JP7025715B2 - How to reuse non-aqueous electrolyte secondary battery - Google Patents

How to reuse non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7025715B2
JP7025715B2 JP2018159043A JP2018159043A JP7025715B2 JP 7025715 B2 JP7025715 B2 JP 7025715B2 JP 2018159043 A JP2018159043 A JP 2018159043A JP 2018159043 A JP2018159043 A JP 2018159043A JP 7025715 B2 JP7025715 B2 JP 7025715B2
Authority
JP
Japan
Prior art keywords
electrode body
secondary battery
electrolytic solution
aqueous electrolyte
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018159043A
Other languages
Japanese (ja)
Other versions
JP2020035566A (en
Inventor
英里香 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018159043A priority Critical patent/JP7025715B2/en
Publication of JP2020035566A publication Critical patent/JP2020035566A/en
Application granted granted Critical
Publication of JP7025715B2 publication Critical patent/JP7025715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解液二次電池の再利用方法に関する。 The present invention relates to a method for reusing a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池等の非水電解液二次電池は、軽量で高いエネルギー密度が得られることから、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。非水電解液二次電池の性能は、充放電が行われる過程で低下する場合があるので、低下した電池性能を回復できることが望ましい。例えば、特許文献1に記載されている非水電解液二次電池の再生方法では、非水電解液二次電池の少なくとも一部が開口された後、極板の表面に形成された被膜を除去する被膜除去剤が開口部分から内部に添加されることで、電池性能の回復が図られている。 Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are lightweight and can obtain high energy density, so they can be used as portable power sources for personal computers and mobile terminals, EVs (electric vehicles), HVs (hybrid vehicles), and PHVs. It is widely used as a power source for driving vehicles such as (plug-in hybrid vehicles). Since the performance of the non-aqueous electrolyte secondary battery may deteriorate in the process of charging and discharging, it is desirable to be able to recover the deteriorated battery performance. For example, in the method for regenerating a non-aqueous electrolytic solution secondary battery described in Patent Document 1, at least a part of the non-aqueous electrolytic solution secondary battery is opened, and then the film formed on the surface of the electrode plate is removed. The battery performance is restored by adding the film removing agent to the inside from the opening portion.

特開2012-109048号公報Japanese Unexamined Patent Publication No. 2012-109048

非水電解液二次電池では、高温または高電圧で保存されている間に、非水電解液が分解されて気泡が発生し、発生した気泡が電極間(即ち、電極体内部)に停滞する場合がある。電極間に気泡が停滞すると、電極間の距離のばらつき、または反応のばらつきの影響で電流集中が起こり、非水電解液中のイオン(例えばリチウムイオン等)が金属として負極上に析出する可能性がある。負極上での金属の析出は、電池性能の低下に繋がる場合もある。従って、電極間に停滞している気泡を除去することで、電池性能が低下することを抑制することが好ましい。また、電極体および非水電解液が電池ケースに密閉された状態を維持したまま、電極間から気泡を除去できることが望ましい。 In a non-aqueous electrolyte secondary battery, while the non-aqueous electrolyte is stored at a high temperature or high voltage, the non-aqueous electrolyte is decomposed to generate bubbles, and the generated bubbles stay between the electrodes (that is, inside the electrode body). In some cases. When air bubbles are stagnant between the electrodes, current concentration occurs due to the influence of the variation in the distance between the electrodes or the variation in the reaction, and the ions in the non-aqueous electrolyte solution (for example, lithium ion) may be deposited on the negative electrode as a metal. There is. Precipitation of metal on the negative electrode may lead to deterioration of battery performance. Therefore, it is preferable to suppress the deterioration of the battery performance by removing the bubbles stagnant between the electrodes. Further, it is desirable that air bubbles can be removed from between the electrodes while the electrode body and the non-aqueous electrolytic solution are kept sealed in the battery case.

本発明の典型的な目的は、電極体および非水電解液が電池ケースに密閉された状態を維持したまま、電極間に停滞している気泡を適切に除去し、電池性能の低下を抑制することが可能な非水電解液二次電池の再利用方法を提供することである。 A typical object of the present invention is to appropriately remove air bubbles stagnant between electrodes while maintaining the state in which the electrode body and the non-aqueous electrolyte solution are sealed in the battery case, and suppress deterioration of battery performance. It is to provide a method of reusing a non-aqueous electrolyte secondary battery which is possible.

かかる目的を実現するべく、ここに開示される一態様の非水電解液二次電池の再利用方法は、正極体、負極体、および、該正極体と該負極体との間に介在するセパレータを有する電極体と、非水電解液と、前記電極体および前記非水電解液を内部に収容する電池ケースと、を備えた非水電解液二次電池の再利用方法であって、前記電極体および前記非水電解液が前記電池ケースの内部に密閉された状態の前記非水電解液二次電池を、前記非水電解液の凝固点未満の温度に冷却する冷却工程と、前記冷却工程によって前記凝固点未満の温度まで冷却された前記非水電解液二次電池を、前記凝固点以上の温度に昇温させ、前記電極体の内部の前記非水電解液内に存在していた気泡が前記電極体の外部へ排出された状態とする昇温工程と、
を含むことを特徴とする。
In order to realize such an object, one aspect of the method for reusing a non-aqueous electrolytic solution secondary battery disclosed herein is a positive electrode body, a negative electrode body, and a separator interposed between the positive electrode body and the negative electrode body. A method for reusing a non-aqueous electrolyte secondary battery comprising an electrode body having an electrode body, a non-aqueous electrolytic solution, and a battery case for accommodating the electrode body and the non-aqueous electrolytic solution inside, wherein the electrode is provided. By the cooling step of cooling the body and the non-aqueous electrolyte secondary battery in a state where the non-aqueous electrolyte is sealed inside the battery case to a temperature lower than the freezing point of the non-aqueous electrolyte, and the cooling step. The temperature of the non-aqueous electrolytic solution secondary battery cooled to a temperature lower than the freezing point is raised to a temperature equal to or higher than the freezing point, and bubbles existing in the non-aqueous electrolytic solution inside the electrode body are formed on the electrode. The temperature rise process to make it discharged to the outside of the body,
It is characterized by including.

本開示に係る非水電解液二次電池の再利用方法によると、冷却工程によって非水電解液が凝固されて体積が収縮し、セパレータおよび電極に保持されることで、気泡を電極間(例えば、電極体中に存在する非水電解液内)から外部へ排出させる経路が生成される。その後、昇温工程によって非水電解液が昇温されることで、気泡が電極間から外部へ排出された状態となる。従って、電極体および非水電解液が電池ケースに密閉された状態が維持されたまま、電極間に滞在していた気泡が除去される。その結果、電池性能が低下することが抑制される。 According to the method for reusing a non-aqueous electrolytic solution secondary battery according to the present disclosure, the non-aqueous electrolytic solution is solidified by the cooling step to shrink the volume and is held by the separator and the electrode, so that bubbles are generated between the electrodes (for example,). , In the non-aqueous electrolytic solution existing in the electrode body), a path for discharging to the outside is generated. After that, the temperature of the non-aqueous electrolytic solution is raised by the temperature raising step, so that bubbles are discharged from between the electrodes to the outside. Therefore, the bubbles staying between the electrodes are removed while the electrode body and the non-aqueous electrolytic solution are kept sealed in the battery case. As a result, deterioration of battery performance is suppressed.

本実施形態の非水電解液二次電池1の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the non-aqueous electrolytic solution secondary battery 1 of this embodiment. 本実施形態の非水電解液二次電池1の電極体(捲回電極体)20の構成を示す模式図である。It is a schematic diagram which shows the structure of the electrode body (rolling electrode body) 20 of the non-aqueous electrolytic solution secondary battery 1 of this embodiment. 気泡80が停滞している状態の電極体20の一部を模式的に示す断面図である。It is sectional drawing which shows typically a part of the electrode body 20 in the state where the bubble 80 is stagnant. 非水電解液二次電池1の温度と、各々の温度で測定された直流抵抗の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature of a non-aqueous electrolyte secondary battery 1 and the DC resistance measured at each temperature. 図3に示す電極体20が、非水電解液10の凝固点未満の温度に冷却された状態を模式的に説明する説明図である。FIG. 3 is an explanatory diagram schematically illustrating a state in which the electrode body 20 shown in FIG. 3 is cooled to a temperature below the freezing point of the non-aqueous electrolytic solution 10.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. In the following drawings, members / parts having the same function are described with the same reference numerals. Further, the dimensional relations (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relations.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。以下、非水電解液二次電池の一種である扁平角形のリチウムイオン二次電池を例示して、本開示に係る非水電解液二次電池の再利用方法について詳細に説明する。ただし、本開示に係る非水電解液二次電池の再利用方法を、以下の実施形態に記載されたものに限定することを意図したものではない。 As used herein, the term "battery" refers to a general storage device capable of extracting electrical energy, and is a concept including a primary battery and a secondary battery. "Secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric double layer capacitors and the like. Includes capacitors (ie, physical batteries). Hereinafter, a method for reusing the non-aqueous electrolyte secondary battery according to the present disclosure will be described in detail by exemplifying a flat rectangular lithium ion secondary battery which is a kind of non-aqueous electrolyte secondary battery. However, the method for reusing the non-aqueous electrolyte secondary battery according to the present disclosure is not intended to be limited to those described in the following embodiments.

<非水電解液二次電池の構成>
図1に示す非水電解液二次電池1は、電極体20、非水電解液10(図3および図5参照)、および電池ケース30を備えた密閉型のリチウムイオン二次電池である。電池ケース30は、電極体20および非水電解液10を内部に密閉した状態で収容する。本実施形態における電池ケース30の形状は、扁平な角形である。電池ケース30は、一端に開口部を有する箱型の本体31と、該本体の開口部を塞ぐ板状の蓋体32を備える。電池ケース30(詳細には、電池ケース30の蓋体32)には、外部接続用の正極端子42および負極端子44と、安全弁36とが設けられている。安全弁36は、電池ケース30の内圧が所定レベル以上に上昇した場合に開裂し、該内圧を開放する。また、電池ケース30には、非水電解液10を内部に注入するための注入口(図示せず)が設けられている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。ただし、電池ケースの構成を変更することも可能である。例えば、電池ケースとして、可撓性を有するラミネートが用いられてもよい。また、電池ケースの形状は、角形以外の形状(例えば円筒状等)であってもよい。
<Structure of non-aqueous electrolyte secondary battery>
The non-aqueous electrolyte secondary battery 1 shown in FIG. 1 is a sealed lithium-ion secondary battery including an electrode body 20, a non-aqueous electrolyte 10 (see FIGS. 3 and 5), and a battery case 30. The battery case 30 houses the electrode body 20 and the non-aqueous electrolytic solution 10 in a sealed state. The shape of the battery case 30 in this embodiment is a flat square shape. The battery case 30 includes a box-shaped main body 31 having an opening at one end, and a plate-shaped lid 32 that closes the opening of the main body. The battery case 30 (specifically, the lid 32 of the battery case 30) is provided with a positive electrode terminal 42 and a negative electrode terminal 44 for external connection, and a safety valve 36. The safety valve 36 opens when the internal pressure of the battery case 30 rises above a predetermined level, and releases the internal pressure. Further, the battery case 30 is provided with an injection port (not shown) for injecting the non-aqueous electrolytic solution 10 into the inside. As the material of the battery case 30, for example, a lightweight metal material having good thermal conductivity such as aluminum is used. However, it is also possible to change the configuration of the battery case. For example, a flexible laminate may be used as the battery case. Further, the shape of the battery case may be a shape other than a square shape (for example, a cylindrical shape).

図2に示すように、本実施形態の電極体20には、長尺状の正極体(正極シート)50、長尺状の負極体(負極シート)60、および、2枚の長尺状のセパレータ(セパレータシート)70が重ね合わされて長手方向に捲回された捲回電極体が採用されている。詳細には、正極体50では、長尺状の正極集電体52の片面または両面(本実施形態では両面)に、長手方向に沿って正極活物質層54が形成されている。負極体60では、長尺状の負極集電体62の片面または両面(本実施形態では両面)に、長手方向に沿って負極活物質層64が形成されている。なお、電極体20の捲回軸方向(上記長手方向に直交するシート幅方向)の両側から外方にはみ出すように形成された、正極活物質層非形成部分52A(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と、負極活物質層非形成部分62A(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ、正極集電板42Aおよび負極集電板44Aが接合されている。正極集電板42Aには正極端子42(図1参照)が電気的に接続され、負極集電板44Aには負極端子44(図1参照)が電気的に接続されている。なお、電極体の構成を変更することも可能である。例えば、捲回電極体の代わりに積層型の電極体が用いられてもよい。 As shown in FIG. 2, the electrode body 20 of the present embodiment includes a long positive electrode body (positive electrode sheet) 50, a long negative electrode body (negative electrode sheet) 60, and two long negative electrodes. A wound electrode body in which a separator (separator sheet) 70 is overlapped and wound in the longitudinal direction is adopted. Specifically, in the positive electrode body 50, the positive electrode active material layer 54 is formed along the longitudinal direction on one side or both sides (both sides in the present embodiment) of the long positive electrode current collector 52. In the negative electrode body 60, the negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (both sides in the present embodiment) of the long negative electrode current collector 62. The positive electrode active material layer non-formed portion 52A (that is, the positive electrode active material layer 54) formed so as to protrude outward from both sides of the electrode body 20 in the winding axis direction (sheet width direction orthogonal to the longitudinal direction). The positive electrode current collector 52 is exposed without being formed) and the negative electrode active material layer non-formed portion 62A (that is, the portion where the negative electrode active material layer 64 is not formed and the negative electrode current collector 62 is exposed). , The positive electrode current collector plate 42A and the negative electrode current collector plate 44A are joined, respectively. The positive electrode terminal 42 (see FIG. 1) is electrically connected to the positive electrode current collector plate 42A, and the negative electrode terminal 44 (see FIG. 1) is electrically connected to the negative electrode current collector plate 44A. It is also possible to change the configuration of the electrode body. For example, a laminated electrode body may be used instead of the wound electrode body.

電極体50の正負極を構成する材料、部材は、従来の一般的な非水電解液二次電池に用いられるものと同様のものを制限なく使用可能である。例えば、正極集電体52には、この種の非水電解液二次電池の正極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の正極集電体が好ましい。例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材を正極集電体52として採用できる。特にアルミニウム(例えばアルミニウム箔)が好ましい。正極活物質層54の正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)が挙げられる。正極活物質層54は、正極活物質と必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN-メチル-2-ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体52の表面に付与し、乾燥することによって形成することができる。 As the materials and members constituting the positive and negative electrodes of the electrode body 50, the same materials and members as those used in the conventional general non-aqueous electrolytic solution secondary battery can be used without limitation. For example, as the positive electrode current collector 52, those used as the positive electrode current collector of this type of non-aqueous electrolytic solution secondary battery can be used without particular limitation. Typically, a metal positive electrode current collector having good conductivity is preferred. For example, a metal material such as aluminum, nickel, titanium, or stainless steel can be adopted as the positive electrode current collector 52. In particular, aluminum (for example, aluminum foil) is preferable. Examples of the positive electrode active material of the positive electrode active material layer 54 include lithium composite metal oxides having a layered structure or a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO). 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4 , etc.). In the positive electrode active material layer 54, the positive electrode active material and a material (conductive material, binder, etc.) used as needed are dispersed in an appropriate solvent (for example, N-methyl-2-pyrrolidone: NMP) to form a paste (or It can be formed by preparing a composition (in the form of a slurry), applying an appropriate amount of the composition to the surface of the positive electrode current collector 52, and drying the composition.

負極集電体62には、この種の非水電解液二次電池の負極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の負極集電体が好ましく、例えば、銅(例えば銅箔)や銅を主体とする合金を用いることができる。負極活物質層64の負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物(例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。負極活物質層64は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体62の表面に付与し、乾燥することによって形成することができる。 As the negative electrode current collector 62, those used as the negative electrode current collector of this type of non-aqueous electrolytic solution secondary battery can be used without particular limitation. Typically, a metal negative electrode current collector having good conductivity is preferable, and for example, copper (for example, copper foil) or an alloy mainly composed of copper can be used. Examples of the negative electrode active material of the negative electrode active material layer 64 include a particle-like (or spherical or scaly) carbon material containing a graphite structure (layered structure) at least in part, and a lithium transition metal composite oxide (for example, Li 4 ). Lithium-titanium composite oxides such as Ti 5 O 12 ), lithium transition metal composite nitrides and the like. In the negative electrode active material layer 64, a negative electrode active material and a material (binder or the like) used as needed are dispersed in an appropriate solvent (for example, ion-exchanged water) to prepare a paste-like (or slurry-like) composition. , An appropriate amount of the composition can be applied to the surface of the negative electrode current collector 62 and dried.

セパレータ70としては、従来公知の多孔質シートからなるセパレータを特に制限なく使用することができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂から成る多孔質シート(フィルム、不織布等)が挙げられる。かかる多孔質シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、多孔質シートの片面または両面に、多孔質の耐熱層を備える構成のものであってもよい。この耐熱層は、例えば、無機フィラーとバインダとを含む層(フィラー層ともいう。)であり得る。無機フィラーとしては、例えばアルミナ、ベーマイト、シリカ等を好ましく採用し得る。 As the separator 70, a separator made of a conventionally known porous sheet can be used without particular limitation. For example, a porous sheet (film, non-woven fabric, etc.) made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP) can be mentioned. The porous sheet may have a single-layer structure or a plurality of layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Further, the porous sheet may be configured to have a porous heat-resistant layer on one side or both sides. This heat-resistant layer can be, for example, a layer containing an inorganic filler and a binder (also referred to as a filler layer). As the inorganic filler, for example, alumina, boehmite, silica and the like can be preferably adopted.

電極体20とともに電池ケース30に収容される非水電解液10は、適当な非水溶媒に支持塩を含有するものであり、従来公知の非水電解液を特に制限なく採用することができる。例えば、非水溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を用いることができる。また、支持塩としては、例えばリチウム塩を好適に用いることができ、本実施形態ではLiPFが採用されている。 The non-aqueous electrolytic solution 10 housed in the battery case 30 together with the electrode body 20 contains a supporting salt in an appropriate non-aqueous solvent, and a conventionally known non-aqueous electrolytic solution can be adopted without particular limitation. For example, as the non-aqueous solvent, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be used. Further, as the supporting salt, for example, a lithium salt can be preferably used, and LiPF 6 is adopted in this embodiment.

図3を参照して、電極間に停滞した気泡80が電池性能に与え得る影響について説明する。非水電解液二次電池1では、高温または高電圧で保存されている間に、電解液10が分解されて気泡80が発生する場合がある。例えば、電極体20を拘束する治具(図示せず)の形状、および、電極体20を構成する部材(正極体50、負極体60、およびセパレータ70)の歪み等の影響で、電極体20の内部(つまり電極間)の非水電解液10内に、気泡80が停滞する可能性がある。電極間に気泡80が停滞すると、電極間の距離のばらつき、または反応のばらつきの影響で電流集中が起こり、非水電解液中のリチウムイオンが金属として析出する可能性がある。金属の析出は、電池性能の低下(例えば過充電耐性の低下)に繋がる場合もある。以下に例示する非水電解液二次電池の再利用方法では、電極体20および非水電解液10が電池ケース30(図1参照)に密閉された状態のまま、電極間に滞在している気泡の除去が図られる。 With reference to FIG. 3, the influence that the bubble 80 stagnant between the electrodes can have on the battery performance will be described. In the non-aqueous electrolytic solution secondary battery 1, the electrolytic solution 10 may be decomposed and bubbles 80 may be generated while the battery 1 is stored at a high temperature or a high voltage. For example, the electrode body 20 is affected by the shape of a jig (not shown) for restraining the electrode body 20 and the distortion of the members (positive electrode body 50, negative electrode body 60, and separator 70) constituting the electrode body 20. Bubbles 80 may stagnate in the non-aqueous electrolytic solution 10 inside (that is, between the electrodes). When the bubbles 80 are stagnant between the electrodes, current concentration occurs due to the influence of the variation in the distance between the electrodes or the variation in the reaction, and the lithium ion in the non-aqueous electrolytic solution may be deposited as a metal. Precipitation of metal may lead to deterioration of battery performance (for example, deterioration of overcharge resistance). In the method of reusing the non-aqueous electrolytic solution secondary battery exemplified below, the electrode body 20 and the non-aqueous electrolytic solution 10 stay between the electrodes while being sealed in the battery case 30 (see FIG. 1). Bubbles are removed.

<非水電解液二次電池の再利用方法>
本実施形態に係る非水電解液二次電池の再利用方法について説明する。本実施形態に係る非水電解液二次電池の再利用方法は、冷却工程および昇温工程が順に行われる。
<How to reuse non-aqueous electrolyte secondary battery>
A method of reusing the non-aqueous electrolyte secondary battery according to the present embodiment will be described. In the method for reusing the non-aqueous electrolytic solution secondary battery according to the present embodiment, the cooling step and the raising step are sequentially performed.

(冷却条件の決定)
本実施形態において、上記冷却工程の実施前に、好適な冷却条件を決定する。すなわち、冷却工程における非水電解液二次電池1の冷却条件が取得される。詳細は後述するが、本実施形態における冷却工程では、非水電解液二次電池1が、非水電解液10の凝固点未満の温度に冷却される。従って、冷却条件決定工程では、非水電解液二次電池1に含まれる非水電解液10の凝固点が、冷却条件の1つとして取得される。
(Determination of cooling conditions)
In this embodiment, suitable cooling conditions are determined before the cooling step is carried out. That is, the cooling conditions of the non-aqueous electrolytic solution secondary battery 1 in the cooling step are acquired. Although the details will be described later, in the cooling step in the present embodiment, the non-aqueous electrolytic solution secondary battery 1 is cooled to a temperature below the freezing point of the non-aqueous electrolytic solution 10. Therefore, in the cooling condition determination step, the freezing point of the non-aqueous electrolytic solution 10 contained in the non-aqueous electrolytic solution secondary battery 1 is acquired as one of the cooling conditions.

なお、非水電解液10の凝固点が予め判明している場合には、冷却条件決定工程を行うことなく、既に判明している凝固点を冷却条件として決定することができる。一方で、非水電解液10の凝固点が不明な場合等には、例えば、非水電解液二次電池1の直流抵抗の温度依存性に基づいて凝固点を取得する方法等を採用できる。本実施形態では、同一組成の複数(9個)の非水電解液二次電池1の各々を、-35℃から-43℃の間で1℃毎に設定された各々の目標温度に冷却した。冷却方法には、恒温槽を用いて0.5℃/minの速度で非水電解液二次電池1を常温から目標温度に冷却する方法を採用した。各々の非水電解液二次電池1について、温度が目標温度に到達した状態で2時間保持した時点の直流抵抗を測定した。 When the freezing point of the non-aqueous electrolytic solution 10 is known in advance, the already known freezing point can be determined as the cooling condition without performing the cooling condition determination step. On the other hand, when the freezing point of the non-aqueous electrolytic solution 10 is unknown, for example, a method of acquiring the freezing point based on the temperature dependence of the DC resistance of the non-aqueous electrolytic solution secondary battery 1 can be adopted. In the present embodiment, each of the plurality (9) non-aqueous electrolyte secondary batteries 1 having the same composition is cooled to each target temperature set at 1 ° C. between −35 ° C. and −43 ° C. .. As a cooling method, a method of cooling the non-aqueous electrolyte secondary battery 1 from room temperature to a target temperature at a rate of 0.5 ° C./min using a constant temperature bath was adopted. For each non-aqueous electrolyte secondary battery 1, the DC resistance at the time when the temperature reached the target temperature and was held for 2 hours was measured.

図4に、各々の目標温度と、直流抵抗の測定結果の関係をグラフで示す。直流抵抗の変化の度合いは、非水電解液10が凝固する前後で異なる。従って、図4に示すように、直流抵抗の傾きの変化点における温度IP(図4の例では-38℃)が、非水電解液二次電池1に含まれる非水電解液10の凝固点として取得される。 FIG. 4 graphically shows the relationship between each target temperature and the measurement result of DC resistance. The degree of change in DC resistance differs before and after the non-aqueous electrolytic solution 10 solidifies. Therefore, as shown in FIG. 4, the temperature IP (−38 ° C. in the example of FIG. 4) at the change point of the slope of the DC resistance is used as the freezing point of the non-aqueous electrolytic solution 10 contained in the non-aqueous electrolytic solution secondary battery 1. To be acquired.

なお、冷却条件の決定において、凝固点以外の条件(例えば、冷却速度、および、凝固点未満の設定温度で非水電解液二次電池1を保持する保持時間等)は、冷却工程および昇温工程の前後における非水電解液二次電池1の直流抵抗の変化が閾値未満となる範囲で適宜設定すればよい。一例として、本実施形態では、冷却速度は0.5℃/min、保持時間は2時間に設定される。 In determining the cooling conditions, conditions other than the freezing point (for example, the cooling rate and the holding time for holding the non-aqueous electrolyte secondary battery 1 at a set temperature below the freezing point) are determined in the cooling step and the temperature raising step. It may be appropriately set within a range in which the change in the DC resistance of the non-aqueous electrolyte secondary battery 1 before and after is less than the threshold value. As an example, in this embodiment, the cooling rate is set to 0.5 ° C./min and the holding time is set to 2 hours.

(冷却工程)
本実施形態における冷却工程では、電極体20および非水電解液10が電池ケース30の内部に密閉された状態のまま、非水電解液10の凝固点未満の温度に非水電解液二次電池1が冷却される。本実施形態では、冷却条件は前述した通りであり、冷却には恒温槽が使用される
(Cooling process)
In the cooling step of the present embodiment, the non-aqueous electrolyte secondary battery 1 is heated to a temperature below the freezing point of the non-aqueous electrolyte 10 while the electrode body 20 and the non-aqueous electrolyte 10 are sealed inside the battery case 30. Is cooled. In this embodiment, the cooling conditions are as described above, and a constant temperature bath is used for cooling.

図5に模式的に示すように、非水電解液二次電池1が凝固点未満の温度に冷却されると、電極体20の内部の非水電解液10が凝固して体積が収縮し、正極体50、負極体60、およびセパレータ70に保持される。その結果、電極間に停滞していた気泡80(図3参照)を電極間の外部へ排出させる経路10Rが形成される。 As schematically shown in FIG. 5, when the non-aqueous electrolytic solution secondary battery 1 is cooled to a temperature below the freezing point, the non-aqueous electrolytic solution 10 inside the electrode body 20 solidifies and the volume shrinks, resulting in a positive electrode. It is held by the body 50, the negative electrode body 60, and the separator 70. As a result, a path 10R is formed in which the bubbles 80 (see FIG. 3) stagnant between the electrodes are discharged to the outside between the electrodes.

(昇温工程)
本実施形態における昇温工程では、冷却工程によって冷却された非水電解液二次電池1が、凝固点以上の温度(本実施形態では常温)に昇温される。その結果、電極間(つまり、電極体20における正極体50と負極体60の間の非水電解液10内)に停滞していた気泡80が、電極間の外部へ排出された状態となる。なお、電池ケース30の内部は密閉されたままであるため、気泡80は電池ケース30の外部までは排出されない。しかし、気泡80が電極間に停滞している状態が、電池性能の低下の原因となる可能性があるので、気泡80は電極間の外部に排出されればよい。よって、冷却工程および昇温工程は、電池ケース30の内部が密閉された状態で行うことができる。
(Heating process)
In the temperature raising step in the present embodiment, the non-aqueous electrolytic solution secondary battery 1 cooled by the cooling step is heated to a temperature equal to or higher than the freezing point (normal temperature in the present embodiment). As a result, the bubbles 80 stagnant between the electrodes (that is, in the non-aqueous electrolytic solution 10 between the positive electrode body 50 and the negative electrode body 60 in the electrode body 20) are discharged to the outside between the electrodes. Since the inside of the battery case 30 remains sealed, the bubbles 80 are not discharged to the outside of the battery case 30. However, since the state in which the bubbles 80 are stagnant between the electrodes may cause a deterioration in battery performance, the bubbles 80 may be discharged to the outside between the electrodes. Therefore, the cooling step and the raising temperature step can be performed in a state where the inside of the battery case 30 is sealed.

また、本実施形態の昇温工程における昇温速度は0.5℃/min以下である。その結果、電池性能の低下がさらに抑制される。この理由については後述する。 Further, the temperature rising rate in the temperature raising step of the present embodiment is 0.5 ° C./min or less. As a result, the deterioration of battery performance is further suppressed. The reason for this will be described later.

(電池内部抵抗の確認)
本実施形態に係る非水電解液二次電池の再利用方法では、好適には、上記昇温工程の終了後、供試電池の内部抵抗を確認する。かかる抵抗確認工程では、冷却工程および昇温工程を経た非水電解液二次電池1の内部抵抗の変化が閾値未満であることを確認する。内部抵抗の変化が閾値未満である非水電解液二次電池1は、電池性能の低下が抑制されているので、適切に再利用される。
(Checking the internal resistance of the battery)
In the method for reusing a non-aqueous electrolytic solution secondary battery according to the present embodiment, preferably, the internal resistance of the test battery is confirmed after the completion of the temperature raising step. In the resistance confirmation step, it is confirmed that the change in the internal resistance of the non-aqueous electrolytic solution secondary battery 1 through the cooling step and the temperature raising step is less than the threshold value. The non-aqueous electrolytic solution secondary battery 1 in which the change in internal resistance is less than the threshold value is appropriately reused because the deterioration of battery performance is suppressed.

Figure 0007025715000001
Figure 0007025715000001

<実施例>
表1を参照して、比較例および実施例を用いた試験結果について説明する。本試験では、比較例および実施例1~7について比較を行った。比較例および実施例1~7に係る非水電解液二次電池(供試セル:以下、単に「セル」という。)の構成は同一であり、非水電解液10の支持塩には1.1MのLiPF、非水溶媒にはエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)の混合物(EC:DMC:EMC=3:4:3)が用いられた。また、比較例および実施例1~7に係るセルの各々に対し、気泡発生工程を行った。気泡発生工程では、3.0V~4.55V、1/10Cレートで3サイクル充放電を行った後、4.55V、75℃で100時間保存した。保存後のセル(SOC:0%)の1つを比較例とした。
<Example>
The test results using Comparative Examples and Examples will be described with reference to Table 1. In this test, comparative examples and Examples 1 to 7 were compared. The configurations of the non-aqueous electrolyte secondary batteries (test cell: hereinafter simply referred to as “cell”) according to Comparative Examples and Examples 1 to 7 are the same, and the supporting salt of the non-aqueous electrolyte 10 is 1. A mixture of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylmethyl carbonate (EMC) (EC: DMC: EMC = 3: 4: 3) was used as the 1M LiPF 6 and the non-aqueous solvent. In addition, a bubble generation step was performed on each of the cells according to Comparative Examples and Examples 1 to 7. In the bubble generation step, after charging and discharging for 3 cycles at a rate of 3.0 V to 4.55 V and 1/10 C, the cells were stored at 4.55 V and 75 ° C. for 100 hours. One of the saved cells (SOC: 0%) was used as a comparative example.

また、実施例1~7に係るセルの各々に対し、冷却工程、昇温工程、および反応抵抗上昇率の測定を行った。冷却工程では、前述した保存後の各セル(SOC:0%)を恒温槽に入れ、0.5℃/minの冷却速度で表1に記載する冷却温度に冷却した後、温度を冷却温度に維持したまま2時間保存した。昇温工程では、冷却工程後の各セルを、表1に記載する昇温速度で常温(25℃)まで昇温させた。次いで、交流インピーダンス測定装置(ソーラトロン社製Solatron1260)によって、印加電圧10mV、測定周波数域0.01~1MHzで昇温工程後の各セル(温度:25℃)の交流インピーダンスを測定し、常温に戻った後の反応抵抗の値を比較例の値で割ることで、各セルの反応抵抗上昇率を測定した。 In addition, the cooling step, the raising temperature step, and the reaction resistance increase rate were measured for each of the cells according to Examples 1 to 7. In the cooling step, each cell (SOC: 0%) after storage described above is placed in a constant temperature bath, cooled to the cooling temperature shown in Table 1 at a cooling rate of 0.5 ° C./min, and then the temperature is set to the cooling temperature. It was stored for 2 hours while being maintained. In the temperature raising step, each cell after the cooling step was heated to room temperature (25 ° C.) at the heating rate shown in Table 1. Next, the AC impedance of each cell (temperature: 25 ° C.) after the temperature rise step is measured with an AC impedance measuring device (Solatron 1260 manufactured by Solartron) at an applied voltage of 10 mV and a measurement frequency range of 0.01 to 1 MHz, and the temperature returns to room temperature. The reaction resistance increase rate of each cell was measured by dividing the subsequent reaction resistance value by the value of the comparative example.

次いで、比較例および実施例1~7に係るセルの各々に対し、過充電判定を行った。過充電判定では、-10℃の温度環境下で、各セルに10Cの電流を流し、4Vからセパレータがシャットダウンするまで充電を行った。シャットダウン後の電池ケースの温度上昇が10℃未満なら「○」、10℃以上なら「×」と判定した。 Next, an overcharge determination was made for each of the cells according to Comparative Examples and Examples 1 to 7. In the overcharge determination, a current of 10 C was passed through each cell in a temperature environment of −10 ° C., and charging was performed from 4 V until the separator shut down. If the temperature rise of the battery case after shutdown was less than 10 ° C, it was judged as "◯", and if it was 10 ° C or higher, it was judged as "x".

表1に示すように、実施例1~4では、昇温工程における昇温速度は全て同一であり、冷却工程における冷却温度が異なる。比較例および実施例1~4を比較すると、冷却工程における冷却温度を、直流抵抗の傾きの変化点における温度IP未満の温度(つまり、非水電解液10の凝固点未満の温度)とすることで、反応抵抗上昇率を1.04%以下としつつ過充電耐性を向上できたことが分かる。これは、非水電解液10が凝固して体積収縮し、電極間に停滞していた気泡80が電極間の外部に除去されたためと考えられる。 As shown in Table 1, in Examples 1 to 4, the temperature rise rate in the temperature rise step is the same, and the cooling temperature in the cooling step is different. Comparing Comparative Examples and Examples 1 to 4, the cooling temperature in the cooling step is set to a temperature lower than the temperature IP at the change point of the slope of the DC resistance (that is, a temperature lower than the freezing point of the non-aqueous electrolytic solution 10). It can be seen that the overcharge resistance could be improved while the reaction resistance increase rate was set to 1.04% or less. It is considered that this is because the non-aqueous electrolytic solution 10 coagulates and shrinks in volume, and the bubbles 80 stagnant between the electrodes are removed to the outside between the electrodes.

また、表1に示すように、実施例4~7では、冷却工程における冷却温度は全て同一であり、昇温工程における昇温速度が異なる。実施例4~7を比較すると、昇温工程における昇温速度を0.5℃/minよりも大きくすることで、反応抵抗上昇率が高くなり、過充電耐性も向上されなかったことが分かる。この原因として、昇温速度を大きくすると、電極間から気泡を十分に除去できない可能性が考えられる。また、昇温温度を大きくすると、非水電解液10内の支持塩の濃度分布にばらつきが生じることで、抵抗の上昇およびリチウム金属の析出が生じてしまう可能性等も考えられる。表1に示す試験結果から、昇温工程における昇温速度は0.5℃/min以下であることが好ましいといえる。 Further, as shown in Table 1, in Examples 4 to 7, the cooling temperatures in the cooling step are all the same, and the heating rate in the raising step is different. Comparing Examples 4 to 7, it can be seen that the reaction resistance increase rate was increased and the overcharge resistance was not improved by increasing the temperature increase rate in the temperature increase step to more than 0.5 ° C./min. As a cause of this, it is considered that if the temperature rising rate is increased, bubbles may not be sufficiently removed from between the electrodes. Further, if the temperature rise temperature is increased, the concentration distribution of the supporting salt in the non-aqueous electrolyte 10 may vary, which may lead to an increase in resistance and precipitation of lithium metal. From the test results shown in Table 1, it can be said that the heating rate in the heating step is preferably 0.5 ° C./min or less.

なお、上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、冷却工程における冷却条件(例えば、冷却温度および冷却速度等)、および、昇温工程における昇温条件(例えば昇温速度等)は、非水電解液二次電池の構成および材質等に応じて変化し得る。従って、上記実施形態で例示された各種条件は、非水電解液二次電池の構成および材質等に応じて変更してもよい。 The technique disclosed in the above embodiment is only an example. Therefore, it is possible to modify the techniques exemplified in the above embodiments. For example, the cooling conditions in the cooling step (for example, cooling temperature and cooling rate, etc.) and the raising conditions in the raising step (for example, raising rate, etc.) depend on the configuration and material of the non-aqueous electrolyte secondary battery. Can change. Therefore, the various conditions exemplified in the above embodiment may be changed depending on the configuration and material of the non-aqueous electrolyte secondary battery.

1 非水電解液二次電池
10 非水電解液
20 電極体
30 電池ケース
50 正極体
60 負極体
70 セパレータ

1 Non-aqueous electrolyte secondary battery 10 Non-aqueous electrolyte 20 Electrode body 30 Battery case 50 Positive electrode body 60 Negative electrode body 70 Separator

Claims (1)

正極体、負極体、および、該正極体と該負極体との間に介在するセパレータを有する電極体と、
非水電解液と、
前記電極体および前記非水電解液を内部に収容する電池ケースと、
を備えた非水電解液二次電池の再利用方法であって、
前記電極体および前記非水電解液が前記電池ケースの内部に密閉された状態の前記非水電解液二次電池を、前記非水電解液の凝固点未満の温度に冷却する冷却工程と、
前記冷却工程によって前記凝固点未満の温度まで冷却された前記非水電解液二次電池を、前記凝固点以上の温度に昇温させ、前記電極体の内部の前記非水電解液内に存在していた気泡が前記電極体の外部へ排出された状態とする昇温工程と、
を含むことを特徴とする、非水電解液二次電池の再利用方法。

A positive electrode body, a negative electrode body, and an electrode body having a separator interposed between the positive electrode body and the negative electrode body, and
With non-aqueous electrolyte
A battery case for accommodating the electrode body and the non-aqueous electrolytic solution inside,
It is a method of reusing a non-aqueous electrolyte secondary battery equipped with
A cooling step of cooling the non-aqueous electrolyte secondary battery in a state where the electrode body and the non-aqueous electrolyte are sealed inside the battery case to a temperature lower than the freezing point of the non-aqueous electrolyte.
The non-aqueous electrolytic solution secondary battery cooled to a temperature below the freezing point by the cooling step was heated to a temperature equal to or higher than the freezing point, and was present in the non-aqueous electrolytic solution inside the electrode body. A temperature raising step in which bubbles are discharged to the outside of the electrode body, and
A method for reusing a non-aqueous electrolyte secondary battery, which comprises.

JP2018159043A 2018-08-28 2018-08-28 How to reuse non-aqueous electrolyte secondary battery Active JP7025715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159043A JP7025715B2 (en) 2018-08-28 2018-08-28 How to reuse non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159043A JP7025715B2 (en) 2018-08-28 2018-08-28 How to reuse non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2020035566A JP2020035566A (en) 2020-03-05
JP7025715B2 true JP7025715B2 (en) 2022-02-25

Family

ID=69668337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159043A Active JP7025715B2 (en) 2018-08-28 2018-08-28 How to reuse non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7025715B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110069A (en) 2011-11-24 2013-06-06 Toyota Motor Corp Secondary battery reuse system, vehicle drive power supply and vehicle
JP2017050115A (en) 2015-08-31 2017-03-09 トヨタ自動車株式会社 Method of selecting reusable nonaqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110069A (en) 2011-11-24 2013-06-06 Toyota Motor Corp Secondary battery reuse system, vehicle drive power supply and vehicle
JP2017050115A (en) 2015-08-31 2017-03-09 トヨタ自動車株式会社 Method of selecting reusable nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020035566A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR101812420B1 (en) Degraded performance recovery method for lithium ion secondary battery
KR101776519B1 (en) Method for sorting reusable nonaqueous electrolyte secondary battery
JP2017045621A (en) Capacity recovery method for lithium ion secondary battery
US10132872B2 (en) Method for sorting reusable nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6994151B2 (en) Separator for non-aqueous electrolyte secondary battery
JP7025715B2 (en) How to reuse non-aqueous electrolyte secondary battery
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
CN111146505B (en) Non-aqueous electrolyte secondary battery
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP2012109048A (en) Regeneration method of nonaqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP2016134277A (en) Nonaqueous electrolyte liquid secondary battery
JP7079416B2 (en) Film formation method
JP7377827B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP6635320B2 (en) Non-aqueous electrolyte secondary battery
JP7157907B2 (en) Method for judging the bonding state of terminals
JP2018125216A (en) Lithium ion secondary battery
JP6876245B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2017041416A (en) Lithium ion secondary battery and manufacturing method of the same
JP2021182508A (en) Manufacturing method of secondary battery
JP2021096927A (en) Method of manufacturing secondary battery
JP2011175810A (en) Lithium secondary battery
JP2018116912A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220126

R151 Written notification of patent or utility model registration

Ref document number: 7025715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151