JP6465033B2 - 検査サーバ、通信端末、検査システム、および検査方法 - Google Patents
検査サーバ、通信端末、検査システム、および検査方法 Download PDFInfo
- Publication number
- JP6465033B2 JP6465033B2 JP2015554514A JP2015554514A JP6465033B2 JP 6465033 B2 JP6465033 B2 JP 6465033B2 JP 2015554514 A JP2015554514 A JP 2015554514A JP 2015554514 A JP2015554514 A JP 2015554514A JP 6465033 B2 JP6465033 B2 JP 6465033B2
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- test
- result
- information
- prevalence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007689 inspection Methods 0.000 title claims description 470
- 238000004891 communication Methods 0.000 title claims description 159
- 238000000034 method Methods 0.000 title claims description 137
- 238000012360 testing method Methods 0.000 claims description 510
- 238000003745 diagnosis Methods 0.000 claims description 146
- 238000012545 processing Methods 0.000 claims description 131
- 201000010099 disease Diseases 0.000 claims description 112
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 112
- 230000035945 sensitivity Effects 0.000 claims description 107
- 230000008569 process Effects 0.000 claims description 75
- 239000003814 drug Substances 0.000 claims description 27
- 229940079593 drug Drugs 0.000 claims description 25
- 238000003860 storage Methods 0.000 claims description 23
- 208000015181 infectious disease Diseases 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 description 51
- 230000004048 modification Effects 0.000 description 51
- 238000005516 engineering process Methods 0.000 description 40
- 238000010998 test method Methods 0.000 description 33
- 238000004364 calculation method Methods 0.000 description 22
- 108090000623 proteins and genes Proteins 0.000 description 19
- 241000712461 unidentified influenza virus Species 0.000 description 15
- 230000008859 change Effects 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 238000012937 correction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 208000035473 Communicable disease Diseases 0.000 description 9
- 206010071602 Genetic polymorphism Diseases 0.000 description 9
- 238000002255 vaccination Methods 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000036541 health Effects 0.000 description 5
- 238000003317 immunochromatography Methods 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 238000013100 final test Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 3
- 208000037942 Methicillin-resistant Staphylococcus aureus infection Diseases 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229960003085 meticillin Drugs 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 206010041925 Staphylococcal infections Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 230000005180 public health Effects 0.000 description 2
- 206010011409 Cross infection Diseases 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 241000194033 Enterococcus Species 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229940124307 fluoroquinolone Drugs 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 210000003928 nasal cavity Anatomy 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/40—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H70/00—ICT specially adapted for the handling or processing of medical references
- G16H70/60—ICT specially adapted for the handling or processing of medical references relating to pathologies
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Description
また、有病率の精度を向上させる為には、検査結果の総数が非常に多いことが重要であるが、これまでの検査システムでは、総数を増やすことには主眼が置かれていなかった。
臨床現場において用いられる検査機器や検査薬、検査キット(以下、まとめて検査機器と呼ぶ)には、検査機器が罹患患者を正しく陽性と判定できる精度(=感度)と、非罹患者を正しく陰性と判定できる精度(=特異度)が定義されている。これらの精度は、検査機器の製造時に特定できるものである。これまで、臨床検査では、これらの指標を参考にして、検査結果に対する医師の最終判断が行われてきた。
ここで、有病率および有病率に関連する指標について、簡単に説明する。図1は、ある疾患の臨床検査を、ある検査方法により行った際の状態を表している。ここで、検査機器により陽性という結果が出て、かつ医師が確かにその患者が疾患に罹患していると最終判断を下したケース(真陽性)に該当する人数をa人としている。また、検査機器により陽性という結果が出たが、医師によりその患者はその疾患に罹患していないという最終判断を下したケース(偽陽性)に該当する人数をc人としている。
次に、有病率と陽性的中率、陰性的中率の関係について説明する。
まず、ベイズの定理により、ある検査を患者に対して行って、実際に罹患している確率(オッズ)は、その検査を行う前に、その検査で陽性になる検査前オッズと尤度比を用いて、以下の数式(1)のように表される。
検査前オッズ=有病率/(1−有病率) (7)
検査陽性後オッズ=陽性的中率/(1−陽性的中率) (8)
検査陰性後オッズ=陰性的中率/(1−陰性的中率) (9)
陽性尤度比=感度/(1−特異度)
=(真陽性数/疾患数)/(偽陽性数/非疾患数) (10)
陰性尤度比=(1−感度)/特異度
=(偽陰性数/疾患数)/(真陰性数/非疾患数) (11)
陰性的中率=特異度×(1−有病率)/(特異度×(1−有病率)+有病率×(1−感度)) (13)
次に、陽性的中率、陰性的中率に基づく治療方針の提示について説明する。ここでは、上述した検査端末において、計算された陽性的中率および陰性的中率に基づいて、検査後に次に採るべき検査方針および治療方針について提示する構成を説明する。
ここでは、MRSA(Methicillin-resistant Staphylococcus aureus、メチシリン耐性黄色ブドウ球菌)への感染を例に説明する。
次に、感度、特異度、有病率、および陰性的中率がどの程度であるときに、どのような方針を採るべきかについて、具体例を挙げる。
次に、有病率に基づいて、検査端末はどのような検査方法を医師に推奨できるかを説明する。
次に、上述した有病率の具体例について説明する。ここでは、年代、地域、時期、年齢、コミュニティなどに応じて有病率が変化する例を説明する。
まず、薬剤耐性菌の有病率が、年代を経るに従って変化している様子を説明する。ここでの説明は、米国のCDC(Centers for Disease Control and Prevention、アメリカ疾病管理予防センター)の作成した、薬剤耐性菌の罹患率の変化に関する情報に基づいている。なお、罹患率と有病率は類似の指標であり、ここでは有病率と読み替えて説明する。
次に、薬剤耐性菌の有病率が、地域(国)により変化する様子を説明する。ここでの説明は、European Antimicrobial Resistance Surveillance System (EARSS)のEuro Surveillance 2008 Nov 20 Volume 13, Issue 47の資料に基づいている。この資料は、ヨーロッパにおける国別の薬剤耐性菌の有病率を示したものである。
次に、インフルエンザウイルスの有病率が、時期や地域によって変動する様子を説明する。ここでは、東京都健康安全研究センターの資料を用いる。この資料は、定点あたりのインフルエンザの患者数を時期ごとおよび年ごとに表したものである。
次に、インフルエンザウイルスの有病率が、患者の年齢や所属するコミュニティによって変動する様子を説明する。ここでは厚生労働省と奈良県郡山保健所の資料を用いて説明する。この資料は、厚生労働省の感染症発生動向調査における、年齢階級別の推計受診者数を表したものである。
次に、本技術を適用する検査システムの全体構成について説明する。本技術を用いた検査システムでは、クライアント・サーバ構成を採る。図3は、本技術を採用する検査システム10が、検査端末20と検査サーバ40とを、ネットワークを介して接続した構成であることを示す図である。この図にあるように、本技術を採用する検査システム10では、クライアントとなる複数の検査端末20が、各国、各地域、各施設に分散して配置されており、それらの検査端末20が、ネットワーク30を介して、検査サーバ40と接続されている。
まず、本技術を採用する検査システム10が、クライアント・サーバ構成でなければならない理由について、説明する。
次に、検査サーバ40のハードウェア構成について説明する。検査サーバ40は、専用のハードウェアやソフトウェアにより構成されていてもよいし、一般的なコンピュータにより構成されてもよい。検査サーバ40が一般的なコンピュータにより構成される場合のブロック図を図4に示す。
次に、データベース47a内に格納されるレコードの構成例について説明する。図5は、データベース47aを構成する各レコードにおける、各フィールド(項目)の例を示す図である。なお、これらの項目を検査情報と呼ぶ。
次に、検査端末20のハードウェア構成について説明する。検査端末20は、専用のハードウェアやソフトウェアにより構成されていてもよいし、検査機器と一般的なコンピュータにより構成されてもよい。検査端末20が検査機器と一般的なコンピュータにより構成される場合のブロック図を図6に示す。
次に、検査システム10にて行われる処理の流れについて説明する。最初に全体的な流れを説明し、次に個々の処理の詳細について説明し、最後に、応用例または変形例としても処理の流れについて説明する。
まず、検査システム10における全体的な処理の流れについて説明する。図7は、検査システム10における全体的な処理の流れについて説明するフローチャートである。
陰性的中率=特異度×(1−有病率)/(特異度×(1−有病率)+有病率×(1−感度)) (13)
なお、陽性的中率および陰性的中率は、有病率を用いずに、それぞれ直接、式a/(a+c)およびd/(b+d)から求めてもよい。
次に、上述した有病率を集計し算出する処理の詳細について説明する。図8は、有病率を集計し算出する処理の詳細について説明するフローチャートである。
次に、上述した検査の実施について詳細を説明する。図9は、検査の実施について詳細を説明するフローチャートである。
上記の説明では、検査端末20が、その検査端末自身の感度および特異度の情報を持っており、検査サーバ40からは有病率のみをダウンロードして、検査端末20側で、陽性的中率および陰性的中率を計算する処理を説明した。
上記の説明では、検査サーバ40から検査端末20に、有病率のみ、または、有病率、陽性的中率、および陰性的中率の3つをダウンロードする構成とした。これに対し、ここで説明する変形例では、より多くの情報をダウンロードし、ユーザに提示してもよい。例えば、診断総件数や疾患件数などである。これらもユーザに提示することにより、算出された陽性的中率および陰性的中率の妥当性を判断することが出来る。
上記の説明では、感度および特異度は、検査機器28において一意に決定されるものとした。これに対し、ここで説明する変形例では、感染症などの病気を発病してからの経過時間によって、感度および特異度を変化させる構成について説明する。
上記の説明では、疾患の検査として、1つの検査を実行する構成を説明した。これに対し、ここで説明する変形例では、複数種類の検査を実行し、それらの結果を総合して最終的な検査結果(最終的な診断結果ではない)を出力する構成を説明する。この変形例の構成では、複数種類の検査を行い、すべての検査で陽性となった場合のみ最終的な検査結果を陽性としてもよい。これにより、尤度(感度および特異度)の精度を向上させることが出来、最終的に算出される陽性的中率および陰性的中率の精度も向上させることが出来る。
上記の、複数の検査を組み合わせる変形例では、全ての検査を行った後に、全ての検査結果を統合して処理する構成を説明した。これに対し、ここで説明する変形例では、複数の検査を1つずつ実行し、1つの検査結果が出るたびに、検査を続行するか否かを判断する。この変形例では、段階的に検査を行うことにより、有病率に基づいた最終的な診断結果の精度を向上させることが出来る。
上記の説明では、データベース47aに格納している全てのレコード、すなわち全ての検査結果を対象として、有病率を集計し算出した。これに対し、ここで説明する変形例では、検査端末20の属性(端末属性情報)に基づいて、有病率の集計と算出の基となる検査結果を絞り込む構成を説明する。
上記の絞り込みを行う変形例では、検査端末20の属性に基づいて、有病率の集計と算出の基となる検査結果を絞り込む構成を説明した。これに対し、ここで説明する変形例では、検査端末20の属性に代わり、検査を受ける患者の属性(患者属性情報)に基づいて、有病率の集計と算出の基となる検査結果を絞り込む構成を説明する。
上記の絞り込みを行う変形例では、検査端末20の属性や患者の属性を用いて絞り込みを行った。これに対し、ここで説明する変形例では、絞り込みを行った結果、対象とする検査結果の数が不足し、検査結果の集計からは意味のある有病率を導き出せない場合の解決策の1つを説明する。
上記の説明では、有病率を求めるための集計を行う際に、1つの検査結果の重みを1としてカウントする(単純に陽性の件数をカウントする)構成について説明した。これに対し、ここで説明する変形例では、検査が行われた環境の条件(例えば、特定地域での予防接種普及率)を考慮して、カウントアップした陽性の件数に重み付けを行って補正し、真の有病率を予測する構成を説明する。なお、重み付けは、例えば、所定の条件に応じて係数を乗じることにより行う。
上記の説明では、有病率を算出するために、過去の検査結果においては、必ず医師の診断結果も得られることを前提としていた。これに対し、ここで説明する変形例では、検査端末20による検査の際に医師による最終的な診断結果の入力がなされないことがあるという前提に立つ。医師による最終的な診断結果が入力されないことがあると、データベース47aの「診断結果」欄に空白のものが発生し、集計して求める有病率の精度が低くなってしまう。そのため、本変形例では、有病率の代わりに、有病率の代用となる近似的な指標を用いる。
ここでは、有病率を陽性率の関係が、感度および特異度により変化することについて説明する。
上記の、有病率を陽性率で代用する変形例では、ある検査方法に対する有病率の代わりに、その検査方法出られる陽性率を用いた。これに対し、この変形例では、上述した、有病率を陽性率で代替する場合、より高感度、高特異度の診断機器に基づく陽性率を用いたほうが、本来の有病率から算出される陽性的中率、陰性的中率により近くなるという点を考慮する。なお、ここでいうより高感度、高特異度とは、信用するに足るほど充分に大きいという意味であり、別の言い方をすれば、予め要求される所定の値を満足するということである。
陰性的中率=特異度i×(1−陽性率p)/(特異度i×(1−陽性率p)+陽性率p×(1−感度i)) (17)
次に、CPU41は、有病率を陽性率で代替する(ステップS17e)。有病率の値は、より高精度な検査方法に基づく陽性率で代替され、以降の処理で利用される。
上記の構成では、検査を行う医師に対し、検査端末20が有病率、陽性的中率、および陰性的中率、すなわち医師が最終的な診断を行うにあたり参考となる情報の表示を行った。それに対し、ここで説明する変形例では、検査端末20が、例えば、算出した陽性的中率が現実的な値か否かを判断し(有効性を評価し)、現実的(有効)であれば、医師に検査の実施を推奨する。
上記の説明では、検査を実施する地域における過去の検査結果を集計することにより、その地域における有病率を算出した。これに対し、ここで説明する変形例では、これまで検査を実施していない地域の有病率を、他の地域で算出された有病率から推測する。
なお、ここでは、ある地域の有病率は、他の地域からの距離の2乗に反比例すると仮定したが、これ以外に、感染に影響を与える要因、すなわち、都市間の交通状況や地形を加味した距離、測定時刻、人口密度、および医療レベルのうち少なくとも一つに基づいて重みづけ補正を行ってもよい。
上記の説明では、検査システム10は、現時点での有病率を提供した。これに対し、ここで説明する変形例では、現時点での有病率に加え、今後の予測有病率も提供する。なお、今後の予測有病率を提供するための処理は、検査サーバ40において行われてもいし、検査端末20において行われてもよいし、両者の間で分担する形で処理が行われてもよい。ここでは、検査サーバ40において処理が行われるものとして説明を行う。
(a)現時点の有病率や一定時間前の有病率として、より細かい時間単位(例えば1時間ごと)で取得した複数の有病率の平均を用いる。
(b)より短い時間単位での変化率を求め、それらの変化率の平均を取る。
上記の説明では、検査端末20側で検査を行う度に検査サーバ40から有病率などの情報をダウンロードする構成を説明した。これに対し、この変形例では、検査サーバ40の負荷を減らし、検査サーバ40および検査端末20間の通信料を削減するために、有病率などダウンロードした情報を検査端末20上でキャッシュする。検査端末20は、検査の度に有病率などの情報を検査サーバ40に要求するのではなく、一定時間の間は、検査端末20にキャッシュされた有病率などの情報を利用する。
上記の説明では、最終的な診断結果等は、医師が検査端末20に入力し、検査端末20が検査サーバ40にアップロードする構成を説明した。これに対し、ここで説明する変形例では、病院内のLIS(Laboratory Information System)などのローカルシステムや、インターネット上のクラウドシステムを介して、診断結果等の情報を検査サーバ40にアップロードする構成を説明する。
上記の説明では、検査端末20において、医師などのユーザに対し、算出された有病率や陽性的中率、陰性的中率などの提示を行う構成を説明した。これに対し、ここで説明する変形例では、検査端末20が、ユーザに対し、投薬の推奨を行う。
上記の説明では、検査端末20の表示部26上に、一般的な有病率や、属性による絞り込みを行った結果の有病率、重み付けを行った結果の有病率、有病率の代用となる陽性率、検査実施/不実施の推奨、予測有病率、投薬の推奨、患者の個別管理の推奨などの表示を行う構成について個別に説明した。これに対し、ここで説明する変形例では、これらの表示を統合して行う構成などについて説明する。
上記の説明では、検査システム10がクライアント・サーバ構成を採り、クライアントである検査端末20とサーバである検査サーバ40とが、分担して処理を行う構成を説明した。これに対し、ここで説明する変形例では、検査端末20が行う処理を必要最低限のものに限定し、殆どの処理を検査サーバ40で行う変形例について説明する。
ここでは、本技術に係る検査システム10、検査サーバ40、および検査端末20の構成と機能の概略についてまとめる。
本実施形態の検査システム10により、例えば、以下の様な効果を得ることが出来る。
(1)多数の検査端末20から得られた情報に基づき、有病率等、診断の指標となる情報を提供することにより、医師が下す最終的な診断結果の精度を向上させることが出来る。
(2)データベース47aに蓄積された情報に対して絞り込みや重み付けを行って、有病率等、提供する情報の精度をさら高めることが出来る。
(3)検査システム10内には無い情報を外部から取得することにより、有病率などに加えて、さらに有用な情報を医師に提供することが出来る。
(4)検査サーバ40側を変更するだけで、新規機能に基づく新しい情報を医師に提供することが出来る。
(5)典型的な検査システムとは異なり、即時性をもって感染症などに対応することが出来る。
その他、本技術は、上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
なお、本技術は以下のような構成もとることができる。
(1)
疾患の有無の検査を実行可能な検査機器と接続可能とされ、かつ当該検査に関する医師による前記疾患の有無の診断の結果の入力が可能な複数の通信端末とネットワークを介して通信する通信部と、
前記複数の通信端末から、少なくとも前記検査の結果および前記診断の結果のうち少なくとも一方を検査情報としてそれぞれ前記通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
ように構成された制御部と
を具備する検査サーバ。
(2)
前記(1)に記載の検査サーバであって、
前記制御部は、
前記記憶された複数の検査情報における、
前記検査の結果および前記診断の結果が共に陽性である前記検査情報の数、
前記検査の結果が陰性で前記診断の結果が陽性である前記検査情報の数、
前記検査の結果が陽性で前記診断の結果が陰性である前記検査情報の数、および
前記検査の結果および前記診断の結果が共に陰性である前記検査情報の数に基づいて、
前記統計処理の結果として算出、有病率、陽性的中率、および陰性的中率のうち少なくとも1つを前記通信部により応答させる
ように構成された検査サーバ。
(3)
前記(2)に記載の検査サーバであって、
前記制御部は、
前記有病率に加えて、
前記有病率、前記検査機器の感度、および前記検査機器の特異度に基づいて算出した陽性的中率および陰性的中率を前記通信部により応答させる
ように構成された検査サーバ。
(4)
前記(2)または(3)に記載の検査サーバであって、
前記制御部は、
前記検査を行う患者における発症からの経過時間を前記通信端末から取得し、
前記発症からの経過時間に対応する感度および特異度を取得し、
前記取得された感度および特異度に基づいて前記陽性的中率および前記陰性的中率を算出する
ように構成された検査サーバ。
(5)
前記(1)から(4)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
前記通信端末に接続された検査機器に、前記疾患の検査用の複数種類の検査を実行させ、
前記検査機器から前記実行した複数種類の検査の結果を取得し、
前記取得した複数種類の検査の結果に基づいて、前記疾患の有無を示す検査の結果を判定する
ように構成された検査サーバ。
(6)
前記(1)から(4)のうちいずれか1つに記載の検査サーバであって、
前記検査機器は、複数種類の検査が実行可能であり、
前記制御部は、
前記検査機器に前記複数種類の検査のうちの1つの検査を実行させた後、
当該1つの検査に関し、陽性尤度比および陰性尤度比のうち少なくとも一方に基づいて、当該1つの検査での検査後オッズを算出して前記通信端末に送信し、前記通信端末から次の検査を行うか否かの情報を取得する
ように構成された検査システム。
(7)
前記(1)から(6)のうちいずれか1つに記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を受ける患者の属性を示す患者属性情報を含み、
前記制御部は、
前記通信端末から任意の前記患者属性情報を指定した統計情報絞り込み要求を受けたとき、
前記患者属性情報の属性を有する検査情報を対象に絞り込んで前記統計処理を行う
ように構成された検査サーバ。
(8)
前記(1)から(7)のうちいずれか1つに記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を行う前記通信端末の属性を示す端末属性情報を含み、
前記制御部は、
前記通信端末から任意の前記端末属性情報を指定した統計情報絞り込み要求を受けたとき、
前記端末属性情報の属性を有する検査情報を対象に絞り込んで前記統計処理を行う
ように構成された検査サーバ。
(9)
前記(8)に記載の検査サーバであって、
前記制御部は、
前記絞り込んだ検査情報に基づいて算出された前記統計処理の結果に、前記端末属性情報に基づく重み付けを行う
ように構成された検査サーバ。
(10)
前記(2)から(4)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
陽性率を前記有病率の代わりに用いることが可能な
ように構成された検査サーバ。
(11)
前記(10)に記載の検査サーバであって、
前記検査情報は、前記検査を行う方法を識別する情報を含み、
前記制御部は、
同一の前記疾患の前記検査を行う複数の前記方法について、
前記各々の方法ごとに、予め与えられた各感度および各特異度のうち、
これら感度および特異度が予め要求される所定の値を満足する方法により得られた複数の前記検査情報に対する前記統計処理の結果である前記陽性率を、
他の前記方法によって得られた複数の前記検査情報に対する各々の前記統計処理の結果である各々の有病率の代わりに用いることが可能な
ように構成された検査サーバ。
(12)
前記(2)から(4)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
前記陽性的中率を基に、前記検査の有効性を評価し、その評価結果を前記通信端末に送信し、前記通信端末に前記検査の推奨または非推奨のメッセージを提示させる
ように構成された検査サーバ。
(13)
前記(2)から(4)のうちいずれか1つに記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を行う前記通信端末の属性を示す端末属性情報として、前記通信端末が位置する地域の情報を含み、
前記制御部は、
前記検査が未実施である第1の地域における前記有病率を、前記有病率が得られた、前記第1の地域とは異なる1つ以上の第2の地域における各々の有病率と、前記第2の地域各々と前記第1の地域との間における、感染に影響を与える要因を基に推定する
ように構成された検査サーバ。
(14)
前記(2)から(4)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
定期的に前記統計処理を行い前記有病率の履歴情報を作成し、
前記履歴情報に基づいて、将来の有病率を予測する
ように構成された検査サーバ。
(15)
前記(1)から(14)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
前記記憶された複数の検査情報を統計処理する代わりに、外部から取得した前記統計処理の結果を応答させる
ように構成された検査サーバ。
(16)
前記(1)から(15)のうちいずれか1つに記載の検査サーバであって、
前記制御部は、
前記検査の結果、前記診断の結果、および前記統計処理の結果のうち少なくとも1つに基づいた薬剤のリストを前記通信端末に送信し、前記通信端末に投薬を推奨する薬剤として前記リストを提示させる、
もしくは、
前記検査機器で検査可能な前記検査の方法のリストと、
前記リスト内で推奨される検査の方法を示す推奨マークと、
前記検査を開始するためのユーザインターフェイスと
を前記通信端末に表示させる
ように構成された検査サーバ。
(17)
疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報として複数個収集し、収集した複数の前記検査情報を統計処理した結果を提供する検査サーバとネットワークを介して通信する通信部と、
医師であるユーザからの入力を受け付ける入力部と、
前記検査サーバに前記統計処理の結果の要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を前記ユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果のうち少なくとも一方を前記検査情報として、前記通信部により前記検査サーバへ送信させる
ように構成された制御部と
を具備する通信端末。
(18)
検査サーバと複数の通信端末を具備する検査システムであって、
前記検査サーバは、
前記複数の通信端末とネットワークを介して通信する第1の通信部と、
前記複数の通信端末から、少なくとも疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報としてそれぞれ前記通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
ように構成された第1の制御部と
を具備し、
前記通信端末は、
前記検査サーバと前記ネットワークを介して通信する第2の通信部と、
医師であるユーザからの入力を受け付ける入力部と、
前記検査サーバに前記統計処理の結果の前記要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を前記ユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果のうち少なくとも一方を前記検査情報として、前記通信部により前記検査サーバへ送信させる
ように構成された第2の制御部と
を具備する
検査システム。
(19)
制御部が、
疾患の有無の検査を実行可能な検査機器と接続可能とされ、かつ当該検査に関する医師による前記疾患の有無の診断の結果の入力が可能な複数の通信端末から、少なくとも前記検査の結果および前記診断の結果のうち少なくとも一方を検査情報としてそれぞれ前記通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
検査方法。
(20)
制御部が、
疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報として複数個収集し、収集した複数の前記検査情報を統計処理した結果を提供する検査サーバとネットワークを介して通信する通信部により、前記検査サーバに前記統計処理の結果の要求を送信させ、
前記検査サーバに前記統計処理の結果の要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を医師であるユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記ユーザからの入力を受け付ける入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果を前記検査情報として、前記通信部により前記検査サーバへ送信させる
検査方法。
20 … 検査端末
21 … CPU
22 … ROM
23 … RAM
24 … 操作入力部
25 … ネットワークインターフェイス部
26 … 表示部
27 … 記憶部
28 … 検査機器
30 … ネットワーク(インターネット)
40 … 検査サーバ
41 … CPU
42 … ROM
43 … RAM
44 … 操作入力部
45 … ネットワークインターフェイス部
46 … 表示部
47 … 記憶部
47a… データベース
Claims (20)
- 疾患の有無の検査を実行可能な検査機器と接続可能とされ、かつ当該検査に関する医師による前記疾患の有無の診断の結果の入力が可能な複数の通信端末とネットワークを介して通信する通信部と、
前記複数の通信端末から、少なくとも前記検査の結果および前記診断の結果のうち少なくとも一方を検査情報としてそれぞれ前記通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
ように構成された制御部と
を具備する検査サーバ。 - 請求項1に記載の検査サーバであって、
前記制御部は、
前記記憶された複数の検査情報における、
前記検査の結果および前記診断の結果が共に陽性である前記検査情報の数、
前記検査の結果が陰性で前記診断の結果が陽性である前記検査情報の数、
前記検査の結果が陽性で前記診断の結果が陰性である前記検査情報の数、および
前記検査の結果および前記診断の結果が共に陰性である前記検査情報の数に基づいて、
前記統計処理の結果として算出した、有病率、陽性的中率、および陰性的中率のうち少なくとも1つを前記通信部により応答させる
ように構成された検査サーバ。 - 請求項2に記載の検査サーバであって、
前記制御部は、
前記有病率に加えて、
前記有病率、前記検査機器の感度、および前記検査機器の特異度に基づいて算出した陽性的中率および陰性的中率を前記通信部により応答させる
ように構成された検査サーバ。 - 請求項3に記載の検査サーバであって、
前記制御部は、
前記検査を行う患者における発症からの経過時間を前記通信端末から取得し、
前記発症からの経過時間に対応する感度および特異度を取得し、
前記取得された感度および特異度に基づいて前記陽性的中率および前記陰性的中率を算出する
ように構成された検査サーバ。 - 請求項1に記載の検査サーバであって、
前記制御部は、
前記通信端末に接続された検査機器に、前記疾患の検査用の複数種類の検査を実行させ、
前記検査機器から前記実行した複数種類の検査の結果を取得し、
前記取得した複数種類の検査の結果に基づいて、前記疾患の有無を示す検査の結果を判定する
ように構成された検査サーバ。 - 請求項1に記載の検査サーバであって、
前記検査機器は、複数種類の検査が実行可能であり、
前記制御部は、
前記検査機器に前記複数種類の検査のうちの1つの検査を実行させた後、
当該1つの検査に関し、陽性尤度比および陰性尤度比のうち少なくとも一方に基づいて、当該1つの検査での検査後オッズを算出して前記通信端末に送信し、前記通信端末から次の検査を行うか否かの情報を取得する
ように構成された検査サーバ。
- 請求項1に記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を受ける患者の属性を示す患者属性情報を含み、
前記制御部は、
前記通信端末から任意の前記患者属性情報を指定した統計情報絞り込み要求を受けたとき、
前記患者属性情報の属性を有する検査情報を対象に絞り込んで前記統計処理を行う
ように構成された検査サーバ。 - 請求項1に記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を行う前記通信端末の属性を示す端末属性情報を含み、
前記制御部は、
前記通信端末から任意の前記端末属性情報を指定した統計情報絞り込み要求を受けたとき、
前記端末属性情報の属性を有する検査情報を対象に絞り込んで前記統計処理を行う
ように構成された検査サーバ。 - 請求項8に記載の検査サーバであって、
前記制御部は、
前記絞り込んだ検査情報に基づいて算出された前記統計処理の結果に、前記端末属性情報に基づく重み付けを行う
ように構成された検査サーバ。 - 請求項2に記載の検査サーバであって、
前記制御部は、
陽性率を前記有病率の代わりに用いることが可能な
ように構成された検査サーバ。 - 請求項10に記載の検査サーバであって、
前記検査情報は、前記検査を行う方法を識別する情報を含み、
前記制御部は、
同一の前記疾患の前記検査を行う複数の前記方法について、
前記各々の方法ごとに、予め与えられた各感度および各特異度のうち、
これら感度および特異度が予め要求される所定の値を満足する方法により得られた複数の前記検査情報に対する前記統計処理の結果である前記陽性率を、
他の前記方法によって得られた複数の前記検査情報に対する各々の前記統計処理の結果である各々の有病率の代わりに用いることが可能な
ように構成された検査サーバ。 - 請求項2に記載の検査サーバであって、
前記制御部は、
前記陽性的中率を基に、前記検査の有効性を評価し、その評価結果を前記通信端末に送信し、前記通信端末に前記検査の推奨または非推奨のメッセージを提示させる
ように構成された検査サーバ。 - 請求項2に記載の検査サーバであって、
前記通信端末から取得される前記検査情報は、前記検査を行う前記通信端末の属性を示す端末属性情報として、前記通信端末が位置する地域の情報を含み、
前記制御部は、
前記検査が未実施である第1の地域における前記有病率を、前記有病率が得られた、前記第1の地域とは異なる1つ以上の第2の地域における各々の有病率と、前記第2の地域各々と前記第1の地域との間における、感染に影響を与える要因を基に推定する
ように構成された検査サーバ。 - 請求項2に記載の検査サーバであって、
前記制御部は、
定期的に前記統計処理を行い前記有病率の履歴情報を作成し、
前記履歴情報に基づいて、将来の有病率を予測する
ように構成された検査サーバ。 - 請求項1に記載の検査サーバであって、
前記制御部は、
前記記憶された複数の検査情報を統計処理する代わりに、外部から取得した前記統計処理の結果を応答させる
ように構成された検査サーバ。 - 請求項1に記載の検査サーバであって、
前記制御部は、
前記検査の結果、前記診断の結果、および前記統計処理の結果のうち少なくとも1つに基づいた薬剤のリストを前記通信端末に送信し、前記通信端末に投薬を推奨する薬剤として前記リストを提示させる、
もしくは、
前記検査機器で検査可能な前記検査の方法のリストと、
前記リスト内で推奨される検査の方法を示す推奨マークと、
前記検査を開始するためのユーザインターフェイスと
を前記通信端末に提示させる
ように構成された検査サーバ。 - 疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報として複数個収集し、収集した複数の前記検査情報を統計処理した結果を提供する検査サーバとネットワークを介して通信する通信部と、
医師であるユーザからの入力を受け付ける入力部と、
前記検査サーバに前記統計処理の結果の要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を前記ユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果のうち少なくとも一方を前記検査情報として、前記通信部により前記検査サーバへ送信させる
ように構成された制御部と
を具備する通信端末。 - 検査サーバと複数の通信端末を具備する検査システムであって、
前記検査サーバは、
前記複数の通信端末とネットワークを介して通信する第1の通信部と、
前記複数の通信端末から、少なくとも疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報としてそれぞれ前記通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
ように構成された第1の制御部と
を具備し、
前記通信端末は、
前記検査サーバと前記ネットワークを介して通信する第2の通信部と、
医師であるユーザからの入力を受け付ける入力部と、
前記検査サーバに前記統計処理の結果の前記要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を前記ユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果のうち少なくとも一方を前記検査情報として、前記通信部により前記検査サーバへ送信させる
ように構成された第2の制御部と
を具備する
検査システム。 - 制御部が、
疾患の有無の検査を実行可能な検査機器と接続可能とされ、かつ当該検査に関する医師による前記疾患の有無の診断の結果の入力が可能な複数の通信端末から、少なくとも前記検査の結果および前記診断の結果のうち少なくとも一方を検査情報としてそれぞれ通信部により取得し、
前記取得された複数の検査情報を記憶部に記憶させ、
前記記憶された複数の検査情報を統計処理し、
前記医師による診断の前に前記通信端末から与えられる要求に応じて、前記統計処理の結果を前記通信部により応答させる
検査方法。
- 制御部が、
疾患の有無の検査の結果および当該検査に関する医師による前記疾患の有無の診断の結果のうち少なくとも一方を検査情報として複数個収集し、収集した複数の前記検査情報を統計処理した結果を提供する検査サーバとネットワークを介して通信する通信部により、前記検査サーバに前記統計処理の結果の要求を送信させ、
前記検査サーバに前記統計処理の結果の要求を前記通信部により送信させ、
検査機器に前記検査を実行させ、
前記検査サーバから前記通信部により受信された前記統計処理の結果および当該実行された検査の結果を医師であるユーザに提示し、
当該実行された検査に関する前記診断の結果を、前記ユーザからの入力を受け付ける入力部を用いて前記ユーザに入力させ、
当該実行された検査の結果および当該入力された診断の結果のうち少なくとも一方を前記検査情報として、前記通信部により前記検査サーバへ送信させる
検査方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013265133 | 2013-12-24 | ||
JP2013265133 | 2013-12-24 | ||
PCT/JP2014/005778 WO2015097977A1 (ja) | 2013-12-24 | 2014-11-18 | 検査サーバ、通信端末、検査システム、および検査方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019002649A Division JP6747529B2 (ja) | 2013-12-24 | 2019-01-10 | 情報処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015097977A1 JPWO2015097977A1 (ja) | 2017-03-23 |
JP6465033B2 true JP6465033B2 (ja) | 2019-02-06 |
Family
ID=53477892
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015554514A Active JP6465033B2 (ja) | 2013-12-24 | 2014-11-18 | 検査サーバ、通信端末、検査システム、および検査方法 |
JP2019002649A Active JP6747529B2 (ja) | 2013-12-24 | 2019-01-10 | 情報処理装置 |
JP2020134080A Active JP7074165B2 (ja) | 2013-12-24 | 2020-08-06 | 情報処理装置、情報処理方法およびプログラム |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019002649A Active JP6747529B2 (ja) | 2013-12-24 | 2019-01-10 | 情報処理装置 |
JP2020134080A Active JP7074165B2 (ja) | 2013-12-24 | 2020-08-06 | 情報処理装置、情報処理方法およびプログラム |
Country Status (5)
Country | Link |
---|---|
US (2) | US11302425B2 (ja) |
EP (1) | EP3040938A4 (ja) |
JP (3) | JP6465033B2 (ja) |
CN (1) | CN105849769A (ja) |
WO (1) | WO2015097977A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015143309A1 (en) * | 2014-03-20 | 2015-09-24 | Quidel Corporation | Wireless system for near real time surveillance of disease |
JP6737884B2 (ja) * | 2015-10-27 | 2020-08-12 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 臨床データの特性を解析して患者コホートを生成するためのパターン発見視覚的解析システム |
US11915810B2 (en) * | 2016-12-14 | 2024-02-27 | Reliant Immune Diagnostics, Inc. | System and method for transmitting prescription to pharmacy using self-diagnostic test and telemedicine |
US11295859B2 (en) | 2016-12-14 | 2022-04-05 | Reliant Immune Diagnostics, Inc. | System and method for handing diagnostic test results to telemedicine provider |
US11164680B2 (en) | 2016-12-14 | 2021-11-02 | Reliant Immune Diagnostics, Inc. | System and method for initiating telemedicine conference using self-diagnostic test |
JP7390289B2 (ja) * | 2017-11-20 | 2023-12-01 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 複数の診断エンジン環境 |
CN109831513A (zh) * | 2019-02-28 | 2019-05-31 | 广州达安临床检验中心有限公司 | 数据处理方法、系统和装置 |
KR20220143907A (ko) * | 2020-03-24 | 2022-10-25 | 주식회사 씨젠 | 중앙 관리 서버를 포함하는 모바일 관리 시스템을 통해 호흡기 감염을 관리하는 방법, 서버, 및 컴퓨터 판독 가능 저장 매체 |
CA3173675A1 (en) * | 2020-04-10 | 2021-10-14 | Andrew Day | Systems and methods for determining patient disease load |
KR102580404B1 (ko) * | 2021-02-15 | 2023-09-19 | (주)아이쿱 | 랩 커넥트 서비스 방법 및 시스템 |
JP7542855B2 (ja) * | 2021-03-16 | 2024-09-02 | Pdrファーマ株式会社 | 診療用放射線安全管理システム |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020186818A1 (en) | 2000-08-29 | 2002-12-12 | Osteonet, Inc. | System and method for building and manipulating a centralized measurement value database |
JP4698808B2 (ja) | 2000-10-05 | 2011-06-08 | パナソニック株式会社 | 検査情報の管理方法 |
JP2003126045A (ja) * | 2001-10-22 | 2003-05-07 | Olympus Optical Co Ltd | 診断支援装置 |
JP2003263507A (ja) | 2002-03-12 | 2003-09-19 | Nippon Colin Co Ltd | 統計医学情報提供方法および装置 |
NL1027047C2 (nl) * | 2004-09-15 | 2006-03-16 | Roderik Adriaan Kraaijenhagen | Computerinrichting voor het vaststellen van een diagnose. |
CN101400298A (zh) | 2006-03-13 | 2009-04-01 | 皇家飞利浦电子股份有限公司 | 用于医疗过程选择的显示和方法 |
US8888697B2 (en) | 2006-07-24 | 2014-11-18 | Webmd, Llc | Method and system for enabling lay users to obtain relevant, personalized health related information |
JP5191693B2 (ja) * | 2007-06-28 | 2013-05-08 | ホトニクス・グループ健康保険組合 | 検診情報管理システム及び管理方法 |
JP2009009396A (ja) | 2007-06-28 | 2009-01-15 | Health Insurance Society For Photonics Group | 検診情報管理システム及び管理方法 |
EP2186034A2 (en) | 2007-07-26 | 2010-05-19 | T2 Biosystems, Inc. | Diagnostic information generation and use |
JP5337992B2 (ja) | 2007-09-26 | 2013-11-06 | 富士フイルム株式会社 | 医用情報処理システム、医用情報処理方法、及びプログラム |
US9746985B1 (en) * | 2008-02-25 | 2017-08-29 | Georgetown University | System and method for detecting, collecting, analyzing, and communicating event-related information |
AU2009314259B2 (en) | 2008-11-11 | 2015-06-11 | Nestec S.A. | Methods for prediction of inflammatory bowel disease (IBD) using serologic markers |
NZ599873A (en) * | 2009-10-19 | 2014-09-26 | Theranos Inc | Integrated health data capture and analysis system |
JP2011128935A (ja) | 2009-12-18 | 2011-06-30 | Noriaki Aoki | 感染症予測システム |
EP2365456B1 (en) * | 2010-03-11 | 2016-07-20 | CompuGroup Medical SE | Data structure, method and system for predicting medical conditions |
EP2434285A1 (en) * | 2010-09-22 | 2012-03-28 | IMBA-Institut für Molekulare Biotechnologie GmbH | Breast cancer diagnostics |
JP6058340B2 (ja) * | 2011-10-05 | 2017-01-11 | 株式会社エイアンドティー | 治療イベントの効果を比較表示する方法 |
US9075909B2 (en) * | 2011-11-20 | 2015-07-07 | Flurensics Inc. | System and method to enable detection of viral infection by users of electronic communication devices |
-
2014
- 2014-11-18 CN CN201480068700.2A patent/CN105849769A/zh active Pending
- 2014-11-18 WO PCT/JP2014/005778 patent/WO2015097977A1/ja active Application Filing
- 2014-11-18 JP JP2015554514A patent/JP6465033B2/ja active Active
- 2014-11-18 EP EP14875561.4A patent/EP3040938A4/en not_active Ceased
- 2014-11-18 US US15/103,958 patent/US11302425B2/en active Active
-
2019
- 2019-01-10 JP JP2019002649A patent/JP6747529B2/ja active Active
-
2020
- 2020-08-06 JP JP2020134080A patent/JP7074165B2/ja active Active
-
2022
- 2022-03-14 US US17/694,022 patent/US20220208316A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2020177710A (ja) | 2020-10-29 |
EP3040938A1 (en) | 2016-07-06 |
WO2015097977A1 (ja) | 2015-07-02 |
US11302425B2 (en) | 2022-04-12 |
JP6747529B2 (ja) | 2020-08-26 |
JP7074165B2 (ja) | 2022-05-24 |
EP3040938A4 (en) | 2017-05-10 |
US20220208316A1 (en) | 2022-06-30 |
US20160314254A1 (en) | 2016-10-27 |
CN105849769A (zh) | 2016-08-10 |
JPWO2015097977A1 (ja) | 2017-03-23 |
JP2019053789A (ja) | 2019-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6747529B2 (ja) | 情報処理装置 | |
Tsang et al. | Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: a modelling study | |
Laxminarayan et al. | Epidemiology and transmission dynamics of COVID-19 in two Indian states | |
Baek et al. | Validity of the Morse Fall Scale implemented in an electronic medical record system | |
Maher et al. | A global framework for action to improve the primary care response to chronic non-communicable diseases: a solution to a neglected problem | |
Antoniou et al. | Validation of case-finding algorithms derived from administrative data for identifying adults living with human immunodeficiency virus infection | |
Goodman et al. | Peer reviewed: defining and measuring chronic conditions: imperatives for research, policy, program, and practice | |
Kiran et al. | The relationship between financial incentives and quality of diabetes care in Ontario, Canada | |
Hassen et al. | Impact of COVID‐19 outbreak on rheumatic patients’ perceptions and behaviors: A cross‐sectional study | |
WO2015159477A1 (ja) | 検査サーバ、検査方法および検査システム | |
James et al. | Trends in management and outcomes of COPD patients in primary care, 2000–2009: a retrospective cohort study | |
Nayani et al. | The clinical respiratory score predicts paediatric critical care disposition in children with respiratory distress presenting to the emergency department | |
Meng et al. | Trends in HIV prevalence among men who have sex with men in China 2003–09: a systematic review and meta-analysis | |
JP2010231308A (ja) | 生活習慣病予防装置および生活習慣病予防プログラム | |
Zachariasse et al. | Development and validation of a Paediatric Early Warning Score for use in the emergency department: a multicentre study | |
Ye et al. | A nationwide cross-sectional survey of episiotomy practice in China | |
van Walraven et al. | Comparing methods to calculate hospital-specific rates of early death or urgent readmission | |
López Castillo et al. | A meta-analysis of blood pressure disparities among sexual minority men | |
Shapiro | Evaluating public health uses of health information exchange | |
Joseph et al. | Expanded eligibility for HIV testing increases HIV diagnoses—A cross-sectional study in seven health facilities in western Kenya | |
Yom-Tov et al. | Providing early indication of regional anomalies in COVID-19 case counts in England using search engine queries | |
Hall et al. | Development of an administrative data-based frailty index for older adults receiving dialysis | |
Haward et al. | Are Canadian women prepared for the transition to primary HPV testing in cervical screening? A National Survey of Knowledge, attitudes, and beliefs | |
Kimball et al. | HIV Preexposure prophylaxis provision among adolescents: 2018 to 2021 | |
Wong et al. | Stages of syphilis in South China–a multilevel analysis of early diagnosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181224 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6465033 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |