JP2008186691A - Usage and system of nonaqueous electrolyte battery - Google Patents

Usage and system of nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2008186691A
JP2008186691A JP2007018708A JP2007018708A JP2008186691A JP 2008186691 A JP2008186691 A JP 2008186691A JP 2007018708 A JP2007018708 A JP 2007018708A JP 2007018708 A JP2007018708 A JP 2007018708A JP 2008186691 A JP2008186691 A JP 2008186691A
Authority
JP
Japan
Prior art keywords
battery
voltage
temperature
impedance
pulsating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007018708A
Other languages
Japanese (ja)
Inventor
Shigeki Yamate
山手  茂樹
Kazusa Yukimoto
和紗 行本
Taro Yamafuku
太郎 山福
Taku Kozono
卓 小園
Atsushi Funabiki
厚志 船引
Sadahiro Katayama
禎弘 片山
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2007018708A priority Critical patent/JP2008186691A/en
Publication of JP2008186691A publication Critical patent/JP2008186691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a usage and a system of nonaqueous electrolytic battery capable of obtaining a sufficient performance in output under a low-temperature atmosphere. <P>SOLUTION: Charging/discharging operation is performed after a temperature rise in battery by applying a voltage accompanied by a pulsation flow over 100 mV in peak-to-peak value and 1 Hz in frequency, when a battery temperature is lower than a predetermined temperature or a battery impedance is larger than a predetermined setting value. Under this condition, the time can be shortened for rising the temperature, and the increasing impedance can be suppressed when repeatedly performing temperature rise by means of the operation. An especially effective result can be expected when applying a nonaqueous electrolytic material using a lithium titanate to a negative electrode or to a battery system using the nonaqueous electrolytic material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質電池の使用方法、及び、非水電解質電池を備えた電池システムに関する。   The present invention relates to a method for using a nonaqueous electrolyte battery, and a battery system including the nonaqueous electrolyte battery.

小形で軽量なリチウムイオン二次電池に代表される非水電解質電池は、携帯電話及びデジタルカメラなどの電子機器の電源として広く用いられている。一般的な非水電解質電池は、一般的には正極にリチウム遷移金属複合酸化物が、負極に炭素材料が、非水電解質にリチウム塩を含んだカーボネート等が使用されており、作動電圧が高く、エネルギー密度が高いことを特徴としている。   Non-aqueous electrolyte batteries represented by small and lightweight lithium ion secondary batteries are widely used as power sources for electronic devices such as mobile phones and digital cameras. A general non-aqueous electrolyte battery generally uses a lithium transition metal composite oxide for the positive electrode, a carbon material for the negative electrode, and a carbonate containing a lithium salt for the non-aqueous electrolyte. It is characterized by high energy density.

近年、負極にチタン酸リチウムを用いた非水電解質電池の研究が盛んであり、負極に炭素材料を用いた従来のリチウムイオン二次電池に比べて、充放電サイクル性能に優れた電池となる可能性があることから、例えば電子化が進む自動車等へのバックアップ電源等への適用が期待されている。   In recent years, research on non-aqueous electrolyte batteries using lithium titanate as a negative electrode has been actively conducted, and it is possible to achieve a battery with better charge / discharge cycle performance than conventional lithium ion secondary batteries using a carbon material as a negative electrode. Therefore, it is expected to be applied to, for example, a backup power source for automobiles and the like that are being digitized.

しかしながら、非水電解質電池は、低温における出力性能が劣るため、自動車等の大型の応用機器のバックアップに必要な電力を確保するためには、多量の電池を搭載する必要があり、結果として電池システムの小形化が困難であるという問題点があった。なかでも、負極にチタン酸リチウムを用いた非水電解質電池は、用いる非水電解質の種類にもよるが、炭素材料を用いたリチウムイオン二次電池に比べて負極インピーダンスが大きなものとなりやすい傾向があり、特に低温における出力性能に課題があった。   However, since non-aqueous electrolyte batteries have poor output performance at low temperatures, it is necessary to install a large amount of batteries in order to secure the power necessary for backing up large-scale applied equipment such as automobiles, resulting in a battery system. There was a problem that it was difficult to downsize. Among these, non-aqueous electrolyte batteries using lithium titanate as the negative electrode tend to have a larger negative electrode impedance than lithium ion secondary batteries using carbon materials, depending on the type of non-aqueous electrolyte used. There was a problem in output performance especially at low temperature.

特許文献1には、「二次電池はポータブル機器の電源として頻繁に用いられている。特に近年においては、電動工具など野外で用いられることの多い機器の電源にも展開が進んでいる。これら二次電池の課題として、常温下では問題ないものの、寒冷下で充放電を行う際、主に電解液のイオン伝導性の低下や電極活物質の反応性低下のために抵抗が大きくなることが挙げられる。この現象のために大電流での充放電ができなくなり、微弱電流で長時間の充電を強いられたり、出力値の大きい放電ができず機器が動作しないなどの不具合が生じる。」(段落0002)という問題を解決するために、「二次電池と、二次電池を充放電するための手段と、二次電池の充放電を制御する手段と、二次電池の温度を測定する手段とを含む充放電システムであって、二次電池の温度が充放電適正温度T0未満である場合、二次電池の温度がT0に達するまでパルス充放電条件を行った後に、充放電を開始することを特徴とする充放電システム。」(請求項1)が提案され、実施例として、ニッケル水素蓄電池に対して、9Aで2s、2.2s又は2.4s充電し、2s休止した後、9Aで2s放電し、さらに2s休止するというサイクルのパルス充放電を行い、電池温度が一定温度に到達した時にパルス充放電を停止するようにパルス充放電を行うことが記載されている。
特開2006−92901号公報
Patent Document 1 states that “secondary batteries are frequently used as a power source for portable devices. In particular, in recent years, power sources for devices that are often used outdoors such as electric tools have been developed. As a secondary battery issue, there is no problem at room temperature, but when charging / discharging in cold temperatures, the resistance increases mainly due to a decrease in the ionic conductivity of the electrolyte and a decrease in the reactivity of the electrode active material. Due to this phenomenon, charging / discharging with a large current cannot be performed, and charging for a long time with a weak current, or a discharge with a large output value cannot be performed and the device does not operate. ” In order to solve the problem (paragraph 0002), “secondary battery, means for charging / discharging the secondary battery, means for controlling charge / discharge of the secondary battery, and means for measuring the temperature of the secondary battery” Charge and discharge system including A is a feature that the temperature of the secondary battery when a charge and discharge less than the proper temperature T 0, that after the temperature of the secondary battery was subjected to pulse discharge conditions to reach T 0, starts charging and discharging (Claim 1) was proposed, and as an example, a nickel-metal hydride battery was charged at 9A for 2s, 2.2s or 2.4s, paused for 2s, and then discharged at 9A for 2s. Further, it is described that pulse charge / discharge is performed in a cycle of resting for 2 seconds, and pulse charge / discharge is performed so as to stop the pulse charge / discharge when the battery temperature reaches a certain temperature.
JP 2006-92901 A

しかしながら、非水電解質電池に特許文献1記載の方法を適用した場合、確かに電池温度をある程度上昇させることはできるものの、温度が上昇するまでに多大な時間を要するばかりではなく、非水電解質電池に対してこのような処方による温度上昇操作を繰り返すと、電池の性能低下を伴う劣化により電池のインピーダンス(内部抵抗)が大きく上昇してしまい、出力性能が充分に得られなくなる、という非水電解質電池に特有の問題点があることがわかった。   However, when the method described in Patent Document 1 is applied to a non-aqueous electrolyte battery, the battery temperature can certainly be increased to some extent, but not only does it take a long time to increase the temperature, but also the non-aqueous electrolyte battery. In contrast, non-aqueous electrolytes that when the temperature increase operation by such a prescription is repeated, the impedance (internal resistance) of the battery greatly increases due to deterioration accompanying the deterioration of the battery performance, and the output performance cannot be sufficiently obtained. It turns out that there are problems specific to batteries.

本発明は、上記問題点に鑑みなされたものであって、放電又は充電に際して、低温環境下でも十分な出力性能を得ることのできる非水電解質電池の使用方法を提供することを目的とする。また、非水電解質電池を備え、放電又は充電に際して、低温環境下でも十分な出力性能を得ることのできる電池システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of using a nonaqueous electrolyte battery that can obtain sufficient output performance even in a low temperature environment during discharging or charging. Another object of the present invention is to provide a battery system including a nonaqueous electrolyte battery and capable of obtaining sufficient output performance even in a low temperature environment during discharging or charging.

本発明は、周波数1Hz以上、P−P値(Peak to Peak値)100mV以上の脈流を伴う電圧を印加した後に、電池の放電又は充電を行う非水電解質電池の使用方法である。   The present invention is a method of using a nonaqueous electrolyte battery in which a battery is discharged or charged after a voltage with a pulsating flow having a frequency of 1 Hz or more and a PP value (Peak to Peak value) of 100 mV or more is applied.

また、本発明は、非水電解質電池を備え、電池温度測定手段と、周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を発生する脈流電圧発生手段とを有し、電池温度が設定温度よりも低い場合に前記脈流を伴う電圧を電池に印加しうる機構を備えた電池システムである。   The present invention also includes a non-aqueous electrolyte battery, and includes battery temperature measuring means, and pulsating voltage generating means for generating a voltage with a pulsating current having a frequency of 1 Hz or more and a PP value of 100 mV or more. Is a battery system provided with a mechanism capable of applying a voltage accompanied by the pulsating flow to the battery when the temperature is lower than a set temperature.

また、本発明は、非水電解質電池を備え、電池インピーダンス測定手段と、周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を発生する脈流電圧発生手段とを有し、電池インピーダンスの値が設定値よりも高い場合に前記脈流を伴う電圧を電池に印加しうる機構を備えた電池システムである。   The present invention also includes a non-aqueous electrolyte battery, and includes battery impedance measuring means and pulsating voltage generating means for generating a voltage with a pulsating current having a frequency of 1 Hz or more and a PP value of 100 mV or more. Is a battery system including a mechanism capable of applying a voltage accompanied by the pulsating current to the battery when the value of is higher than a set value.

即ち、本発明は、非水電解質電池の使用方法、又は、非水電解質電池を備える電池システムに関し、低温環境下でも十分な出力性能を得るために、前記電池に対して充電又は放電を行うに際して、電池温度が設定温度よりも低い場合あるいは電池インピーダンスが設定値よりも高い場合に、周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を印加することを特徴としている。   That is, the present invention relates to a method for using a non-aqueous electrolyte battery or a battery system including a non-aqueous electrolyte battery, and when charging or discharging the battery in order to obtain sufficient output performance even in a low temperature environment. When the battery temperature is lower than the set temperature or when the battery impedance is higher than the set value, a voltage with a pulsating current having a frequency of 1 Hz or more and a PP value of 100 mV or more is applied.

本発明によれば、低温環境下でも十分な出力性能を得ることのできる非水電解質電池の使用方法を提供できる。また、非水電解質電池を備え、低温環境下でも十分な出力性能を得ることのできる電池システムを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the usage method of the nonaqueous electrolyte battery which can acquire sufficient output performance also in a low temperature environment can be provided. In addition, a battery system including a nonaqueous electrolyte battery and capable of obtaining sufficient output performance even in a low temperature environment can be provided.

印加する「周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧」としては、直流電圧に周波数1Hz以上、振幅100mV以上の交流波を重畳したものを例示できる。前記脈流を伴う電圧の時間軸に対する電圧波形は、限定されるものではなく、例えば、正弦波、矩形波、鋸歯波、三角波等が挙げられる。   Examples of the “voltage with a pulsating flow having a frequency of 1 Hz or more and a PP value of 100 mV or more” applied include a DC voltage superimposed with an AC wave having a frequency of 1 Hz or more and an amplitude of 100 mV or more. The voltage waveform with respect to the time axis of the voltage accompanied by the pulsating current is not limited, and examples thereof include a sine wave, a rectangular wave, a sawtooth wave, and a triangular wave.

本発明において印加する脈流の2つのピーク電圧の中間値に相当する出力電圧は、電池の開回路電圧と等しい電圧を採用してもよいが、電池の開回路電圧よりも高い電圧としてもよい。例えば、電池の充電電圧に相当する電圧を前記出力電圧として採用すると、前記脈流を伴う電圧の印加が充電を兼ねるものとできる。また、電池に対してフロート充電を適用する場合又はシステムにおいて、フロート充電電圧に相当する電圧を前記出力電圧の値として採用すると、前記脈流を伴う電圧の印加がフロート充電を兼ねるものとできる。   In the present invention, the output voltage corresponding to the intermediate value of the two peak voltages of the pulsating current applied may be a voltage equal to the open circuit voltage of the battery, or may be higher than the open circuit voltage of the battery. . For example, when a voltage corresponding to the charging voltage of the battery is adopted as the output voltage, the application of the voltage accompanied by the pulsating current can also serve as charging. Further, in the case where float charging is applied to the battery or in the system, when a voltage corresponding to the float charging voltage is adopted as the value of the output voltage, the application of the voltage accompanied by the pulsating current can also serve as the float charging.

逆に、電池が充電を要する状態にある場合であっても、印加する脈流を伴う電圧として、電池の開回路電圧よりも高い電圧を採用せず、電池の開回路電圧と等しい電圧を採用してもよい。このような構成によれば、電極の温度が十分に上昇してから充電を行わせることができるので、電池インピーダンスを上昇させることなく充電が可能となり、充電出力特性、即ち、充電受入性能に優れた充電を行うことができると共に、性能低下を伴う電池の劣化を抑制できる。前記出力電圧として電池の開回路電圧と等しい電圧を採用しようとする場合、電池の開回路電圧との差が0.1V以内であることが好ましい。この差を0.1V以内とすることにより、電圧の印加による電池のSOCの変化が大きくなりすぎず、電池性能が低下する虞を低減できる。   Conversely, even when the battery is in a state that requires charging, a voltage that is higher than the open circuit voltage of the battery is not used as the voltage with the applied pulsating current, and a voltage equal to the open circuit voltage of the battery is used. May be. According to such a configuration, since charging can be performed after the temperature of the electrode has sufficiently increased, charging can be performed without increasing battery impedance, and charging output characteristics, that is, charge acceptance performance is excellent. In addition, the battery can be charged, and the deterioration of the battery accompanying a decrease in performance can be suppressed. When a voltage equal to the open circuit voltage of the battery is to be adopted as the output voltage, the difference from the open circuit voltage of the battery is preferably within 0.1V. By making this difference within 0.1 V, the change in the SOC of the battery due to the application of voltage does not become too large, and the possibility that the battery performance will deteriorate can be reduced.

印加する脈流のP−P値は、100mV以上であることが必要であり、P−P値が100mV未満であると、脈流を伴う電圧の印加による温度上昇あるいはインピーダンス低下に要する時間がかかりすぎ、結果として必要なときに電力を取り出せなくなってしまうからである。   The PP value of the pulsating flow to be applied needs to be 100 mV or more. If the PP value is less than 100 mV, it takes time to increase the temperature or decrease the impedance due to the application of the voltage accompanied by the pulsating flow. This is because, as a result, it becomes impossible to take out electric power when necessary.

前記脈流電圧のP−P値は、1500mV以下とすると、電池内での副反応による電池インピーダンスが増加し電池寿命の低下を招く虞を低減できる点で好ましい。   It is preferable that the PP value of the pulsating voltage is 1500 mV or less because the battery impedance due to the side reaction in the battery increases and the risk of a decrease in battery life can be reduced.

印加する脈流電圧の周波数は1Hz以上でなければならない。周波数が1Hz未満であると、非水電解質電池においては、電池が充放電可能な状態となるまでに生じる副反応のために、脈流電圧印加操作を繰り返すことによって電池のインピーダンスが不可逆に上昇してしまうためである。   The frequency of the applied pulsating voltage must be 1 Hz or more. When the frequency is less than 1 Hz, in a nonaqueous electrolyte battery, the battery impedance increases irreversibly by repeating the pulsating voltage application operation due to side reactions that occur until the battery becomes chargeable / dischargeable. It is because it ends up.

印加する脈流電圧の周波数は、1Hz以上である限りにおいて任意に選択できる。前記脈流電圧の周波数は、150kHz以下とすると、各種制御装置に電磁波障害による誤動作を引き起こす虞を低減できる点で好ましい。前記脈流電圧の周波数を選択するにあたって、適用する非水電解質電池又はその非水電解質電池に用いている電極の周波数応答に鑑みて決定することが好ましく、このような観点で選択することにより、電池温度を上昇させる効果を顕著なものとすることができる。   The frequency of the pulsating voltage to be applied can be arbitrarily selected as long as it is 1 Hz or higher. The frequency of the pulsating voltage is preferably 150 kHz or less because it can reduce the possibility of causing malfunctions due to electromagnetic interference in various control devices. In selecting the frequency of the pulsating voltage, it is preferable to determine in view of the frequency response of the non-aqueous electrolyte battery to be applied or the electrode used in the non-aqueous electrolyte battery, by selecting from this viewpoint, The effect of increasing the battery temperature can be made remarkable.

例えば、図2は、後述する実施例2に係る非水電解質電池のインピーダンスの周波数依存性を示したボード・プロット図である。明らかに、1Hzよりも低い周波数領域においてインピーダンスが急増することがわかる。従って、一定の脈流電圧を印加したときに流れる電流は1Hzよりも低い周波数帯では著しく小さくなるため、1Hz未満の周波数を選択すると電池の温度を上昇させるために必要な時間が著しく増加してしまうことが理解できる。   For example, FIG. 2 is a board plot showing the frequency dependence of the impedance of the nonaqueous electrolyte battery according to Example 2 described later. Obviously, it can be seen that the impedance rapidly increases in a frequency region lower than 1 Hz. Therefore, the current that flows when a constant pulsating voltage is applied is significantly reduced in a frequency band lower than 1 Hz. Therefore, if a frequency lower than 1 Hz is selected, the time required to raise the battery temperature significantly increases. I can understand.

前記脈流を伴う電圧の印加は、少なくとも電池の温度が既設定温度以上となるまで継続するものとすることができる。   The application of the voltage accompanied by the pulsating flow can be continued at least until the temperature of the battery becomes equal to or higher than a preset temperature.

この観点から、電池温度測定手段を備える本発明の電池システムにおいて、前記電池温度が設定温度以上である場合に脈流を伴う電圧の印加を行わないこととする機構をさらに有するものとしてもよい。同様に、電池インピーダンス測定手段を備える本発明の電池システムにおいて、前記電池インピーダンスが設定値以下である場合に脈流を伴う電圧の印加を行わないこととする機構をさらに有するものとしてもよい。   From this point of view, the battery system of the present invention including battery temperature measuring means may further include a mechanism that does not apply a voltage with a pulsating flow when the battery temperature is equal to or higher than a set temperature. Similarly, the battery system of the present invention including battery impedance measuring means may further include a mechanism that does not apply a voltage accompanied by a pulsating flow when the battery impedance is equal to or lower than a set value.

また、本発明の電池システムは、電池温度測定手段及び電池インピーダンス測定手段を同時に備えて前記脈流電圧発生手段と組み合わせてもよい。   The battery system of the present invention may be provided with a battery temperature measuring means and a battery impedance measuring means at the same time and combined with the pulsating voltage generating means.

また、本発明の電池システムは、電池温度が設定温度値よりも低い場合や電池インピーダンスが設定値よりも高い場合に、通常の目的とする充電又は放電ができないような機構をさらに備えるものとしてもよい。   The battery system of the present invention may further include a mechanism that prevents normal charge or discharge when the battery temperature is lower than the set temperature value or when the battery impedance is higher than the set value. Good.

本発明の使用方法及び本発明の電池システムは、負極作動電位が1V以上である負極活物質を用いた非水電解質電池、なかでも電気化学的な酸化還元が二相共存反応によって進行し平坦な電位変化が観察される負極活物質を用いた非水電解質電池、例えばチタン酸リチウムを負極活物質として用いた非水電解質電池に適用することが極めて好ましい。   The method of use of the present invention and the battery system of the present invention are a non-aqueous electrolyte battery using a negative electrode active material having a negative electrode working potential of 1 V or more, in particular, electrochemical oxidation-reduction proceeds by a two-phase coexistence reaction and is flat. It is extremely preferable to apply to a non-aqueous electrolyte battery using a negative electrode active material in which a potential change is observed, for example, a non-aqueous electrolyte battery using lithium titanate as a negative electrode active material.

その理由は、P−P値100mV以上の脈流を伴う電圧を印加することにより負極にリチウムが析出して電池性能が低下する虞が極めて小さいためである。   The reason is that there is very little possibility that lithium is deposited on the negative electrode and the battery performance is deteriorated by applying a voltage with a pulsating flow having a PP value of 100 mV or more.

加えて、前記したように、課題の点において、負極にチタン酸リチウムを用いた非水電解質電池は、用いる非水電解質の種類にもよるが、炭素材料を用いたリチウムイオン二次電池に比べて、電極表面に高抵抗の被膜が形成されやすい性質があることから、負極インピーダンスが大きなものとなりやすい傾向があり、低温出力性能の点で大きな解決課題を有しているところ、本発明により、かかる大きな課題を解決することができるためである。   In addition, as described above, in terms of problems, the nonaqueous electrolyte battery using lithium titanate for the negative electrode is different from the lithium ion secondary battery using a carbon material, depending on the type of nonaqueous electrolyte used. In addition, since there is a property that a high-resistance film is easily formed on the electrode surface, the negative electrode impedance tends to be large, and the present invention has a big problem in terms of low-temperature output performance. This is because such a big problem can be solved.

ここで、本願明細書にいうチタン酸リチウムは、Li4Ti512の基本組成式で表されスピネル型結晶構造を基本骨格とするリチウムチタン複合酸化物であり、Tiの一部、あるいは、Ti及びLiの一部がMg,Al,Zn,Co等の他の元素で置換されたチタン酸リチウムは好適に使用できる。また、スピネル型結晶構造を有さない物質やその他の不純物が含まれていてもよい。 Here, the lithium titanate referred to in the present specification is a lithium-titanium composite oxide represented by a basic composition formula of Li 4 Ti 5 O 12 and having a spinel crystal structure as a basic skeleton, a part of Ti, or Lithium titanate in which a part of Ti and Li is substituted with other elements such as Mg, Al, Zn, and Co can be preferably used. Moreover, the substance which does not have a spinel type crystal structure, and other impurities may be contained.

以下、一実施例に基づいて本発明を説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although the present invention is explained based on one example, the present invention is not limited to the following embodiments.

(実施例1)
本実施例は、待機状態のときにフロート充電が行われ、放電が必要となったときに電池から電力を供給する電池システムに本発明を適用した場合の例である。この場合には、脈流を伴う電圧の値は、フロート充電電圧と等しいものとできる。
Example 1
The present embodiment is an example in which the present invention is applied to a battery system in which float charging is performed in a standby state and power is supplied from the battery when discharging is necessary. In this case, the value of the voltage with pulsating current can be equal to the float charging voltage.

図1は、上記実施例に係る電池システムを示すブロック図である。一個又は複数個の非水電解質電池1の近傍に、電池温度測定手段2が設置され、前記測定手段2からの出力信号P1が、演算部4に入力される。演算部4には、前記出力信号P1の他、前記電池1に併設された電池電圧測定手段3からの出力信号P2、及び、電池の放電要求に対応した指令信号P3もまた入力される。演算部4は、前記出力信号P1に基づいて入力された電池温度の値を設定温度値と比較して判定し、出力信号P2、P3とあわせて総合的に演算処理を行い、切替器S1及び切替器S2の動作を制御する。前記判定結果により、電池温度が設定温度値よりも低く、電池1に対して脈流を伴う電圧を印加すべき状態であると演算部4が総合的に判断した場合、演算部4は切替器S1及び切替器S2を制御して脈流電圧発生手段5からの出力を電池に接続することにより、脈流を伴う電圧を電池1に印加する。演算部4は、前記の他、電池温度が設定温度以上である場合に脈流電圧発生手段5からの出力を切り離す動作、大容量の放電が行われた結果電池電圧がフロート充電電圧に対して大きく低下した場合に独立した充電が必要と判断すると共に充電手段6からの出力を電池に接続する動作、及び、放電指令信号P3に応じて電池端子を図1右端の出力端子に接続する動作等もまた司る。   FIG. 1 is a block diagram showing a battery system according to the above embodiment. A battery temperature measuring means 2 is installed in the vicinity of one or a plurality of non-aqueous electrolyte batteries 1, and an output signal P1 from the measuring means 2 is input to the calculation unit 4. In addition to the output signal P1, the calculation unit 4 also receives an output signal P2 from the battery voltage measuring means 3 provided in the battery 1 and a command signal P3 corresponding to the battery discharge request. The calculation unit 4 determines the value of the battery temperature input based on the output signal P1 by comparing with the set temperature value, performs a comprehensive calculation process together with the output signals P2, P3, and switches S1 and Controls the operation of the switch S2. When the calculation unit 4 comprehensively determines that the battery temperature is lower than the set temperature value and a voltage with a pulsating current should be applied to the battery 1 according to the determination result, the calculation unit 4 By controlling S1 and the switch S2 and connecting the output from the pulsating voltage generating means 5 to the battery, a voltage with pulsating current is applied to the battery 1. In addition to the above, the calculation unit 4 operates to disconnect the output from the pulsating voltage generation means 5 when the battery temperature is equal to or higher than the set temperature, and as a result of the large-capacity discharge, the battery voltage is compared to the float charge voltage. Operation that determines that independent charging is necessary in the case of a significant drop and connects the output from the charging means 6 to the battery, and operation that connects the battery terminal to the output terminal at the right end of FIG. 1 according to the discharge command signal P3, etc. Also govern.

以上、待機状態のときにフロート充電が行われ放電が必要となったときに電池から電力を供給する電池システムに適用した場合の例について説明したが、フロート充電が行われず充電指令を受けてから電池温度及び/又は電池インピーダンスの判定結果に基づいて脈流を伴う電圧の印加を行い電池温度及び/又は電池インピーダンスが設定範囲に入ってから充電を開始するシステムや、待機状態においては独立した直流電源からフロート充電が行われているが放電指令を受けてから電池温度及び/又は電池インピーダンスの判定結果に基づいて脈流を伴う電圧の印加を行い電池温度及び/又は電池インピーダンスが設定範囲に入ってから放電を開始するシステムなど、種々の仕様のシステムに適用することができる。   As described above, the example in the case of applying to the battery system that supplies power from the battery when the float charge is performed in the standby state and the discharge becomes necessary has been described. A system that starts charging after the battery temperature and / or battery impedance has entered the set range by applying a voltage with a pulsating flow based on the battery temperature and / or battery impedance determination result, and independent DC in standby mode Float charging is performed from the power supply, but after receiving the discharge command, voltage with pulsating current is applied based on the battery temperature and / or battery impedance judgment result, and the battery temperature and / or battery impedance falls within the set range It can be applied to a system with various specifications such as a system that starts discharging after a long time.

電池インピーダンス測定手段が採用するインピーダンス測定方法については、電池の内部抵抗を反映しうる測定法であれば何ら限定されるものではなく、電池の仕様や特性に応じて任意に選択できる。例えば、カレント・インターラプター法、交流インピーダンス法、複素インピーダンス法等が挙げられる。簡便で比較的安価に達成できる手段として、100mHz〜10kHzの任意の周波数(例えば1kHz)を採用した交流インピーダンス法が好ましい。   The impedance measurement method employed by the battery impedance measurement means is not limited as long as it is a measurement method that can reflect the internal resistance of the battery, and can be arbitrarily selected according to the specifications and characteristics of the battery. For example, a current interrupter method, an AC impedance method, a complex impedance method, and the like can be given. As a simple and relatively inexpensive means that can be achieved, an AC impedance method employing an arbitrary frequency (for example, 1 kHz) of 100 mHz to 10 kHz is preferable.

(実施例2)
次に、本発明において、印加する脈流電圧が、周波数1Hz以上、P−P値100mV以上でなければならない理由について実験データに基づいて説明する。
(Example 2)
Next, in the present invention, the reason why the pulsating voltage to be applied must be a frequency of 1 Hz or more and a PP value of 100 mV or more will be described based on experimental data.

負極活物質としてのチタン酸リチウム(組成式:Li4/3Ti5/34)85質量%、導電材としてのアセチレンブラック5質量%及び結着剤としてのPVdF10質量%が、溶剤であるN−メチル−2−ピロリドン(NMP)中に分散しているペーストを作製し、厚さ20μmの銅箔の両面に塗布し、150℃で乾燥することにより前記溶剤を除去し、両面をロールプレスで圧縮成型した。このようにして、銅箔の両面に負極合剤層を備えた負極を作製した。 Lithium titanate (composition formula: Li 4/3 Ti 5/3 O 4 ) 85% by mass as a negative electrode active material, 5% by mass of acetylene black as a conductive material, and 10% by mass of PVdF as a binder are solvents. A paste dispersed in N-methyl-2-pyrrolidone (NMP) is prepared, applied to both sides of a 20 μm thick copper foil, dried at 150 ° C. to remove the solvent, and both sides are roll pressed. And compression molded. Thus, the negative electrode provided with the negative mix layer on both surfaces of copper foil was produced.

正極活物質としてのリチウム遷移金属複合酸化物(組成式:LiNi1/3Mn1/3Co1/32)90質量%、導電材としてのアセチレンブラック5質量%及び結着剤としてのPVdF5質量%が、溶剤であるNMP中に分散しているペーストを作製し、厚さ20μmのアルミニウム箔の両面に塗布し、150℃で乾燥することにより前記溶剤を除去し、両面をロールプレスで圧縮成型した。このようにして、アルミニウム箔の両面に正極合剤層を備えた正極を作製した。 90% by mass of lithium transition metal composite oxide (composition formula: LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as a positive electrode active material, 5% by mass of acetylene black as a conductive material, and PVdF5 as a binder A paste in which mass% is dispersed in NMP as a solvent is prepared, applied to both sides of an aluminum foil having a thickness of 20 μm, dried at 150 ° C. to remove the solvent, and both sides are compressed by a roll press. Molded. Thus, the positive electrode provided with the positive mix layer on both surfaces of the aluminum foil was produced.

厚さ25μm、透気度90秒/100ccの連通多孔体であるセパレータが前記正極及び前記負極の間に位置するように捲回した発電要素を、高さ48mm、幅30mm、厚さ5.2mmの電槽容器内に挿入した。   A power generating element wound so that a separator, which is a communicating porous body having a thickness of 25 μm and an air permeability of 90 seconds / 100 cc, is positioned between the positive electrode and the negative electrode is 48 mm high, 30 mm wide, and 5.2 mm thick. Was inserted into the battery case container.

さらに、前記電槽容器内に非水電解質(電解液)を注入したのちに、電流90mA、電圧4.1V、充電時間10時間の定電流定電圧充電、及び、電流90mA、終止電圧1.0Vの定電流放電からなる充放電を3サイクル繰り返した。このようにして定格容量が450mAhの実施例電池1を得た。   Furthermore, after injecting a non-aqueous electrolyte (electrolyte) into the battery case, the current is 90 mA, the voltage is 4.1 V, the constant current and the constant voltage are charged for 10 hours, the current is 90 mA, and the end voltage is 1.0 V. The charge / discharge consisting of a constant current discharge was repeated 3 cycles. Thus, Example Battery 1 having a rated capacity of 450 mAh was obtained.

なお、前記電解液は、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)及びエチルメチルカーボネート(EMC)の体積比1:1:1の混合溶媒に1mol/lのLiPF6を溶解し、これに対してビニレンカーボネートを3wt%添加したものを調整して用いた。 The electrolyte solution was prepared by dissolving 1 mol / l LiPF 6 in a 1: 1: 1 volume ratio of propylene carbonate (PC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). Then, 3 wt% of vinylene carbonate was added and used.

上記手順で実施例電池1を多数個作製し、電流90mA、電圧2.5V、充電時間10時間の定電流定電圧充電を行い満充電状態とした。   A large number of Example batteries 1 were prepared according to the above procedure, and the battery was fully charged by constant current and constant voltage charging with a current of 90 mA, a voltage of 2.5 V, and a charging time of 10 hours.

このようにして満充電状態に調整した実施例電池1のインピーダンスを交流1kHz固定のインピーダンスメーターで測定したところ、45mΩであった。   The impedance of Example Battery 1 adjusted to a fully charged state in this way was measured with an impedance meter fixed at 1 kHz for AC and found to be 45 mΩ.

満充電状態に調整した多数個の実施例電池1を7つのグループに分け、次に示す「昇温時間試験」及び「昇温サイクル試験」を行った。   A number of Example batteries 1 adjusted to a fully charged state were divided into seven groups, and the following “temperature increase time test” and “temperature increase cycle test” were performed.

(昇温時間試験)
全ての電池の電槽容器表面に温度検出器を取り付け、−20℃の恒温槽に10時間以上入れて電池温度が−20℃に到達したことを確認した後、電池を前記恒温槽内に入れたまま、直流電圧に正弦波を重層した波形の脈流を伴う2.5Vの出力電圧を印加し、電池温度が−10℃に達するまでの時間を計測した。ここで、それぞれのグループ毎に、印加する脈流を伴う電圧の周波数及びP−P値を表1に示す通りに変化させた。結果を表1に示した。
(Temperature rise time test)
Attach a temperature detector to the battery case surface of all batteries, put it in a -20 ° C constant temperature bath for 10 hours or more and confirm that the battery temperature has reached -20 ° C. As it was, an output voltage of 2.5 V accompanied by a pulsating wave with a sine wave superimposed on the DC voltage was applied, and the time until the battery temperature reached −10 ° C. was measured. Here, for each group, the frequency of the voltage accompanying the pulsating current and the PP value were changed as shown in Table 1. The results are shown in Table 1.

(昇温サイクル試験)
上記昇温時間試験によって電池温度が−10℃に達した後、脈流を伴う2.5Vの出力電圧の印加を中断し、10時間経過後、再び電池温度が−20℃に到達したことを確認した後、再び同一の条件で、電池温度が−10℃に達するまで脈流を伴う2.5Vの出力電圧を印加することを100回繰り返した。
(Heating cycle test)
After the battery temperature reached −10 ° C. by the temperature rise time test, the application of the 2.5 V output voltage with pulsation was interrupted, and after 10 hours, the battery temperature reached −20 ° C. again. After confirming, applying the output voltage of 2.5 V accompanied by a pulsating flow was repeated 100 times until the battery temperature reached −10 ° C. again under the same conditions.

次いで、全ての電池を25℃に戻し、25℃における交流1kHzでのインピーダンスを測定した。結果を試験前のインピーダンスの値(45mΩ)に対する増加率(%)として表1に示した。   Subsequently, all the batteries were returned to 25 ° C., and the impedance at an alternating current of 1 kHz at 25 ° C. was measured. The results are shown in Table 1 as an increase rate (%) with respect to the impedance value (45 mΩ) before the test.

Figure 2008186691
Figure 2008186691

表1に示した昇温時間試験の結果から明らかなように、昇温に要した時間は、P−P値および周波数に大きく依存した。周波数を0.5Hzとした場合、昇温に1時間以上を要し、実用に供しえない条件であることがわかる。これに対し周波数を1Hz以上とした場合、昇温に要する時間を大幅に短縮でき、実用に供しうる条件であることがわかる。なかでも、周波数を60Hz以上とすると、昇温に要した時間を数分以内に短縮できるため、好ましいことがわかる。また、P−P値50mVでは昇温に40分を要し、実用に供することができない条件であることがわかる。これに対し、P−P値を100mV以上とすることで、昇温に要した時間を大幅に短縮でき、実用に供する条件となることがわかる。なかでも、P−P値を500mV以上とすると、昇温に要した時間を数分以内に短縮できるため、好ましいことがわかる。   As is clear from the results of the temperature rise time test shown in Table 1, the time required for the temperature rise largely depended on the PP value and the frequency. It can be seen that when the frequency is 0.5 Hz, it takes 1 hour or more to raise the temperature, which is a condition that cannot be put to practical use. On the other hand, when the frequency is set to 1 Hz or more, it can be seen that the time required for the temperature rise can be greatly shortened and the condition can be put to practical use. In particular, it can be seen that it is preferable to set the frequency to 60 Hz or more because the time required for temperature increase can be shortened within several minutes. Further, it can be seen that a PP value of 50 mV requires 40 minutes to raise the temperature and is a condition that cannot be put to practical use. On the other hand, it can be seen that by setting the PP value to 100 mV or more, the time required for the temperature increase can be greatly shortened, which is a condition for practical use. In particular, it can be seen that a PP value of 500 mV or more is preferable because the time required for temperature increase can be shortened within several minutes.

表1に示した昇温サイクル試験の結果から明らかなように、インピーダンス増加率は周波数に大きく依存し、周波数を0.5Hzとした場合、インピーダンスの増加率が20%を超えたため、実用に供することができない条件であることがわかる。一方、周波数を1Hz以上とすることにより、100回の昇温サイクルを経た後でも、インピーダンスの増加率を10%以内に抑制できた。   As is apparent from the results of the temperature rise cycle test shown in Table 1, the impedance increase rate greatly depends on the frequency, and when the frequency is set to 0.5 Hz, the impedance increase rate exceeds 20%. It can be seen that the condition is not possible. On the other hand, by setting the frequency to 1 Hz or more, the impedance increase rate could be suppressed to within 10% even after 100 temperature-raising cycles.

なお、本発明の電池システムにおいて、電池温度の判定基準となる「設定温度」や、電池インピーダンスの判定基準となる「設定値」は、電池の仕様や特性に応じて設定することができる。例えば、上記実施例に即していえば、−10℃まで昇温することを目標とする場合には、前記「設定温度」を−10℃として設定すればよく、また、−10℃における電池インピーダンスをあらかじめ測定しておき、そのインピーダンスの値を前記「設定値」として設定すればよい。   In the battery system of the present invention, the “set temperature” that is a criterion for battery temperature and the “set value” that is a criterion for battery impedance can be set according to the specifications and characteristics of the battery. For example, according to the above embodiment, when the target is to raise the temperature to −10 ° C., the “set temperature” may be set as −10 ° C., and the battery impedance at −10 ° C. Is measured in advance, and the impedance value may be set as the “set value”.

本発明の電池システムの一実施例に係るブロック図である。It is a block diagram concerning one example of the battery system of the present invention. 実施例電池のインピーダンスの周波数依存性を示した説明図である。It is explanatory drawing which showed the frequency dependence of the impedance of an Example battery.

符号の説明Explanation of symbols

1 非水電解質電池
2 測定手段
4 演算部
5 脈流電圧発生手段
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte battery 2 Measuring means 4 Calculation part 5 Pulsed voltage generation means

Claims (3)

周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を印加した後に、電池の放電又は充電を行う非水電解質電池の使用方法。 A method of using a nonaqueous electrolyte battery in which a battery is discharged or charged after applying a voltage with a pulsating flow having a frequency of 1 Hz or more and a PP value of 100 mV or more. 非水電解質電池を備え、電池温度測定手段と、周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を発生する脈流電圧発生手段とを有し、電池温度が設定温度よりも低い場合に前記脈流を伴う電圧を電池に印加しうる機構を備えた電池システム。 A non-aqueous electrolyte battery is provided, and includes a battery temperature measuring means and a pulsating voltage generating means for generating a voltage with a pulsating current having a frequency of 1 Hz or more and a PP value of 100 mV or more, and the battery temperature is lower than a set temperature. A battery system comprising a mechanism capable of applying a voltage accompanied by the pulsating current to the battery. 非水電解質電池を備え、電池インピーダンス測定手段と、周波数1Hz以上、P−P値100mV以上の脈流を伴う電圧を発生する脈流電圧発生手段とを有し、電池インピーダンスの値が設定値よりも高い場合に前記脈流を伴う電圧を電池に印加しうる機構を備えた電池システム。 A non-aqueous electrolyte battery is provided, and includes battery impedance measuring means, and pulsating voltage generating means for generating a voltage with a pulsating current having a frequency of 1 Hz or more and a PP value of 100 mV or more. A battery system having a mechanism capable of applying a voltage accompanied by the pulsating current to the battery when the voltage is high.
JP2007018708A 2007-01-30 2007-01-30 Usage and system of nonaqueous electrolyte battery Pending JP2008186691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018708A JP2008186691A (en) 2007-01-30 2007-01-30 Usage and system of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018708A JP2008186691A (en) 2007-01-30 2007-01-30 Usage and system of nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2008186691A true JP2008186691A (en) 2008-08-14

Family

ID=39729586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018708A Pending JP2008186691A (en) 2007-01-30 2007-01-30 Usage and system of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2008186691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083124A (en) * 2009-10-07 2011-04-21 Toyota Motor Corp Electric vehicle
CN107466433A (en) * 2016-02-05 2017-12-12 广东欧珀移动通信有限公司 For the charging system of terminal, charging method and power supply adaptor, charging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228231A (en) * 1999-02-03 2000-08-15 Nokia Mobile Phones Ltd Device for reactivating electric battery
JP2004171955A (en) * 2002-11-20 2004-06-17 Nissan Motor Co Ltd Bipolar battery, battery pack with multiple bipolar batteries connected, charge control system for controlling charge of bipolar battery or battery pack, and vehicle with battery pack or charge system mounted thereon
JP2006092901A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Charge-discharge system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228231A (en) * 1999-02-03 2000-08-15 Nokia Mobile Phones Ltd Device for reactivating electric battery
JP2004171955A (en) * 2002-11-20 2004-06-17 Nissan Motor Co Ltd Bipolar battery, battery pack with multiple bipolar batteries connected, charge control system for controlling charge of bipolar battery or battery pack, and vehicle with battery pack or charge system mounted thereon
JP2006092901A (en) * 2004-09-24 2006-04-06 Matsushita Electric Ind Co Ltd Charge-discharge system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083124A (en) * 2009-10-07 2011-04-21 Toyota Motor Corp Electric vehicle
CN107466433A (en) * 2016-02-05 2017-12-12 广东欧珀移动通信有限公司 For the charging system of terminal, charging method and power supply adaptor, charging device
JP2018518132A (en) * 2016-02-05 2018-07-05 クワントン オーピーピーオー モバイル テレコミュニケーションズ コーポレイション リミテッド Charging method, power adapter, and charging device
US10727687B2 (en) 2016-02-05 2020-07-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and method for terminal, power adapter and charging device
US10992160B2 (en) 2016-02-05 2021-04-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging device, charging method, power adapter and terminal

Similar Documents

Publication Publication Date Title
KR101222220B1 (en) Charging method and charger for non-aqueous electrolyte secondary battery
EP0948075B1 (en) Method for managing charge/discharge of secondary battery
JP5043777B2 (en) Non-aqueous electrolyte secondary battery charging method
CN110635170B (en) Method and system for manufacturing nonaqueous electrolyte secondary battery
JP2006120616A (en) Power storage system for regeneration, storage battery system, and automobile
JP2010080191A (en) Charge/discharge control device for lithium secondary battery
CN103891040A (en) Secondary battery control device and SOC detection method
JPWO2011065009A1 (en) Lithium ion secondary battery charging method and battery pack
JP2008204810A (en) Charging method and charging device of nonaqueous electrolyte secondary battery
JP2012212513A (en) State detection method of lithium secondary battery
WO2014010312A1 (en) Charging control method for secondary cell and charging control device for secondary cell
CN109928750A (en) A kind of high magnification niobium tungsten oxide fast charge electrode material and its preparation method and application
JP2009181907A (en) Charging method and charging system for lithium-ion secondary battery
JP2012043682A (en) Battery pack system
JP6898853B2 (en) Non-aqueous electrolyte secondary battery
JP6728724B2 (en) First charge method of lithium secondary battery
JPH11204148A (en) Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor
JP5705046B2 (en) Power system
JP2012016109A (en) Method and device of charging lithium ion battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP5557619B2 (en) Nonaqueous electrolyte secondary battery
JP2008186691A (en) Usage and system of nonaqueous electrolyte battery
WO2000042673A1 (en) Method for charging secondary cell and charger
JP3558515B2 (en) Charging method for non-aqueous secondary batteries
JP6668876B2 (en) Manufacturing method of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904