WO2019013536A1 - Lithium secondary battery regeneration method - Google Patents

Lithium secondary battery regeneration method Download PDF

Info

Publication number
WO2019013536A1
WO2019013536A1 PCT/KR2018/007825 KR2018007825W WO2019013536A1 WO 2019013536 A1 WO2019013536 A1 WO 2019013536A1 KR 2018007825 W KR2018007825 W KR 2018007825W WO 2019013536 A1 WO2019013536 A1 WO 2019013536A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrode
cathode
secondary battery
supply
Prior art date
Application number
PCT/KR2018/007825
Other languages
French (fr)
Korean (ko)
Inventor
홍철기
이재헌
김석구
김동규
김대수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180079493A external-priority patent/KR102270870B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/497,235 priority Critical patent/US11362373B2/en
Priority to JP2019560641A priority patent/JP6947360B2/en
Priority to CN201880017704.6A priority patent/CN110419140B/en
Priority to EP18831588.1A priority patent/EP3588659B1/en
Publication of WO2019013536A1 publication Critical patent/WO2019013536A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for regenerating a lithium secondary battery.
  • rechargeable secondary batteries can be recharged, and they are being researched and developed recently due to their small size and high capacity.
  • technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing.
  • the secondary battery is classified into a coin type battery, a cylindrical type battery, a square type battery, and a pouch type battery depending on the shape of the battery case.
  • An electrode assembly mounted in a battery case of a secondary battery is a chargeable and dischargeable power generation device having a stacked structure of an electrode and a separation membrane.
  • the electrode assembly includes a jelly-roll type in which a separator is interposed between a positive electrode and a negative electrode coated with an active material, and a stacked type in which a plurality of positive electrodes and negative electrodes are sequentially stacked with a separator interposed therebetween And a stack / folding type in which stacked unit cells are wound with a long length separating film.
  • lithium ions are gradually transferred from the anode to the cathode and charged, and lithium ions are gradually transferred from the cathode to the anode and discharged repeatedly while the lithium source is gradually lacking.
  • the battery capacity was reduced and degraded.
  • methods for recycling and reusing such degenerated lithium secondary batteries are being studied.
  • One aspect of the present invention is to provide a method for regenerating a lithium secondary battery capable of improving lifetime characteristics of the lithium secondary battery.
  • Another aspect of the present invention is to provide a regeneration method of a lithium secondary battery capable of recovering a battery capacity by reapplying lithium ions to an anode through a lithium re-supply electrode without disassembling the secondary battery.
  • Another aspect of the present invention is to provide a regenerating method of a lithium secondary battery capable of increasing the recovery of the battery capacity by completely discharging the negative electrode to the discharge limit through the lithium re-supply electrode without disassembling the secondary battery.
  • Another aspect of the present invention is to provide a regeneration method of a lithium secondary battery capable of adjusting a balance between an anode and a cathode
  • the present invention it is possible to increase the recovery of the battery capacity by completely discharging the negative electrode to the discharge limit through the lithium re-supply electrode without disassembling the secondary battery. That is, lithium ions are moved from the cathode to the anode, and lithium ions are left in the cathode at the time of discharging, so that a complete discharge is not achieved.
  • lithium is supplied as a counter electrode and a cathode is set as a working electrode, It is possible to completely discharge the negative electrode to the discharge limit while moving the lithium ion to the electrode.
  • the electrode capacity can be remarkably restored.
  • FIG. 1 is a perspective view of a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view illustrating an electrode assembly and a lithium re-supply electrode in a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 4 is a front perspective view exemplarily showing a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating differential voltage data used in a determination step in a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. Furthermore, the present invention can be embodied in various different forms and is not limited to the embodiments described herein. In the following description of the present invention, a detailed description of related arts which may unnecessarily obscure the gist of the present invention will be omitted.
  • FIG. 1 is a perspective view of a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view illustrating an electrode assembly and a lithium re-supply electrode in a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view illustrating an electrode assembly and a lithium re-supply electrode in a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • a method of regenerating a lithium secondary battery according to an embodiment of the present invention includes a step of supplying a lithium material to an anode 121 through a lithium material supplying electrode 130, And a cathode discharge step of completely discharging the cathode 122 to the discharge limit via the supply electrode 130 to restore the capacity of the secondary battery 100.
  • the regenerating method of the lithium secondary battery according to an embodiment of the present invention may further include a discharging step of discharging the electrode 123 before the supplying of the lithium material and a discharging step of discriminating the degree of degradation of the anode 121 and the cathode 122 And a balance re-establishment step of re-establishing the balance of the electrode 123.
  • FIG. 4 is a front perspective view illustrating a lithium secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a lithium rechargeable battery according to an embodiment of the present invention.
  • 1 is a bottom perspective view exemplarily showing a lithium secondary battery.
  • FIG. 1 A method of regenerating a lithium secondary battery according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
  • FIG. 1 A method of regenerating a lithium secondary battery according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
  • FIG. 1 A method of regenerating a lithium secondary battery according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
  • a secondary battery 100 applied to a method for regenerating a lithium secondary battery according to an embodiment of the present invention includes a battery case 100 having an electrode assembly 120 and an accommodating portion for accommodating the electrode assembly 120 110).
  • the secondary battery 100 applied to the regenerating method of the lithium secondary battery according to an embodiment of the present invention may further include an electrolyte and a lithium re-supply electrode 130 to be received in the battery case 110.
  • the electrode assembly 120 is a chargeable and dischargeable power generation element, and the electrode 123 and the separation membrane 124 are assembled to form a structure in which the layers are alternately stacked.
  • the electrode assembly 120 may include electrode leads 125 and 126 that are electrically connected to the electrode 123.
  • the electrode assembly 120 may further include electrode tabs 127 and 128 protruding from the side surface of the electrode 123 and electrically connected to the electrode leads 125 and 126.
  • the electrode 123 may be composed of a positive electrode 121 and a negative electrode 122.
  • the electrode assembly 120 may have a structure in which the anode 121 / the separation membrane 124 / the cathode 122 are alternately stacked.
  • the anode 121 includes a cathode current collector (not shown) and a cathode active material (not shown) coated on the cathode current collector.
  • the cathode 122 includes a cathode current collector (not shown) and a cathode active material (Not shown).
  • the positive electrode collector may be made of, for example, a foil made of aluminum (Al).
  • the cathode active material may be composed of, for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, or a compound or mixture thereof containing at least one of the foregoing.
  • the cathode active material may be made of a Hi Ni-based cathode material as another example.
  • the Hi Ni-based cathode material may include any one or more of LiNiMnCoO-based, LiNiCoAl-based, and LiMiMnCoAl-based materials.
  • the anode current collector may be made of, for example, a foil made of copper (Cu) or nickel (Ni).
  • the negative electrode active material may be made of a material including artificial graphite.
  • the negative electrode active material may be made of lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon compound, tin compound, titanium compound or an alloy thereof.
  • the separator 124 is made of an insulating material and electrically insulates between the anode 121 and the cathode 122.
  • the separation membrane 124 may be located between the anode 121 and the cathode 122, and on the outer surface of the anode 121 and the cathode 122.
  • the outermost side of the separation membrane 134 may be provided so as to surround the electrode assembly 120 so as to be positioned between the lithium re-supply electrode 130 and the anode 121 and the cathode 122.
  • the separation membrane 124 may be formed of a polyolefin-based resin film such as polyethylene or polypropylene having micropores, for example.
  • the electrode leads 125 and 126 may include a positive electrode lead 125 electrically connected to the positive electrode 121 and a negative electrode lead 126 electrically connected to the negative electrode 122.
  • the electrode tabs 127 and 128 protrude from the side surface of the anode 121 and protrude from the side surfaces of the cathode 122 and the anode tab 127 connecting the anode 121 to the anode lead 125, And an anode tab 126 electrically connected to the anode 126.
  • non-aqueous electrolyte examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylenecarbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, butylolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, But are not limited to, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, Derivatives, tetrahydrofuran derivatives, ethers, methyl propionate, ethyl propionate and the like can be used.
  • the lithium salt is a material that is readily soluble in non-aqueous liquid electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB10Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, imide and the like can be used.
  • a plurality of lithium re-supply electrodes 130 may be accommodated in the battery case 110.
  • the lithium re-supply electrode 130 includes a first lithium re-supply electrode 131 located at one side of the electrode assembly 120 and a second lithium material supply electrode 132 located at the other side of the electrode assembly 120 .
  • the electrode assembly 120 is positioned in the receiving portion of the battery case 110, and the first lithium re-supply electrode 131 and the two lithium re-supply electrodes 132 ) Can be located.
  • lithium re-supply electrode leads 133 and 134 electrically connected to the lithium re-supply electrode 130 may be further provided.
  • the lithium re-supply electrode 130 may be made of, for example, lithium metal.
  • the plurality of lithium re-supply electrodes 130 may surround the opposite ends of the electrode assembly 120, respectively. At this time, the lithium re-supply electrode 130 may be formed in, for example, a " C " shape. Here, the through hole 131a through which the electrode tab is passed may be formed in the lithium re-supply electrode 130.
  • lithium re-supply electrode tabs 135 and 136 protruded from the side surface of the lithium re-supply electrode 130 may be further provided.
  • the lithium re-supply electrode tabs 135 and 136 may be electrically connected to the lithium re-supply electrode leads 133 and 134.
  • the lithium re-supply electrode tabs 135 and 136 may be made of lithium metal, and the lithium re-supply electrode leads 133 and 134 may be made of aluminum.
  • the lithium re-supply electrode tabs 135 and 136 and the lithium re-supply electrode leads 133 and 134 can be mutually fixed through welding.
  • the lithium re-supply electrode 130 and the lithium re-supply electrode tabs 135 and 136 are accommodated in the battery case 110 and one side of the lithium re-supply electrode leads 133 and 134 is positioned inside the battery case 110 And the other side portion may protrude to the outside of the battery case 110.
  • the discharging step may discharge the electrode 123 before the lithium refeeding step.
  • the discharging step discharges the lithium ions of the cathode 122 to the anode 121 as much as possible. That is, the lithium ions in the cathode 122 can be moved to the anode 121 as much as possible.
  • the lithium re-supply step further includes a lithium re-supply electrode 130 in the secondary battery 100.
  • the anode 121 is set as a counter electrode and the lithium re-supply electrode 130 is connected to a working electrode electrode, and lithium ions are charged into the anode 121 through the lithium re-supply electrode 130.
  • the working electrode is an electrode for supplying lithium ions and the counter electrode is an electrode for receiving lithium ions.
  • the lithium refeeding step electrically turns off between the anode 121 and the cathode 122, and electrically turns on the lithium re-supply electrode 130 and the cathode 122. That is, when the lithium secondary battery 100 is used in an electronic device or the like, the lithium re-supply electrode 130 is electrically turned off and the anode 121 and the cathode 122 are electrically turned on , The lithium re-supply electrode 130 and the cathode 122 are electrically turned on and the anode 121 is turned off when the capacity of the lithium secondary battery 100 is restored.
  • the anode 121, the cathode 122, and the lithium re-supply electrode 130 can be selectively turned on / off by turning on / off the lithium re-supply electrode 130.
  • one of the plurality of lithium re-supply electrodes 130 is set as a working electrode to charge lithium ions into the positive electrode 121,
  • the other lithium re-supply electrode 130 may be set as a working electrode in place of any one of the lithium re- have.
  • a first lithium re-supply electrode 131 positioned at one side of the electrode assembly 120 is set as a working electrode, lithium ions are charged into the anode 121,
  • the second lithium re-supply electrode 132 may be set as a working electrode instead of the first lithium re-supply electrode 131 to fully charge the lithium ion into the anode 121.
  • lithium ions in the positive electrode 121 are supplied using both the first lithium re-supply electrode 131 and the second lithium re-supply electrode 132 located on both sides of the electrode assembly 120, ) Of lithium ions. That is, when a lithium source is supplied only to one side of the anode 121, a lithium source is supplied to one side. However, when a lithium source is supplied to both sides of the anode 121, a lithium source can be supplied more uniformly.
  • the lithium re-supply electrode 130 is set as the counter electrode, the cathode electrode 122 is set as the working electrode, and the cathode 122 to the discharge limit. That is, the lithium ions remaining on the cathode 122 are moved to the lithium re-supply electrode 130. Therefore, due to the capacity limitation of the anode 121, the lithium ions can not be moved to the anode 121 from the cathode 122 and the remaining lithium ions can be moved to the lithium re-supply electrode 130. As a result, the lithium ions remaining in the cathode 122 can be removed and new lithium ions can be supplied.
  • one of the plurality of lithium re-supply electrodes 130 is set as a counter electrode to discharge the cathode 122, and the discharge amount of the cathode 122 is set to 40 ⁇ 60%, it is possible to completely discharge the cathode 122 by setting one lithium re-supply electrode 130 as a counter electrode in place of any one of the lithium re-supply electrodes 130.
  • the negative electrode discharge step further includes a pulse applying step of applying a high current pulse to the negative electrode 122 to remove the inorganic salt layer and the organic salt layer stacked on the negative electrode 122 can do.
  • the cathodic discharge step is carried out so that the inorganic salt layer and the organic salt layer are applied to the cathode 122 by applying a strong current pulse stronger to the cathode 122,
  • the cathode 122 can be detached from the anode 122 by increasing the current.
  • inorganic salts and organic salts which are lithium salts contained in the electrolytic solution, are laminated on the outer surface of the cathode 122 to form a layer, and the inorganic salt layer and the organic salt, which are formed on the outer surface of the cathode 122, when the organic salt layer prevents the movement of lithium ions located in the negative electrode active material in the negative electrode 122, if a strong current pulse is applied to the negative electrode 122 to increase the moving speed of the lithium ion, the inorganic salt layer and the organic salt layer can be pushed out by the lithium ion to separate the inorganic salt layer and the organic salt layer from the cathode 122.
  • the pulse size of the current is proportional to the moving speed of the lithium ion
  • the moving speed of the lithium ion is increased as the pulse size of the current is stronger, and the stronger high current pulse is applied to the inorganic salt layer and organic salt layer can be removed.
  • the pulse applying step can specifically apply a current pulse of, for example, 1.0 to 2.5 C to the cathode 122.
  • a current pulse lower than 1.0 C is applied to the cathode 122, the movement speed of the lithium ion is lowered and the effect of removing the inorganic salt layer and the organic salt layer may be small.
  • the anode active material may be damaged or destroyed due to excessive high currents.
  • the SEI solid electrolyte interface
  • the pulse applying step is included in the cathode discharging step to set any one of the plurality of lithium re-supply electrodes 130 as the counter electrode, and when the cathode 122 is discharged, When the discharge amount of the cathode 122 is 40 to 60%, the other lithium re-supply electrode 130 is set as the counter electrode instead of the one of the lithium re-supply electrodes 130, and the pulse applying step is performed And the cathode 122 can be completely discharged. Accordingly, it is possible to prevent a problem that the anode structure is collapsed due to damage or destruction of the cathode active material, which is moved to the anode 121 by the lithium ions moved in a strong current in the pulse applying step.
  • the lithium re-supply electrode 130 is set as a working electrode
  • the anode 121 and the cathode 122 are set as counter electrodes
  • the anode 121 and the cathode 122 It is possible to detect the degree of degradation of the anode 121 and the cathode 122 by detecting the voltage value and the charging capacity of the anode 122 and the cathode 122, respectively.
  • the positive electrode 121 and the negative electrode 122 are formed by one electrical connection, so that only one voltage value and the charging capacity are shown.
  • the lithium re-supply electrode 130 is set as the reference electrode, the lithium re-supply electrode 130 and the anode 121 may be connected, and the lithium re-supply electrode 130 and the cathode 122 may be individually connected , The anode voltage (121), and the cathode voltage (122) and the charging capacity can be separately measured. As a result, the degree of degradation of the anode 121 and the cathode 122 can be individually and accurately discriminated through the lithium re-supply electrode 130.
  • FIG. 6 is a graph illustrating differential voltage data used in a determination step in a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • the X axis represents the charging capacity (Capacity)
  • the Y axis represents the differential voltage (dQ / dQ).
  • the differential voltage of the Y-axis represents a value obtained by differentiating the voltage of the cathode by a differential value (dV) divided by a value (dQ) obtained by differentiating the charging capacity of the cathode.
  • the graph of FIG. 6 can be divided into A, B, C, and D zones according to the charging capacity.
  • zones B and C shown in FIG. 6 are shifted to the right on the graph of FIG. 6 when the active material degrades, and the zone D is shifted to the right when lithium available in the lithium secondary battery is reduced.
  • a cathode differential voltage graph such as the cathode differential voltage graph shown in FIG. 6 can also be shown.
  • the data of the cathode and the anode can be separately measured, and the degradation degree of the anode and the cathode can be individually discriminated.
  • the degree of deterioration of the anode 121 and the cathode 122 is discriminated through the discrimination step, and the amount of lithium supplied to the anode 121 through the lithium refeeding step,
  • the balance of the electrode 123 can be reestablished by adjusting the discharge amount of the cathode 122 through the step.
  • the amount of lithium supplied through the lithium refeeding step is increased to change the capacity of the anode 121 and the cathode 122 Direction.
  • the amount of lithium discharge is increased through the cathode discharge step to increase the capacity of the anode 121 and the cathode 122 in the corresponding direction .
  • the capacity of any one of the anode 121 and the cathode 122 is restricted when charging and discharging are performed, It is possible to solve the problem that the capacity of the electrode 123 of the plasma display panel is limited. As a result, the capacity of the secondary battery 100 can be increased more effectively.
  • FIG. 7 is a graph illustrating a change in resistance of a lithium secondary battery regenerated by a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
  • the graph shown in FIG. 7 shows the resistance change of the lithium secondary battery A regenerated by the regeneration method of the lithium secondary battery according to the embodiment of the present invention and the lithium secondary battery B before regeneration.
  • the horizontal axis of the graph represents SOC (State of Charge) and the vertical axis represents resistance.
  • SOC State of Charge
  • the vertical axis represents resistance.
  • 1.5 C (Coulomb) of electricity was applied to the lithium secondary battery to detect a resistance value when a current of 98.7 A flows through the lithium secondary battery. At this time, the electricity was cut for 10 seconds for each section of the charged state, and the resistance value was detected for each section.
  • the resistance of the lithium secondary battery A regenerated by the regenerating method of the lithium secondary battery according to the embodiment of the present invention is lower than the resistance of the lithium secondary battery B before regeneration .
  • the performance of the lithium secondary battery A regenerated by the regenerating method of the lithium secondary battery according to the embodiment of the present invention is improved
  • FIG. 1 A method for regenerating a lithium secondary battery according to another embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 A method for regenerating a lithium secondary battery according to another embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • the method for regenerating the lithium secondary battery according to another embodiment of the present invention differs from the method for determining the determination step in comparison with the method for regenerating the lithium secondary battery according to the above embodiment . Therefore, the present embodiment will briefly describe the contents overlapping one embodiment, and focus on the differences.
  • a method of determining a method of regenerating a lithium secondary battery includes applying a constant current pulse to the anode 121 and the cathode 122 for a predetermined time based on the lithium re-
  • the resistance value of each of the positive electrode 121 and the negative electrode 122 is detected through the value of the value and the amount of change of the voltage and if the resistance value is larger, The degree of degeneration can be determined.
  • the balance between the anode 121 and the cathode 122 can be regulated by adjusting the amount of lithium supplied to the anode 121 and the amount of discharge of the cathode 122 through the cathode discharging step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A lithium secondary battery regeneration method according to the present invention is a method for regenerating a secondary battery comprising: an electrode assembly in which electrodes including a positive electrode and a negative electrode and a separator are alternately stacked together; and a battery case for receiving the electrode assembly. The method comprises: a lithium resupply step of further providing the secondary battery with a lithium resupply electrode, and setting the positive electrode as a counter electrode and setting the lithium resupply electrode as a working electrode to supply lithium ions to the positive electrode through the lithium resupply electrode; and a negative electrode discharge step of, after resupplying lithium ions to the positive electrode through the resupply step, setting the lithium resupply electrode as a counter electrode and setting the negative electrode as a working electrode to fully discharge the negative electrode up to a discharge limit.

Description

리튬 이차전지의 회생 방법Regeneration method of lithium secondary battery
관련출원과의 상호인용Mutual citation with related application
본 출원은 2017년 07월 10일자 한국특허출원 제10-2017-0087274호 및 2018년 07월 09일자 한국특허출원 제10-2018-0079493호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0087274, filed on Jul. 10, 2017, and Korean Patent Application No. 10-2018-0079493, filed on Jul. 09, 2018, The entire contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 리튬 이차전지의 회생 방법에 관한 것이다. The present invention relates to a method for regenerating a lithium secondary battery.
이차 전지는 일차 전지와는 달리 재충전이 가능하고, 또 소형 및 대용량화 가능성으로 인해 근래에 많이 연구 개발되고 있다. 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지의 수요가 급격하게 증가하고 있다. Unlike primary batteries, rechargeable secondary batteries can be recharged, and they are being researched and developed recently due to their small size and high capacity. As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing.
이차 전지는 전지 케이스의 형상에 따라, 코인형 전지, 원통형 전지, 각형 전지, 및 파우치형 전지로 분류된다. 이차 전지에서 전지 케이스 내부에 장착되는 전극 조립체는 전극 및 분리막의 적층 구조로 이루어진 충방전이 가능한 발전소자이다. The secondary battery is classified into a coin type battery, a cylindrical type battery, a square type battery, and a pouch type battery depending on the shape of the battery case. An electrode assembly mounted in a battery case of a secondary battery is a chargeable and dischargeable power generation device having a stacked structure of an electrode and a separation membrane.
전극 조립체는 활물질이 도포된 시트형의 양극과 음극 사이에 분리막을 개재(介在)하여 권취한 젤리 롤(Jelly-roll)형, 다수의 양극과 음극을 분리막이 개재된 상태에서 순차적으로 적층한 스택형, 및 스택형의 단위 셀들을 긴 길이의 분리 필름으로 권취한 스택/폴딩형으로 대략 분류할 수 있다. The electrode assembly includes a jelly-roll type in which a separator is interposed between a positive electrode and a negative electrode coated with an active material, and a stacked type in which a plurality of positive electrodes and negative electrodes are sequentially stacked with a separator interposed therebetween And a stack / folding type in which stacked unit cells are wound with a long length separating film.
한편, 기존의 리튬 이차 전지는 사용이 반복됨에 따라 리튬 이온이 양극에서 음극으로 이동되며 충전되고, 리튬 이온이 음극에서 양극으로 이동되며 방전되는 과정을 반복하면서 리튬 소스가 점차 부족하여 지고, 이로 인해 전지 용량이 감소되어 퇴화되었다. 현재, 이러한 퇴화된 리튬 이차전지를 재생시켜 재사용하는 방법들이 연구되어지고 있다.On the other hand, as the conventional lithium secondary battery is repeatedly used, lithium ions are gradually transferred from the anode to the cathode and charged, and lithium ions are gradually transferred from the cathode to the anode and discharged repeatedly while the lithium source is gradually lacking. The battery capacity was reduced and degraded. Currently, methods for recycling and reusing such degenerated lithium secondary batteries are being studied.
본 발명의 하나의 관점은 리튬 이차전지의 수명특성을 향상시킬 수 있는 리튬 이차전지의 회생 방법을 제공하는 것이다.One aspect of the present invention is to provide a method for regenerating a lithium secondary battery capable of improving lifetime characteristics of the lithium secondary battery.
또한, 본 발명의 다른 관점은 이차전지를 해체하지 않고 리튬 재공급 전극을 통해 양극으로 리튬 이온의 재공급하여 전지 용량을 회복시킬 수 있는 리튬 이차전지의 회생 방법을 제공하는 것이다.Another aspect of the present invention is to provide a regeneration method of a lithium secondary battery capable of recovering a battery capacity by reapplying lithium ions to an anode through a lithium re-supply electrode without disassembling the secondary battery.
아울러, 본 발명의 또 다른 관점은 이차전지를 해체하지 않고 리튬 재공급 전극을 통해 음극을 방전 한계까지 완전 방전시켜 전지 용량을 회복을 증대시킬 수 있는 리튬 이차전지의 회생 방법을 제공하는 것이다.Another aspect of the present invention is to provide a regenerating method of a lithium secondary battery capable of increasing the recovery of the battery capacity by completely discharging the negative electrode to the discharge limit through the lithium re-supply electrode without disassembling the secondary battery.
그리고, 본 발명의 또 다른 관점은 양극과 음극의 밸런스를 조절할 수 있는 리튬 이차전지의 회생 방법을 제공하는 것이다Another aspect of the present invention is to provide a regeneration method of a lithium secondary battery capable of adjusting a balance between an anode and a cathode
본 발명의 실시예에 따른 리튬 이차전지의 회생 방법은, 양극 및 음극을 포함하는 전극과 분리막이 교대로 결집되어 적층된 전극 조립체 및 상기 전극 조립체를 수용하는 수용부가 형성된 전지 케이스를 포함하는 이차전지의 회생 방법으로, 상기 이차전지에 리튬 재공급 전극이 더 구비되어, 상기 양극을 대향 전극으로 설정하고, 상기 리튬 재공급 전극을 워킹(Working) 전극으로 설정하여, 상기 리튬 재공급 전극을 통해 상기 양극으로 리튬 이온을 충전하는 리튬 재공급단계 및 상기 재공급단계를 통해 상기 양극으로 리튬 이온을 재공급한 후, 상기 리튬 재공급 전극을 대향 전극으로 설정하고, 상기 음극을 워킹 전극으로 설정하여, 상기 음극을 방전 한계까지 완전 방전시키는 음극 방전단계를 포함하여, 상기 이차전지의 용량을 회복시킬 수 있다. A method of regenerating a lithium secondary battery according to an exemplary embodiment of the present invention is a method of regenerating a rechargeable lithium battery including an electrode assembly including an electrode assembly including an anode and a cathode and a separator alternately stacked, Wherein the lithium secondary battery further comprises a lithium re-supply electrode, wherein the anode is set as an opposite electrode, the lithium re-supply electrode is set as a working electrode, and the lithium re- Supplying a lithium material to the anode as lithium ions and supplying the lithium material to the anode through the re-supply step, and then setting the lithium material supplying electrode as a counter electrode, setting the cathode as a working electrode, And a cathode discharge step of completely discharging the cathode to the discharge limit, whereby the capacity of the secondary battery can be restored.
본 발명에 따르면, 이차전지에 리튬 재공급 전극이 더 구비되어, 이차전지를 해체하지 않고 리튬 재공급 전극을 통해 양극으로 리튬 이온의 재공급하여 전지 용량을 회복시킬 수 있다.According to the present invention, the secondary battery further includes a lithium re-supply electrode, and the battery capacity can be restored by re-supplying lithium ions to the anode through the lithium re-supply electrode without disassembling the secondary battery.
아울러, 본 발명에 따르면, 이차전지를 해체하지 않고 리튬 재공급 전극을 통해 음극을 방전 한계까지 완전 방전시켜 전지 용량을 회복을 증대시킬 수 있다. 즉, 음극에서 양극으로 리튬 이온이 이동되며 방전 시, 음극에서 리튬 이온이 잔존하게 되어 완전 방전이 이루어지지 않지만, 리튬 재공급 전극을 대향 전극으로 하고 음극을 워킹 전극으로 설정하여 음극에서 리튬 재공급 전극으로 리튬 이온을 이동시키면서 음극을 방전 한계까지 완전 방전시킬 수 있다.In addition, according to the present invention, it is possible to increase the recovery of the battery capacity by completely discharging the negative electrode to the discharge limit through the lithium re-supply electrode without disassembling the secondary battery. That is, lithium ions are moved from the cathode to the anode, and lithium ions are left in the cathode at the time of discharging, so that a complete discharge is not achieved. However, when lithium is supplied as a counter electrode and a cathode is set as a working electrode, It is possible to completely discharge the negative electrode to the discharge limit while moving the lithium ion to the electrode.
그리고, 본 발명에 따르면, 리튬 재공급 전극을 통해 양극으로 리튬 이온의 재공급량 및 음극의 방전량을 조절하여 양극과 음극의 밸런스를 조절함으로써, 전극 용량을 보다 현저히 회복시킬 수 있다.According to the present invention, by regulating the balance between the anode and the cathode by regulating the amount of re-supply of lithium ions and the amount of discharge of the cathode to the anode through the lithium re-supply electrode, the electrode capacity can be remarkably restored.
도 1은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 나타낸 사시도이다.1 is a perspective view of a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 나타낸 정면도이다.2 is a front view showing a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지에서 전극 조립체 및 리튬 재공급 전극을 나타낸 분해 사시도이다.3 is an exploded perspective view illustrating an electrode assembly and a lithium re-supply electrode in a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 예시적으로 나타낸 정면 투시도이다.4 is a front perspective view exemplarily showing a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 예시적으로 나타낸 저면 투시도이다.FIG. 5 is a bottom perspective view illustrating a lithium secondary battery according to an embodiment of the present invention, which is applied to a method of regenerating a lithium secondary battery. FIG.
도 6은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에서 판별단계에 사용되는 Differential voltage data를 나타낸 그래프이다.FIG. 6 is a graph illustrating differential voltage data used in a determination step in a method of regenerating a lithium secondary battery according to an embodiment of the present invention. Referring to FIG.
도 7은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법으로 회생된 리튬 이차전지의 저항변화를 나타낸 그래프이다.FIG. 7 is a graph illustrating a change in resistance of a lithium secondary battery regenerated by a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다. 또한, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지 기술에 대한 상세한 설명은 생략하도록 한다. BRIEF DESCRIPTION OF THE DRAWINGS The objectives, specific advantages and novel features of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. It should be noted that, in the present specification, the reference numerals are added to the constituent elements of the drawings, and the same constituent elements are assigned the same number as much as possible even if they are displayed on different drawings. Furthermore, the present invention can be embodied in various different forms and is not limited to the embodiments described herein. In the following description of the present invention, a detailed description of related arts which may unnecessarily obscure the gist of the present invention will be omitted.
도 1은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 나타낸 사시도이고, 도 2는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 나타낸 정면도이며, 도 3은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지에서 전극 조립체 및 리튬 재공급 전극을 나타낸 분해 사시도이다.FIG. 1 is a perspective view of a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention. FIG. 2 is a perspective view illustrating a lithium secondary battery according to an embodiment of the present invention. FIG. 3 is an exploded perspective view illustrating an electrode assembly and a lithium re-supply electrode in a lithium secondary battery applied to a method of regenerating a lithium secondary battery according to an embodiment of the present invention. FIG.
도 1 내지 도 3을 참고하면, 본 발명의 일 실시예에 따른 리튬 이차전지의 회생 방법은 리튬 재공급 전극(130)을 통해 양극(121)으로 리튬 이온을 충전하는 리튬 재공급단계 및 리튬 재공급 전극(130)을 통해 음극(122)을 방전 한계까지 완전 방전시키는 음극 방전단계를 포함하여, 이차전지(100)의 용량을 회복시키다. 또한, 본 발명의 일 실시예에 따른 리튬 이차전지의 회생 방법은 상기 리튬 재공급단계 전에 전극(123)을 방전시키는 방전시키는 방전단계와, 양극(121) 및 음극(122)의 퇴화 정도를 판별하는 판별단계 및 전극(123)의 밸런스(Balance)를 재정립하는 밸런스 재정립 단계를 더 포함할 수 있다.1 to 3, a method of regenerating a lithium secondary battery according to an embodiment of the present invention includes a step of supplying a lithium material to an anode 121 through a lithium material supplying electrode 130, And a cathode discharge step of completely discharging the cathode 122 to the discharge limit via the supply electrode 130 to restore the capacity of the secondary battery 100. The regenerating method of the lithium secondary battery according to an embodiment of the present invention may further include a discharging step of discharging the electrode 123 before the supplying of the lithium material and a discharging step of discriminating the degree of degradation of the anode 121 and the cathode 122 And a balance re-establishment step of re-establishing the balance of the electrode 123. [0033]
도 4는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 예시적으로 나타낸 정면 투시도이고, 도 5는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에 적용되는 리튬 이차전지를 예시적으로 나타낸 저면 투시도이다.FIG. 4 is a front perspective view illustrating a lithium secondary battery according to an embodiment of the present invention. FIG. 5 is a cross-sectional view of a lithium rechargeable battery according to an embodiment of the present invention. 1 is a bottom perspective view exemplarily showing a lithium secondary battery.
이하에서, 도 1 내지 도 6을 참조하여, 본 발명의 일 실시예인 리튬 이차전지의 회생 방법에 대해 보다 상세히 설명하기로 한다. Hereinafter, a method of regenerating a lithium secondary battery according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6. FIG.
도 3 및 도 4를 참고하면, 본 발명의 일 실시예인 리튬 이차전지의 회생 방법에 적용되는 이차전지(100)는 전극 조립체(120) 및 전극 조립체(120)를 수용하는 수용부가 형성된 전지 케이스(110)를 포함한다. 이때, 본 발명의 일 실시예인 리튬 이차전지의 회생 방법에 적용되는 이차전지(100)는 전해액 및 리튬 재공급 전극(130)을 더 포함하여 전지 케이스(110)에 수용될 수 있다.3 and 4, a secondary battery 100 applied to a method for regenerating a lithium secondary battery according to an embodiment of the present invention includes a battery case 100 having an electrode assembly 120 and an accommodating portion for accommodating the electrode assembly 120 110). The secondary battery 100 applied to the regenerating method of the lithium secondary battery according to an embodiment of the present invention may further include an electrolyte and a lithium re-supply electrode 130 to be received in the battery case 110.
전극 조립체(120)는 충방전이 가능한 발전소자로서, 전극(123)과 분리막(124)이 결집되어 교대로 적층된 구조를 형성한다. 또한, 전극 조립체(120)는 전극(123)과 전기적으로 연결되는 전극 리드(125,126)를 포함할 수 있다. 이때, 전극 조립체(120)는 전극(123)의 측면으로 돌출형성되어 전극 리드(125,126)와 전기적으로 연결되는 전극 탭(127,128)을 더 포함할 수 있다. The electrode assembly 120 is a chargeable and dischargeable power generation element, and the electrode 123 and the separation membrane 124 are assembled to form a structure in which the layers are alternately stacked. In addition, the electrode assembly 120 may include electrode leads 125 and 126 that are electrically connected to the electrode 123. The electrode assembly 120 may further include electrode tabs 127 and 128 protruding from the side surface of the electrode 123 and electrically connected to the electrode leads 125 and 126.
전극(123)은 양극(121) 및 음극(122)으로 구성될 수 있다. 이때, 전극 조립체(120)는 양극(121)/분리막(124)/음극(122)이 교대로 적층된 구조로 이루어질 수 있다. The electrode 123 may be composed of a positive electrode 121 and a negative electrode 122. At this time, the electrode assembly 120 may have a structure in which the anode 121 / the separation membrane 124 / the cathode 122 are alternately stacked.
양극(121)은 양극 집전체(미도시) 및 양극 집전체에 도포된 양극 활물질(미도시)을 포함하고, 음극(122)은 음극 집전체(미도시) 및 음극 집전체에 도포된 음극 활물질(미도시)을 포함할 수 있다.The anode 121 includes a cathode current collector (not shown) and a cathode active material (not shown) coated on the cathode current collector. The cathode 122 includes a cathode current collector (not shown) and a cathode active material (Not shown).
양극 집전체는 예를 들어 알루미늄(Al) 재질의 포일(foil)로 이루어질 수 있다. The positive electrode collector may be made of, for example, a foil made of aluminum (Al).
양극 활물질은 일례로 리튬망간산화물, 리튬코발트산화물, 리튬니켈산화물, 리튬인산철, 또는 이들 중 1종 이상이 포함된 화합물 및 혼합물 등으로 이루어질 수 있다.The cathode active material may be composed of, for example, lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, or a compound or mixture thereof containing at least one of the foregoing.
또한, 양극 활물질은 다른 예로 Hi Ni계 양극재로 이루어질 수 있다. 여기서, Hi Ni계 양극재는 LiNiMnCoO계, LiNiCoAl계 또는 LiMiMnCoAl계 중에서 어느 하나 이상을 포함하여 이루어질 수 있다.In addition, the cathode active material may be made of a Hi Ni-based cathode material as another example. Here, the Hi Ni-based cathode material may include any one or more of LiNiMnCoO-based, LiNiCoAl-based, and LiMiMnCoAl-based materials.
음극 집전체는 예를 들어 구리(Cu) 또는 니켈(Ni) 재질로 이루어진 포일(foil)로 이루어질 수 있다.The anode current collector may be made of, for example, a foil made of copper (Cu) or nickel (Ni).
음극 활물질은 일례로 인조흑연을 포함하는 재질로 이루어질 수 있다.The negative electrode active material may be made of a material including artificial graphite.
또한, 음극 활물질은 다른 예로 리튬금속, 리튬합금, 카본, 석유코크, 활성화 카본, 그래파이트, 실리콘 화합물, 주석 화합물, 티타늄 화합물 또는 이들의 합금으로 이루어질 수 있다.In addition, the negative electrode active material may be made of lithium metal, lithium alloy, carbon, petroleum coke, activated carbon, graphite, silicon compound, tin compound, titanium compound or an alloy thereof.
분리막(124)은 절연 재질로 이루어져 양극(121)과 음극(122) 사이를 전기적으로 절연한다. 여기서, 분리막(124)은 양극(121) 및 음극(122) 사이와, 양극(121) 및 음극(122)의 외측면에 위치될 수 있다. 이때, 분리막(134)의 최외측은 리튬 재공급 전극(130)과 양극(121) 및 음극(122) 사이에 위치되도록 전극 조립체(120)를 둘러싸는 형태로 구비될 수 있다. The separator 124 is made of an insulating material and electrically insulates between the anode 121 and the cathode 122. Here, the separation membrane 124 may be located between the anode 121 and the cathode 122, and on the outer surface of the anode 121 and the cathode 122. At this time, the outermost side of the separation membrane 134 may be provided so as to surround the electrode assembly 120 so as to be positioned between the lithium re-supply electrode 130 and the anode 121 and the cathode 122.
또한, 분리막(124)은 예를 들어 미다공성을 가지는 폴리에칠렌, 폴리프로필렌 등 폴리올레핀계 수지막으로 형성될 수 있다. In addition, the separation membrane 124 may be formed of a polyolefin-based resin film such as polyethylene or polypropylene having micropores, for example.
전극 리드(125,126)는 양극(121)과 전기적으로 연결된 양극 리드(125) 및 음극(122)과 전기적으로 연결된 음극 리드(126)를 포함할 수 있다.The electrode leads 125 and 126 may include a positive electrode lead 125 electrically connected to the positive electrode 121 and a negative electrode lead 126 electrically connected to the negative electrode 122.
전극 탭(127,128)은 양극(121)의 측면으로 돌출되어 양극(121)을 양극리드(125)와 연결하는 양극 탭(127) 및 음극(122)의 측면으로 돌출되어 음극(122)을 음극리드(126)와 전기적으로 연결하는 음극 탭(126)을 포함할 수 있다.The electrode tabs 127 and 128 protrude from the side surface of the anode 121 and protrude from the side surfaces of the cathode 122 and the anode tab 127 connecting the anode 121 to the anode lead 125, And an anode tab 126 electrically connected to the anode 126.
전해액은 예를 들어 리튬 함유 비수계 전해액으로서 비수 전해액과 리튬염으로 이루어질 수 있다.The electrolytic solution may be, for example, a lithium-containing non-aqueous electrolytic solution comprising a non-aqueous electrolyte and a lithium salt.
여기서, 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로퓨란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylenecarbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, butylolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, But are not limited to, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxolane derivatives, sulfolane, methyl sulfolane, Derivatives, tetrahydrofuran derivatives, ethers, methyl propionate, ethyl propionate and the like can be used.
이때, 리튬염은 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.At this time, the lithium salt is a material that is readily soluble in non-aqueous liquid electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB10Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic carboxylate lithium, lithium tetraphenylborate, imide and the like can be used.
도 3 내지 도 5를 참고하면, 리튬 재공급 전극(130)은 복수개로 구비되어 전지 케이스(110)에 수용될 수 있다. 여기서, 리튬 재공급 전극(130)은 전극 조립체(120)의 일측에 위치되는 제1 리튬 재공급 전극(131) 및 전극 조립체(120)의 타측에 위치되는 제2 리튬 재공급 전극(132)을 포함할 수 있다. 이때, 전지 케이스(110)의 수용부에 전극 조립체(120)가 위치되고, 전극 조립체(120)의 양측에 위치된 수용공간에 제1 리튬 재공급 전극(131) 및 2 리튬 재공급 전극(132)이 위치될 수 있다. Referring to FIGS. 3 to 5, a plurality of lithium re-supply electrodes 130 may be accommodated in the battery case 110. The lithium re-supply electrode 130 includes a first lithium re-supply electrode 131 located at one side of the electrode assembly 120 and a second lithium material supply electrode 132 located at the other side of the electrode assembly 120 . At this time, the electrode assembly 120 is positioned in the receiving portion of the battery case 110, and the first lithium re-supply electrode 131 and the two lithium re-supply electrodes 132 ) Can be located.
또한, 리튬 재공급 전극(130)에 전기적으로 연결된 리튬 재공급 전극 리드(133,134)가 더 구비될 수 있다.Further, lithium re-supply electrode leads 133 and 134 electrically connected to the lithium re-supply electrode 130 may be further provided.
아울러, 리튬 재공급 전극(130)은 예를 들어 리튬 메탈(Metal)로 이루어질 수 있다.In addition, the lithium re-supply electrode 130 may be made of, for example, lithium metal.
한편, 복수개의 리튬 재공급 전극(130)은 전극 조립체(120)의 양측 단부를 각각 둘러싸며 구비될 수 있다. 이때, 리튬 재공급 전극(130)은 예를 들어 “ㄷ” 형태로 형성될 수 있다. 여기서, 리튬 재공급 전극(130)에 전극 탭이 관통되는 관통홀(131a)이 형성될 수 있다. The plurality of lithium re-supply electrodes 130 may surround the opposite ends of the electrode assembly 120, respectively. At this time, the lithium re-supply electrode 130 may be formed in, for example, a " C " shape. Here, the through hole 131a through which the electrode tab is passed may be formed in the lithium re-supply electrode 130. [
한편, 리튬 재공급 전극(130)의 측면으로 돌출된 리튬 재공급 전극 탭(135,136)이 더 구비될 수 있다. 여기서, 리튬 재공급 전극 탭(135,136)은 리튬 재공급 전극 리드(133,134)와 전기적으로 연결될 수 있다. 이때, 예를 들어 리튬 재공급 전극 탭(135,136)은 리튬 메탈로 이루어질 수 있고, 리튬 재공급 전극 리드(133,134)는 알루미늄 재질로 이루어질 수 있다. Meanwhile, lithium re-supply electrode tabs 135 and 136 protruded from the side surface of the lithium re-supply electrode 130 may be further provided. Here, the lithium re-supply electrode tabs 135 and 136 may be electrically connected to the lithium re-supply electrode leads 133 and 134. At this time, for example, the lithium re-supply electrode tabs 135 and 136 may be made of lithium metal, and the lithium re-supply electrode leads 133 and 134 may be made of aluminum.
그리고, 리튬 재공급 전극 탭(135,136)과 리튬 재공급 전극 리드(133,134)는 용접을 통해 상호 고정될 수 있다.The lithium re-supply electrode tabs 135 and 136 and the lithium re-supply electrode leads 133 and 134 can be mutually fixed through welding.
또한, 리튬 재공급 전극(130) 및 리튬 재공급 전극 탭(135,136)은 전지 케이스(110)의 내부에 수용되고, 리튬 재공급 전극 리드(133,134)의 일측부는 전지 케이스(110)의 내부에 위치되고, 타측부는 전지 케이스(110)의 외부로 돌출될 수 있다. The lithium re-supply electrode 130 and the lithium re-supply electrode tabs 135 and 136 are accommodated in the battery case 110 and one side of the lithium re-supply electrode leads 133 and 134 is positioned inside the battery case 110 And the other side portion may protrude to the outside of the battery case 110.
방전단계는 리튬 재공급단계 전에 전극(123)을 방전시킬 수 있다. 여기서, 방전단계는 음극(122)의 리튬 이온을 양극(121)으로 최대한 이동시키는 것을 통해 최대한 방전시킨다. 즉, 음극(122)에 있는 리튬 이온을 양극(121)으로 최대한 이동시킬 수 있다.The discharging step may discharge the electrode 123 before the lithium refeeding step. Here, the discharging step discharges the lithium ions of the cathode 122 to the anode 121 as much as possible. That is, the lithium ions in the cathode 122 can be moved to the anode 121 as much as possible.
리튬 재공급단계는 이차전지(100)에 리튬 재공급 전극(130)이 더 구비되어, 양극(121)을 대향 전극(Counter electrode)으로 설정하고, 리튬 재공급 전극(130)을 워킹 전극(Working electrode)으로 설정하여, 리튬 재공급 전극(130)을 통해 양극(121)으로 리튬 이온을 충전한다. 여기서, 워킹 전극은 리튬 이온을 공급하는 전극이고, 대향 전극은 리튬 이온을 공급받는 전극이다.The lithium re-supply step further includes a lithium re-supply electrode 130 in the secondary battery 100. The anode 121 is set as a counter electrode and the lithium re-supply electrode 130 is connected to a working electrode electrode, and lithium ions are charged into the anode 121 through the lithium re-supply electrode 130. Here, the working electrode is an electrode for supplying lithium ions and the counter electrode is an electrode for receiving lithium ions.
여기서, 리튬 재공급단계는 양극(121) 및 음극(122) 사이를 전기적으로 오프(off)시키고, 리튬 재공급 전극(130)과 음극(122) 사이를 전기적으로 온(on)시킨다. 즉, 리튬 이차전지(100)가 전자기기 등에 사용될 때는 리튬 재공급 전극(130)이 전기적으로 오프(off)되고, 양극(121) 및 음극(122)이 전기적으로 온(on) 상태를 유지하지만, 리튬 이차전지(100)의 용량을 회복시킬 때는 리튬 재공급 전극(130) 및 음극(122)을 전기적으로 온(on)시키고, 양극(121)을 오프(off) 상태로 설정한다. 이때, 양극(121)과 연결된 양극 리드(125)와, 음극(122)과 연결된 음극 리드(126) 및 리튬 재공급 전극(130)과 연결된 리튬 재공급 전극 리드(133,134)와의 전기적 연결을 각각 개별적으로 온/오프시키는 것을 통해 양극(121)과, 음극(122) 및 리튬 재공급 전극(130)을 선택적으로 전기적 온/오프를 시킬 수 있다.Here, the lithium refeeding step electrically turns off between the anode 121 and the cathode 122, and electrically turns on the lithium re-supply electrode 130 and the cathode 122. That is, when the lithium secondary battery 100 is used in an electronic device or the like, the lithium re-supply electrode 130 is electrically turned off and the anode 121 and the cathode 122 are electrically turned on , The lithium re-supply electrode 130 and the cathode 122 are electrically turned on and the anode 121 is turned off when the capacity of the lithium secondary battery 100 is restored. At this time, the electrical connection between the positive electrode lead 125 connected to the positive electrode 121, the negative electrode lead 126 connected to the negative electrode 122 and the lithium material supplying electrode leads 133 and 134 connected to the lithium material supplying electrode 130, The anode 121, the cathode 122, and the lithium re-supply electrode 130 can be selectively turned on / off by turning on / off the lithium re-supply electrode 130.
한편, 리튬 재공급단계는 예를 들어 복수개로 마련된 리튬 재공급 전극(130) 중에서 어느 하나의 리튬 재공급 전극(130)을 워킹 전극으로 설정하여 양극(121)으로 리튬 이온을 충전하고, 양극(121)의 충전량이 40~60%가 되면 어느 하나의 리튬 재공급 전극(130) 대신 다른 하나의 리튬 재공급 전극(130)을 워킹 전극으로 설정하여 양극(121)으로 리튬 이온을 완전 충전시킬 수 있다. In the lithium re-supply step, for example, one of the plurality of lithium re-supply electrodes 130 is set as a working electrode to charge lithium ions into the positive electrode 121, When the charged amount of the lithium re-supply electrode 121 is 40 to 60%, the other lithium re-supply electrode 130 may be set as a working electrode in place of any one of the lithium re- have.
여기서, 리튬 재공급단계는 보다 구체적으로 예를들어 전극 조립체(120)의 일측 방향에 위치되는 제1 리튬 재공급 전극(131)을 워킹 전극으로 설정하여 양극(121)으로 리튬 이온을 충전하고, 양극(121)의 충전량이 50%가 되면 제1 리튬 재공급 전극(131) 대신 제2 리튬 재공급 전극(132)을 워킹 전극으로 설정하여 양극(121)으로 리튬 이온을 완전 충전시킬 수 있다. Here, in the lithium refeeding step, for example, a first lithium re-supply electrode 131 positioned at one side of the electrode assembly 120 is set as a working electrode, lithium ions are charged into the anode 121, When the charged amount of the anode 121 reaches 50%, the second lithium re-supply electrode 132 may be set as a working electrode instead of the first lithium re-supply electrode 131 to fully charge the lithium ion into the anode 121.
이에 따라, 전극 조립체(120)의 양측에 위치된 제1 리튬 재공급 전극(131) 및 제2 리튬 재공급 전극(132)을 모두 사용하여 양극(121)의 리튬 이온을 공급하여, 양극(121)에 리튬 이온을 고르게 공급할 수 있다. 즉, 양극(121)의 일측으로만 리튬 소스를 공급하면 일측에 리튬 소스가 치우쳐 공급되지만, 양극(121)의 양측으로 리튬 소스를 공급하면 보다 고르게 리튬 소스를 공급할 수 있다.Accordingly, lithium ions in the positive electrode 121 are supplied using both the first lithium re-supply electrode 131 and the second lithium re-supply electrode 132 located on both sides of the electrode assembly 120, ) Of lithium ions. That is, when a lithium source is supplied only to one side of the anode 121, a lithium source is supplied to one side. However, when a lithium source is supplied to both sides of the anode 121, a lithium source can be supplied more uniformly.
음극 방전단계는 리튬 재공급단계를 통해 양극(121)으로 리튬 이온을 재공급한 후, 리튬 재공급 전극(130)을 대향 전극으로 설정하고, 음극(122)을 워킹 전극으로 설정하여, 음극(122)을 방전 한계까지 완전 방전시킨다. 즉, 음극(122)에 잔존한 리튬 이온을 리튬 재공급 전극(130)으로 이동시킨다. 따라서, 양극(121)의 용량 제한으로 음극(122)에서 양극(121)으로 다 이동되지 못하고 잔존하는 리튬 이온을 리튬 이온을 리튬 재공급 전극(130)으로 이동시킬 수 있다. 결국, 음극(122)에 잔존하는 리튬 이온을 다 제거하고 새로운 리튬 이온을 공급할 수 있다. In the cathode discharge step, the lithium re-supply electrode 130 is set as the counter electrode, the cathode electrode 122 is set as the working electrode, and the cathode 122 to the discharge limit. That is, the lithium ions remaining on the cathode 122 are moved to the lithium re-supply electrode 130. Therefore, due to the capacity limitation of the anode 121, the lithium ions can not be moved to the anode 121 from the cathode 122 and the remaining lithium ions can be moved to the lithium re-supply electrode 130. As a result, the lithium ions remaining in the cathode 122 can be removed and new lithium ions can be supplied.
이때, 리튬 재공급단계 및 음극 방전단계를 반복하여 전극 용량을 증대시키고, 새로운 리튬을 공급할 수 있다.At this time, it is possible to increase the electrode capacity and supply new lithium by repeating the lithium refeeding step and the cathode discharging step.
한편, 음극 방전단계는 복수개로 마련된 리튬 재공급 전극(130) 중에서 어느 하나의 리튬 재공급 전극(130)을 대향 전극으로 설정하여 음극(122)을 방전시키고, 음극(122)의 방전량이 40~60%가 되면 어느 하나의 리튬 재공급 전극(130) 대신 다른 하나의 리튬 재공급 전극(130)을 대향 전극으로 설정하여 음극(122)을 완전 방전시킬 수 있다.In the cathode discharge step, one of the plurality of lithium re-supply electrodes 130 is set as a counter electrode to discharge the cathode 122, and the discharge amount of the cathode 122 is set to 40 ~ 60%, it is possible to completely discharge the cathode 122 by setting one lithium re-supply electrode 130 as a counter electrode in place of any one of the lithium re-supply electrodes 130.
여기서, 음극 방전단계는 보다 구체적으로 예를들어 전극 조립체(120)의 일측 방향에 위치되는 제1 리튬 재공급 전극(131)을 대향 전극으로 설정하여 음극(122)에서 제1 리튬 재공급 전극(131)으로 리튬 이온을 이동시켜 방전하고, 음극(122)의 방전량이 50%가 되면 제1 리튬 재공급 전극(131) 대신 제2 리튬 재공급 전극(132)을 대향 전극으로 설정하여 음극(122)에서 리튬 이온을 완전 방전시킬 수 있다. Here, in the cathode discharge step, for example, the first lithium re-supply electrode 131 positioned at one side of the electrode assembly 120 is set as the counter electrode, and the first lithium re- When the discharge amount of the cathode 122 becomes 50%, the second lithium re-supply electrode 132 is set as the counter electrode instead of the first lithium re-supply electrode 131, and the negative electrode 122 ), The lithium ion can be completely discharged.
본 발명의 일 실시예인 리튬 이차전지의 회생 방법에서 음극 방전단계는 음극(122)으로 고전류 펄스를 인가하여 음극(122)에 적층된 inorganic salt layer 및 organic salt layer를 제거하는 펄스 인가단계를 더 포함할 수 있다. In the method of regenerating a lithium secondary battery according to an embodiment of the present invention, the negative electrode discharge step further includes a pulse applying step of applying a high current pulse to the negative electrode 122 to remove the inorganic salt layer and the organic salt layer stacked on the negative electrode 122 can do.
보다 상세히, 음극 방전단계는 이차전지(100)의 사용을 반복함에 따라, 두꺼워져 음극(122)에 inorganic salt layer 및 organic salt layer를 음극(122)에 강한 고전류 펄스를 인가하여 리튬 이온의 이동 속도를 증가시키는 것을 통해 음극(122)에서 이탈시킬 수 있다. More specifically, as the secondary battery 100 is repeatedly used, the cathodic discharge step is carried out so that the inorganic salt layer and the organic salt layer are applied to the cathode 122 by applying a strong current pulse stronger to the cathode 122, The cathode 122 can be detached from the anode 122 by increasing the current.
즉, 전해액에 포함된 리튬염인 inorganic salt 및 organic salt가 충방전을 반복함에 따라 음극(122)의 외면에 적층되어 레이어(layer)를 형성하고, 음극(122)의 외면에 형성된 inorganic salt layer 및 organic salt layer가 음극(122)에서 음극 활물질에 위치된 리튬 이온의 이동을 막게될 때, 음극(122)에 강한 고전류 펄스를 인가하여 리튬 이온의 이동 속도를 증가시키면, 음극 활물질의 외면을 덮고 있는 inorganic salt layer 및 organic salt layer를 리튬 이온이 밀어내어 음극(122)에서 inorganic salt layer 및 organic salt layer를 이탈시킬 수 있다. That is, inorganic salts and organic salts, which are lithium salts contained in the electrolytic solution, are laminated on the outer surface of the cathode 122 to form a layer, and the inorganic salt layer and the organic salt, which are formed on the outer surface of the cathode 122, when the organic salt layer prevents the movement of lithium ions located in the negative electrode active material in the negative electrode 122, if a strong current pulse is applied to the negative electrode 122 to increase the moving speed of the lithium ion, the inorganic salt layer and the organic salt layer can be pushed out by the lithium ion to separate the inorganic salt layer and the organic salt layer from the cathode 122. [
여기서, 전류의 펄스 크기는 리튬 이온의 이동속도에 비례함으로, 전류의 펄스 크기가 강할수록 리튬 이온의 이동속도가 증가되어, 강한 고전류 펄스를 인가하여 음극(122)에 잔존하는 크기가 커진 inorganic salt layer 및 organic salt layer를 제거할 수 있다. Here, since the pulse size of the current is proportional to the moving speed of the lithium ion, the moving speed of the lithium ion is increased as the pulse size of the current is stronger, and the stronger high current pulse is applied to the inorganic salt layer and organic salt layer can be removed.
그리고, 펄스 인가단계는 구체적으로 예를 들어 1.0 ~ 2.5C 전류 펄스를 음극(122)에 인가할 수 있다. 여기서, 1.0C 보다 낮은 전류 펄스를 음극(122)에 인가하면 리튬 이온의 이동속도가 낮게 되어 inorganic salt layer 및 organic salt layer가 제거되는 효과가 작을 수 있다. In addition, the pulse applying step can specifically apply a current pulse of, for example, 1.0 to 2.5 C to the cathode 122. Here, when a current pulse lower than 1.0 C is applied to the cathode 122, the movement speed of the lithium ion is lowered and the effect of removing the inorganic salt layer and the organic salt layer may be small.
그리고, 2.5C 보다 높은 전류 펄스를 음극(122)에 인가하면, 과도한 고전류로 인하여 음극 활물질이 손상 또는 파괴될 수 있다. 아울러, 2.5C 보다 높은 전류 펄스를 음극(122)에 인가하면, 과도한 고전류로 인하여 음극(122) 표면에 형성되는 SEI(Solid electrolyte interface)층이 깨지며 리튬 이온이 데드(dead) 리튬이 되며 덴드라이트(Dendrite)로 성장하여 저항을 증가시킬 수 있고, 이때 계속적으로 성장되는 덴드라이트가 분리막(124)을 손상시켜 양극(121)과 음극(122)이 단락됨에 따라 화재 및 폭팔의 위험이 생길 수 있다.If a current pulse higher than 2.5 C is applied to the cathode 122, the anode active material may be damaged or destroyed due to excessive high currents. In addition, when a current pulse higher than 2.5 C is applied to the cathode 122, the SEI (solid electrolyte interface) layer formed on the surface of the cathode 122 is broken due to excessive high current, and lithium ions become dead lithium, The dendrite may grow to increase the resistance and the continuous dendrite may damage the separation membrane 124 and may short-circuit the anode 121 and the cathode 122, have.
이때, 보다 구체적으로 예를 들어 2.5C(만약 전지 용량이 50Ah이고, 2.5C의 전류를 인가하면, 50*2.5 = 125A의 전류가 흐르게 된다)의 전류 펄스를 음극(122)에 인가할 수 있다.At this time, more specifically, for example, a current pulse of 2.5 C (if the battery capacity is 50 Ah and a current of 2.5 C is applied, a current of 50 * 2.5 = 125 A flows) can be applied to the cathode 122 .
그리고, 펄스 인가단계는 음극 방전단계에 포함되어, 복수개로 마련된 리튬 재공급 전극(130) 중에서 어느 하나의 리튬 재공급 전극(130)을 대향 전극으로 설정하여 음극(122)을 방전시킬때 펄스 인가단계를 수행하고, 음극(122)의 방전량이 40~60%가 되면 어느 하나의 리튬 재공급 전극(130) 대신 다른 하나의 리튬 재공급 전극(130)을 대향 전극으로 설정하여 펄스 인가단계를 수행하며 음극(122)을 완전 방전시킬 수 있다. 이에 따라, 펄스 인가단계에서 강한 전류로 이동되는 리튬 이온이 양극(121)으로 이동되며 양극 활물질을 손상 또는 파괴 시킴에 따라 양극 구조가 붕괴되는 문제를 방지할 수 있다.The pulse applying step is included in the cathode discharging step to set any one of the plurality of lithium re-supply electrodes 130 as the counter electrode, and when the cathode 122 is discharged, When the discharge amount of the cathode 122 is 40 to 60%, the other lithium re-supply electrode 130 is set as the counter electrode instead of the one of the lithium re-supply electrodes 130, and the pulse applying step is performed And the cathode 122 can be completely discharged. Accordingly, it is possible to prevent a problem that the anode structure is collapsed due to damage or destruction of the cathode active material, which is moved to the anode 121 by the lithium ions moved in a strong current in the pulse applying step.
판별단계는 리튬 재공급 전극(130)을 워킹 전극으로 설정하고, 양극(121) 및 음극(122)을 대향 전극으로 설정하여, 리튬 재공급 전극(130)을 기준으로한 양극(121) 및 음극(122)의 각각 전압 값과 충전용량을 검출하여 양극(121) 및 음극(122)의 퇴화 정도를 판별할 수 있다.In the determining step, the lithium re-supply electrode 130 is set as a working electrode, the anode 121 and the cathode 122 are set as counter electrodes, and the anode 121 and the cathode 122, It is possible to detect the degree of degradation of the anode 121 and the cathode 122 by detecting the voltage value and the charging capacity of the anode 122 and the cathode 122, respectively.
여기서, 양극(121) 및 음극(122)을 통해 전압 값과 충전용량을 측정하면 양극(121) 및 음극(122)의 각각에 대한 전압 값과 충전용량을 측정할 수 없다. 단지, 양극(121) 및 음극(122)이 하나의 전기적인 연결로 이루어지게 되어 하나의 전압 값과 충전용량만이 나타난다.When the voltage value and the charging capacity are measured through the anode 121 and the cathode 122, the voltage value and the charging capacity for each of the anode 121 and the cathode 122 can not be measured. The positive electrode 121 and the negative electrode 122 are formed by one electrical connection, so that only one voltage value and the charging capacity are shown.
하지만, 리튬 재공급 전극(130)을 기준 전극으로 설정하면, 리튬 재공급 전극(130)과 양극(121)을 연결하고, 리튬 재공급 전극(130)과 음극(122)을 개별적으로 연결될 수 있어, 양극(121) 및 음극(122)의 전압 값과 충전용량을 개별적으로 측정할 수 있다. 결국, 리튬 재공급 전극(130)을 통해 양극(121) 및 음극(122)의 퇴화 정도를 각각 개별적으로 정확히 판별할 수 있다.However, if the lithium re-supply electrode 130 is set as the reference electrode, the lithium re-supply electrode 130 and the anode 121 may be connected, and the lithium re-supply electrode 130 and the cathode 122 may be individually connected , The anode voltage (121), and the cathode voltage (122) and the charging capacity can be separately measured. As a result, the degree of degradation of the anode 121 and the cathode 122 can be individually and accurately discriminated through the lithium re-supply electrode 130.
도 6은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법에서 판별단계에 사용되는 Differential voltage data를 나타낸 그래프이다.FIG. 6 is a graph illustrating differential voltage data used in a determination step in a method of regenerating a lithium secondary battery according to an embodiment of the present invention. Referring to FIG.
도 6의 그래프에서 X축은 충전 용량(Capacity)을 나타내고, Y축은 Differential voltage(dQ/dQ)를 나타낸다. 여기서, Y축의 Differential voltage는 음극의 전압을 미분한 값(dV)을 음극의 충전용량을 미분한 값(dQ)으로 나눈 것을 나타낸다. 그리고, 도 6의 그래프는 충전 용량에 따라 A,B,C,D 구역으로 나눌 수 있다.In the graph of Fig. 6, the X axis represents the charging capacity (Capacity), and the Y axis represents the differential voltage (dQ / dQ). Here, the differential voltage of the Y-axis represents a value obtained by differentiating the voltage of the cathode by a differential value (dV) divided by a value (dQ) obtained by differentiating the charging capacity of the cathode. The graph of FIG. 6 can be divided into A, B, C, and D zones according to the charging capacity.
도 6에 나타난, B 및 C 구역은 활물질이 퇴화되었을 경우 도 6의 그래프 상에서 오른쪽으로 Shifting되며, D구역은 리튬 이차전지에서 가용할 수 있는 리튬이 줄어들면 오른쪽으로 Shifting된다. The zones B and C shown in FIG. 6 are shifted to the right on the graph of FIG. 6 when the active material degrades, and the zone D is shifted to the right when lithium available in the lithium secondary battery is reduced.
따라서, 도 6에 도시된 그래프를 통해 활물질의 퇴화 정도와, 가용 리튬의 량을 체크하여 이차전지의 퇴화 경향을 정확히 판별할 수 있다.Accordingly, the degradation tendency of the secondary battery can be accurately determined by checking the degeneration degree of the active material and the amount of available lithium through the graph shown in FIG.
한편, 도 6에 도시된 음극 Differential voltage 그래프와 같이 양극 Differential voltage 그래프도 나타낼 수 있다. 결국, 음극, 양극의 데이터를 각각 분리하여 측정할 수 있어, 양극 및 음극의 퇴화 정도를 개별적으로 판별할 수 있다.Meanwhile, a cathode differential voltage graph such as the cathode differential voltage graph shown in FIG. 6 can also be shown. As a result, the data of the cathode and the anode can be separately measured, and the degradation degree of the anode and the cathode can be individually discriminated.
특히, 양극 및 음극의 Differential voltage 그래프를 실시간으로 모니터링하여 필요한 시기에 리튬을 공급할 수 있다.In particular, it is possible to monitor the differential voltage graph of the anode and the cathode in real time to supply lithium at the required time.
도 3 내지 도 5를 참고하면, 밸런스 재정립 단계는 판별단계를 통해 양극(121) 및 음극(122)의 퇴화 정도를 판별하여, 리튬 재공급단계를 통한 양극(121)으로의 리튬 공급량 및 음극 방전단계를 통한 음극(122)의 방전량을 조절하여 전극(123)의 밸런스를 재정립할 수 있다.3 to 5, in the balancing step, the degree of deterioration of the anode 121 and the cathode 122 is discriminated through the discrimination step, and the amount of lithium supplied to the anode 121 through the lithium refeeding step, The balance of the electrode 123 can be reestablished by adjusting the discharge amount of the cathode 122 through the step.
보다 상세히, 판별단계를 통해 음극(122) 보다 양극(121)의 퇴화 정도가 더 진행된 것으로 판별되면, 리튬 재공급단계를 통해 리튬 공급량을 늘려 양극(121)과 음극(122)의 용량을 대응되는 방향으로 조절한다.More specifically, if it is determined that the degradation degree of the anode 121 is further advanced by the discrimination step than the cathode 122, the amount of lithium supplied through the lithium refeeding step is increased to change the capacity of the anode 121 and the cathode 122 Direction.
한편, 판별단계를 통해 양극(121) 보다 음극(122)의 퇴화 정도가 더 진행된 것으로 판별되면, 음극 방전단계를 통해 리튬 방전량을 늘려 양극(121)과 음극(122)의 용량을 대응되는 방향으로 조절한다.On the other hand, if it is determined that the degradation degree of the cathode 122 is further advanced through the discrimination step than the anode 121, the amount of lithium discharge is increased through the cathode discharge step to increase the capacity of the anode 121 and the cathode 122 in the corresponding direction .
즉, 양극(121)과 음극(122)을 리튬 이온이 이동하면 충전과 방전을 수행할 때, 양극(121) 또는 음극(122) 중에서 어느 하나의 전극(123)의 용량이 제한을 받아 다른 하나의 전극(123)의 용량이 제한되는 것을 해결할 수 있다. 결국 보다 효과적으로 이차전지(100)의 용량을 증대시킬 수 있다.That is, when lithium ions move between the anode 121 and the cathode 122, the capacity of any one of the anode 121 and the cathode 122 is restricted when charging and discharging are performed, It is possible to solve the problem that the capacity of the electrode 123 of the plasma display panel is limited. As a result, the capacity of the secondary battery 100 can be increased more effectively.
도 7은 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법으로 회생된 리튬 이차전지의 저항변화를 나타낸 그래프이다.FIG. 7 is a graph illustrating a change in resistance of a lithium secondary battery regenerated by a method of regenerating a lithium secondary battery according to an embodiment of the present invention.
도 7에 나타나 있는 그래프는 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법으로 회생된 리튬 이차전지(A)와 회생 전 리튬 이차전지(B)의 저항 변화를 나타낸다. 여기서, 그래프의 가로축은 SOC(State of Charge; 충전상태)를 타내내고, 세로축은 저항(Resistance)을 나타낸다. 그리고, 도 6의 그래프는 리튬 이차전지에 전기를 1.5C(Coulomb)의 인가하여 98.7A의 전류가 리튬 이차전지에 흐를때의 저항 값을 검출하였다. 이때, 충전 상태의 각 구간 마다 10초간 전기를 인하하여 각 구간별로 저항 값을 검출하였다.The graph shown in FIG. 7 shows the resistance change of the lithium secondary battery A regenerated by the regeneration method of the lithium secondary battery according to the embodiment of the present invention and the lithium secondary battery B before regeneration. Here, the horizontal axis of the graph represents SOC (State of Charge) and the vertical axis represents resistance. In the graph of FIG. 6, 1.5 C (Coulomb) of electricity was applied to the lithium secondary battery to detect a resistance value when a current of 98.7 A flows through the lithium secondary battery. At this time, the electricity was cut for 10 seconds for each section of the charged state, and the resistance value was detected for each section.
도 7에 나타나 있는 그래프를 참고하면, 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법으로 회생된 리튬 이차전지(A)의 저항이 회생 전 리튬 이차전지(B)의 저항 보다 감소된 것을 알 수 있다. 결국, 본 발명의 실시예에 따른 리튬 이차전지의 회생 방법으로 회생된 리튬 이차전지(A)의 성능이 개선된 것을 알 수 있다7, it can be seen that the resistance of the lithium secondary battery A regenerated by the regenerating method of the lithium secondary battery according to the embodiment of the present invention is lower than the resistance of the lithium secondary battery B before regeneration . As a result, it can be seen that the performance of the lithium secondary battery A regenerated by the regenerating method of the lithium secondary battery according to the embodiment of the present invention is improved
이하에서, 도 1 내지 도 5를 참고하여, 본 발명의 다른 실시예에 따른 리튬 이차전지의 회생 방법을 설명하기로 한다.Hereinafter, a method for regenerating a lithium secondary battery according to another embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG.
도 1 내지 도 5를 참고하면, 본 발명의 다른 실시예에 따른 리튬 이차전지의 회생 방법은 전술한 일 실시예에 따른 리튬 이차전지의 회생 방법과 비교할 때, 판별단계의 판별방법에서 차이가 있다. 따라서, 본 실시예는 일 실시예와 중복되는 내용은 간략히 기술하고, 차이점을 중심으로 기술하도록 한다.1 to 5, the method for regenerating the lithium secondary battery according to another embodiment of the present invention differs from the method for determining the determination step in comparison with the method for regenerating the lithium secondary battery according to the above embodiment . Therefore, the present embodiment will briefly describe the contents overlapping one embodiment, and focus on the differences.
본 발명의 다른 실시예에 따른 리튬 이차전지의 회생 방법에서 판별방법은 리튬 재공급 전극(130)을 기준으로, 양극(121)과 음극(122)에 일정 전류 펄스를 일정 시간 인가하여, 가한 전류값과 전압의 변화량 값을 통해 양극(121) 및 음극(122) 각각의 저항값을 검출하여, 저항값이 더 크면 퇴화가 더 많이 된 것으로 판단하는 방식으로 양극(121) 및 음극(122)의 퇴화 정도를 판별할 수 있다.A method of determining a method of regenerating a lithium secondary battery according to another embodiment of the present invention includes applying a constant current pulse to the anode 121 and the cathode 122 for a predetermined time based on the lithium re- The resistance value of each of the positive electrode 121 and the negative electrode 122 is detected through the value of the value and the amount of change of the voltage and if the resistance value is larger, The degree of degeneration can be determined.
여기서, 판별방법은 예를 들어 양극(121)과 음극(122)에 1C 전류 펄스(만약 전지 용량이 50Ah이고, 1C 전류 펄스를 인가하면, 50*1 = 50A의 전류가 흐르게 된다) 를 10초 동안 인가하여 가한 전류값과 전압의 변화량 값을 통해 양극(121) 및 음극(122) 각각의 저항값을 검출할 수 있다.In this case, for example, if a 1C current pulse is applied to the anode 121 and the cathode 122 (if a battery capacity is 50 Ah and a 1C current pulse is applied, a current of 50 * 1 = 50 A flows) The resistance value of each of the anode 121 and the cathode 122 can be detected through the value of the current and the amount of change of the voltage.
한편, 본 발명의 다른 실시예에 따른 리튬 이차전지의 회생 방법에서 밸런스 재정립 단계에서 판별단계를 통해 판별된 양극(121) 및 음극(122)의 퇴화 정도에 따라, 리튬 재공급단계를 통한 양극(121)으로의 리튬 공급량 및 음극 방전단계를 통한 음극(122)의 방전량을 조절하여, 양극(121)과 음극(122)의 밸런스를 재정립할 수 있다.Meanwhile, according to the regenerating method of a lithium secondary battery according to another embodiment of the present invention, depending on the degradation degree of the anode 121 and the cathode 122 determined through the discriminating step in the balance refining step, The balance between the anode 121 and the cathode 122 can be regulated by adjusting the amount of lithium supplied to the anode 121 and the amount of discharge of the cathode 122 through the cathode discharging step.
이상 본 발명을 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명에 따른 리튬 이차전지의 회생 방법은 이에 한정되지 않는다. 본 발명의 기술적 사상 내에서 당해 분야의 통상의 지식을 가진 자에 의해 다양한 실시가 가능하다고 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the present invention is not limited thereto. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
또한, 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. Further, the scope of protection of the invention will be clarified by the appended claims.

Claims (13)

  1. 양극 및 음극을 포함하는 전극과 분리막이 교대로 결집되어 적층된 전극 조립체 및 상기 전극 조립체를 수용하는 수용부가 형성된 전지 케이스를 포함하는 이차전지의 회생 방법으로, A method for regenerating a secondary battery, the method comprising the steps of: preparing a battery case having an electrode assembly including a positive electrode and a negative electrode,
    상기 이차전지에 리튬 재공급 전극이 더 구비되어, 상기 양극을 대향 전극으로 설정하고, 상기 리튬 재공급 전극을 워킹(Working) 전극으로 설정하여, 상기 리튬 재공급 전극을 통해 상기 양극으로 리튬 이온을 충전하는 리튬 재공급단계; 및 The secondary battery further includes a lithium rechargeable electrode, wherein the positive electrode is set as an opposite electrode, the lithium material supplying electrode is set as a working electrode, lithium ions are supplied to the positive electrode through the lithium material supplying electrode, A lithium refeeding step of charging; And
    상기 리튬 재공급단계를 통해 상기 양극으로 리튬 이온을 재공급한 후, 상기 리튬 재공급 전극을 대향 전극으로 설정하고, 상기 음극을 워킹 전극으로 설정하여, 상기 음극을 방전 한계까지 완전 방전시키는 음극 방전단계를 포함하여, Supplying the lithium re-supply electrode to the counter electrode through the lithium refeeding step, setting the lithium re-supply electrode as a counter electrode, setting the cathode as a working electrode, and discharging the negative electrode to a discharge limit, Comprising the steps of:
    상기 이차전지의 용량을 회복시키는 리튬 이차전지의 회생 방법. And regenerating the capacity of the secondary battery.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 리튬 재공급단계 전에, Before the lithium refeeding step,
    상기 음극에서 상기 양극으로 리튬 이온을 이동시켜 상기 전극을 방전시키는 방전시키는 방전단계를 더 포함하는 리튬 이차전지의 회생 방법. And discharging the electrode by discharging lithium ions from the negative electrode to the positive electrode.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 리튬 재공급단계 및 상기 음극 방전단계를 반복적으로 수행하며, 상기 이차전지의 용량을 회복시키는 리튬 이차전지의 회생 방법. The regenerating method of the lithium secondary battery repeatedly performing the lithium refeeding step and the cathodic discharging step to recover the capacity of the secondary battery.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 리튬 재공급단계는 The lithium refeeding step
    복수개로 마련된 리튬 재공급 전극 중에서 어느 하나의 리튬 재공급 전극을 워킹 전극으로 설정하여 상기 양극으로 리튬 이온을 충전하고,One of the plurality of lithium re-supply electrodes is set as a working electrode, and lithium ions are charged into the positive electrode,
    상기 양극의 충전량이 40~60%가 되면 상기 어느 하나의 리튬 재공급 전극 대신 다른 하나의 리튬 재공급 전극을 워킹 전극으로 설정하여 상기 양극으로 리튬 이온을 완전 충전시키는 리튬 이차전지의 회생 방법.Wherein when the charged amount of the positive electrode is 40 to 60%, the other one of the lithium re-supply electrodes is set as a working electrode instead of the one of the lithium re-supply electrodes, thereby fully charging the lithium ion into the positive electrode.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 음극 방전단계는 The cathode discharge step
    복수개로 마련된 리튬 재공급 전극 중에서 어느 하나의 리튬 재공급 전극을 대향 전극으로 설정하여 상기 음극을 방전시키고,One of the lithium re-supply electrodes provided as a plurality of lithium re-supply electrodes is set as a counter electrode to discharge the negative electrode,
    상기 음극의 방전량이 40~60%가 되면 상기 어느 하나의 리튬 재공급 전극 대신 다른 하나의 리튬 재공급 전극을 대향 전극으로 설정하여 상기 음극을 완전 방전시키는 리튬 이차전지의 회생 방법.Wherein when the discharge amount of the negative electrode is 40 to 60%, the other one of the lithium re-supply electrodes is set as a counter electrode instead of the one of the lithium re-supply electrodes, thereby completely discharging the negative electrode.
  6. 청구항 4 또는 청구항 5에 있어서, The method according to claim 4 or 5,
    상기 복수개의 리튬 재공급 전극은 상기 전극 조립체의 일측에 위치되는 제1 리튬 재공급 전극 및 상기 전극 조립체의 타측에 위치되는 제2 리튬 재공급 전극을 포함하는 리튬 이차전지의 회생 방법.Wherein the plurality of lithium re-supply electrodes comprise a first lithium re-supply electrode located at one side of the electrode assembly and a second lithium re-supply electrode located at the other side of the electrode assembly.
  7. 청구항 4 또는 청구항 5에 있어서, The method according to claim 4 or 5,
    상기 음극 방전단계는 The cathode discharge step
    상기 음극으로 고전류 펄스를 인가하여 음극에 적층된 inorganic salt layer 및 organic salt layer를 제거하는 펄스 인가단계를 더 포함하는 리튬 이차전지의 회생 방법.Applying a high current pulse to the negative electrode to remove an inorganic salt layer and an organic salt layer stacked on the negative electrode.
  8. 청구항 7에 있어서, The method of claim 7,
    상기 펄스 인가단계는 1.0 ~ 2.5 C 전류 펄스를 상기 음극에 인가하는 리튬 이차전지의 회생 방법.Wherein the pulse applying step applies a current pulse of 1.0 to 2.5 C to the negative electrode.
  9. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
    상기 양극 및 상기 음극의 퇴화 정도를 판별하는 판별단계를 더 포함하여,Further comprising a discriminating step of discriminating a degeneration degree of the anode and the cathode,
    상기 판별단계를 통해 판별된 상기 양극 및 상기 음극의 퇴화 정도가 일정 범위 이상일 때만 상기 리튬 재공급 단계 또는 상기 음극 방전단계 중에서 어느 하나 이상의 단계를 수행하는 리튬 이차전지의 회생 방법.Wherein the step of regenerating the lithium secondary battery further comprises the step of supplying the lithium material or the step of discharging the cathode only when the degradation degree of the positive electrode and the negative electrode determined through the determining step is a certain range or more.
  10. 청구항 9에 있어서, The method of claim 9,
    상기 판별단계를 통해 상기 양극 및 상기 음극의 퇴화 정도를 판별하여, Determining a degradation degree of the anode and the cathode through the determination step,
    상기 리튬 재공급단계를 통한 상기 양극으로의 리튬 공급량 및 상기 음극 방전단계를 통한 상기 음극의 방전량을 조절하여 상기 전극의 밸런스를 재정립하는 밸런스 재정립 단계를 더 포함하는 리튬 이차전지의 회생 방법.And regulating the balance of the electrode by regulating the amount of lithium supplied to the positive electrode through the lithium supplying step and the discharging amount of the negative electrode through the negative discharging step.
  11. 청구항 9에 있어서, The method of claim 9,
    상기 판별단계는 The determining step
    상기 리튬 재공급 전극을 워킹 전극으로 설정하고, 상기 양극 및 상기 음극을 대향 전극으로 설정하여, 상기 리튬 재공급 전극을 기준으로한 상기 양극 및 상기 음극의 각각 전압 값과 충전용량을 검출하여 상기 양극 및 상기 음극의 퇴화 정도를 판별하는 리튬 이차전지의 회생 방법.The positive electrode and the negative electrode are set as opposing electrodes and the voltage value and the charging capacity of the positive electrode and the negative electrode with reference to the lithium material supplying electrode are detected, And regenerating the lithium secondary battery.
  12. 청구항 9에 있어서, The method of claim 9,
    상기 판별단계는 The determining step
    상기 리튬 재공급 전극을 기준으로, 상기 양극과 상기 음극에 일정 전류 펄스를 일정 시간 인가하여, 가한 전류값과 전압의 변화량 값을 통해 상기 양극 및 상기 음극 각각의 저항값을 검출하여, 상기 저항값이 더 크면 퇴화가 더 많이 된 것으로 판단하는 방식으로 상기 양극 및 상기 음극의 퇴화 정도를 판별하는 리튬 이차전지의 회생 방법.A resistance value of each of the positive electrode and the negative electrode is detected by applying a constant current pulse to the positive electrode and the negative electrode for a predetermined time with reference to the lithium re-supply electrode, The deterioration degree of the positive electrode and the negative electrode is determined in such a manner that it is determined that the deterioration is greater.
  13. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서, The method according to any one of claims 1 to 5,
    상기 리튬 재공급 전극은 리튬 메탈(Metal)로 이루어지는 리튬 이차전지의 회생 방법.Wherein the lithium re-supply electrode is made of lithium metal.
PCT/KR2018/007825 2017-07-10 2018-07-10 Lithium secondary battery regeneration method WO2019013536A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/497,235 US11362373B2 (en) 2017-07-10 2018-07-10 Method for regenerating lithium secondary battery
JP2019560641A JP6947360B2 (en) 2017-07-10 2018-07-10 How to recharge lithium secondary battery
CN201880017704.6A CN110419140B (en) 2017-07-10 2018-07-10 Method for regenerating lithium secondary battery
EP18831588.1A EP3588659B1 (en) 2017-07-10 2018-07-10 Method for regenerating lithium secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170087274 2017-07-10
KR10-2017-0087274 2017-07-10
KR1020180079493A KR102270870B1 (en) 2017-07-10 2018-07-09 Regnerative method for lithium rechargeable battery
KR10-2018-0079493 2018-07-09

Publications (1)

Publication Number Publication Date
WO2019013536A1 true WO2019013536A1 (en) 2019-01-17

Family

ID=65002304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007825 WO2019013536A1 (en) 2017-07-10 2018-07-10 Lithium secondary battery regeneration method

Country Status (1)

Country Link
WO (1) WO2019013536A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086663A (en) * 2019-11-25 2021-06-03 イビデン株式会社 Lithium ion secondary battery, and method for recovering capacity thereof
WO2021118049A1 (en) * 2019-12-11 2021-06-17 주식회사 엘지에너지솔루션 Apparatus and method for controlling operation of secondary battery by using relative degree of aging of electrode
WO2021186777A1 (en) * 2020-03-16 2021-09-23 株式会社日立ハイテク Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
EP3835802A4 (en) * 2019-04-17 2021-12-15 LG Chem, Ltd. Apparatus and method for determining state of degradation of battery, battery pack, and electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035242A (en) * 2010-10-04 2012-04-16 김윤 The regenerating system of battery
JP2015144070A (en) * 2014-01-31 2015-08-06 古河電池株式会社 metal-air battery
JP2016119249A (en) * 2014-12-22 2016-06-30 株式会社日立製作所 Lithium ion secondary battery system
JP2017045621A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery
JP2017117637A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035242A (en) * 2010-10-04 2012-04-16 김윤 The regenerating system of battery
JP2015144070A (en) * 2014-01-31 2015-08-06 古河電池株式会社 metal-air battery
JP2016119249A (en) * 2014-12-22 2016-06-30 株式会社日立製作所 Lithium ion secondary battery system
JP2017045621A (en) * 2015-08-26 2017-03-02 トヨタ自動車株式会社 Capacity recovery method for lithium ion secondary battery
JP2017117637A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Power supply device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3835802A4 (en) * 2019-04-17 2021-12-15 LG Chem, Ltd. Apparatus and method for determining state of degradation of battery, battery pack, and electric vehicle
US11982719B2 (en) 2019-04-17 2024-05-14 Lg Energy Solution, Ltd. Apparatus and method for determining degradation state of battery, battery pack and electric vehicle
JP2021086663A (en) * 2019-11-25 2021-06-03 イビデン株式会社 Lithium ion secondary battery, and method for recovering capacity thereof
JP7349331B2 (en) 2019-11-25 2023-09-22 イビデン株式会社 Lithium ion secondary battery and method for recovering capacity of the lithium ion secondary battery
WO2021118049A1 (en) * 2019-12-11 2021-06-17 주식회사 엘지에너지솔루션 Apparatus and method for controlling operation of secondary battery by using relative degree of aging of electrode
US11942810B2 (en) 2019-12-11 2024-03-26 Lg Energy Solution, Ltd. Apparatus and method for controlling operation of secondary battery using relative deterioration degree of electrode
WO2021186777A1 (en) * 2020-03-16 2021-09-23 株式会社日立ハイテク Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system

Similar Documents

Publication Publication Date Title
WO2019013536A1 (en) Lithium secondary battery regeneration method
WO2018128395A1 (en) Method and device for checking low-voltage defect in secondary battery
WO2016048002A1 (en) Prismatic battery cell comprising two or more case members
WO2012074217A2 (en) Method for deaerating secondary battery using centrifugal force
WO2015037867A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2016171517A1 (en) Secondary battery having improved safety
WO2015037868A1 (en) Lithium electrode and lithium secondary battery comprising same
WO2016056875A2 (en) Electrode assembly and method for manufacturing same
WO2014017864A1 (en) Secondary battery
US20100313410A1 (en) Fabrication of lithium secondary battery
CN107331892B (en) Electrolyte, positive electrode and preparation method thereof, and lithium ion battery
WO2019155452A2 (en) Lithium metal secondary battery and battery module including same
WO2013058566A1 (en) Secondary battery
WO2017082530A1 (en) Battery cell comprising electrode lead having protruding extension and tab connector
WO2013019039A2 (en) Electrode assembly including separation film for enhancing safety, and lithium secondary battery comprising same
WO2017099333A1 (en) Battery cell having electrode lead comprising gas adsorbent
WO2019039763A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
US20080076023A1 (en) Lithium cell
WO2021101041A1 (en) Secondary battery formation method
WO2015119486A1 (en) Electrochemical element
WO2019022409A1 (en) Cell recycling method
KR20190006452A (en) Regnerative method for lithium rechargeable battery
WO2020159263A1 (en) Method for manufacturing anode for secondary battery
WO2018101696A1 (en) Electrode assembly and secondary battery including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018831588

Country of ref document: EP

Effective date: 20190923

ENP Entry into the national phase

Ref document number: 2019560641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE