JP7079416B2 - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
JP7079416B2
JP7079416B2 JP2019050211A JP2019050211A JP7079416B2 JP 7079416 B2 JP7079416 B2 JP 7079416B2 JP 2019050211 A JP2019050211 A JP 2019050211A JP 2019050211 A JP2019050211 A JP 2019050211A JP 7079416 B2 JP7079416 B2 JP 7079416B2
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
film
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050211A
Other languages
Japanese (ja)
Other versions
JP2020155234A (en
Inventor
政裕 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019050211A priority Critical patent/JP7079416B2/en
Publication of JP2020155234A publication Critical patent/JP2020155234A/en
Application granted granted Critical
Publication of JP7079416B2 publication Critical patent/JP7079416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池の負極に被膜を形成する被膜形成方法に関する。 The present invention relates to a film forming method for forming a film on the negative electrode of a lithium ion secondary battery.

二次電池は、パソコンや携帯端末等のポータブル電源、あるいはEV(電気自動車)、HV(ハイブリッド自動車)、PHV(プラグインハイブリッド自動車)等の車両駆動用電源として広く用いられている。二次電池の一種であるリチウムイオン二次電池の容量を維持することを目的として、種々の技術が提案されている。例えば、特許文献1に記載されている容量回復方法では、リチウムイオン二次電池が基準SOCまで放電されると、SOC100%から基準SOCまで降下した放電電圧の変化量よりも小さい変化量となるように、放電電圧が制御される。これにより、負極活物質層のうち、正極活物質層と対向しない非対向部に蓄積したリチウムイオンを、正極活物質層に戻すことを図っている。 The secondary battery is widely used as a portable power source for personal computers and mobile terminals, or as a vehicle drive power source for EVs (electric vehicles), HVs (hybrid vehicles), PHVs (plug-in hybrid vehicles), and the like. Various techniques have been proposed for the purpose of maintaining the capacity of a lithium ion secondary battery, which is a kind of secondary battery. For example, in the capacity recovery method described in Patent Document 1, when the lithium ion secondary battery is discharged to the reference SOC, the change amount is smaller than the change amount of the discharge voltage dropped from 100% SOC to the reference SOC. In addition, the discharge voltage is controlled. As a result, the lithium ions accumulated in the non-opposing portion of the negative electrode active material layer that does not face the positive electrode active material layer are returned to the positive electrode active material layer.

特開2015-187938号公報JP-A-2015-187938

二次電池の一種であるリチウムイオン二次電池では、充電が行われる際に電解液の成分が分解されることで、LiF(フッ化リチウム)等からなるSEI(Solid Electrolyte Interphase)被膜が、負極活物質層の表面に形成される。SEI被膜は、負極活物質層と電解液が直接接触することで生じる電解液の分解を抑制すると共に、リチウムイオンの負極への挿入および負極からの離脱を円滑にする。一方で、SEI被膜が生成される際には電荷が消費されるので、SEI被膜が不必要に生成されると電池容量が低下する。 In a lithium ion secondary battery, which is a type of secondary battery, the components of the electrolytic solution are decomposed when charging is performed, so that the SEI (Solid Electrolyte Interphase) film made of LiF (lithium fluoride) or the like is formed as a negative electrode. It is formed on the surface of the active material layer. The SEI film suppresses the decomposition of the electrolytic solution caused by the direct contact between the negative electrode active material layer and the electrolytic solution, and facilitates the insertion of lithium ions into the negative electrode and the detachment from the negative electrode. On the other hand, since electric charges are consumed when the SEI film is formed, the battery capacity decreases when the SEI film is unnecessarily generated.

リチウムイオン二次電池を使用する過程で、負極(例えば負極活物質層)には膨張収縮等の変化が生じる。負極の膨張収縮等に起因して、負極活物質層の表面に形成されたSEI被膜に破損(例えば、亀裂および剥離等)が生じる場合がある。SEI被膜が破損すると、負極活物質層と電解液が直接接触してSEI被膜が再形成されるので、電池容量が低下する可能性がある。従って、負極に形成されたSEI被膜の破損の影響を低下させることが望ましい。 In the process of using the lithium ion secondary battery, changes such as expansion and contraction occur in the negative electrode (for example, the negative electrode active material layer). The SEI film formed on the surface of the negative electrode active material layer may be damaged (for example, cracks and peeling) due to expansion and contraction of the negative electrode. When the SEI film is damaged, the negative electrode active material layer and the electrolytic solution come into direct contact with each other to reshape the SEI film, which may reduce the battery capacity. Therefore, it is desirable to reduce the influence of damage to the SEI coating formed on the negative electrode.

本発明の典型的な目的は、リチウムイオン二次電池の負極におけるSEI被膜が破損する影響を適切に低下させることが可能な被膜形成方法を提供することである。 A typical object of the present invention is to provide a film forming method capable of appropriately reducing the influence of damage to the SEI film on the negative electrode of a lithium ion secondary battery.

かかる目的を実現するべく、ここに開示される一態様の被膜形成方法は、正極、負極、および電解液を備えたリチウムイオン二次電池の負極に被膜を形成する被膜形成方法であって、上記リチウムイオン二次電池のSOCを、常温で0%とするSOC調整ステップと、上記SOC調整ステップにおいてSOCが調整された上記リチウムイオン二次電池の温度を、-30℃以上-20℃以下の範囲に調整する温度調整ステップと、上記温度調整ステップにおいて温度が調整された上記リチウムイオン二次電池の電圧を、設定された目標電圧に降下させた状態で、上記リチウムイオン二次電池に対するフロート充電を実行するフロート充電ステップと、を含み、上記目標電圧は、少なくとも負極と電解液の構成が上記リチウムイオン二次電池と同一であり、作用極に上記負極、対極にリチウム金属を備えた電池において、電位をOCVから低電位の方向に掃引している間に測定される反応電流がピークを形成する際の、負極電位と、上記負極電位に対応する正極電位との差分であることを特徴とする。 In order to realize such an object, one aspect of the film forming method disclosed herein is a film forming method for forming a film on the negative electrode of a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution. The temperature of the SOC adjustment step in which the SOC of the lithium ion secondary battery is set to 0% at room temperature and the temperature of the lithium ion secondary battery whose SOC is adjusted in the SOC adjustment step are in the range of -30 ° C or higher and -20 ° C or lower. Float charging to the lithium ion secondary battery in a state where the voltage of the temperature adjustment step and the lithium ion secondary battery whose temperature is adjusted in the temperature adjustment step is lowered to the set target voltage. In a battery comprising a float charging step to be performed, the target voltage having at least the same composition of the negative electrode and the electrolytic solution as the lithium ion secondary battery, the negative electrode at the working electrode and the lithium metal at the counter electrode. It is characterized in that the reaction current measured while sweeping the potential from the OCV toward the low potential is the difference between the negative electrode potential and the positive electrode potential corresponding to the negative electrode potential when forming a peak. ..

本開示に係る被膜形成方法によると、電解液に含まれる溶媒中の物質によって、SEI被膜が形成された負極の表面に、さらに被膜(以下、「溶媒由来被膜」という)が形成される。負極に溶媒由来被膜が形成されると、SEI被膜が破損した場合でも、負極活物質層と電解液が直接接触してSEI被膜が再形成される可能性が低下する。よって、SEI被膜が破損して電池容量が低下することが、適切に抑制される。 According to the film forming method according to the present disclosure, a film (hereinafter referred to as “solvent-derived film”) is further formed on the surface of the negative electrode on which the SEI film is formed by the substance in the solvent contained in the electrolytic solution. When the solvent-derived film is formed on the negative electrode, even if the SEI film is damaged, the possibility that the negative electrode active material layer and the electrolytic solution come into direct contact with each other and the SEI film is formed is reduced. Therefore, it is appropriately suppressed that the SEI film is damaged and the battery capacity is reduced.

被膜形成システム100の一例を示す概略図である。It is a schematic diagram which shows an example of a film forming system 100. 本実施形態における被膜形成方法のフローチャートである。It is a flowchart of the film formation method in this embodiment. サイクル耐久期間と、リチウムイオン二次電池1の容量維持率の実測値関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the cycle endurance period and the measured value of the capacity retention rate of a lithium ion secondary battery 1. リチウムイオン二次電池1の負極および電解液に関するボルタモグラムの一例である。It is an example of a voltammogram regarding a negative electrode and an electrolytic solution of a lithium ion secondary battery 1. 正極電位、負極電位、およびSOCの関係を示すグラフである。It is a graph which shows the relationship of a positive electrode potential, a negative electrode potential, and SOC. 被膜形成処理による効果を確認するための比較試験の結果を示す表である。It is a table which shows the result of the comparative test for confirming the effect by a film formation treatment.

以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、各図における寸法関係は実際の寸法関係を反映するものではない。 Hereinafter, one of the typical embodiments in the present disclosure will be described in detail with reference to the drawings. Matters other than those specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art. Moreover, the dimensional relationship in each drawing does not reflect the actual dimensional relationship.

本明細書において、「電池」とは、電気エネルギーを取り出し可能な蓄電デバイス一般を指す用語であって、一次電池および二次電池を含む概念である。「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池(すなわち化学電池)の他、電気二重層キャパシタ等のキャパシタ(すなわち物理電池)を包含する。つまり、リチウムイオン二次電池は、種々の二次電池のうちの一種である。以下、車両に用いられるリチウムイオン二次電池の負極に被膜を形成する場合を例示して、本開示に係る被膜形成方法について詳細に説明する。ただし、本開示に係る被膜形成方法を、以下の実施形態に記載されたものに限定することを意図したものではない。例えば、車両以外の装置に用いられるリチウムイオン二次電池に、本開示で例示した技術の少なくとも一部を適用することも可能である。 As used herein, the term "battery" refers to a general storage device capable of extracting electrical energy, and is a concept including a primary battery and a secondary battery. "Secondary battery" refers to a general storage device that can be charged and discharged repeatedly, and includes so-called storage batteries (that is, chemical batteries) such as lithium ion secondary batteries, nickel hydrogen batteries, and nickel cadmium batteries, as well as electric double layer capacitors and the like. Includes capacitors (ie, physical batteries). That is, the lithium ion secondary battery is one of various secondary batteries. Hereinafter, the film forming method according to the present disclosure will be described in detail by exemplifying a case where a film is formed on the negative electrode of a lithium ion secondary battery used in a vehicle. However, it is not intended to limit the film forming method according to the present disclosure to those described in the following embodiments. For example, it is possible to apply at least a part of the techniques exemplified in the present disclosure to a lithium ion secondary battery used in a device other than a vehicle.

図1を参照して、リチウムイオン二次電池(以下、単に「二次電池」という場合もある)1の負極に被膜を形成するために使用される被膜形成システム100の一例について、概略的に説明する。本実施形態の被膜形成システム100は、充放電制御装置10、電圧計20、電流計30、および温度調整装置40を備える。 With reference to FIG. 1, an example of a film forming system 100 used for forming a film on the negative electrode of a lithium ion secondary battery (hereinafter, may be simply referred to as “secondary battery”) 1 is schematically described. explain. The film forming system 100 of the present embodiment includes a charge / discharge control device 10, a voltmeter 20, an ammeter 30, and a temperature adjusting device 40.

充放電制御装置10は、二次電池1の充放電制御等の各種制御を実行する。充放電制御装置10は、各種制御を司るコントローラと、プログラムおよび各種データを記憶する記憶装置を備える。一例として、本実施形態では、車両に搭載される電子制御システム(ECU)が、充放電制御装置10として用いられている。ただし、ECU以外のデバイス(例えば、充電装置またはパーソナルコンピュータ等)が、充放電制御装置として使用されてもよい。 The charge / discharge control device 10 executes various controls such as charge / discharge control of the secondary battery 1. The charge / discharge control device 10 includes a controller that controls various controls and a storage device that stores programs and various data. As an example, in the present embodiment, the electronic control system (ECU) mounted on the vehicle is used as the charge / discharge control device 10. However, a device other than the ECU (for example, a charging device or a personal computer) may be used as the charge / discharge control device.

図示しないが、二次電池1の正極端子と負極端子には、電源装置(例えば、発電機)と、出力装置(例えば、出力先の外部装置)とが、それぞれ並列に接続されている。一例として、本実施形態の電源装置は、車両の制動時に発生する運動エネルギーを電力に変換して、二次電池1に充電電力を供給する。また、本実施形態の出力装置は、二次電池1から供給される放電電力によって、車両を駆動する。 Although not shown, a power supply device (for example, a generator) and an output device (for example, an external device for output destination) are connected in parallel to the positive electrode terminal and the negative electrode terminal of the secondary battery 1, respectively. As an example, the power supply device of the present embodiment converts the kinetic energy generated when the vehicle is braked into electric power, and supplies the secondary battery 1 with charging electric power. Further, the output device of the present embodiment drives the vehicle by the discharge power supplied from the secondary battery 1.

二次電池1には、電圧計20が並列に接続されている。電圧計20は、二次電池1の正負極間の電圧を測定する。また、二次電池1には、電流計30が直列に接続されている。電流計30は、二次電池1に流れた電流を測定する。充放電制御装置10は、電圧計20によって測定された電圧、および電流計30によって測定された電流に基づいて、二次電池1の充放電を制御する。 A voltmeter 20 is connected in parallel to the secondary battery 1. The voltmeter 20 measures the voltage between the positive and negative electrodes of the secondary battery 1. Further, an ammeter 30 is connected in series to the secondary battery 1. The ammeter 30 measures the current flowing through the secondary battery 1. The charge / discharge control device 10 controls the charge / discharge of the secondary battery 1 based on the voltage measured by the voltmeter 20 and the current measured by the ammeter 30.

温度調整装置40は、二次電池1の温度を調整する。温度調整装置40にも、種々のデバイスを使用できる。例えば、温度調整が可能な恒温槽等が温度調整装置40として使用されてもよい。 The temperature adjusting device 40 adjusts the temperature of the secondary battery 1. Various devices can also be used for the temperature control device 40. For example, a constant temperature bath or the like capable of adjusting the temperature may be used as the temperature adjusting device 40.

被膜形成の対象となるリチウムイオン二次電池1の一例について説明する。二次電池1は、電池ケース、電極体、および電解液を備える。電池ケースは、電極体および電解液を内部に密閉した状態で収容する。電池ケースには、例えば、可撓性を有するラミネート、または、アルミニウム等の軽量で熱伝導性の良い金属材料等の少なくともいずれかを使用できる。 An example of the lithium ion secondary battery 1 to be formed into a film will be described. The secondary battery 1 includes a battery case, an electrode body, and an electrolytic solution. The battery case houses the electrode body and the electrolytic solution in a sealed state. For the battery case, for example, at least one of a flexible laminate or a lightweight metal material having good thermal conductivity such as aluminum can be used.

電極体は、正極、負極、セパレータを備える。一例として、本実施形態の電極体には、長尺状の正極(正極シート)、長尺状の負極(負極シート)、および、2枚の長尺状のセパレータ(セパレータシート)が重ね合わされて長手方向に捲回された捲回電極体が採用されている。正極では、長尺状の正極集電体の片面または両面(本実施形態では両面)に、長手方向に沿って正極活物質層が形成されている。負極では、長尺状の負極集電体の片面または両面(本実施形態では両面)に、長手方向に沿って負極活物質層が形成されている。なお、電極体の捲回軸方向(上記長手方向に直交するシート幅方向)の両側から外方にはみ出すように形成された、正極活物質層非形成部分(即ち、正極活物質層が形成されずに正極集電体が露出した部分)と、負極活物質層非形成部分(即ち、負極活物質層が形成されずに負極集電体が露出した部分)には、それぞれ、正極集電板および負極集電板が接合されている。正極集電板には正極端子が電気的に接続され、負極集電板には負極端子が電気的に接続されている。なお、電極体の構成を変更することも可能である。例えば、捲回電極体の代わりに積層型の電極体が用いられてもよい。 The electrode body includes a positive electrode, a negative electrode, and a separator. As an example, a long positive electrode (positive electrode sheet), a long negative electrode (negative electrode sheet), and two long separators (separator sheets) are superposed on the electrode body of the present embodiment. A wound electrode body wound in the longitudinal direction is adopted. In the positive electrode, a positive electrode active material layer is formed along the longitudinal direction on one side or both sides (both sides in this embodiment) of a long positive electrode current collector. In the negative electrode, a negative electrode active material layer is formed along the longitudinal direction on one side or both sides (both sides in this embodiment) of a long negative electrode current collector. A non-formed portion of the positive electrode active material layer (that is, a positive electrode active material layer) formed so as to protrude outward from both sides in the winding axis direction (the sheet width direction orthogonal to the longitudinal direction) of the electrode body is formed. The positive electrode current collector plate is located in the portion where the positive electrode current collector is exposed and the negative electrode active material layer is not formed (that is, the portion where the negative electrode active material layer is not formed and the negative electrode current collector is exposed). And the negative electrode current collector plate is joined. The positive electrode terminal is electrically connected to the positive electrode current collector plate, and the negative electrode terminal is electrically connected to the negative electrode current collector plate. It is also possible to change the configuration of the electrode body. For example, a laminated electrode body may be used instead of the wound electrode body.

正極集電体には、この種のリチウムイオン二次電池の正極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の正極集電体が好ましい。例えば、アルミニウム、ニッケル、チタン、ステンレス鋼等の金属材を正極集電体として採用できる。特にアルミニウム(例えばアルミニウム箔)が好ましい。正極活物質層の正極活物質としては、例えば層状構造やスピネル構造等のリチウム複合金属酸化物(例えば、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)が挙げられる。正極活物質層は、正極活物質と必要に応じて用いられる材料(導電材、バインダ等)とを適当な溶媒(例えばN-メチル-2-ピロリドン:NMP)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を正極集電体の表面に付与し、乾燥することによって形成することができる。 As the positive electrode current collector, those used as the positive electrode current collector of this type of lithium ion secondary battery can be used without particular limitation. Typically, a metal positive electrode current collector having good conductivity is preferred. For example, a metal material such as aluminum, nickel, titanium, or stainless steel can be used as the positive electrode current collector. In particular, aluminum (for example, aluminum foil) is preferable. Examples of the positive electrode active material of the positive electrode active material layer include lithium composite metal oxides such as a layered structure and a spinel structure (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 ). , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4 , etc.). In the positive electrode active material layer, the positive electrode active material and a material (conductive material, binder, etc.) used as needed are dispersed in an appropriate solvent (for example, N-methyl-2-pyrrolidone: NMP), and a paste (or slurry) is formed. It can be formed by preparing a composition of (shape), applying an appropriate amount of the composition to the surface of the positive electrode current collector, and drying the composition.

負極集電体には、この種のリチウムイオン二次電池の負極集電体として用いられるものを特に制限なく使用し得る。典型的には、良好な導電性を有する金属製の負極集電体が好ましく、例えば、銅(例えば銅箔)や銅を主体とする合金を用いることができる。負極活物質層の負極活物質としては、例えば、少なくとも一部にグラファイト構造(層状構造)を含む粒子状(或いは球状、鱗片状)の炭素材料、リチウム遷移金属複合酸化物(例えば、LiTi12等のリチウムチタン複合酸化物)、リチウム遷移金属複合窒化物等が挙げられる。負極活物質層は、負極活物質と必要に応じて用いられる材料(バインダ等)とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(またはスラリー状)の組成物を調製し、該組成物の適当量を負極集電体の表面に付与し、乾燥することによって形成することができる。 As the negative electrode current collector, those used as the negative electrode current collector of this type of lithium ion secondary battery can be used without particular limitation. Typically, a metal negative electrode current collector having good conductivity is preferable, and for example, copper (for example, copper foil) or an alloy mainly composed of copper can be used. Examples of the negative electrode active material of the negative electrode active material layer include a particle-like (or spherical or scaly) carbon material containing a graphite structure (layered structure) at least in part, and a lithium transition metal composite oxide (for example, Li 4 Ti). 5 O 12 and the like lithium-titanium composite oxide), lithium transition metal composite nitride and the like. In the negative electrode active material layer, the negative electrode active material and a material (binder or the like) used as needed are dispersed in an appropriate solvent (for example, ion-exchanged water) to prepare a paste-like (or slurry-like) composition. It can be formed by applying an appropriate amount of the composition to the surface of the negative electrode current collector and drying it.

セパレータとしては、従来公知の多孔質シートからなるセパレータを特に制限なく使用することができる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂から成る多孔質シート(フィルム、不織布等)が挙げられる。かかる多孔質シートは、単層構造であってもよく、二層以上の複数構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。また、多孔質シートの片面または両面に、多孔質の耐熱層を備える構成のものであってもよい。この耐熱層は、例えば、無機フィラーとバインダとを含む層(フィラー層ともいう。)であり得る。無機フィラーとしては、例えばアルミナ、ベーマイト、シリカ等を好ましく採用し得る。 As the separator, a separator made of a conventionally known porous sheet can be used without particular limitation. For example, a porous sheet (film, non-woven fabric, etc.) made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP) can be mentioned. The porous sheet may have a single-layer structure or a plurality of structures having two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). Further, the porous sheet may be configured to have a porous heat-resistant layer on one side or both sides. This heat-resistant layer may be, for example, a layer containing an inorganic filler and a binder (also referred to as a filler layer). As the inorganic filler, for example, alumina, boehmite, silica and the like can be preferably adopted.

電極体とともに電池ケースに収容される電解液は、適当な非水溶媒に支持塩を含有するものであり、従来公知の電解液を特に制限なく採用することができる。例えば、非水溶媒として、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を用いることができる。また、支持塩としては、例えばリチウム塩を好適に用いることができ、本実施形態ではLiPFが採用されている。 The electrolytic solution housed in the battery case together with the electrode body contains a supporting salt in a suitable non-aqueous solvent, and a conventionally known electrolytic solution can be used without particular limitation. For example, as the non-aqueous solvent, ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be used. Further, as the supporting salt, for example, a lithium salt can be preferably used, and LiPF 6 is adopted in this embodiment.

図2~図5を参照して、二次電池1の負極に溶媒由来被膜を形成する被膜形成方法の一例について説明する。まず、製造された未使用の二次電池1に対する被膜形成処理(S1~S4)が実行される。未使用の二次電池1に対する被膜形成処理は、前述した車両の被膜形成システム100によって実行されてもよいし、二次電池1が車両に搭載される前(例えば、二次電池1に対する活性化工程中)に、車両以外のシステムによって実行されてもよい。 An example of a film forming method for forming a solvent-derived film on the negative electrode of the secondary battery 1 will be described with reference to FIGS. 2 to 5. First, the film forming treatment (S1 to S4) for the manufactured unused secondary battery 1 is executed. The film forming process on the unused secondary battery 1 may be performed by the vehicle film forming system 100 described above, or may be activated before the secondary battery 1 is mounted on the vehicle (for example, activation on the secondary battery 1). During the process), it may be performed by a system other than the vehicle.

被膜形成処理(S1~S4)について説明する。まず、二次電池1の温度を常温とした状態で、二次電池1のSOCが0%に調整される(S1)。次いで、二次電池1の温度が、-30℃以上、-20℃以下の範囲に調整される(S2)。被膜形成処理では、電解液中の塩による被膜(塩由来被膜)が形成されることを抑制しつつ、電解液に含まれる溶媒中の物質による被膜(溶媒由来被膜)を優先的に負極に形成することが望ましい。詳細は図6を参照して後述するが、S2で二次電池の温度が低温に調整されることで、電解液中の塩、水分、および酸の拡散が抑制されて、塩由来被膜の形成が抑制されるものと推測される。 The film forming treatment (S1 to S4) will be described. First, the SOC of the secondary battery 1 is adjusted to 0% while the temperature of the secondary battery 1 is at room temperature (S1). Next, the temperature of the secondary battery 1 is adjusted to a range of −30 ° C. or higher and −20 ° C. or lower (S2). In the film forming treatment, the film formed by the substance in the solvent contained in the electrolytic solution (solvent-derived film) is preferentially formed on the negative electrode while suppressing the formation of the salt-derived film (salt-derived film) in the electrolytic solution. It is desirable to do. Details will be described later with reference to FIG. 6, but by adjusting the temperature of the secondary battery to a low temperature in S2, the diffusion of salt, water, and acid in the electrolytic solution is suppressed, and a salt-derived film is formed. Is presumed to be suppressed.

次いで、二次電池1の電圧が、適切な降下速度(一例として、本実施形態では1mV/s)で目標電圧に下げられる。二次電池1の電圧を目標電圧に降下させた状態で、二次電池1に対するフロート充電が実行される(S3)。詳細は後述するが、目標電圧には、溶媒由来被膜が二次電池1の負極の表面に優先的に形成される電圧が設定される。また、フロート充電とは、充電電流を実質的に二次電池1に流さずに、二次電池1の電圧を維持する充電方法を言う。S3では、例えば、二次電池1の電圧が維持されるように、二次電池1に微弱電流が供給されてもよい。また、自己放電等によって二次電池の充電量が減少した際に、二次電池1に電流が供給されることで、二次電池1の電圧が維持されてもよい。二次電池1の電圧が目標電圧で維持される間に、負極の表面に対する溶媒被膜の形成が進行する。なお、フロート充電が継続される時間は、二次電池1における電解液の種類等に応じて適宜設定されればよい。一例として、本実施形態では、フロート充電は1時間実行される。その後、二次電池1のSOCが0%に戻されて(S4)、被膜形成処理が終了する。 Next, the voltage of the secondary battery 1 is lowered to the target voltage at an appropriate drop speed (for example, 1 mV / s in this embodiment). Float charging is executed for the secondary battery 1 in a state where the voltage of the secondary battery 1 is lowered to the target voltage (S3). Although the details will be described later, the target voltage is set to a voltage at which the solvent-derived film is preferentially formed on the surface of the negative electrode of the secondary battery 1. Further, float charging refers to a charging method in which the voltage of the secondary battery 1 is maintained without substantially passing the charging current through the secondary battery 1. In S3, for example, a weak current may be supplied to the secondary battery 1 so that the voltage of the secondary battery 1 is maintained. Further, when the charge amount of the secondary battery decreases due to self-discharge or the like, the voltage of the secondary battery 1 may be maintained by supplying a current to the secondary battery 1. While the voltage of the secondary battery 1 is maintained at the target voltage, the formation of the solvent film on the surface of the negative electrode proceeds. The time for continuing the float charge may be appropriately set according to the type of the electrolytic solution in the secondary battery 1 and the like. As an example, in this embodiment, float charging is performed for 1 hour. After that, the SOC of the secondary battery 1 is returned to 0% (S4), and the film forming process is completed.

被膜形成処理が行われた二次電池1は、車両の走行に使用される(S5)。次いで、被膜の再形成が必要であるか否かが判断される(S6)。被膜の再形成が必要であるか否かの判断基準は適宜設定できる。例えば、二次電池1に対する被膜形成処理(S1~S4)が実行された以後、二次電池1が車両の走行に使用された期間が所定期間(例えば2年)に達した場合に、被膜の再形成が必要であると判断されてもよい。 The secondary battery 1 that has been subjected to the film forming treatment is used for traveling the vehicle (S5). Then, it is determined whether or not the film needs to be reformed (S6). Criteria for determining whether or not the film needs to be reformed can be set as appropriate. For example, when the period in which the secondary battery 1 has been used for running the vehicle reaches a predetermined period (for example, 2 years) after the film forming treatment (S1 to S4) for the secondary battery 1 is executed, the film is formed. It may be determined that reformation is necessary.

また、S6では、二次電池1の容量維持率に基づいて、被膜の再形成が必要であるか否かが判断されてもよい。図3を参照して、容量維持率に基づいて被膜の再形成の要否を判断する方法の一例について説明する。図3は、被膜形成処理(S1~S4)が行われた二次電池1と、被膜形成処理が行われていない二次電池1の、サイクル耐久期間と容量維持率の実測値の関係の一例を示すグラフである。図3のグラフでは、横軸はサイクル耐久期間の平方根を示し、縦軸は二次電池1の容量維持率を示す。図3に示すように、被膜形成処理が行われた二次電池1の容量維持率は、被膜形成処理が行われていない二次電池1の容量維持率に比べて減少し難い。しかし、被膜形成処理が行われた二次電池1では、容量維持率が減少する程度(つまり、図3におけるグラフの傾き)は、一定のサイクル耐久期間が経過すると大きくなる。従って、本実施形態では、構成が二次電池1と同一であり、且つ被膜形成処理(S1~S4)が実行された電池について、サイクル耐久期間と容量維持率の関係が、予め実験によって取得される。次いで、容量維持率の推移の変曲点が特定され、変曲点における容量維持率の値が、二次電池1の容量維持率の閾値として設定される。S6では、二次電池1の容量維持率が閾値未満となった際に、被膜の再形成が必要と判断される。 Further, in S6, it may be determined whether or not the film needs to be reformed based on the capacity retention rate of the secondary battery 1. With reference to FIG. 3, an example of a method for determining the necessity of remodeling the coating film based on the capacity retention rate will be described. FIG. 3 shows an example of the relationship between the cycle durability period and the measured value of the capacity retention rate of the secondary battery 1 in which the film forming treatment (S1 to S4) is performed and the secondary battery 1 in which the film forming treatment is not performed. It is a graph which shows. In the graph of FIG. 3, the horizontal axis shows the square root of the cycle endurance period, and the vertical axis shows the capacity retention rate of the secondary battery 1. As shown in FIG. 3, the capacity retention rate of the secondary battery 1 subjected to the film forming treatment is unlikely to decrease as compared with the capacity retention rate of the secondary battery 1 not subjected to the film forming treatment. However, in the secondary battery 1 subjected to the film forming treatment, the degree to which the capacity retention rate decreases (that is, the slope of the graph in FIG. 3) becomes large after a certain cycle endurance period elapses. Therefore, in the present embodiment, the relationship between the cycle durability period and the capacity retention rate is obtained in advance by experiments for the batteries having the same configuration as the secondary battery 1 and having the film forming treatment (S1 to S4) executed. To. Next, the inflection point of the transition of the capacity retention rate is specified, and the value of the capacity retention rate at the inflection point is set as the threshold value of the capacity retention rate of the secondary battery 1. In S6, when the capacity retention rate of the secondary battery 1 becomes less than the threshold value, it is determined that the film needs to be reformed.

なお、S6では、複数の判断基準が用いられてもよい。例えば、被膜形成処理が実行された以後の経過期間が所定期間に達する条件、および、容量維持率が閾値未満となる条件の一方が満たされた場合に、被膜の再形成が必要と判断されてもよい。 In S6, a plurality of determination criteria may be used. For example, when one of the condition that the elapsed period after the film formation treatment is executed reaches a predetermined period and the condition that the capacity retention rate is less than the threshold value is satisfied, it is determined that the film formation is necessary. It is also good.

被膜の再形成が必要でなければ(S6:NO)、二次電池1は、継続して車両の走行に使用される(S5)。被膜の再形成が必要であれば(S6:YES)、被膜形成処理(S1~S4)が再度実行される。なお、使用済みの二次電池1に対する被膜形成処理は、前述した車両の被膜形成システム100によって実行されてもよいし、二次電池1が車両から取り外された後、車両以外のシステムによって実行されてもよい。また、被膜形成処理は、未使用の二次電池1、および使用済みの二次電池1の一方に対してのみ実行されてもよい。 If the remodeling of the coating is not necessary (S6: NO), the secondary battery 1 is continuously used for running the vehicle (S5). If it is necessary to reshape the film (S6: YES), the film forming process (S1 to S4) is executed again. The film forming process for the used secondary battery 1 may be executed by the film forming system 100 of the vehicle described above, or may be executed by a system other than the vehicle after the secondary battery 1 is removed from the vehicle. You may. Further, the film forming process may be performed only on one of the unused secondary battery 1 and the used secondary battery 1.

図4および図5を参照して、フロート充電(S3)が実行される際の、二次電池1の目標電圧の設定方法について説明する。目標電圧は、実験等によって予め設定されている。まず、少なくとも負極と電解液の構成が二次電池1と同一の電池に対し、LSV(Linear Sweep Voltammetry)が実行される。LSVとは、電極の電位を一定の方向に掃引させ、電位の掃引に応じて流れる反応電流を測定する方法である。本実施形態では、負極を作用電極とし、リチウム(Li)金属を対極として、適切な速度(本実施形態では1mV/s)でOCVから低電位の方向に電位をリニアスイープさせつつ、反応電流が測定される。図4は、二次電池1の負極電位と電解液に関するボルタモグラムの一例であり、横軸が電位、縦軸が反応電流値を示す。電位を低電位の方向に掃引させていくと、反応電流にピークが表れる。このピークが形成される際の反応電流は、電解液中の溶媒の分解に起因するものと、塩由来被膜の形成に起因するものであると考えられる。また、詳細は図6を参照して後述するが、電位をピーク形成時の電位よりもさらに低電位の方向に掃引させていくと、負極へのリチウム挿入反応による反応電流値の増加が見られる。従って、本実施形態では、反応電流がピークを形成する際の負極電位PVnが特定される。一例として、本実施形態では、負極電池を低電位の方向に掃引させた際の、反応電流のピーク開始時の負極電位が特定される。しかし、特定される負極電位は、反応電流のピークが開始された以後であり、且つ、ピークが終了する以前のいずれかの負極電位であってもよい。従って、例えば、ピークが最も大きくなった際の負極電位が特定されてもよいし、ピーク終了時の負極電位が特定されてもよい。 A method of setting the target voltage of the secondary battery 1 when the float charge (S3) is executed will be described with reference to FIGS. 4 and 5. The target voltage is set in advance by an experiment or the like. First, LSV (Linear Swep Voltammetry) is executed for a battery having at least the same composition of the negative electrode and the electrolytic solution as that of the secondary battery 1. LSV is a method of sweeping the potential of an electrode in a certain direction and measuring the reaction current flowing in response to the sweep of the potential. In the present embodiment, the negative electrode is used as a working electrode and the lithium (Li) metal is used as a counter electrode, and the reaction current is generated while linearly sweeping the potential from the OCV in the low potential direction at an appropriate speed (1 mV / s in this embodiment). Be measured. FIG. 4 is an example of a voltammogram relating to the negative electrode potential of the secondary battery 1 and the electrolytic solution, in which the horizontal axis represents the potential and the vertical axis represents the reaction current value. When the potential is swept in the direction of low potential, a peak appears in the reaction current. It is considered that the reaction current at the time of forming this peak is due to the decomposition of the solvent in the electrolytic solution and the formation of the salt-derived film. Further, the details will be described later with reference to FIG. 6, but when the potential is swept in the direction of a lower potential than the potential at the time of peak formation, an increase in the reaction current value due to the lithium insertion reaction into the negative electrode can be seen. .. Therefore, in the present embodiment, the negative electrode potential PVn when the reaction current forms a peak is specified. As an example, in the present embodiment, the negative electrode potential at the start of the peak reaction current when the negative electrode battery is swept in the direction of the low potential is specified. However, the specified negative electrode potential may be any negative electrode potential after the peak of the reaction current starts and before the peak ends. Therefore, for example, the negative electrode potential at the time of the maximum peak may be specified, or the negative electrode potential at the end of the peak may be specified.

次いで、図5に示すように、特定された負極電位(つまり、反応電流がピークを形成する際の負極電位)PVnと、負極電位PVnに対応する正極電位PVpとの差分が、二次電池1の目標電圧として設定される。つまり、負極電位が値PVnを取る際の電池における正極電位PVpから、PVnを引いた値が、目標電圧として設定される。さらに換言すると、負極電位PVnに対応する正極電位PVpは、電池のSOCを、反応電流(図4参照)にピークが形成される値とした際の、正極の電位となる。以上の方法で設定された二次電池1の目標電圧は、溶媒由来被膜が二次電池1の負極の表面に優先的に形成され易い電圧となる。 Next, as shown in FIG. 5, the difference between the specified negative electrode potential (that is, the negative electrode potential when the reaction current forms a peak) PVn and the positive electrode potential PVp corresponding to the negative electrode potential PVn is the secondary battery 1. It is set as the target voltage of. That is, the value obtained by subtracting PVn from the positive electrode potential PVp in the battery when the negative electrode potential takes the value PVn is set as the target voltage. In other words, the positive electrode potential PVp corresponding to the negative electrode potential PVn is the potential of the positive electrode when the SOC of the battery is set to a value at which a peak is formed in the reaction current (see FIG. 4). The target voltage of the secondary battery 1 set by the above method is a voltage at which the solvent-derived film is likely to be preferentially formed on the surface of the negative electrode of the secondary battery 1.

<比較試験>
図6を参照して、被膜形成処理(図2のS1~S4参照)による効果を確認するための比較試験の結果について説明する。図6に示す比較試験では、まず、前述したリチウムイオン二次電池1を11個準備し、11個の二次電池1の各々の容量Aを測定した。11個の二次電池1のうち、No.1の二次電池1には被膜形成処理を行わなかった。また、容量Aを測定したNo.2~No.11の二次電池1の各々に対し、フロート充電時の二次電池1の温度と電圧を変化させつつ、前述したS1~S4(図2参照)と同様の手順で被膜形成処理を実行した。各々の二次電池1に対して実行した被膜形成処理の条件は、図6に示す通りである。ここで、図6に示す「目標電圧Vt」は、図4および図5を参照して説明した方法で設定された目標電圧である。また、図6に示す「Vl」は、目標電圧Vtよりも高い電圧である。次いで、各々の二次電池1に対し、サイクル試験を実行した。サイクル試験では、二次電池1の温度を高温とし、SOCが0%~100%の範囲において、2Cの充放電レートで矩形波充放電を所定サイクル実行した。充放電の間の休止期間は10分とした。その後、No.1~No.11の二次電池1の各々の容量Bを測定し、各々の電池の容量維持率(B/A(%))を算出した。
<Comparative test>
With reference to FIG. 6, the results of a comparative test for confirming the effect of the film forming treatment (see S1 to S4 in FIG. 2) will be described. In the comparative test shown in FIG. 6, first, 11 lithium ion secondary batteries 1 described above were prepared, and the capacity A of each of the 11 secondary batteries 1 was measured. Of the 11 secondary batteries 1, No. The secondary battery 1 of No. 1 was not subjected to the film forming treatment. In addition, No. 1 in which the capacity A was measured. 2-No. For each of the 11 secondary batteries 1, the film forming process was executed in the same procedure as in S1 to S4 (see FIG. 2) described above while changing the temperature and voltage of the secondary battery 1 during float charging. The conditions of the film forming treatment executed for each secondary battery 1 are as shown in FIG. Here, the “target voltage Vt” shown in FIG. 6 is a target voltage set by the method described with reference to FIGS. 4 and 5. Further, “Vl” shown in FIG. 6 is a voltage higher than the target voltage Vt. Then, a cycle test was performed on each secondary battery 1. In the cycle test, the temperature of the secondary battery 1 was set to a high temperature, and a rectangular wave charge / discharge was executed in a predetermined cycle at a charge / discharge rate of 2C in a SOC range of 0% to 100%. The rest period between charging and discharging was 10 minutes. After that, No. 1 to No. The capacity B of each of the secondary batteries 1 of 11 was measured, and the capacity retention rate (B / A (%)) of each battery was calculated.

図6に示すように、No.8~10の二次電池1の容量維持率は、比較例であるNo.1の二次電池1の容量維持率に比べて高くなった。特に、No.9およびNo.10の二次電池1の容量維持率は、No.1の二次電池1の容量維持率よりも大幅に高くなった。これにより、前述した被膜形成処理(図2のS1~S4参照)によって電池容量の低下が抑制されることが確認できる。これは、SEI被膜が形成された負極の表面に、被膜形成処理によって柔らかい溶媒由来被膜がさらに形成されることで、負極の膨張収縮等によってSEI被膜が破損した場合でも、負極活物質層と電解液が直接接触することが抑制されるためであると考えられる。 As shown in FIG. 6, No. The capacity retention rates of the secondary batteries 1 of 8 to 10 are No. 2 which is a comparative example. It was higher than the capacity retention rate of the secondary battery 1 of 1. In particular, No. 9 and No. The capacity retention rate of the secondary battery 1 of 10 is No. It was significantly higher than the capacity retention rate of the secondary battery 1 of 1. As a result, it can be confirmed that the above-mentioned film forming treatment (see S1 to S4 in FIG. 2) suppresses the decrease in battery capacity. This is because a soft solvent-derived film is further formed on the surface of the negative electrode on which the SEI film is formed, so that even if the SEI film is damaged due to expansion and contraction of the negative electrode, the negative electrode active material layer and electrolysis are performed. It is considered that this is because the direct contact of the liquid is suppressed.

また、フロート充電時の電圧をVl(>Vt)とした場合には、フロート充電時の温度に関わらず、容量維持率は向上しなかった。これは、フロート充電時の負極電位を低くしすぎると(つまり、電池電圧を高くしすぎると)、フロート充電時の温度に関わらず、塩由来被膜が優先的に形成されるためであると推測される。以上より、図4および図5を参照して説明した方法でフロート充電時の電圧を設定することが望ましいことが分かる。 Further, when the voltage during float charging was Vl (> Vt), the capacity retention rate did not improve regardless of the temperature during float charging. It is speculated that this is because if the negative electrode potential during float charging is set too low (that is, if the battery voltage is set too high), a salt-derived film is preferentially formed regardless of the temperature during float charging. Will be done. From the above, it can be seen that it is desirable to set the voltage at the time of float charging by the method described with reference to FIGS. 4 and 5.

また、No.7~No.11の結果を見ると、フロート充電時の温度を-10℃~-30℃、より望ましくは-20℃~-30℃に設定することで、容量維持率が向上することが分かる。これは、フロート充電時の温度を低下させることで、電解液中の塩、水分、および酸の拡散が抑制されて、塩由来被膜が形成され難くなるためであると考えられる。 In addition, No. 7-No. Looking at the results of No. 11, it can be seen that the capacity retention rate is improved by setting the temperature during float charging to −10 ° C. to −30 ° C., more preferably −20 ° C. to −30 ° C. It is considered that this is because by lowering the temperature during float charging, the diffusion of salt, water, and acid in the electrolytic solution is suppressed, and it becomes difficult to form a salt-derived film.

以上、具体的な実施形態を挙げて詳細な説明を行ったが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。 Although the detailed description has been given with reference to specific embodiments, these are merely examples and do not limit the scope of the claims. The techniques described in the claims include various modifications and modifications of the above-described embodiments.

1 リチウムイオン二次電池
10 充放電制御装置
40 温度調整装置

1 Lithium-ion secondary battery 10 Charge / discharge control device 40 Temperature control device

Claims (1)

正極、負極、および電解液を備えたリチウムイオン二次電池の負極に被膜を形成する被膜形成方法であって、
前記リチウムイオン二次電池のSOCを、常温で0%とするSOC調整ステップと、
前記SOC調整ステップにおいてSOCが調整された前記リチウムイオン二次電池の温度を、-30℃以上-20℃以下の範囲に調整する温度調整ステップと、
前記温度調整ステップにおいて温度が調整された前記リチウムイオン二次電池の電圧を、設定された目標電圧に降下させた状態で、前記リチウムイオン二次電池に対するフロート充電を実行するフロート充電ステップと、
を含み、
前記目標電圧は、
少なくとも負極と電解液の構成が前記リチウムイオン二次電池と同一であり、作用極に前記負極、対極にリチウム金属を備えた電池において、電位をOCVから低電位の方向に掃引している間に測定される反応電流がピークを形成する際の、負極電位と、前記負極電位に対応する正極電位との差分であることを特徴とする、被膜形成方法。

A film forming method for forming a film on the negative electrode of a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolytic solution.
The SOC adjustment step of setting the SOC of the lithium ion secondary battery to 0% at room temperature,
A temperature adjustment step for adjusting the temperature of the lithium ion secondary battery whose SOC has been adjusted in the SOC adjustment step to a range of −30 ° C. or higher and −20 ° C. or lower,
A float charging step of executing float charging of the lithium ion secondary battery in a state where the voltage of the lithium ion secondary battery whose temperature has been adjusted in the temperature adjusting step is lowered to a set target voltage, and a float charging step.
Including
The target voltage is
In a battery having at least the same composition of the negative electrode and the electrolytic solution as the lithium ion secondary battery, the negative electrode as the working electrode, and the lithium metal as the counter electrode, while the potential is swept from the OCV toward the low potential. A film forming method, characterized in that the measured reaction current is the difference between the negative electrode potential at the time of forming a peak and the positive electrode potential corresponding to the negative electrode potential.

JP2019050211A 2019-03-18 2019-03-18 Film formation method Active JP7079416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050211A JP7079416B2 (en) 2019-03-18 2019-03-18 Film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050211A JP7079416B2 (en) 2019-03-18 2019-03-18 Film formation method

Publications (2)

Publication Number Publication Date
JP2020155234A JP2020155234A (en) 2020-09-24
JP7079416B2 true JP7079416B2 (en) 2022-06-02

Family

ID=72559546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050211A Active JP7079416B2 (en) 2019-03-18 2019-03-18 Film formation method

Country Status (1)

Country Link
JP (1) JP7079416B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2017004776A (en) 2015-06-11 2017-01-05 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899614B2 (en) * 1997-10-01 2007-03-28 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2017004776A (en) 2015-06-11 2017-01-05 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020155234A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP7096973B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and manufacturing system
JP5896024B2 (en) Charge control method and charge control device for secondary battery
JP5673690B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
WO2016020737A1 (en) Nonaqueous electrolyte secondary battery
JP6898585B2 (en) Secondary battery state estimation method and state estimation system
JP4714229B2 (en) Lithium secondary battery
CN106450515A (en) Degraded performance recovery method for lithium ion secondary battery
JP2017091923A (en) Capacity recovery method for lithium ion secondary battery
JP2011070976A (en) Lithium ion secondary battery, vehicle, and battery loading equipment
JP2021026885A (en) Nonaqueous electrolyte secondary battery
JP4412767B2 (en) Storage method of lithium secondary battery
CN110021782A (en) The manufacturing method of nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2013054939A (en) Battery system
JP7071698B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP7079416B2 (en) Film formation method
JP2013206724A (en) Nonaqueous electrolyte secondary battery
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP7237055B2 (en) Non-aqueous electrolyte secondary battery
US11302905B2 (en) Negative electrode of nonaqueous lithium-ion secondary battery and nonaqueous lithium-ion secondary battery using same
JP7025715B2 (en) How to reuse non-aqueous electrolyte secondary battery
JP2017050156A (en) Nonaqueous electrolyte secondary battery
JP2021082519A (en) Secondary battery and manufacturing method thereof
JP7249991B2 (en) secondary battery
JP2020202039A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220504

R151 Written notification of patent or utility model registration

Ref document number: 7079416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151