JP2017045621A - Capacity recovery method for lithium ion secondary battery - Google Patents

Capacity recovery method for lithium ion secondary battery Download PDF

Info

Publication number
JP2017045621A
JP2017045621A JP2015167230A JP2015167230A JP2017045621A JP 2017045621 A JP2017045621 A JP 2017045621A JP 2015167230 A JP2015167230 A JP 2015167230A JP 2015167230 A JP2015167230 A JP 2015167230A JP 2017045621 A JP2017045621 A JP 2017045621A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
battery
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015167230A
Other languages
Japanese (ja)
Inventor
哲 後藤
Satoru Goto
哲 後藤
淳子 天野
Junko Amano
淳子 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015167230A priority Critical patent/JP2017045621A/en
Publication of JP2017045621A publication Critical patent/JP2017045621A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a capacity recovery method for a lithium ion secondary battery which allows a battery capacity to be appropriately recovered.SOLUTION: A capacity recovery method provided by the present invention includes steps of: charging a lithium ion secondary battery at a current value of 5 C or more until SOC becomes 70% or higher, if a specific charging process which supplies a pulsed current of 20 C or more to the battery for 5 seconds or longer is performed for a predetermined number of times, within 10 minutes after the last specific charging process has been completed; and leaving the charged battery as it is in a dormant state for 10 hours or longer.SELECTED DRAWING: Figure 3

Description

本発明は、リチウムイオン二次電池の容量回復方法に関する。   The present invention relates to a capacity recovery method for a lithium ion secondary battery.

近年、リチウムイオン二次電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコンおよび携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。この種のリチウムイオン二次電池の一つの典型的な構成では、正極と負極との間をリチウムイオンが行き来することによって充電および放電が行われている。リチウムイオン二次電池に関する従来技術としては特許文献1が挙げられる。   In recent years, lithium ion secondary batteries, nickel metal hydride batteries, and other secondary batteries have become increasingly important as power sources for mounting on vehicles or as power sources for personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. In one typical configuration of this type of lithium ion secondary battery, charging and discharging are performed by lithium ions traveling between the positive electrode and the negative electrode. Patent document 1 is mentioned as a prior art regarding a lithium ion secondary battery.

特開2011−151943号公報JP 2011-151943 A

ところで、リチウムイオン二次電池の用途のなかには、ハイレートでの充放電(急速充放電)を繰り返す態様で使用されることが想定されるものがある。車両の動力源として用いられるリチウムイオン二次電池(例えば、動力源としてリチウムイオン電池と内燃機関等のように作動原理の異なる他の動力源とを併用するハイブリッド車両に搭載されるリチウムイオン二次電池)は、このような使用態様が想定されるリチウムイオン二次電池の代表例である。しかしながら、本発明者の知見によれば、ハイレート充放電を繰り返したリチウムイオン二次電池では、正極および負極に浸透した非水電解液のリチウム塩濃度に場所による偏り(ムラ)が生じ得る。このように非水電解液(リチウム塩濃度)の分布に偏りが存在すると、リチウムイオン二次電池の電池容量が低下する要因になり得る。   By the way, some uses of a lithium ion secondary battery are assumed to be used in a mode in which charging / discharging (rapid charging / discharging) at a high rate is repeated. Lithium ion secondary battery used as a vehicle power source (for example, a lithium ion secondary battery mounted on a hybrid vehicle using a lithium ion battery and another power source having different operating principles such as an internal combustion engine as a power source) Battery) is a typical example of a lithium ion secondary battery in which such a use mode is assumed. However, according to the knowledge of the present inventor, in a lithium ion secondary battery that is repeatedly charged and discharged at a high rate, the lithium salt concentration of the non-aqueous electrolyte that has permeated the positive electrode and the negative electrode can be uneven (uneven) depending on the location. Thus, if there is a bias in the distribution of the non-aqueous electrolyte (lithium salt concentration), the battery capacity of the lithium ion secondary battery may decrease.

ここで提案される容量回復方法は、正極と負極と非水電解液とを備えるリチウムイオン二次電池の容量を回復する方法である。この容量回復方法は、以下の処理:
(1)前記リチウムイオン二次電池に対して20C以上のパルス状の電流を5秒間以上供給する特定充電処理を所定回数行う;
(2)前記リチウムイオン二次電池から20C以上のパルス状の電流を5秒間以上取り出す特定放電処理を所定回数行う;
の何れか一方が実施された場合に、最後の特定充電処理または特定放電処理が終了してから10分以内に、該電池を5C以上の電流値でSOC70%以上になるまで充電すること、および、
前記充電後の電池を休止状態で10時間以上放置すること
を包含する。かかる構成によると、非水電解液(典型的にはリチウム塩濃度)の分布の偏りに起因して低下した電池容量を適切に回復し得、リチウムイオン二次電池の長寿命化や再利用(リサイクル)化を実現することができる。
The capacity recovery method proposed here is a method for recovering the capacity of a lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. This capacity recovery method has the following process:
(1) A specific charging process for supplying a pulsed current of 20 C or more to the lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times;
(2) A specific discharge process for extracting a pulsed current of 20 C or more from the lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times;
If any one of the above is performed, the battery is charged at a current value of 5C or more until SOC reaches 70% or more within 10 minutes after the end of the last specific charge process or specific discharge process, and ,
It includes leaving the battery after charging for 10 hours or more in a resting state. According to this configuration, it is possible to properly recover the reduced battery capacity due to the uneven distribution of the non-aqueous electrolyte (typically, the lithium salt concentration), and to extend the life and reuse of the lithium ion secondary battery ( Recycling) can be realized.

一実施形態に用いられるリチウムイオン二次電池を模式的に示す図である。It is a figure which shows typically the lithium ion secondary battery used for one Embodiment. 一実施形態に用いられる捲回電極体を模式的に示す図である。It is a figure which shows typically the wound electrode body used for one Embodiment. 一実施形態に係る容量回復方法の処理フローを示す図である。It is a figure which shows the processing flow of the capacity | capacitance recovery method which concerns on one Embodiment. 一実施形態に係る容量回復方法の処理フローを示す図である。It is a figure which shows the processing flow of the capacity | capacitance recovery method which concerns on one Embodiment.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。また「SOC」とは、充電深度(State of Charge)を意味し、可逆的に充放電可能な稼動電圧の範囲において、その上限となる電圧が得られる充電状態(すなわち、満充電状態)を100%とし、下限となる電圧が得られる充電状態(すなわち、充電されていない状態)を0%としたときの充電状態を示す。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In the present specification, the “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by movement of lithium ions between the positive and negative electrodes. “SOC” means a state of charge, and a charge state (that is, a full charge state) in which an upper limit voltage is obtained in an operating voltage range that can be reversibly charged and discharged is 100. %, And the state of charge when the lower limit voltage is obtained (that is, the state of being not charged) is 0%.

<第1実施形態>
以下、本発明の一実施形態に係るリチウムイオン二次電池の容量回復方法について、対象となるリチウムイオン二次電池の構成、容量回復方法の順に説明する。
<First Embodiment>
Hereinafter, the capacity recovery method for a lithium ion secondary battery according to an embodiment of the present invention will be described in the order of the configuration of the target lithium ion secondary battery and the capacity recovery method.

<リチウムイオン二次電池>
本実施形態の容量回復方法が対象とするリチウムイオン二次電池100(以下、適宜「電池」という。)は、例えば、図1に示すように、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)のケース50に収容された構成を有する。
<Lithium ion secondary battery>
A lithium ion secondary battery 100 (hereinafter, referred to as “battery” as appropriate) targeted by the capacity recovery method of the present embodiment is, for example, as shown in FIG. An electrode body (rolled electrode body) 80 in which the negative electrode sheet 20 is wound flatly through a long separator 40 can accommodate the wound electrode body 80 together with a non-aqueous electrolyte (not shown). It has a configuration accommodated in a case (flat box type) case 50.

ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。ケース50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70及び該電極体80の負極20と電気的に接続する負極端子72が設けられている。ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。   The case 50 includes a flat rectangular parallelepiped case main body 52 having an open upper end, and a lid 54 that closes the opening. As a material constituting the case 50, a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum). On the upper surface of the case 50 (that is, the lid body 54), a positive electrode terminal 70 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80 are provided. Yes. In the case 50, a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).

本実施形態に係る捲回電極体80は、通常のリチウム二次電池の捲回電極体と同様であり、図2に示すように、捲回電極体80を組み立てる前段階において長尺状(帯状)のシート構造を有している。   The wound electrode body 80 according to the present embodiment is the same as the wound electrode body of a normal lithium secondary battery, and as shown in FIG. ) Sheet structure.

正極シート10は、正長尺シート状の箔状の正極集電体12の両面に正極活物質を含む正極活物質層14が保持された構造を有している。ただし、正極活物質層14は正極シート10の幅方向の端辺に沿う一方の側縁(図では左側の側縁部分)には付着されず、正極集電体12を一定の幅にて露出させた正極活物質層非形成部16が形成されている。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。正極活物質は、リチウムイオン二次電池の正極活物質として用いることができる物質の一種または二種以上を使用することができる。例えば、LiNi1/3Mn1/3Co1/3等のリチウムと遷移金属元素とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)が挙げられる。 The positive electrode sheet 10 has a structure in which a positive electrode active material layer 14 containing a positive electrode active material is held on both surfaces of a foil-like positive electrode current collector 12 in the form of a long sheet. However, the positive electrode active material layer 14 is not attached to one side edge (the left side edge portion in the drawing) along the edge in the width direction of the positive electrode sheet 10, and the positive electrode current collector 12 is exposed with a certain width. The positive electrode active material layer non-formed part 16 is formed. For the positive electrode current collector 12, an aluminum foil or other metal foil suitable for the positive electrode is preferably used. As the positive electrode active material, one kind or two or more kinds of substances that can be used as the positive electrode active material of the lithium ion secondary battery can be used. For example, an oxide (lithium transition metal oxide) containing lithium and a transition metal element as constituent metal elements such as LiNi 1/3 Mn 1/3 Co 1/3 O 2 can be given.

負極シート20も正極シート10と同様に、長尺シート状の箔状の負極集電体22の両面に負極活物質を含む負極活物質層24が保持された構造を有している。ただし、負極活物質層24は負極シート20の幅方向の端辺に沿う一方の側縁(図では右側の側縁部分)には付着されず、負極集電体22を一定の幅にて露出させた負極活物質層非形成部26が形成されている。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料が例示される。   Similarly to the positive electrode sheet 10, the negative electrode sheet 20 has a structure in which a negative electrode active material layer 24 containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector 22. However, the negative electrode active material layer 24 is not attached to one side edge (the right side edge portion in the drawing) along the widthwise edge of the negative electrode sheet 20, and the negative electrode current collector 22 is exposed with a certain width. The negative electrode active material layer non-forming part 26 is formed. For the negative electrode current collector 22, a copper foil or other metal foil suitable for the negative electrode is preferably used. As the negative electrode active material, one or two or more materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. Preferable examples include carbon materials such as graphite carbon and amorphous carbon.

正負極シート10、20間に配置されるセパレータ40としては、捲回電極体を備える一般的なリチウム二次電池のセパレータと同様の各種多孔質シートを用いることができる。好適例として、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム、不織布等)が挙げられる。   As the separator 40 disposed between the positive and negative electrode sheets 10 and 20, various porous sheets similar to those of a general lithium secondary battery provided with a wound electrode body can be used. Preferable examples include porous resin sheets (films, nonwoven fabrics, etc.) made of polyolefin resins such as polyethylene (PE) and polypropylene (PP).

捲回電極体80を作製するに際しては、正極シート10と負極シート20とがセパレータ40を介して積層される。このとき、正極シート10の正極活物質層非形成部分と負極シート20の負極活物質層非形成部分とがセパレータ40の幅方向の両側からそれぞれはみ出すように、正極シート10と負極シート20とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体80が作製され得る。   In producing the wound electrode body 80, the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator 40. At this time, the positive electrode sheet 10 and the negative electrode sheet 20 are placed so that the positive electrode active material layer non-formation part of the positive electrode sheet 10 and the negative electrode active material layer non-formation part of the negative electrode sheet 20 protrude from both sides of the separator 40 in the width direction. Laminate slightly shifted in the width direction. The laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated, whereby a flat wound electrode body 80 can be produced.

捲回電極体80の捲回軸方向における中央部分には、捲回コア部分82(即ち正極シート10の正極活物質層14と負極シート20の負極活物質層24とセパレータ40とが密に積層された部分)が形成される。また、捲回電極体80の捲回軸方向の両端部には、正極シート10及び負極シート20の電極活物質層非形成部分16,26がそれぞれ捲回コア部分82から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層14の非形成部分)16及び負極側はみ出し部分(すなわち負極活物質層24の非形成部分)26には、正極リード端子74及び負極リード端子76がそれぞれ付設されており、上述の正極端子70及び負極端子72とそれぞれ電気的に接続される。   A wound core portion 82 (that is, the positive electrode active material layer 14 of the positive electrode sheet 10, the negative electrode active material layer 24 of the negative electrode sheet 20, and the separator 40) is densely laminated at the center portion in the winding axis direction of the wound electrode body 80. Part) is formed. Further, the electrode active material layer non-formed portions 16 and 26 of the positive electrode sheet 10 and the negative electrode sheet 20 protrude outward from the wound core portion 82 at both ends of the wound electrode body 80 in the winding axis direction. . A positive electrode lead terminal 74 and a negative electrode lead terminal 76 are provided on the protruding portion 16 (that is, the non-formed portion of the positive electrode active material layer 14) 16 and the protruding portion 26 (that is, the non-formed portion of the negative electrode active material layer 24) 26, respectively. Attached and electrically connected to the positive terminal 70 and the negative terminal 72 described above.

そして、ケース本体52の上端開口部から該本体52内に捲回電極体80を収容するとともに、適当な非水電解液をケース本体52内に配置(注液)する。かる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記支持塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO等のリチウム塩を好ましく用いることができる。 Then, the wound electrode body 80 is accommodated in the main body 52 from the upper end opening of the case main body 52, and an appropriate nonaqueous electrolytic solution is disposed (injected) in the case main body 52. Such a non-aqueous electrolyte typically has a composition in which a supporting salt is contained in a suitable non-aqueous solvent. As said non-aqueous solvent, ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example. Further, as the supporting salt, for example, LiPF 6, LiBF 4, LiAsF 6, LiCF 3 can be preferably used a lithium salt of SO 3 and the like.

その後、上記開口部を蓋体54との溶接等により封止し、本実施形態に係るリチウムイオン二次電池100の組み立てが完成する。ケース50の封止プロセスや非水電解液の配置(注液)プロセスは、従来のリチウムイオン二次電池の製造で行われている手法と同様でよく、本発明を特徴付けるものではない。このようにして本実施形態に係るリチウムイオン二次電池100の構築が完成する。   Thereafter, the opening is sealed by welding with the lid 54 or the like, and the assembly of the lithium ion secondary battery 100 according to the present embodiment is completed. The sealing process of the case 50 and the arrangement (injection) process of the nonaqueous electrolytic solution may be the same as the method used in the manufacture of the conventional lithium ion secondary battery, and do not characterize the present invention. In this way, the construction of the lithium ion secondary battery 100 according to this embodiment is completed.

ここで、本発明者の知見によれば、上記捲回電極体80を備えたリチウムイオン二次電池において、車両動力源用のリチウムイオン二次電池において想定されるようなハイレートで短時間(パルス状)の放電または充電を繰り返すと、捲回電極体に浸透した非水電解液のリチウム塩濃度に場所による偏り(ムラ)が生じ得る。例えば、20Cで5秒間のハイレートパルス放電で使用されると、非水電解液またはリチウム塩の一部が捲回電極体の軸方向中央部から両端部に移動し、あるいは両端部から電極体の外部に移動することによって、捲回電極体の軸方向中央部のリチウム塩濃度が両端部に比べて低くなる(初期状態に比べてリチウム塩濃度が低下する)事象が生じ得る。また、20Cで5秒間のハイレートパルス充電で使用されると、非水電解液またはリチウム塩の一部が捲回電極体の外部から捲回軸方向の両端部に移動し、あるいは両端部から中央部に移動することによって、捲回電極体の軸方向中央部のリチウム塩濃度が両端部に比べて高くなる(初期状態に比べてリチウム塩濃度が増大する)事象が生じ得る。このように非水電解液(リチウム塩濃度)の分布に偏りが存在すると、リチウム塩濃度が相対的に高い部分において正極電位および負極電位が低下傾向となり(ひいては正負極間の電位差が不均一になり)、全ての容量を使い切ることができず、電池容量(充放電可能な容量)が低下する可能性がある。したがって、該低下した電池容量を回復できる本実施形態に係る容量回復方法は、上記のような構成のリチウムイオン二次電池に対して、特に好適に適用され得る。   Here, according to the knowledge of the present inventor, in the lithium ion secondary battery provided with the wound electrode body 80, a high rate and a short time (pulsed) as expected in a lithium ion secondary battery for a vehicle power source. When the discharge or charging of the shape is repeated, the concentration (unevenness) in the lithium salt concentration of the non-aqueous electrolyte that has permeated the wound electrode body may vary. For example, when used in a high-rate pulse discharge at 20 C for 5 seconds, a part of the nonaqueous electrolyte or lithium salt moves from the axial center to both ends of the wound electrode body, or from both ends to the electrode body. By moving to the outside, an event may occur in which the lithium salt concentration in the central portion in the axial direction of the wound electrode body becomes lower than both end portions (the lithium salt concentration decreases compared to the initial state). In addition, when used at 20C for a high-rate pulse charge for 5 seconds, a part of the non-aqueous electrolyte or lithium salt moves from the outside of the wound electrode body to both ends in the winding axis direction, or from both ends to the center. By moving to the portion, an event may occur in which the lithium salt concentration in the central portion in the axial direction of the wound electrode body is higher than both ends (the lithium salt concentration is increased compared to the initial state). Thus, if there is a bias in the distribution of the non-aqueous electrolyte (lithium salt concentration), the positive electrode potential and the negative electrode potential tend to decrease in the portion where the lithium salt concentration is relatively high (and the potential difference between the positive and negative electrodes becomes uneven). All) capacity cannot be used up, and battery capacity (capacity that can be charged and discharged) may be reduced. Therefore, the capacity recovery method according to the present embodiment capable of recovering the reduced battery capacity can be particularly suitably applied to the lithium ion secondary battery having the above configuration.

<容量回復方法>
ここで開示されるリチウムイオン二次電池の容量回復方法は、正極と負極と非水電解液とを備えるリチウムイオン二次電池の容量回復方法である。図3は、本実施形態に係る容量回復方法の処理フローを示す図である。上記容量回復方法は、図3に示すように、リチウムイオン二次電池に対して20C以上のパルス状の電流を5秒間以上供給する特定充電処理が所定回数実施された場合(ステップS10の「YES」の場合)に、最後の特定充電処理が終了してから10分以内に、該電池を5C以上の電流値でSOC70%以上になるまで充電することを包含する(ステップS20)。また、前記充電後の電池を休止状態で10時間以上放置することを包含する(ステップS30)。
<Capacity recovery method>
The capacity recovery method of a lithium ion secondary battery disclosed here is a capacity recovery method of a lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. FIG. 3 is a diagram showing a processing flow of the capacity recovery method according to the present embodiment. In the capacity recovery method, as shown in FIG. 3, when a specific charging process for supplying a pulsed current of 20 C or more to a lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times (“YES” in step S10). In the case of “”, the battery is charged within 10 minutes after the end of the last specific charging process until the SOC reaches 70% or more at a current value of 5 C or more (step S20). Further, the method includes leaving the charged battery in a resting state for 10 hours or longer (step S30).

上記容量回復方法は、リチウムイオン二次電池に対して20C以上のパルス状の電流を5秒間以上供給する特定充電処理が所定回数行われた場合に実行される(ステップS10)。好ましくは、リチウムイオン二次電池に対して100回〜500回(好ましくは200回〜400回、例えば300回)の特定充電処理が行われた時点で容量回復処理を実行するとよい。このように、リチウムイオン二次電池に対して20C以上のパルス状の電流を5秒間以上供給する特定充電処理を所定回数行うことにより、捲回電極体に浸透した非水電解液のリチウム塩濃度に場所による偏り(ムラ)が生じ得る。その結果、リチウム塩濃度が相対的に高い部分において正極電位および負極電位が低下傾向となり、正極電位および負極電位に分布が生じる(ひいては正負極間の電位差が不均一になる)場合があり得る。かかる正極電位および負極電位の分布は、電池容量が低下する要因になり得る。   The capacity recovery method is executed when a specific charging process for supplying a pulsed current of 20 C or more to the lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times (step S10). Preferably, the capacity recovery process is performed when the specific charge process is performed 100 to 500 times (preferably 200 to 400 times, for example, 300 times) for the lithium ion secondary battery. Thus, the lithium salt concentration of the non-aqueous electrolyte that has permeated the wound electrode body is obtained by performing a specific charging process for supplying a pulsed current of 20 C or more for 5 seconds or more to the lithium ion secondary battery for a predetermined number of times. In some cases, unevenness (unevenness) may occur depending on the location. As a result, the positive electrode potential and the negative electrode potential tend to decrease in a portion where the lithium salt concentration is relatively high, and distribution may occur in the positive electrode potential and the negative electrode potential (as a result, the potential difference between the positive and negative electrodes becomes uneven). The distribution of the positive electrode potential and the negative electrode potential can be a factor that decreases the battery capacity.

ここで開示されるリチウムイオン二次電池の容量回復方法では、上記所定回数の特定充電処理によってリチウム塩濃度の分布に偏りが生じた場合に、最後の特定充電処理が終了してから10分以内に、該電池を5C以上(例えば5C〜10C、好ましくは5C〜8C)の電流値でSOC70%以上(例えば70%〜90%、好ましくは70%〜80%)になるまで充電する(ステップS20)。このように、5C以上の高い電流値でSOC70%以上になるまで充電することにより、リチウム塩濃度が相対的に高い部分に充電電流が多く流れる(すなわち電池反応が集中する)ため、当該部分の正極電位が局所的に上昇するとともに、当該部分の負極電位が局所的に低下する。当該部分の正極電位を局所的に上昇させることで、前記分布が生じて不均一になった正極電位をフラット(一定)に戻すことができる。   In the capacity recovery method of the lithium ion secondary battery disclosed herein, when the distribution of the lithium salt concentration is biased by the predetermined number of times of the specific charging process, the last specific charging process is completed within 10 minutes. In addition, the battery is charged until the SOC reaches 70% or more (for example, 70% to 90%, preferably 70% to 80%) at a current value of 5C or more (for example, 5C to 10C, preferably 5C to 8C) (step S20). ). Thus, by charging until the SOC reaches 70% or more at a high current value of 5C or more, a large amount of charging current flows in a portion where the lithium salt concentration is relatively high (that is, the battery reaction concentrates). As the positive electrode potential increases locally, the negative electrode potential of the portion decreases locally. By locally increasing the positive electrode potential of the portion, the non-uniform positive electrode potential caused by the distribution can be returned to flat (constant).

なお、本発明者の知見によれば、最後の特定充電処理が終了してから長時間(10分を超えて)放置すると、正極電位および負極電位の分布を維持したまま、リチウム塩濃度の分布の偏りが解消してしまう。そのため、最後の特定充電処理が終了してから長時間経過後に上記充電を行っても、上述した正極電位をフラットに戻す効果が十分に得られないことが後述する試験例により確認された。すなわち、最後の特定充電処理が終了してから10分以内に上記充電を行うことが重要であるといえる。   According to the knowledge of the present inventor, when left for a long time (more than 10 minutes) after the end of the last specific charging process, the distribution of the lithium salt concentration is maintained while maintaining the distribution of the positive electrode potential and the negative electrode potential. Will be eliminated. For this reason, it was confirmed by test examples described later that the above-described effect of returning the positive electrode potential to a flat state could not be sufficiently obtained even if the above-described charging was performed after a long time had elapsed since the last specific charging process was completed. That is, it can be said that it is important to perform the charging within 10 minutes after the last specific charging process is completed.

また、ここで開示されるリチウムイオン二次電池の容量回復方法では、ステップS30において、上記充電後の電池を休止状態で10時間以上(例えば10時間〜20時間、好ましくは10時間〜15時間)放置する。このように上記充電後の電池を休止状態で10時間以上放置することにより、正負極間の電位差が一定になるように負極電位が緩和される。すなわち、前記フラットになった正極電位の形に近づくように、負極電位の分布が緩和され、正負極間の電位差が均一になる。   Further, in the capacity recovery method of the lithium ion secondary battery disclosed herein, in step S30, the battery after charging is in a resting state for 10 hours or longer (for example, 10 hours to 20 hours, preferably 10 hours to 15 hours). put. Thus, by leaving the battery after charging for 10 hours or more in a resting state, the negative electrode potential is relaxed so that the potential difference between the positive and negative electrodes becomes constant. That is, the distribution of the negative electrode potential is relaxed so as to approach the flat shape of the positive electrode potential, and the potential difference between the positive and negative electrodes becomes uniform.

その結果、非水電解液のリチウム塩濃度の分布の偏りに起因して低下した電池容量(充放電可能な容量)が適切に回復し得、リチウムイオン二次電池の長寿命化や再利用(リサイクル)化を実現することができる。   As a result, the reduced battery capacity (capacity that can be charged and discharged) due to the uneven distribution of lithium salt concentration in the non-aqueous electrolyte can be properly recovered, and the life and reuse of lithium ion secondary batteries ( Recycling) can be realized.

好ましい一態様では、ステップS30の放置後、該電池を0.5C以下(例えば0.1C〜0.5C、好ましくは0.3C〜0.5C)の電流値でSOC0%になるまで放電する(ステップS40)。そして、上記放電後の電池を休止状態で24時間以上(例えば24時間〜50時間、好ましくは24時間〜30時間)放置する(ステップS50)。ステップS30の放置後においても、負極内の充電量(リチウムイオンの吸蔵量)に場所により偏り(ムラ)があるため、負極電位に若干の勾配が残る場合があり得る。これに対し、上記放置後の電池を0.5C以下の低い電流値でSOC0%になるまで完全に放電し(すなわち負極からリチウムイオンを完全に放出し)、さらに休止状態で24時間以上放置することで、負極内の充電量の偏り(ひいては負極電位の勾配)を均等化することができる。その結果、負極電位をより効果的にフラット(一定)に戻すことができる。これにより、更なる容量回復を実現することが可能となる。   In a preferred embodiment, after leaving in step S30, the battery is discharged at a current value of 0.5 C or less (for example, 0.1 C to 0.5 C, preferably 0.3 C to 0.5 C) until SOC reaches 0% ( Step S40). Then, the discharged battery is left in a resting state for 24 hours or longer (for example, 24 hours to 50 hours, preferably 24 hours to 30 hours) (step S50). Even after step S30 is left, the charge amount (lithium ion occlusion amount) in the negative electrode is uneven (uneven) depending on the location, so that a slight gradient may remain in the negative electrode potential. On the other hand, the battery after being left is completely discharged until the SOC becomes 0% at a low current value of 0.5 C or less (that is, lithium ions are completely released from the negative electrode), and further left in a rest state for 24 hours or more. Thus, it is possible to equalize the amount of charge in the negative electrode (and hence the gradient of the negative electrode potential). As a result, the negative electrode potential can be returned to flat (constant) more effectively. As a result, further capacity recovery can be realized.

<第2実施形態>
図4は、第2実施形態に係る容量回復方法の処理フローを示す図である。この実施形態では、所定回数の特定放電処理が実施された場合に、容量回復処理を行う点において、上述した第1実施形態とは相違する。すなわち、この容量回復方法は、図4に示すように、リチウムイオン二次電池から20C以上のパルス状の電流を5秒間以上取り出す特定放電処理が所定回数実施された場合(ステップS110の「YES」の場合)に、最後の特定放電処理が終了してから10分以内に、該電池を5C以上の電流値でSOC70%以上になるまで充電することを包含する(ステップS120)。また、前記充電後の電池を休止状態で10時間以上放置することを包含する(ステップS130)。ステップS120、S130の各処理の詳細については、前述した第1実施形態のステップS20、S30と同様であるため、その重複した説明は省略する。
Second Embodiment
FIG. 4 is a diagram illustrating a processing flow of the capacity recovery method according to the second embodiment. This embodiment is different from the above-described first embodiment in that the capacity recovery process is performed when the specific discharge process is performed a predetermined number of times. That is, in this capacity recovery method, as shown in FIG. 4, when a specific discharge process for extracting a pulsed current of 20 C or more from a lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times (“YES” in step S110). In the case of (5), the battery is charged until the SOC reaches 70% or more at a current value of 5C or more within 10 minutes after the end of the last specific discharge process (step S120). Further, the method includes leaving the charged battery in a resting state for 10 hours or longer (step S130). Since details of each processing of Steps S120 and S130 are the same as Steps S20 and S30 of the above-mentioned first embodiment, the duplicated explanation is omitted.

好ましくは、リチウムイオン二次電池に対して100回〜500回の上記特定放電処理が行われた時点で容量回復処理を行うとよい。このように、ステップS110においてリチウムイオン二次電池から20C以上のパルス状の電流を5秒間以上取り出す特定放電処理を所定回数行うことにより、捲回電極体に浸透した非水電解液のリチウム塩濃度に場所による偏り(ムラ)が生じ得る。その結果、リチウム塩濃度が相対的に高い部分において正極電位および負極電位が低下傾向となり、正極電位および負極電位に分布が生じる(ひいては正負極間の電位差が不均一になる)場合があり得る。かかる正極電位および負極電位の分布は、電池容量が低下する要因になり得る。   Preferably, the capacity recovery process is performed when the specific discharge process is performed 100 to 500 times on the lithium ion secondary battery. Thus, the lithium salt concentration of the non-aqueous electrolyte that has permeated into the wound electrode body is obtained by performing a specific discharge process for extracting a pulsed current of 20 C or more from the lithium ion secondary battery for 5 seconds or more in Step S110 a predetermined number of times. In some cases, unevenness (unevenness) may occur depending on the location. As a result, the positive electrode potential and the negative electrode potential tend to decrease in a portion where the lithium salt concentration is relatively high, and distribution may occur in the positive electrode potential and the negative electrode potential (as a result, the potential difference between the positive and negative electrodes becomes uneven). The distribution of the positive electrode potential and the negative electrode potential can be a factor that decreases the battery capacity.

これに対し、本実施形態によれば、ステップS120において、最後の特定放電処理が終了してから10分以内に、該電池を5C以上の電流値でSOC70%以上になるまで充電することで、前記分布が生じて不均一になった正極電位をフラット(一定)に戻すことができる。また、ステップS130において、前記充電後の電池を休止状態で10時間以上放置することで、負極電位の分布が緩和され、正負極間の電位差を均一にすることができる。これにより、前記リチウム塩濃度の分布の偏りに起因して低下した電池容量を適切に回復し得、リチウムイオン二次電池の長寿命化や再利用(リサイクル)化を実現することができる。   On the other hand, according to the present embodiment, in step S120, by charging the battery at a current value of 5C or more until SOC 70% or more within 10 minutes after the end of the last specific discharge process, The positive electrode potential that has become uneven due to the distribution can be returned to a flat (constant) state. In step S130, by leaving the charged battery in a resting state for 10 hours or more, the distribution of the negative electrode potential is relaxed, and the potential difference between the positive and negative electrodes can be made uniform. Thereby, the battery capacity reduced due to the uneven distribution of the lithium salt concentration can be properly recovered, and the life and reuse (recycling) of the lithium ion secondary battery can be realized.

必要に応じて、ステップS130の放置後、該電池を0.5C以下(例えば0.1C〜0.5C)の電流値でSOC0%になるまで放電してもよい(ステップS140)。そして、上記放電後の電池を休止状態で24時間以上(例えば24時間〜50時間)放置してもよい(ステップS150)。このようにすれば、負極電位をより効果的にフラット(一定)に戻すことができ、更なる容量回復を実現することが可能である。   If necessary, after leaving step S130, the battery may be discharged at a current value of 0.5 C or less (for example, 0.1 C to 0.5 C) until SOC becomes 0% (step S140). Then, the discharged battery may be left in a resting state for 24 hours or longer (for example, 24 hours to 50 hours) (step S150). In this way, the negative electrode potential can be returned to flat (constant) more effectively, and further capacity recovery can be realized.

本発明の適用効果を確認するため、以下の試験を行った。   In order to confirm the application effect of the present invention, the following tests were conducted.

<サイクル試験>
シート状の正極集電体および負極集電体にそれぞれ正極活物質および負極活物質が保持された正負の電極シートがセパレータシートを介して捲回され、電解質とともにケースに収容された構成のリチウムイオン二次電池を構築した。かかるリチウムイオン二次電池をSOC50%に調整した後、25℃の温度環境下において、20Cで5秒間のパルス電流を連続して入力するサイクル試験を行った。そして、上記サイクル試験前における電池容量(初期容量)Aと、サイクル試験後における電池容量Bとから容量劣化率=(1−B/A)×100を算出した。その結果、容量劣化率は12%であった。
<Cycle test>
Lithium ions having a configuration in which positive and negative electrode sheets each holding a positive electrode active material and a negative electrode active material are wound on a sheet-like positive electrode current collector and a negative electrode current collector through a separator sheet and housed in a case together with an electrolyte A secondary battery was constructed. After adjusting the lithium ion secondary battery to SOC 50%, a cycle test was performed in which a pulse current of 5 seconds was continuously input at 20 C in a temperature environment of 25 ° C. Then, the capacity deterioration rate = (1−B / A) × 100 was calculated from the battery capacity (initial capacity) A before the cycle test and the battery capacity B after the cycle test. As a result, the capacity deterioration rate was 12%.

(実施例1)
本例では、上記サイクル試験を実施してから10分以内に、該サイクル試験後の電池を5Cの電流値でSOC70%になるまで充電した。その後、休止状態で10時間放置した。そして、かかる放置後の電池容量を測定して容量劣化率を算出した。その結果、容量劣化率は8%となり、サイクル試験直後に比べて容量劣化率が4%程度改善されていた。
Example 1
In this example, the battery after the cycle test was charged to SOC 70% at a current value of 5 C within 10 minutes after the cycle test was performed. Then, it was left to stand for 10 hours. Then, the capacity deterioration rate was calculated by measuring the battery capacity after being left standing. As a result, the capacity deterioration rate was 8%, and the capacity deterioration rate was improved by about 4% compared to immediately after the cycle test.

(実施例2)
本例では、上記サイクル試験を実施してから10分以内に、該サイクル試験後の電池を5Cの電流値でSOC70%になるまで充電した。その後、休止状態で10時間放置した。次いで、該電池を0.5Cの電流値でSOC0%になるまで放電した。その後、休止状態で24時間放置した。そして、かかる放置後の電池容量を測定して容量劣化率を算出した。その結果、容量劣化率は2%となり、サイクル試験直後に比べて容量劣化率が10%程度改善されていた。
(Example 2)
In this example, the battery after the cycle test was charged to SOC 70% at a current value of 5 C within 10 minutes after the cycle test was performed. Then, it was left to stand for 10 hours. Next, the battery was discharged at a current value of 0.5 C until the SOC reached 0%. Then, it was left for 24 hours in a resting state. Then, the capacity deterioration rate was calculated by measuring the battery capacity after being left standing. As a result, the capacity deterioration rate was 2%, and the capacity deterioration rate was improved by about 10% compared to immediately after the cycle test.

(比較例1)
本例では、上記サイクル試験を実施した後、該サイクル試験後の電池を室温で10時間放置した。そして、かかる放置後の電池容量を測定して容量劣化率を算出した。その結果、容量劣化率は11%となり、サイクル試験直後に比べて容量劣化率の改善はほとんど認められなかった。
(Comparative Example 1)
In this example, after the cycle test was performed, the battery after the cycle test was allowed to stand at room temperature for 10 hours. Then, the capacity deterioration rate was calculated by measuring the battery capacity after being left standing. As a result, the capacity deterioration rate was 11%, and almost no improvement in the capacity deterioration rate was observed compared to immediately after the cycle test.

(比較例2)
本例では、上記サイクル試験を実施した後、該サイクル試験後の電池を室温で10時間放置した。その後、該電池を5Cの電流値でSOC70%になるまで充電した。その後、休止状態で10時間放置した。次いで、該電池を0.5Cの電流値でSOC0%になるまで放電した。その後、休止状態で24時間放置した。そして、かかる放置後の電池容量を測定して容量劣化率を算出した。その結果、容量劣化率は11%となり、サイクル試験直後に比べて容量劣化率の改善はほとんど認められなかった。
(Comparative Example 2)
In this example, after the cycle test was performed, the battery after the cycle test was allowed to stand at room temperature for 10 hours. Thereafter, the battery was charged to a SOC of 70% at a current value of 5C. Then, it was left to stand for 10 hours. Next, the battery was discharged at a current value of 0.5 C until the SOC reached 0%. Then, it was left for 24 hours in a resting state. Then, the capacity deterioration rate was calculated by measuring the battery capacity after being left standing. As a result, the capacity deterioration rate was 11%, and almost no improvement in the capacity deterioration rate was observed compared to immediately after the cycle test.

以上、本発明を詳細に説明したが、これらは例示に過ぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
例えば、上述した第1実施形態と第2実施形態とは組み合わせて行ってもよい。すなわち、所定回数の特定充電処理および所定回数の特定放電処理の少なくとも一方が実施された場合に、前述した容量回復処理を行うように構成してもよい。このようにすれば、低下した電池容量をより効率よく回復することができる。
Although the present invention has been described in detail above, these are merely examples, and the invention disclosed herein includes various modifications and changes of the above-described specific examples.
For example, the first embodiment and the second embodiment described above may be combined. That is, the above-described capacity recovery process may be performed when at least one of a predetermined number of specific charge processes and a predetermined number of specific discharge processes is performed. In this way, the reduced battery capacity can be recovered more efficiently.

10 正極シート
20 負極シート
80 捲回電極体
100 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 10 Positive electrode sheet 20 Negative electrode sheet 80 Winding electrode body 100 Lithium ion secondary battery

Claims (1)

正極と負極と非水電解液とを備えるリチウムイオン二次電池の容量回復方法であって、
以下の処理:
(1)前記リチウムイオン二次電池に対して20C以上のパルス状の電流を5秒間以上供給する特定充電処理を所定回数行う;
(2)前記リチウムイオン二次電池から20C以上のパルス状の電流を5秒間以上取り出す特定放電処理を所定回数行う;
の何れか一方が実施された場合に、最後の特定充電処理または特定放電処理が終了してから10分以内に、該電池を5C以上の電流値でSOC70%以上になるまで充電すること、および、
前記充電後の電池を休止状態で10時間以上放置すること
を包含する、リチウムイオン二次電池の容量回復方法。









A capacity recovery method for a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The following processing:
(1) A specific charging process for supplying a pulsed current of 20 C or more to the lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times;
(2) A specific discharge process for extracting a pulsed current of 20 C or more from the lithium ion secondary battery for 5 seconds or more is performed a predetermined number of times;
If any one of the above is performed, the battery is charged at a current value of 5C or more until SOC reaches 70% or more within 10 minutes after the end of the last specific charge process or specific discharge process, and ,
A method for recovering the capacity of a lithium ion secondary battery, comprising leaving the battery after charging for 10 hours or more in a resting state.









JP2015167230A 2015-08-26 2015-08-26 Capacity recovery method for lithium ion secondary battery Pending JP2017045621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015167230A JP2017045621A (en) 2015-08-26 2015-08-26 Capacity recovery method for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015167230A JP2017045621A (en) 2015-08-26 2015-08-26 Capacity recovery method for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2017045621A true JP2017045621A (en) 2017-03-02

Family

ID=58212226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167230A Pending JP2017045621A (en) 2015-08-26 2015-08-26 Capacity recovery method for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2017045621A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230519A1 (en) * 2017-06-14 2018-12-20 株式会社Gsユアサ Power storage element, method for manufacturing power storage element, and power storage device provided with method for manufacturing power storage element and power storage element
WO2019013536A1 (en) * 2017-07-10 2019-01-17 주식회사 엘지화학 Lithium secondary battery regeneration method
KR20190006452A (en) * 2017-07-10 2019-01-18 주식회사 엘지화학 Regnerative method for lithium rechargeable battery
JP6475815B1 (en) * 2017-12-18 2019-02-27 株式会社Brs Recycling method for lithium ion battery
EP3499633A1 (en) * 2017-12-14 2019-06-19 Toyota Jidosha Kabushiki Kaisha Battery system and capacity recovery method for lithium ion secondary battery
WO2019164202A1 (en) * 2018-02-23 2019-08-29 주식회사 엘지화학 Secondary battery capacity recovery method and secondary battery capacity recovery apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230519A1 (en) * 2017-06-14 2018-12-20 株式会社Gsユアサ Power storage element, method for manufacturing power storage element, and power storage device provided with method for manufacturing power storage element and power storage element
CN110419140A (en) * 2017-07-10 2019-11-05 株式会社Lg化学 Regenerate the method for lithium secondary battery
WO2019013536A1 (en) * 2017-07-10 2019-01-17 주식회사 엘지화학 Lithium secondary battery regeneration method
KR20190006452A (en) * 2017-07-10 2019-01-18 주식회사 엘지화학 Regnerative method for lithium rechargeable battery
CN110419140B (en) * 2017-07-10 2022-11-04 株式会社Lg新能源 Method for regenerating lithium secondary battery
US11362373B2 (en) 2017-07-10 2022-06-14 Lg Energy Solution, Ltd. Method for regenerating lithium secondary battery
KR102270870B1 (en) * 2017-07-10 2021-07-01 주식회사 엘지에너지솔루션 Regnerative method for lithium rechargeable battery
JP2020520535A (en) * 2017-07-10 2020-07-09 エルジー・ケム・リミテッド Regeneration method of lithium secondary battery
KR102195013B1 (en) * 2017-12-14 2020-12-28 도요타지도샤가부시키가이샤 Battery system and capacity recovery method for lithium ion secondary battery
JP2019106333A (en) * 2017-12-14 2019-06-27 トヨタ自動車株式会社 Battery system and capacity recovery method for lithium ion secondary battery
EP3499633A1 (en) * 2017-12-14 2019-06-19 Toyota Jidosha Kabushiki Kaisha Battery system and capacity recovery method for lithium ion secondary battery
CN109962302B (en) * 2017-12-14 2022-05-06 丰田自动车株式会社 Battery system and capacity recovery method for lithium ion secondary battery
CN109962302A (en) * 2017-12-14 2019-07-02 丰田自动车株式会社 The capacity restoration method of battery system and lithium ion secondary battery
KR20190071592A (en) * 2017-12-14 2019-06-24 도요타지도샤가부시키가이샤 Battery system and capacity recovery method for lithium ion secondary battery
US10790552B2 (en) 2017-12-14 2020-09-29 Toyota Jidosha Kabushiki Kaisha Battery system and capacity recovery method for lithium ion secondary battery
JP2019110006A (en) * 2017-12-18 2019-07-04 株式会社Brs Reproduction processing method of lithium ion battery
JP6475815B1 (en) * 2017-12-18 2019-02-27 株式会社Brs Recycling method for lithium ion battery
WO2019164202A1 (en) * 2018-02-23 2019-08-29 주식회사 엘지화학 Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
CN111527642A (en) * 2018-02-23 2020-08-11 株式会社Lg化学 Secondary battery capacity recovery method and secondary battery capacity recovery device
KR102279000B1 (en) * 2018-02-23 2021-07-20 주식회사 엘지에너지솔루션 Capacity recovering method for secondary battery and capacity recovering device for secondary battery
KR20190101650A (en) * 2018-02-23 2019-09-02 주식회사 엘지화학 Capacity recovering method for secondary battery and capacity recovering device for secondary battery
CN111527642B (en) * 2018-02-23 2023-12-12 株式会社Lg新能源 Secondary battery capacity recovery method and secondary battery capacity recovery device

Similar Documents

Publication Publication Date Title
US9966638B2 (en) Manufacturing method for non-aqueous secondary battery
JP2017045621A (en) Capacity recovery method for lithium ion secondary battery
JP6135929B2 (en) Method for producing non-aqueous secondary battery
JP6044842B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101812420B1 (en) Degraded performance recovery method for lithium ion secondary battery
CN107799837B (en) Recovery method and reuse method for secondary battery
US20100192362A1 (en) Split Charge Forming Process for Battery
JP5920639B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2010040198A (en) Apparatus for charging and discharging secondary battery, electric equipment, method of charging and discharging secondary battery, and program for charging and discharging secondary battery
JP2017033802A (en) Method for selecting reusable nonaqueous electrolyte secondary battery
JP6311942B2 (en) Screening method for reusable non-aqueous electrolyte secondary battery
US11581519B2 (en) Post-treatment method of lithium secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2017054739A (en) Secondary battery
JP2011238568A (en) Lithium ion secondary battery and secondary battery system
JP2009158142A (en) Charging method of nonaqueous secondary battery
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP2009176511A (en) Charge/discharge method of lithium ion secondary battery
JP6038560B2 (en) Non-aqueous electrolyte battery storage or transport method, battery pack storage or transport method, and non-aqueous electrolyte battery charge state maintaining method
JP2018056045A (en) Lithium ion secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP2012109048A (en) Regeneration method of nonaqueous electrolyte secondary battery
JP7025715B2 (en) How to reuse non-aqueous electrolyte secondary battery
JP7161679B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP6635320B2 (en) Non-aqueous electrolyte secondary battery