式会社Lg化学 Battery pack system for improving operating performance using internal resistance of battery
JP2013518550A (en) * 2010-01-28 2013-05-20 エルジー・ケム・リミテッド Battery pack system for improving operating performance using internal battery resistance
US9231425B2 (en) 2010-01-28 2016-01-05 Lg Chem, Ltd. Battery pack system of improving operating performance using internal resistance of cell
WO2012060016A1 (en) * 2010-11-05 2012-05-10 三菱電機株式会社 Charging/discharging device and method for controlling charging and discharging
CN103222105A (en) * 2010-11-05 2013-07-24 三菱电机株式会社 Charging/discharging device and method for controlling charging and discharging
US9520733B2 (en) 2011-01-07 2016-12-13 Mitsubishi Electric Corporation Charging and discharging device to increase battery temperature by controlling ripple current
WO2012093493A1 (en) * 2011-01-07 2012-07-12 三菱電機株式会社 Charging and discharging apparatus
JP5000025B1 (en) * 2011-01-07 2012-08-15 三菱電機株式会社 Charge / discharge device
JP2014200124A (en) * 2013-03-29 2014-10-23 カヤバ工業株式会社 Charge control apparatus and truck mixer
JP2015076920A (en) * 2013-10-07 2015-04-20 サトーホールディングス株式会社 Printer
KR20180045694A (en) * 2016-10-26 2018-05-04 현대오트론 주식회사 Apparatus and method for charging battery
CN112542870A (en) * 2020-11-28 2021-03-23 Oppo广东移动通信有限公司 Electronic device
CN112542870B (en) * 2020-11-28 2024-02-20 Oppo广东移动通信有限公司 Electronic equipment
WO2022126254A1 (en) * 2020-12-16 2022-06-23 Gbatteries Energy Canada Inc. Methods and systems for temperature-based battery charging
WO2023221053A1 (en) * 2022-05-19 2023-11-23 宁德时代新能源科技股份有限公司 Battery charging method, and charging apparatus

Similar Documents

Publication Publication Date Title
US11735940B2 (en) Methods and systems for recharging a battery
EP2594006B1 (en) Method and apparatus for recharging a battery
CN1977418B (en) Method for charging a lithium-ion accumulator with a negative electrode
JP5281843B2 (en) Battery pack and charging method thereof
JP2001503238A (en) Hybrid energy storage system
KR101913510B1 (en) Energy circulation device for lithium secondary battery using self-energy and method thereof
JP2006092901A (en) Charge-discharge system
JP5705046B2 (en) Power system
CN110313099A (en) The method and apparatus charged the battery
JP2007325451A (en) Voltage balance adjusting method for battery pack in which a plurality of lithium-ion secondary batteries are connected in series
JP2010009840A (en) Battery pack and battery system equipped with it
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
JP2011192425A (en) Memory effect reducing circuit, battery power supply device, battery utilization system, and memory effect reducing method
JP4472415B2 (en) Non-aqueous electrolyte secondary battery charging method and charger
JP2012135114A (en) Charging/discharging control method of alkali storage battery and charging/discharging control system including alkali storage battery
JP2002050407A (en) Nonaqueous electrolyte secondary cell and control method of charge and discharge
JP2008259260A (en) Charging method of power supply
JP4358156B2 (en) How to charge the power system
JP2007215254A (en) Power system
KR20190054512A (en) Battery charging method and battery charging apparatus
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
JP3594879B2 (en) Charging method of alkaline aqueous secondary battery for backup
JPH11307134A (en) Charging method of alkaline aqueous solution secondary battery for backup
JP4332926B2 (en) Method for producing non-aqueous electrolyte secondary battery
Barsukov Battery selection, safety, and monitoring in mobile applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831