JP6464502B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6464502B2
JP6464502B2 JP2014109512A JP2014109512A JP6464502B2 JP 6464502 B2 JP6464502 B2 JP 6464502B2 JP 2014109512 A JP2014109512 A JP 2014109512A JP 2014109512 A JP2014109512 A JP 2014109512A JP 6464502 B2 JP6464502 B2 JP 6464502B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporation mechanism
evaporation
compressor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014109512A
Other languages
Japanese (ja)
Other versions
JP2015108498A (en
Inventor
良美 林
良美 林
朋一郎 田村
朋一郎 田村
護 西部
護 西部
尭宏 松浦
尭宏 松浦
文紀 河野
文紀 河野
伊織 丸橋
伊織 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014109512A priority Critical patent/JP6464502B2/en
Priority to EP20140189923 priority patent/EP2865969A1/en
Priority to US14/522,190 priority patent/US20150114017A1/en
Priority to CN201410571914.3A priority patent/CN104567053A/en
Publication of JP2015108498A publication Critical patent/JP2015108498A/en
Application granted granted Critical
Publication of JP6464502B2 publication Critical patent/JP6464502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus.

従来、冷凍サイクル装置としては、フロン冷媒又は代替フロン冷媒を用いた冷凍サイクル装置が広く利用されている。しかし、これらの冷媒は、オゾン層の破壊又は地球温暖化等の問題を有している。そこで、地球環境に対する負荷が小さい冷媒として水等の蒸発性液体を用いた冷凍サイクル装置が提案されている。   Conventionally, as a refrigeration cycle apparatus, a refrigeration cycle apparatus using a chlorofluorocarbon refrigerant or an alternative chlorofluorocarbon refrigerant has been widely used. However, these refrigerants have problems such as destruction of the ozone layer or global warming. Therefore, a refrigeration cycle apparatus using an evaporating liquid such as water as a refrigerant having a small load on the global environment has been proposed.

特許文献1には、冷凍サイクル装置として、蒸発器、冷房箇所、遠心型圧縮機、ルーツ式圧縮機、及び凝縮器を備えた蒸発式冷却装置が記載されている。蒸発器は、水のような蒸発性液体を大気圧より低い状態で沸騰蒸発させる。蒸発器において沸騰蒸発により温度が低下した水は循環ポンプによって汲み出され、管路を介して冷房箇所に送られた後、管路を介して再び蒸発器の内部に戻る。   Patent Document 1 describes an evaporative cooling apparatus that includes an evaporator, a cooling location, a centrifugal compressor, a roots compressor, and a condenser as a refrigeration cycle apparatus. The evaporator evaporates an evaporating liquid such as water at a pressure below atmospheric pressure. In the evaporator, the water whose temperature has decreased due to boiling evaporation is pumped out by a circulation pump, sent to a cooling location via a conduit, and then returns to the inside of the evaporator again via the conduit.

水等の冷媒を用いた場合、大気圧より低い減圧状態で冷媒を蒸発させる蒸発機構において発生した多量の冷媒蒸気を高い圧縮比で圧縮する必要がある。そこで、特許文献1の蒸発式冷却装置は、圧縮機として遠心型圧縮機とルーツ式圧縮機とを直列に接続し、遠心型圧縮機で圧縮した冷媒蒸気をルーツ式圧縮機でさらに圧縮している。   When a refrigerant such as water is used, it is necessary to compress a large amount of refrigerant vapor generated in an evaporation mechanism that evaporates the refrigerant under a reduced pressure lower than the atmospheric pressure at a high compression ratio. Therefore, the evaporative cooling device of Patent Document 1 connects a centrifugal compressor and a roots compressor as a compressor in series, and further compresses the refrigerant vapor compressed by the centrifugal compressor with a roots compressor. Yes.

特開2008−122012号公報JP 2008-122012 A

特許文献1に記載の冷凍サイクル装置によれば、蒸発器に戻る冷媒の状態はなんら考慮されていない。そこで、本発明は、蒸発機構に戻る冷媒の状態を考慮した、圧縮機の寿命を延ばすことが可能な冷凍サイクル装置を提供する。   According to the refrigeration cycle apparatus described in Patent Document 1, no consideration is given to the state of the refrigerant returning to the evaporator. Therefore, the present invention provides a refrigeration cycle apparatus capable of extending the life of the compressor in consideration of the state of the refrigerant returning to the evaporation mechanism.

本開示は、
常温における飽和蒸気圧が負圧である冷媒を循環させる主回路であって、冷媒蒸気を圧縮する圧縮機、冷媒蒸気を凝縮させる凝縮機構、及び冷媒液を貯留するとともに冷媒液を蒸発させる蒸発機構を有し、前記圧縮機、前記凝縮機構、及び前記蒸発機構がこの順に接続された主回路と、
吸熱用熱交換器及び減圧機構を有し、前記蒸発機構に貯留された冷媒液が前記吸熱用熱交換器に供給され、前記吸熱用熱交換器で吸熱した前記蒸発機構の内部の圧力よりも高圧の冷媒が前記減圧機構によって減圧されて前記蒸発機構に戻るように構成された蒸発側循環回路と、
前記蒸発側循環回路から前記蒸発機構に戻った冷媒中の液滴が前記圧縮機に導かれることを妨げる妨害構造と、を備えた
冷凍サイクル装置を提供する。
This disclosure
A main circuit for circulating a refrigerant whose saturation vapor pressure is negative at normal temperature, a compressor that compresses the refrigerant vapor, a condensation mechanism that condenses the refrigerant vapor, and an evaporation mechanism that stores the refrigerant liquid and evaporates the refrigerant liquid A main circuit in which the compressor, the condensing mechanism, and the evaporation mechanism are connected in this order;
It has an endothermic heat exchanger and a decompression mechanism, and the refrigerant liquid stored in the evaporation mechanism is supplied to the endothermic heat exchanger, and the internal pressure of the evaporation mechanism is absorbed by the endothermic heat exchanger. An evaporation side circulation circuit configured such that high-pressure refrigerant is decompressed by the decompression mechanism and returns to the evaporation mechanism;
There is provided a refrigeration cycle apparatus comprising: an obstruction structure that prevents liquid droplets in the refrigerant returned to the evaporation mechanism from the evaporation side circulation circuit from being guided to the compressor.

上記の冷凍サイクル装置によれば、減圧機構によって減圧されて蒸発機構に戻った冷媒中の液滴が妨害構造によって圧縮機に導かれることが妨げられる。これにより、圧縮機の寿命を延ばすことができる。   According to the above-described refrigeration cycle apparatus, the droplets in the refrigerant that have been decompressed by the decompression mechanism and returned to the evaporation mechanism are prevented from being guided to the compressor by the obstruction structure. Thereby, the lifetime of a compressor can be extended.

本実施形態に係る冷凍サイクル装置の構成図Configuration diagram of a refrigeration cycle apparatus according to the present embodiment 本実施形態に係る蒸発機構及び妨害構造を示す断面図Sectional drawing which shows the evaporation mechanism and disturbance structure which concern on this embodiment 本実施形態に係る蒸発機構及び妨害構造を示す断面図Sectional drawing which shows the evaporation mechanism and disturbance structure which concern on this embodiment 第1変形例に係る妨害構造を示す斜視図The perspective view which shows the disturbance structure which concerns on a 1st modification 第1変形例に係る妨害構造を示す断面図Sectional drawing which shows the disturbance structure which concerns on a 1st modification 噴出防止壁を有する第2変形例を示す断面図Sectional drawing which shows the 2nd modification which has an ejection prevention wall 第2変形例の別の形態を示す断面図Sectional drawing which shows another form of a 2nd modification 第2変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 2nd modification 分離壁を有する第3変形例を示す断面図Sectional drawing which shows the 3rd modification which has a separation wall 噴出防止構造を有する第4変形例を示す断面図Sectional drawing which shows the 4th modification which has an ejection prevention structure 第4変形例の別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 第4変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 第4変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 図10に示す接続部を有する冷凍サイクル装置の一例を示す構成図The block diagram which shows an example of the refrigerating-cycle apparatus which has a connection part shown in FIG. 第4変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 第4変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 第4変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 4th modification 第5変形例に係る蒸発機構を示す断面図Sectional drawing which shows the evaporation mechanism which concerns on a 5th modification 第5変形例の別の形態を示す断面図Sectional drawing which shows another form of a 5th modification 第5変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 5th modification 第6変形例に係る妨害構造を示す断面図Sectional drawing which shows the disturbance structure which concerns on a 6th modification 第6変形例の別の形態を示す断面図Sectional drawing which shows another form of a 6th modification 邪魔板を有する第7変形例を示す断面図Sectional drawing which shows the 7th modification which has a baffle plate 第7変形例の別の形態を示す断面図Sectional drawing which shows another form of a 7th modification 第7変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 7th modification 第7変形例のさらに別の形態を示す断面図Sectional drawing which shows another form of a 7th modification 凝縮機構としてのエジェクタを示す断面図Sectional view showing the ejector as the condensing mechanism

特許文献1に記載の冷凍サイクル装置において、冷房箇所は、例えば熱交換器で構成される。この場合、蒸発器の内部の冷媒液を供給ポンプで汲み出して管路を介して冷房箇所である熱交換器に供給して冷房を行うとき、冷房箇所である熱交換器の内部で冷媒液が蒸発してしまう可能性がある。冷房箇所である熱交換器の内部で冷媒液が蒸発すると、蒸発器の内部の冷媒液を供給ポンプによって熱交換器に供給することが困難になる。そこで、冷房箇所を通過した後の冷媒を蒸発器の内部に戻す管路の途中に減圧機構を設けることが考えられる。これにより、冷房箇所である熱交換器において冷媒液が蒸発することを防止できる。   In the refrigeration cycle apparatus described in Patent Document 1, the cooling portion is configured by, for example, a heat exchanger. In this case, when the refrigerant liquid inside the evaporator is pumped out by the supply pump and supplied to the heat exchanger that is the cooling place via the pipe line, the refrigerant liquid is inside the heat exchanger that is the cooling place. There is a possibility of evaporation. When the refrigerant liquid evaporates inside the heat exchanger that is the cooling location, it becomes difficult to supply the refrigerant liquid inside the evaporator to the heat exchanger by the supply pump. Therefore, it is conceivable to provide a decompression mechanism in the middle of the conduit for returning the refrigerant after passing through the cooling portion to the inside of the evaporator. Thereby, it can prevent that a refrigerant | coolant liquid evaporates in the heat exchanger which is a cooling location.

減圧機構によって減圧された冷媒が蒸発器の内部に戻る。このとき、冷媒液の液滴が発生する可能性がある。この液滴が蒸発器の内部から圧縮機へ吸い込まれて、液滴が圧縮機の構成部品を損傷させるおそれがある。これにより、圧縮機の寿命が短くなってしまう。特に、小型化の要請により、蒸発器を小型化し、又は、蒸発器と圧縮機と接続する管路を短くする場合、この問題はさらに深刻になる。   The refrigerant decompressed by the decompression mechanism returns to the inside of the evaporator. At this time, droplets of refrigerant liquid may be generated. The droplets can be sucked into the compressor from inside the evaporator and the droplets can damage the compressor components. This shortens the life of the compressor. In particular, this problem becomes more serious when the evaporator is downsized due to a demand for downsizing or when the pipe line connecting the evaporator and the compressor is shortened.

本開示の第1態様は、
常温における飽和蒸気圧が負圧である冷媒を循環させる主回路であって、冷媒蒸気を圧縮する圧縮機、冷媒蒸気を凝縮させる凝縮機構、及び冷媒液を貯留するとともに冷媒液を蒸発させる蒸発機構を有し、前記圧縮機、前記凝縮機構、及び前記蒸発機構がこの順に接続された主回路と、
吸熱用熱交換器及び減圧機構を有し、前記蒸発機構に貯留された冷媒液が前記吸熱用熱交換器に供給され、前記吸熱用熱交換器で吸熱した前記蒸発機構の内部の圧力よりも高圧の冷媒が前記減圧機構によって減圧されて前記蒸発機構に戻るように構成された蒸発側循環回路と、
前記蒸発側循環回路から前記蒸発機構に戻った冷媒中の液滴が前記圧縮機に導かれることを妨げる妨害構造と、を備えた
冷凍サイクル装置を提供する。
The first aspect of the present disclosure is:
A main circuit for circulating a refrigerant whose saturation vapor pressure is negative at normal temperature, a compressor that compresses the refrigerant vapor, a condensation mechanism that condenses the refrigerant vapor, and an evaporation mechanism that stores the refrigerant liquid and evaporates the refrigerant liquid A main circuit in which the compressor, the condensing mechanism, and the evaporation mechanism are connected in this order;
It has an endothermic heat exchanger and a decompression mechanism, and the refrigerant liquid stored in the evaporation mechanism is supplied to the endothermic heat exchanger, and the internal pressure of the evaporation mechanism is absorbed by the endothermic heat exchanger. An evaporation side circulation circuit configured such that high-pressure refrigerant is decompressed by the decompression mechanism and returns to the evaporation mechanism;
There is provided a refrigeration cycle apparatus comprising: an obstruction structure that prevents liquid droplets in the refrigerant returned to the evaporation mechanism from the evaporation side circulation circuit from being guided to the compressor.

本開示の第2態様は、第1態様に加えて、前記減圧機構が、バルブ、ノズル、又はキャピラリーチューブである、冷凍サイクル装置を提供する。   According to a second aspect of the present disclosure, in addition to the first aspect, a refrigeration cycle apparatus in which the pressure reducing mechanism is a valve, a nozzle, or a capillary tube is provided.

本開示の第3態様は、第1態様又は第2態様に加えて、前記妨害構造は、前記蒸発機構に貯留された冷媒液の中へ前記吸熱用熱交換器で吸熱した冷媒を戻すように前記蒸発機構に接続された前記蒸発側循環回路の接続部であり、前記接続部は、前記接続部の先端が前記蒸発機構に貯留された冷媒液の液面より下方に位置するように、前記蒸発機構の壁を貫通して前記蒸発機構の内部空間まで延びている、冷凍サイクル装置を提供する。第3態様によれば、蒸発機構に戻る冷媒中に液滴が発生していても、この液滴が蒸発機構に貯留された冷媒液に取り込まれるので、冷媒液の液滴が圧縮機に導かれることが妨げられる。   In the third aspect of the present disclosure, in addition to the first aspect or the second aspect, the obstruction structure returns the refrigerant that has absorbed heat in the heat absorption heat exchanger into the refrigerant liquid stored in the evaporation mechanism. A connecting portion of the evaporation side circulation circuit connected to the evaporation mechanism, and the connecting portion is arranged such that a tip of the connecting portion is located below a liquid surface of the refrigerant liquid stored in the evaporation mechanism. Provided is a refrigeration cycle apparatus that extends through a wall of an evaporation mechanism to an internal space of the evaporation mechanism. According to the third aspect, even if droplets are generated in the refrigerant returning to the evaporation mechanism, the droplets are taken into the refrigerant liquid stored in the evaporation mechanism, so that the droplets of the refrigerant liquid are guided to the compressor. It is prevented from being scraped.

本開示の第4態様は、第3態様に加えて、前記蒸発機構は、柱状の内部空間を形成し、前記接続部は、前記蒸発側循環回路から前記蒸発機構に戻された冷媒の流れが前記内部空間の周方向の速度成分を持つように前記蒸発機構に接続されている、冷凍サイクル装置を提供する。第4態様によれば、蒸発機構に貯留された冷媒液の中で蒸発器の内部に戻った冷媒の流れが蒸発機構の内部空間の周方向に沿って流れる。これにより、冷媒が蒸発機構に貯留された冷媒液の中で回転するように流れる。そのため、遠心力によって、蒸発機構に戻る冷媒中に液滴が発生していても、冷媒中の冷媒液の液滴と冷媒蒸気とが分離される。その結果、冷媒液の液滴が圧縮機に導かれることが妨げられる。   According to a fourth aspect of the present disclosure, in addition to the third aspect, the evaporation mechanism forms a columnar internal space, and the connection portion has a flow of the refrigerant returned from the evaporation side circulation circuit to the evaporation mechanism. Provided is a refrigeration cycle apparatus connected to the evaporation mechanism so as to have a velocity component in the circumferential direction of the internal space. According to the 4th aspect, the flow of the refrigerant | coolant which returned to the inside of the evaporator in the refrigerant | coolant liquid stored by the evaporation mechanism flows along the circumferential direction of the internal space of an evaporation mechanism. Accordingly, the refrigerant flows so as to rotate in the refrigerant liquid stored in the evaporation mechanism. Therefore, even if droplets are generated in the refrigerant returning to the evaporation mechanism due to the centrifugal force, the droplets of the refrigerant liquid and the refrigerant vapor in the refrigerant are separated. As a result, the refrigerant liquid droplets are prevented from being guided to the compressor.

本開示の第5態様は、第3態様又は第4態様に加えて、前記接続部よりも上方に設けられ、前記蒸発側循環回路から前記蒸発機構に戻された冷媒の流れが前記蒸発機構に貯留された冷媒液の液面から噴出することを防止する噴出防止壁をさらに備えた、冷凍サイクル装置を提供する。第5態様によれば、蒸発機構に戻された冷媒の流れが蒸発機構に貯留された冷媒液の液面から噴出することが防止されるので、蒸発機構に貯留された冷媒液の液面が乱れて冷媒液の液滴が圧縮機に導かれることが妨げられる。   In the fifth aspect of the present disclosure, in addition to the third aspect or the fourth aspect, the refrigerant flow that is provided above the connection portion and returned from the evaporation side circulation circuit to the evaporation mechanism is supplied to the evaporation mechanism. Provided is a refrigeration cycle apparatus further comprising an ejection preventing wall that prevents ejection of the stored refrigerant liquid from the liquid level. According to the fifth aspect, since the flow of the refrigerant returned to the evaporation mechanism is prevented from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism, the liquid level of the refrigerant liquid stored in the evaporation mechanism is reduced. It is disturbed and the refrigerant liquid droplet is prevented from being guided to the compressor.

本開示の第6態様は、第3態様〜第5態様のいずれか1つの態様に加えて、前記蒸発機構に貯留された冷媒液を前記蒸発側循環回路へ供給するための流出口と、前記接続部によって形成され、前記蒸発機構に冷媒を戻すための戻し口との間で、前記蒸発機構の内部に設けられた分離壁をさらに備えた、冷凍サイクル装置を提供する。第6態様によれば、戻し口を通って蒸発機構に戻された冷媒蒸気が流出口を通って蒸発側循環回路へ流出することが防止される。   According to a sixth aspect of the present disclosure, in addition to any one of the third aspect to the fifth aspect, an outlet for supplying the refrigerant liquid stored in the evaporation mechanism to the evaporation side circulation circuit; Provided is a refrigeration cycle apparatus further comprising a separation wall provided inside the evaporation mechanism between a return port formed by a connecting portion and for returning the refrigerant to the evaporation mechanism. According to the sixth aspect, the refrigerant vapor returned to the evaporation mechanism through the return port is prevented from flowing out to the evaporation side circulation circuit through the outflow port.

本開示の第7態様は、第3態様に加えて、
前記接続部は、前記蒸発機構の壁を貫通して前記蒸発機構の内部空間における前記蒸発機構に貯留された冷媒液の液面を超えないように延びており、
前記接続部は、前記蒸発側循環回路から前記蒸発機構に戻された冷媒の流れが前記蒸発機構に貯留された冷媒液の液面から噴出することを防止するための噴出防止構造を備えた、冷凍サイクル装置を提供する。
The seventh aspect of the present disclosure includes, in addition to the third aspect,
The connection portion extends through the wall of the evaporation mechanism so as not to exceed the liquid level of the refrigerant liquid stored in the evaporation mechanism in the internal space of the evaporation mechanism,
The connection portion includes an ejection preventing structure for preventing the flow of the refrigerant returned from the evaporation side circulation circuit to the evaporation mechanism from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism. A refrigeration cycle apparatus is provided.

第7態様によれば、前記接続部を通過して蒸発機構に戻された冷媒の流れが蒸発機構に貯留された冷媒液の液面から噴出することが噴出防止構造によって防止される。これにより、蒸発機構に貯留された冷媒液の液面が乱れて冷媒液の液滴が圧縮機に導かれることが防止される。   According to the seventh aspect, the jet preventing structure prevents the refrigerant flow that has passed through the connecting portion and returned to the evaporation mechanism from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism. As a result, the liquid level of the refrigerant liquid stored in the evaporation mechanism is disturbed, and the refrigerant liquid droplets are prevented from being guided to the compressor.

本開示の第8態様は、第7態様に加えて、前記噴出防止構造は、前記蒸発機構の底部より上方に位置し、前記接続部を流れる冷媒の流れ方向に沿って断面積が拡大する流路を形成する拡大部を備えた、冷凍サイクル装置を提供する。第8態様によれば、拡大部が形成する流路において接続部を流れる冷媒が減速するので、接続部から蒸発機構に戻される冷媒の流れが蒸発機構に貯留された冷媒液の液面から噴出することが防止される。   According to an eighth aspect of the present disclosure, in addition to the seventh aspect, the ejection preventing structure is positioned above a bottom portion of the evaporation mechanism, and a flow in which a cross-sectional area expands along a flow direction of the refrigerant flowing through the connection portion. Provided is a refrigeration cycle apparatus including an enlarged portion that forms a path. According to the eighth aspect, since the refrigerant flowing through the connection portion in the flow path formed by the enlarged portion is decelerated, the refrigerant flow returned from the connection portion to the evaporation mechanism is ejected from the liquid surface of the refrigerant liquid stored in the evaporation mechanism. Is prevented.

本開示の第9態様は、第8態様に加えて、前記接続部は、前記拡大部から上方に延び、前記接続部を流れる冷媒の流れ方向に沿って断面積が一定である流路を形成する延長部をさらに備えた、冷凍サイクル装置を提供する。第9態様によれば、延長部が形成する流路において、接続部を流れる冷媒に含まれる冷媒蒸気が形成する気泡の大きさを調整できる。これにより、この気泡が蒸発機構に戻った後に蒸発側循環回路に供給されることを防止できる。   In a ninth aspect of the present disclosure, in addition to the eighth aspect, the connection portion extends upward from the enlarged portion, and forms a flow path having a constant cross-sectional area along the flow direction of the refrigerant flowing through the connection portion. Provided is a refrigeration cycle apparatus further including an extending portion. According to the ninth aspect, the size of the bubbles formed by the refrigerant vapor contained in the refrigerant flowing through the connecting portion can be adjusted in the flow path formed by the extension. This prevents the bubbles from being supplied to the evaporation side circulation circuit after returning to the evaporation mechanism.

本開示の第10態様は、第8態様又は第9態様に加えて、
前記噴出防止構造は、前記接続部の中心軸に重なるように設けられ、複数の貫通孔を有する分流板をさらに備え、
前記複数の貫通孔は、前記接続部を流れる冷媒の流れ方向に前記拡大部よりも上流側で前記接続部によって形成された流路の断面積よりも大きい開口面積を有する、冷凍サイクル装置を提供する。
The tenth aspect of the present disclosure includes, in addition to the eighth aspect and the ninth aspect,
The ejection preventing structure is further provided with a flow dividing plate that is provided so as to overlap the central axis of the connecting portion and has a plurality of through holes,
The plurality of through holes provide a refrigeration cycle apparatus having an opening area larger than a cross-sectional area of a flow path formed by the connecting portion upstream of the enlarged portion in a flow direction of the refrigerant flowing through the connecting portion. To do.

第10態様によれば、接続部から蒸発機構に戻る冷媒の流速が空間的にばらつくことを分流板によって抑制できる。また、複数の貫通孔の開口面積が、拡大部よりも上流側の接続部によって形成された流路の断面積よりも大きいので、複数の貫通孔を通過する冷媒の流れが速まりすぎることを防止できる。   According to the 10th aspect, it can suppress by the shunt plate that the flow rate of the refrigerant | coolant which returns to an evaporation mechanism from a connection part varies spatially. In addition, since the opening areas of the plurality of through holes are larger than the cross-sectional area of the flow path formed by the connection portion upstream of the enlarged portion, the flow of the refrigerant passing through the plurality of through holes is too fast. Can be prevented.

本開示の第11態様は、第8態様〜第10態様にいずれか1つの態様に加えて、前記噴出防止構造は、前記接続部の中心軸に重なるように設けられた多孔質部材をさらに備えた、冷凍サイクル装置を提供する。第11態様によれば、拡大部及び多孔質部材によって、接続部から蒸発機構に戻る冷媒の流れを減速させつつ、その流速が空間的にばらつくことを抑制できる。   In an eleventh aspect of the present disclosure, in addition to any one of the eighth to tenth aspects, the ejection preventing structure further includes a porous member provided to overlap the central axis of the connection portion. A refrigeration cycle apparatus is provided. According to the eleventh aspect, the enlarged portion and the porous member can suppress the flow rate of the refrigerant from returning spatially while decelerating the flow of the refrigerant returning from the connection portion to the evaporation mechanism.

本開示の第12態様は、第8態様〜第10態様のいずれか1つの態様に加えて、前記噴出防止構造は、前記接続部を流れる冷媒の流れ方向と反対方向に向かって窄むように突出し、前記接続部の中心軸に重なる先端を有する窄み部をさらに備えた、冷凍サイクル装置を提供する。第12態様によれば、冷媒の流れを窄み部によって均一に分流できる。また、冷媒の流れにおいて、冷媒の剥離(渦の発生)が抑制されるので、冷媒の流れの圧力損失が小さい。   In a twelfth aspect of the present disclosure, in addition to any one of the eighth to tenth aspects, the ejection prevention structure protrudes so as to squeeze in a direction opposite to a flow direction of the refrigerant flowing through the connection portion, Provided is a refrigeration cycle apparatus further comprising a constricted portion having a tip overlapping the central axis of the connecting portion. According to the twelfth aspect, the refrigerant flow can be evenly divided by the constricted portion. Further, since the separation (reduction of vortex) of the refrigerant is suppressed in the refrigerant flow, the pressure loss of the refrigerant flow is small.

本開示の第13態様は、第7態様〜第12態様のいずれか1つの態様に加えて、前記接続部は、鉛直上向きに延びている、冷凍サイクル装置を提供する。第13態様によれば、接続部を流れる冷媒に作用する重力によって、冷媒の流れが減速する。   A thirteenth aspect of the present disclosure provides the refrigeration cycle apparatus, in addition to any one of the seventh aspect to the twelfth aspect, wherein the connection portion extends vertically upward. According to the thirteenth aspect, the flow of the refrigerant is decelerated by the gravity acting on the refrigerant flowing through the connecting portion.

本開示の第14態様は、第9態様に加えて、
前記減圧機構がバルブであり、
前記吸熱用熱交換器で吸熱した前記蒸発機構に戻る冷媒の温度を検出するための吸熱側温度センサと、
前記蒸発機構における冷媒蒸気の温度を検出するための冷媒蒸気温度センサと、
前記蒸発機構に貯留された冷媒液の液位を検出するための液位センサと、
前記吸熱側温度センサの検出値、前記冷媒蒸気温度センサの検出値、及び前記液位センサの検出値に基づいて、前記バルブの開度を調整することによって前記蒸発機構に貯留された冷媒液の液位を制御する制御部と、をさらに備えた冷凍サイクル装置を提供する。
The fourteenth aspect of the present disclosure includes, in addition to the ninth aspect,
The pressure reducing mechanism is a valve;
An endothermic temperature sensor for detecting the temperature of the refrigerant returning to the evaporation mechanism that has absorbed heat by the endothermic heat exchanger;
A refrigerant vapor temperature sensor for detecting the temperature of the refrigerant vapor in the evaporation mechanism;
A liquid level sensor for detecting the liquid level of the refrigerant liquid stored in the evaporation mechanism;
Based on the detected value of the endothermic temperature sensor, the detected value of the refrigerant vapor temperature sensor, and the detected value of the liquid level sensor, the opening of the valve is adjusted to adjust the refrigerant liquid stored in the evaporation mechanism. There is provided a refrigeration cycle apparatus further comprising a control unit for controlling a liquid level.

第14態様によれば、吸熱用熱交換器で吸熱した蒸発機構に戻る冷媒の温度、蒸発機構における冷媒蒸気の温度、及び蒸発機構に貯留された冷媒液の液位に基づいて、蒸発機構に貯留された冷媒液の液位を適切な液位に制御できる。例えば、拡大部の上端よりも上方で冷媒蒸気による気泡が発生するように蒸発機構に貯留された冷媒液の液位を制御できる。すなわち、拡大部の上端までは単相流(液相流)の状態で冷媒が流れるように蒸発機構に貯留された冷媒液の液位を制御できる。   According to the fourteenth aspect, on the basis of the temperature of the refrigerant returning to the evaporation mechanism that has absorbed heat by the heat exchanger for heat absorption, the temperature of the refrigerant vapor in the evaporation mechanism, and the liquid level of the refrigerant liquid stored in the evaporation mechanism, The liquid level of the stored refrigerant liquid can be controlled to an appropriate liquid level. For example, the liquid level of the refrigerant liquid stored in the evaporation mechanism can be controlled so that bubbles due to the refrigerant vapor are generated above the upper end of the enlarged portion. That is, the liquid level of the refrigerant liquid stored in the evaporation mechanism can be controlled so that the refrigerant flows in a single-phase flow (liquid phase flow) state up to the upper end of the enlarged portion.

本開示の第15態様は、第3態様に加えて、前記蒸発機構は、前記蒸発機構の底部に向かって窄んでいる内部空間を有し、前記接続部は、前記蒸発機構の底部に接続されている、冷凍サイクル装置を提供する。第15態様によれば、接続部から蒸発機構に戻された冷媒の流れが蒸発機構の内部空間において減速するので、接続部から蒸発機構に戻された冷媒の流れが蒸発機構に貯留された冷媒液の液面から噴出することが防止される。   In a fifteenth aspect of the present disclosure, in addition to the third aspect, the evaporation mechanism has an internal space that is narrowed toward a bottom portion of the evaporation mechanism, and the connection portion is connected to a bottom portion of the evaporation mechanism. A refrigeration cycle apparatus is provided. According to the fifteenth aspect, the refrigerant flow returned to the evaporation mechanism from the connection portion is decelerated in the internal space of the evaporation mechanism, so the refrigerant flow returned from the connection portion to the evaporation mechanism is stored in the evaporation mechanism. It is prevented that the liquid is ejected from the liquid surface.

本開示の第16態様は、第15態様に加えて、前記接続部の中心軸に重なるように前記内部空間に設けられ、複数の貫通孔を有する分流板をさらに備え、前記複数の貫通孔は、前記接続部によって形成された流路の断面積よりも大きい開口面積を有する、冷凍サイクル装置を提供する。第16態様によれば、蒸発機構の内部空間において、接続部から蒸発機構に戻った冷媒の流れの流速が空間的にばらつくことを分流板によって抑制できる。また、複数の貫通孔の開口面積が接続部によって形成された流路の断面積よりも大きいので、複数の貫通孔を通過する冷媒の流れが速まりすぎることを防止できる。   According to a sixteenth aspect of the present disclosure, in addition to the fifteenth aspect, the sixteenth aspect further includes a flow dividing plate provided in the internal space so as to overlap a central axis of the connection portion, and having a plurality of through holes. Provided is a refrigeration cycle apparatus having an opening area larger than a cross-sectional area of a flow path formed by the connecting portion. According to the sixteenth aspect, in the internal space of the evaporation mechanism, it is possible to suppress the flow rate of the refrigerant flow returning from the connection portion to the evaporation mechanism from being spatially varied by the flow dividing plate. Moreover, since the opening area of a some through-hole is larger than the cross-sectional area of the flow path formed of the connection part, it can prevent that the flow of the refrigerant | coolant which passes a some through-hole becomes too quick.

本開示の第17態様は、第15態様又は第16態様に加えて、前記内部空間において前記蒸発機構の底部に向かって窄むように突出し、前記接続部の中心軸に重なる先端を有する窄み部をさらに備えた、冷凍サイクル装置を提供する。第17態様によれば、蒸発機構の内部空間において、接続部から蒸発機構に戻った冷媒の流れを窄み部によって均一に分流できる。また、この冷媒の流れにおいて、冷媒の剥離(渦の発生)が抑制されるので、冷媒の流れの圧力損失が小さい。   According to a seventeenth aspect of the present disclosure, in addition to the fifteenth aspect or the sixteenth aspect, a narrowed portion that protrudes toward the bottom of the evaporation mechanism in the internal space and has a tip that overlaps the central axis of the connection portion. Further provided is a refrigeration cycle apparatus. According to the seventeenth aspect, in the internal space of the evaporation mechanism, the flow of the refrigerant that has returned from the connection portion to the evaporation mechanism can be evenly divided by the constricted portion. Further, in this refrigerant flow, since the separation of the refrigerant (generation of vortex) is suppressed, the pressure loss of the refrigerant flow is small.

本開示の第18態様は、第15態様〜第17態様のいずれか1つの態様に加えて、前記接続部は、鉛直上向きに延びている、冷凍サイクル装置を提供する。第18態様によれば、接続部を流れる冷媒に作用する重力によって、冷媒の流れが減速する。   An eighteenth aspect of the present disclosure provides the refrigeration cycle apparatus, in addition to any one of the fifteenth aspect to the seventeenth aspect, wherein the connection portion extends vertically upward. According to the eighteenth aspect, the flow of the refrigerant is decelerated by the gravity acting on the refrigerant flowing through the connecting portion.

本開示の第19態様は、第1態様又は第2態様において、前記妨害構造は、前記蒸発機構に貯留された冷媒液の液面より上方で冷媒を前記蒸発機構に戻すように前記蒸発機構に接続された前記蒸発側循環回路の接続部であって、前記蒸発機構に戻された直後の冷媒の流れが鉛直方向の速度成分を含むように前記蒸発機構に接続された接続部である、冷凍サイクル装置を提供する。第19態様によれば、蒸発機構に戻された冷媒に含まれる冷媒液の液滴は、蒸発機構に貯留された冷媒液の液面に向かって流れるので、蒸発機構に戻された冷媒に含まれる冷媒液の液滴が圧縮機に導かれることが妨げられる。   A nineteenth aspect of the present disclosure is the first aspect or the second aspect according to the first aspect or the second aspect, in which the obstruction structure is provided in the evaporation mechanism so as to return the refrigerant to the evaporation mechanism above the liquid level of the refrigerant liquid stored in the evaporation mechanism. A refrigeration unit connected to the evaporation side circulation circuit, the connection unit connected to the evaporation mechanism so that the refrigerant flow immediately after returning to the evaporation mechanism includes a velocity component in a vertical direction. A cycle device is provided. According to the nineteenth aspect, the droplets of the refrigerant liquid contained in the refrigerant returned to the evaporation mechanism flow toward the liquid surface of the refrigerant liquid stored in the evaporation mechanism, and thus are included in the refrigerant returned to the evaporation mechanism. The refrigerant liquid droplets are prevented from being guided to the compressor.

本開示の第20態様は、第1態様又は第2態様において、前記妨害構造は、前記蒸発機構に貯留された冷媒液の液面より上方で冷媒を前記蒸発機構に戻すように前記蒸発機構に接続された前記蒸発側循環回路の接続部と、前記接続部を経由して前記蒸発機構に戻された冷媒の流れを妨げるための邪魔板と、を含む、冷凍サイクル装置を提供する。第20態様によれば、蒸発機構に戻された冷媒に含まれる冷媒液の液滴が圧縮機に導かれることが邪魔板によって妨げられる。   According to a twentieth aspect of the present disclosure, in the first aspect or the second aspect, the obstruction structure may be arranged in the evaporation mechanism so that the refrigerant is returned to the evaporation mechanism above the liquid level of the refrigerant liquid stored in the evaporation mechanism. There is provided a refrigeration cycle apparatus comprising: a connection portion of the evaporation side circulation circuit connected; and a baffle plate for preventing a flow of refrigerant returned to the evaporation mechanism via the connection portion. According to the twentieth aspect, the baffle plate prevents the refrigerant liquid droplets contained in the refrigerant returned to the evaporation mechanism from being guided to the compressor.

以下、本開示の実施形態について、図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。   Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.

<本実施形態>
図1に示すように、冷凍サイクル装置1は、主回路10と、凝縮側循環回路20と、蒸
発側循環回路30と、を備えている。主回路10は、圧縮機3、凝縮機構4、蒸発機構2を有し、圧縮機3、凝縮機構4、及び蒸発機構2がこの順に接続されている。蒸発機構2と圧縮機3とは、流路5aによって接続されている。圧縮機3と凝縮機構4とは、流路5bによって接続されている。凝縮機構4と蒸発機構2とは、流路5cによって接続されている。主回路10、凝縮側循環回路20、及び蒸発側循環回路30の内部には、冷媒が充填されており、大気圧よりも低い負圧状態になっている。冷媒の常温(日本工業規格:20℃±15℃/JIS Z8703)における飽和蒸気圧は負圧である。冷媒は、例えば、水又はアルコールを主成分とする冷媒である。主回路10は、常温における飽和蒸気圧が負圧である冷媒を循環させる。
<This embodiment>
As shown in FIG. 1, the refrigeration cycle apparatus 1 includes a main circuit 10, a condensation side circulation circuit 20, and an evaporation side circulation circuit 30. The main circuit 10 includes a compressor 3, a condensation mechanism 4, and an evaporation mechanism 2, and the compressor 3, the condensation mechanism 4, and the evaporation mechanism 2 are connected in this order. The evaporation mechanism 2 and the compressor 3 are connected by a flow path 5a. The compressor 3 and the condensation mechanism 4 are connected by a flow path 5b. The condensation mechanism 4 and the evaporation mechanism 2 are connected by a flow path 5c. The main circuit 10, the condensation side circulation circuit 20, and the evaporation side circulation circuit 30 are filled with a refrigerant and are in a negative pressure state lower than the atmospheric pressure. The saturated vapor pressure of the refrigerant at room temperature (Japanese Industrial Standard: 20 ° C. ± 15 ° C./JIS Z8703) is a negative pressure. A refrigerant | coolant is a refrigerant | coolant which has water or alcohol as a main component, for example. The main circuit 10 circulates a refrigerant whose saturation vapor pressure at room temperature is negative.

圧縮機3は冷媒蒸気を圧縮する。圧縮された冷媒蒸気は、流路5bを通って凝縮機構4に供給される。圧縮機3は、典型的には軸流式又は遠心式のターボ型圧縮機である。圧縮機3がターボ型圧縮機である場合、液滴が圧縮機3に吸い込まれると、液滴がインペラに衝突してインペラを損傷させてしまう。   The compressor 3 compresses the refrigerant vapor. The compressed refrigerant vapor is supplied to the condensing mechanism 4 through the flow path 5b. The compressor 3 is typically an axial flow or centrifugal turbo compressor. In the case where the compressor 3 is a turbo compressor, when the droplets are sucked into the compressor 3, the droplets collide with the impeller and damage the impeller.

凝縮機構4は、冷媒蒸気を凝縮させるとともに冷媒液を貯留する。凝縮機構4で凝縮した冷媒液は、流路5cを経由して蒸発機構2へ供給される。蒸発機構2は冷媒液を貯留するとともに冷媒液を蒸発させる。蒸発機構2で蒸発した冷媒蒸気は、流路5aを経由して圧縮機3に供給される。   The condensing mechanism 4 condenses the refrigerant vapor and stores the refrigerant liquid. The refrigerant liquid condensed by the condensation mechanism 4 is supplied to the evaporation mechanism 2 via the flow path 5c. The evaporation mechanism 2 stores the refrigerant liquid and evaporates the refrigerant liquid. The refrigerant vapor evaporated by the evaporation mechanism 2 is supplied to the compressor 3 via the flow path 5a.

凝縮側循環回路20は、ポンプ6及び放熱用熱交換器7を有する。凝縮機構4に貯留された冷媒液の一部はポンプ6によって放熱用熱交換器7に供給される。凝縮機構4は、例えば、断熱性及び耐圧性を有する中空の容器によって形成されている。放熱用熱交換器7は、例えば、冷媒液と室外の空気とを熱交換させるフィンチューブ型熱交換器である。放熱用熱交換器7において、例えば室外の空気と熱交換することにより、冷媒液は放熱する。放熱用熱交換器7において放熱した冷媒液は、凝縮機構4の内部に戻される。凝縮機構4には、圧縮機3で圧縮された冷媒蒸気が流路5bを経由して供給される。凝縮側循環回路20から凝縮機構4に戻された冷媒液は、流路5bを経由して供給された冷媒蒸気を冷却して凝縮させる。冷媒蒸気を凝縮させることにより温度が上昇した冷媒液は、ポンプ6によって放熱用熱交換器7に供給され、放熱用熱交換器7において再び放熱する。凝縮機構4に貯留された冷媒液の一部は流路5cを通って蒸発機構2に供給される。   The condensation side circulation circuit 20 includes a pump 6 and a heat exchanger 7 for heat dissipation. A part of the refrigerant liquid stored in the condensing mechanism 4 is supplied to the heat dissipation heat exchanger 7 by the pump 6. The condensation mechanism 4 is formed by, for example, a hollow container having heat insulating properties and pressure resistance. The heat dissipation heat exchanger 7 is, for example, a finned tube heat exchanger that exchanges heat between the refrigerant liquid and outdoor air. In the heat dissipation heat exchanger 7, for example, the refrigerant liquid radiates heat by exchanging heat with outdoor air. The refrigerant liquid radiated in the heat radiating heat exchanger 7 is returned to the inside of the condensing mechanism 4. Refrigerant vapor compressed by the compressor 3 is supplied to the condensing mechanism 4 via the flow path 5b. The refrigerant liquid returned to the condensation mechanism 4 from the condensation side circulation circuit 20 cools and condenses the refrigerant vapor supplied via the flow path 5b. The refrigerant liquid whose temperature has increased by condensing the refrigerant vapor is supplied to the heat dissipation heat exchanger 7 by the pump 6, and again dissipates heat in the heat dissipation heat exchanger 7. A part of the refrigerant liquid stored in the condensing mechanism 4 is supplied to the evaporation mechanism 2 through the flow path 5c.

蒸発側循環回路30は、ポンプ8、吸熱用熱交換器9、及び減圧機構12を有する。蒸発側循環回路30は、蒸発機構2に貯留された冷媒液が吸熱用熱交換器9に供給されるように構成されている。蒸発側循環回路30は、吸熱用熱交換器9で吸熱した蒸発機構2の内部の圧力よりも高圧の冷媒が減圧機構12によって減圧されて蒸発機構2に戻るように構成されている。具体的に、蒸発機構2とポンプ8とは、流路30aによって接続されている。ポンプ8と吸熱用熱交換器9とは、流路30bによって接続されている。吸熱用熱交換器9と蒸発機構2とは、流路30cによって接続されている。流路30cの途中には、減圧機構12が設けられている。減圧機構12は、例えば、バルブ、ノズル、又はキャピラリーチューブである。減圧機構12としてのバルブは、例えば、開度調整可能な電動弁である。減圧機構12としてのノズルは、例えば、絞りノズルである。減圧機構12として、キャピラリーチューブ等の配管を用いてもよい。   The evaporation side circulation circuit 30 includes a pump 8, an endothermic heat exchanger 9, and a pressure reducing mechanism 12. The evaporation side circulation circuit 30 is configured such that the refrigerant liquid stored in the evaporation mechanism 2 is supplied to the heat absorption heat exchanger 9. The evaporation side circulation circuit 30 is configured such that refrigerant having a pressure higher than the pressure inside the evaporation mechanism 2 that has absorbed heat by the heat absorption heat exchanger 9 is reduced in pressure by the pressure reduction mechanism 12 and returned to the evaporation mechanism 2. Specifically, the evaporation mechanism 2 and the pump 8 are connected by a flow path 30a. The pump 8 and the heat absorption heat exchanger 9 are connected by a flow path 30b. The heat absorption heat exchanger 9 and the evaporation mechanism 2 are connected by a flow path 30c. A decompression mechanism 12 is provided in the middle of the flow path 30c. The decompression mechanism 12 is, for example, a valve, a nozzle, or a capillary tube. The valve as the pressure reducing mechanism 12 is, for example, an electric valve whose opening degree can be adjusted. The nozzle as the decompression mechanism 12 is, for example, a throttle nozzle. As the decompression mechanism 12, a pipe such as a capillary tube may be used.

蒸発機構2で冷媒液が蒸発することにより温度が低下した蒸発機構2に貯留された冷媒液がポンプ8によって吸熱用熱交換器9に供給される。蒸発機構2は、例えば、断熱性及び耐圧性を有する中空の容器によって形成されている。吸熱用熱交換器9は、例えば、冷媒液と室内の空気とを熱交換させる、フィンチューブ型熱交換器である。吸熱用熱交換器9に供給された冷媒液は、室内の空気と熱交換することにより吸熱する。すなわち、冷凍サイクル装置1は、室内の冷房を行う空気調和装置として構成されている。吸熱用熱交換
器9に供給された冷媒液は、ポンプ8によって、蒸発機構2の内部よりも高圧の冷媒となっている。吸熱用熱交換器9を通過した冷媒液は、減圧機構12によって減圧される。この減圧された冷媒は、場合によっては、冷媒液の液滴を含んだ状態で、蒸発機構2に戻る。
The refrigerant liquid stored in the evaporation mechanism 2 whose temperature has decreased as a result of evaporation of the refrigerant liquid in the evaporation mechanism 2 is supplied to the heat absorption heat exchanger 9 by the pump 8. The evaporation mechanism 2 is formed by, for example, a hollow container having heat insulating properties and pressure resistance. The heat-absorbing heat exchanger 9 is, for example, a finned tube heat exchanger that exchanges heat between the refrigerant liquid and indoor air. The refrigerant liquid supplied to the heat absorption heat exchanger 9 absorbs heat by exchanging heat with indoor air. That is, the refrigeration cycle apparatus 1 is configured as an air conditioner that performs indoor cooling. The refrigerant liquid supplied to the heat absorption heat exchanger 9 becomes a refrigerant having a higher pressure than the inside of the evaporation mechanism 2 by the pump 8. The refrigerant liquid that has passed through the heat absorption heat exchanger 9 is decompressed by the decompression mechanism 12. In some cases, the decompressed refrigerant returns to the evaporation mechanism 2 while containing droplets of the refrigerant liquid.

図2Aに示すように、冷凍サイクル装置1は、蒸発側循環回路30から蒸発機構2に戻った冷媒中の液滴が圧縮機3に導かれることを妨げる妨害構造35を備えている。妨害構造35は、蒸発機構2に貯留された冷媒液の中へ吸熱用熱交換器9で吸熱した冷媒を戻すように蒸発機構2に接続された蒸発側循環回路30の接続部34aである。蒸発機構2に冷媒を戻すための戻し口36が、接続部34aによって形成されている。具体的に、戻し口36は、蒸発機構2に貯留された冷媒液の液面より下方で蒸発機構2の内部空間に開口している。なお、図2Bに示すように、接続部34aの先端は、蒸発機構2の内部空間まで延びていてもよい。この場合に、戻し口36は、蒸発機構2に貯留された冷媒液の液面より下方で蒸発機構2の内部空間に開口している。すなわち、接続部34aは、接続部34aの先端が蒸発機構2に貯留された冷媒液の液面より下方に位置するように、蒸発機構2の壁を貫通して蒸発機構2の内部空間まで延びている。この場合、接続部34aを流れる冷媒に含まれる冷媒蒸気が形成する気泡が蒸発機構2の内部に戻された後に、この気泡が蒸発側循環回路30に供給されることを抑制できる。これにより、吸熱用熱交換器9の内部を流れる冷媒に気泡が含まれることを抑制できるので、吸熱用熱交換器9の熱交換効率及び冷凍サイクル装置1の効率(COP:coefficient of performance)を向上させることができる。このような知見は、吸熱用熱交換器9で吸熱した冷媒を蒸発機構2に貯留された冷媒液に戻すように構成された冷凍サイクル装置1の効率が、吸熱用熱交換器で吸熱した冷媒を蒸発機構に貯留された冷媒液の液面より上方に戻すように構成した冷凍サイクル装置の効率よりも低いことを本発明者らが発見したことに基づく。このような知見は、従来にない新規な知見である。   As shown in FIG. 2A, the refrigeration cycle apparatus 1 includes a blocking structure 35 that prevents droplets in the refrigerant that have returned from the evaporation side circulation circuit 30 to the evaporation mechanism 2 from being guided to the compressor 3. The obstruction structure 35 is a connection part 34a of the evaporation side circulation circuit 30 connected to the evaporation mechanism 2 so as to return the refrigerant absorbed by the heat absorption heat exchanger 9 into the refrigerant liquid stored in the evaporation mechanism 2. A return port 36 for returning the refrigerant to the evaporation mechanism 2 is formed by the connecting portion 34a. Specifically, the return port 36 opens to the internal space of the evaporation mechanism 2 below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. Note that, as shown in FIG. 2B, the tip of the connection portion 34 a may extend to the internal space of the evaporation mechanism 2. In this case, the return port 36 opens to the internal space of the evaporation mechanism 2 below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. That is, the connection part 34 a extends through the wall of the evaporation mechanism 2 to the internal space of the evaporation mechanism 2 so that the tip of the connection part 34 a is located below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. ing. In this case, it is possible to suppress supply of the bubbles to the evaporation side circulation circuit 30 after the bubbles formed by the refrigerant vapor contained in the refrigerant flowing through the connection portion 34 a are returned to the inside of the evaporation mechanism 2. As a result, it is possible to prevent bubbles from being contained in the refrigerant flowing inside the heat absorption heat exchanger 9, so that the heat exchange efficiency of the heat absorption heat exchanger 9 and the efficiency (COP: coefficient of performance) of the refrigeration cycle apparatus 1 can be reduced. Can be improved. Such a knowledge is that the efficiency of the refrigeration cycle apparatus 1 configured to return the refrigerant absorbed by the heat absorption heat exchanger 9 to the refrigerant liquid stored in the evaporation mechanism 2 is the refrigerant absorbed by the heat absorption heat exchanger. This is based on the fact that the present inventors have found that the efficiency is lower than the efficiency of the refrigeration cycle apparatus configured to return the refrigerant to the level above the liquid level of the refrigerant liquid stored in the evaporation mechanism. Such knowledge is a novel knowledge that has not existed before.

蒸発機構2は、例えば、柱状の内部空間を形成している。本実施形態では、蒸発機構2は、円柱状の内部空間を形成している。蒸発機構2の内部空間の上方及び下方はドーム状の壁面によって形成されていてもよい。接続部34aは、蒸発機構2の圧力容器の底面部に接続されている。接続部34aは、流路30cの一部を形成している。蒸発機構2の底面部には、流路30aを形成する配管32が接続されている。配管32が蒸発機構2に接続されていることによって、蒸発機構2に貯留された冷媒液を蒸発側循環回路30へ供給するための流出口33が形成されている。また、蒸発機構2の底面に近接した側面部には、流路5cを形成する配管50が接続されている。蒸発機構2に貯留された冷媒液の液面より上方の蒸発機構2の壁面には、流路5aを形成する配管70が接続されている。本実施形態では、配管70は、蒸発機構2の上面部に接続されている。なお、配管70は、蒸発機構2の側面部に接続されていてもよい。例えば、流路5aの蒸発機構2側の開口及び戻し口36を平面視したとき、流路5aの蒸発機構2側の開口は蒸発機構2の内部空間の中心軸を挟んで戻し口36と反対側に位置している。   The evaporation mechanism 2 forms a columnar internal space, for example. In the present embodiment, the evaporation mechanism 2 forms a cylindrical internal space. The upper and lower sides of the internal space of the evaporation mechanism 2 may be formed by a dome-shaped wall surface. The connection part 34 a is connected to the bottom part of the pressure vessel of the evaporation mechanism 2. The connection part 34a forms a part of the flow path 30c. A pipe 32 that forms a flow path 30 a is connected to the bottom surface of the evaporation mechanism 2. By connecting the pipe 32 to the evaporation mechanism 2, an outlet 33 for supplying the refrigerant liquid stored in the evaporation mechanism 2 to the evaporation side circulation circuit 30 is formed. Further, a pipe 50 that forms a flow path 5 c is connected to a side surface portion close to the bottom surface of the evaporation mechanism 2. A pipe 70 that forms a flow path 5 a is connected to the wall surface of the evaporation mechanism 2 above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. In the present embodiment, the pipe 70 is connected to the upper surface portion of the evaporation mechanism 2. The pipe 70 may be connected to the side surface of the evaporation mechanism 2. For example, when the opening on the evaporation mechanism 2 side of the flow path 5a and the return port 36 are viewed in plan, the opening on the evaporation mechanism 2 side of the flow path 5a is opposite to the return port 36 across the central axis of the internal space of the evaporation mechanism 2. Located on the side.

接続部34aは、蒸発機構2の底面に接続されている。これにより、吸熱用熱交換器9で吸熱した冷媒が蒸発機構2に貯留された冷媒液の中へ戻される。接続部34aを流れる冷媒が液滴を含む場合、接続部34aを通って蒸発機構2に戻された冷媒液が蒸発機構2に貯留された冷媒液と接触することにより、冷媒液の液滴が貯留された冷媒液に取り込まれる。このため、冷媒液の液滴が流路5aを通って圧縮機3に吸込まれることを防止できる。一方、接続部34aを流れる冷媒に冷媒蒸気が含まれる場合には、冷媒蒸気は蒸発機構2に貯留された冷媒液の中を通過して、流路5aを経由して圧縮機3に吸込まれる。接続部34aは、蒸発機構2の内周面における底面に対して直交するように蒸発機構2に接続されている。接続部34aは、蒸発機構2の内周面における底面に対して傾いた状態で蒸発機構2に接続されていてもよい。接続部34aは、蒸発機構2の側面部に接続されていてもよい。この場合、接続部34aは、蒸発機構2の内周面における側面に対して直交していてもよいし、傾いてもよい。   The connection part 34 a is connected to the bottom surface of the evaporation mechanism 2. As a result, the refrigerant that has absorbed heat in the heat absorption heat exchanger 9 is returned to the refrigerant liquid stored in the evaporation mechanism 2. When the refrigerant flowing through the connection portion 34a includes droplets, the refrigerant liquid returned to the evaporation mechanism 2 through the connection portion 34a comes into contact with the refrigerant liquid stored in the evaporation mechanism 2, so that the droplets of the refrigerant liquid are formed. It is taken in by the stored refrigerant liquid. For this reason, it is possible to prevent the refrigerant liquid droplets from being sucked into the compressor 3 through the flow path 5a. On the other hand, when the refrigerant flowing in the connection portion 34a contains refrigerant vapor, the refrigerant vapor passes through the refrigerant liquid stored in the evaporation mechanism 2 and is sucked into the compressor 3 via the flow path 5a. It is. The connecting portion 34 a is connected to the evaporation mechanism 2 so as to be orthogonal to the bottom surface of the inner peripheral surface of the evaporation mechanism 2. The connecting portion 34 a may be connected to the evaporation mechanism 2 in a state of being inclined with respect to the bottom surface on the inner peripheral surface of the evaporation mechanism 2. The connecting portion 34a may be connected to the side surface portion of the evaporation mechanism 2. In this case, the connection part 34a may be orthogonal to the side surface on the inner peripheral surface of the evaporation mechanism 2 or may be inclined.

蒸発機構2に貯留された冷媒液の液面と戻し口36との距離は、蒸発機構2に貯留された冷媒液の液面において接続部34aを通って蒸発機構2に戻された冷媒の運動量が十分に減少するように定められていることが望ましい。   The distance between the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 and the return port 36 is such that the momentum of the refrigerant returned to the evaporation mechanism 2 through the connecting portion 34a on the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. It is desirable that the value is determined so that the value is sufficiently reduced.

流出口33と戻し口36との距離は、例えば、10mm以上離れている。この場合、接続部34aを通って蒸発機構2に戻った冷媒に含まれる冷媒蒸気が、流出口33を通って流出しにくい。その結果、冷媒蒸気がポンプ8に流入することを防止でき、ポンプ8が冷媒液を供給する能力が確実に発揮される。   The distance between the outlet 33 and the return port 36 is, for example, 10 mm or more. In this case, the refrigerant vapor contained in the refrigerant that has returned to the evaporation mechanism 2 through the connection portion 34 a is unlikely to flow out through the outlet 33. As a result, the refrigerant vapor can be prevented from flowing into the pump 8, and the ability of the pump 8 to supply the refrigerant liquid is reliably exhibited.

冷凍サイクル装置1は、例えば、室外熱交換器及び室内熱交換器を、蒸発機構2及び凝縮機構4に四方弁を介して接続することによって、冷凍サイクル装置1を冷房運転と暖房運転とを切り替え可能な空気調和装置として構成することもできる。冷凍サイクル装置1が冷房運転を行う場合、室外熱交換器が放熱用熱交換器7として機能し、室内熱交換器が吸熱用熱交換器9として機能する。一方、冷凍サイクル装置1が暖房運転を行う場合、室外熱交換器が吸熱用熱交換器9として機能し、室内熱交換器が放熱用熱交換器7として機能する。また、冷凍サイクル装置1は、空気調和装置として構成される必要はなく、例えば、チラーであってもよい。また、放熱用熱交換器7及び吸熱用熱交換器9において、冷媒は、空気以外の気体又は液体と熱交換してもよい。放熱用熱交換器7および吸熱用熱交換器9の仕様は間接式である限り特に限定されない。   The refrigeration cycle apparatus 1 switches between the cooling operation and the heating operation of the refrigeration cycle apparatus 1 by connecting, for example, an outdoor heat exchanger and an indoor heat exchanger to the evaporation mechanism 2 and the condensation mechanism 4 via a four-way valve. It can also be configured as a possible air conditioner. When the refrigeration cycle apparatus 1 performs a cooling operation, the outdoor heat exchanger functions as the heat dissipation heat exchanger 7, and the indoor heat exchanger functions as the heat absorption heat exchanger 9. On the other hand, when the refrigeration cycle apparatus 1 performs the heating operation, the outdoor heat exchanger functions as the heat absorption heat exchanger 9 and the indoor heat exchanger functions as the heat dissipation heat exchanger 7. Moreover, the refrigeration cycle apparatus 1 does not need to be configured as an air conditioner, and may be a chiller, for example. In the heat dissipation heat exchanger 7 and the heat absorption heat exchanger 9, the refrigerant may exchange heat with a gas or liquid other than air. The specifications of the heat-dissipating heat exchanger 7 and the heat-absorbing heat exchanger 9 are not particularly limited as long as they are indirect.

<変形例>
上記の実施形態は、様々な観点から変更が可能である。上記の実施形態の変形例について説明する。以下の変形例は、特に説明する場合を除き、本実施形態と同様に構成される。本実施形態と同一又は対応する構成については、同一の符号を付し、その説明を省略することがある。また、以下の変形例において、同一又は対応する構成については同一の符号を付し、重複した説明を省略することがある。
<Modification>
The above embodiment can be modified from various viewpoints. A modification of the above embodiment will be described. The following modifications are configured in the same manner as in the present embodiment unless otherwise specified. Components that are the same as or correspond to those of the present embodiment are denoted by the same reference numerals, and descriptions thereof may be omitted. In the following modifications, the same or corresponding components are denoted by the same reference numerals, and redundant description may be omitted.

(第1変形例)
図3に示すように、例えば、妨害構造35は、蒸発機構2の側面部に接続された接続部34bであってもよい。接続部34bは、蒸発側循環回路30から蒸発機構2に戻された冷媒の流れが内部空間の周方向の速度成分を持つように蒸発機構2に接続されている。具体的に、接続部34bは、接続部34bが形成する流路の中心軸が蒸発機構2の内部空間の中心軸に交わらないように蒸発機構2に接続されている。これにより、図4に示すように、接続部34bを通って蒸発機構2に戻った冷媒は、蒸発機構2の内部空間の周方向に沿って回転するように流れる。そのため、接続部34bを通って蒸発機構2に戻った冷媒に冷媒の液滴が含まれている場合、遠心力によって、冷媒の液滴が蒸発機構2の内部空間の外周側に集まりやすく、冷媒蒸気が蒸発機構2の内部空間の中心軸側に集まりやすくなる。その結果、冷媒液の液滴が圧縮機3に導かれることが妨げられる。図3及び図4において、z軸負方向が鉛直方向であり、xy平面がz軸に直交する平面である。
(First modification)
As shown in FIG. 3, for example, the obstruction structure 35 may be a connection portion 34 b connected to the side surface portion of the evaporation mechanism 2. The connecting portion 34b is connected to the evaporation mechanism 2 so that the refrigerant flow returned from the evaporation side circulation circuit 30 to the evaporation mechanism 2 has a velocity component in the circumferential direction of the internal space. Specifically, the connection part 34 b is connected to the evaporation mechanism 2 so that the central axis of the flow path formed by the connection part 34 b does not intersect the central axis of the internal space of the evaporation mechanism 2. Thereby, as shown in FIG. 4, the refrigerant that has returned to the evaporation mechanism 2 through the connection portion 34 b flows so as to rotate along the circumferential direction of the internal space of the evaporation mechanism 2. Therefore, when the refrigerant returned to the evaporation mechanism 2 through the connecting portion 34b contains refrigerant droplets, the refrigerant droplets easily collect on the outer peripheral side of the internal space of the evaporation mechanism 2 due to centrifugal force. It becomes easy for steam to collect on the central axis side of the internal space of the evaporation mechanism 2. As a result, the refrigerant liquid droplets are prevented from being guided to the compressor 3. 3 and 4, the z-axis negative direction is the vertical direction, and the xy plane is a plane orthogonal to the z-axis.

蒸発側循環回路30から蒸発機構2に戻された冷媒の流れが内部空間の周方向の速度成分を持つ限り、接続部34bは、蒸発機構2の底面部に接続されていてもよい。この場合、接続部34bを通って蒸発機構2に戻った冷媒を、内部空間の周方向に沿って回転するように又は螺旋運動をするように流すことができる。これにより、蒸発機構2に戻った冷媒を蒸発機構2の内部に貯留された冷媒液の中に長い期間留めておくことができる。これにより、接続部34bを通って蒸発機構2に戻った冷媒に冷媒の液滴が含まれている場合、冷媒液の液滴が分離され、冷媒液の液滴が圧縮機3に導かれることが妨げられる。   As long as the refrigerant flow returned from the evaporation side circulation circuit 30 to the evaporation mechanism 2 has a velocity component in the circumferential direction of the internal space, the connection portion 34 b may be connected to the bottom surface portion of the evaporation mechanism 2. In this case, the refrigerant that has returned to the evaporation mechanism 2 through the connection portion 34b can be caused to flow so as to rotate or spirally move along the circumferential direction of the internal space. Thereby, the refrigerant returned to the evaporation mechanism 2 can be kept in the refrigerant liquid stored in the evaporation mechanism 2 for a long period of time. Thereby, when the refrigerant | coolant droplet is contained in the refrigerant | coolant which returned to the evaporation mechanism 2 through the connection part 34b, the droplet of refrigerant | coolant liquid is isolate | separated and the droplet of refrigerant | coolant liquid is guide | induced to the compressor 3. Is disturbed.

(第2変形例)
図5Aに示すように、冷凍サイクル装置1は、接続部34aよりも上方に設けられた噴出防止壁37をさらに備えていてもよい。この場合、接続部34aは、蒸発機構2の内部で冷媒が上向き又は斜め上向きに流入するように蒸発機構2に接続されている。噴出防止壁37は、蒸発側循環回路30から蒸発機構2に戻された冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することを防止する。具体的に、噴出防止壁37は、蒸発機構2の内部に設けられており、蒸発機構2の内部において冷媒液の液面よりも下方に位置している。接続部34aを通って蒸発機構2に戻った冷媒の流れは噴出防止壁37に衝突し減速する。これにより、接続部34aを通って蒸発機構2に戻った冷媒が冷媒液の液面から噴出することを防止できる。蒸発機構2に貯留された冷媒液の液面と戻し口36との距離が短い場合でも、接続部34aを通って蒸発機構2に戻った冷媒の噴出を防止できるので、蒸発機構2の小型化を図ることもできる。
(Second modification)
As shown in FIG. 5A, the refrigeration cycle apparatus 1 may further include an ejection prevention wall 37 provided above the connection portion 34a. In this case, the connecting portion 34 a is connected to the evaporation mechanism 2 so that the refrigerant flows upward or obliquely upward inside the evaporation mechanism 2. The ejection preventing wall 37 prevents the refrigerant flow returned to the evaporation mechanism 2 from the evaporation side circulation circuit 30 from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. Specifically, the ejection preventing wall 37 is provided inside the evaporation mechanism 2 and is located below the liquid level of the refrigerant liquid inside the evaporation mechanism 2. The refrigerant flow that has returned to the evaporation mechanism 2 through the connecting portion 34a collides with the ejection preventing wall 37 and decelerates. Thereby, it can prevent that the refrigerant | coolant which returned to the evaporation mechanism 2 through the connection part 34a ejects from the liquid level of a refrigerant liquid. Even when the distance between the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 and the return port 36 is short, it is possible to prevent the refrigerant from being returned to the evaporation mechanism 2 through the connecting portion 34a, so that the evaporation mechanism 2 can be downsized. Can also be planned.

噴出防止壁37は、例えば、接続部34aを通って蒸発機構2に戻った冷媒の流れに対して90°の角度をなすように設けられている。しかし、接続部34aを通って蒸発機構2に戻った冷媒の流れが、噴出防止壁37に衝突する限り、噴出防止壁37の取付け角度は特に制限されない。噴出防止壁37は、平面又は曲面を有する形状、又は、複数の貫通孔を有する形状で形成されていてもよい。また、複数の噴出防止壁37が設けられていてもよい。噴出防止壁37に、接続部34aを通って蒸発機構2に戻った冷媒の流れが衝突する限り、その数及び形状は特に制限されない。噴出防止壁37及び戻し口36を平面視したとき、例えば、戻し口36の全部が噴出防止壁37に重なっている。これにより、上記の効果をより確実に得ることができる。例えば、接続部34aの軸線を蒸発機構2の内部空間に延長した線上に噴出防止壁37に位置するように噴出防止壁37が設けられている。これにより、上記の効果をより確実に得ることができる。図5Bに示すように、接続部34aは、蒸発機構2の壁を貫通して蒸発機構2の内部空間における噴出防止壁37の下方の位置まで延びていてもよい。   The ejection preventing wall 37 is provided, for example, so as to form an angle of 90 ° with respect to the flow of the refrigerant that has returned to the evaporation mechanism 2 through the connection portion 34a. However, the attachment angle of the ejection preventing wall 37 is not particularly limited as long as the refrigerant flow returned to the evaporation mechanism 2 through the connection portion 34a collides with the ejection preventing wall 37. The ejection preventing wall 37 may be formed in a shape having a flat surface or a curved surface, or a shape having a plurality of through holes. A plurality of ejection preventing walls 37 may be provided. As long as the refrigerant flow returned to the evaporation mechanism 2 through the connection portion 34a collides with the ejection prevention wall 37, the number and shape thereof are not particularly limited. When the ejection preventing wall 37 and the return port 36 are viewed in plan, for example, the entire return port 36 overlaps the ejection preventing wall 37. Thereby, said effect can be acquired more reliably. For example, the ejection preventing wall 37 is provided so as to be positioned on the ejection preventing wall 37 on a line obtained by extending the axis of the connecting portion 34 a to the internal space of the evaporation mechanism 2. Thereby, said effect can be acquired more reliably. As shown in FIG. 5B, the connecting portion 34 a may extend through the wall of the evaporation mechanism 2 to a position below the ejection preventing wall 37 in the internal space of the evaporation mechanism 2.

また、図5Cに示すように、噴出防止壁37の形状は、複数の貫通孔37h(オリフィス)を有する半球状の形状であってもよい。この場合、噴出防止壁37は、蒸発機構2の内部空間において、接続部34aの上方で戻し口36を覆うように設けられている。複数の貫通孔37hは、噴出防止壁37のほぼ全体に分布するように形成されている。複数の貫通孔37hは、例えば、同一の高さで環状に並ぶ複数の貫通孔の群が複数含まれるように、形成されている。また、複数の貫通孔37hの開口面積の和は、接続部34aによって形成される流路の断面積よりも大きい。接続部34aを通って蒸発機構2に戻った冷媒の流れは噴出防止壁37に衝突し減速する。その結果、蒸発側循環回路30から蒸発機構2に戻された冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することが防止される。また、冷媒が複数の貫通孔37hを通過するように流れるので、冷媒の流れを図5Cに示すように放射状に分流できる。   Moreover, as shown in FIG. 5C, the shape of the ejection preventing wall 37 may be a hemispherical shape having a plurality of through holes 37h (orifices). In this case, the ejection preventing wall 37 is provided in the internal space of the evaporation mechanism 2 so as to cover the return port 36 above the connection portion 34a. The plurality of through holes 37h are formed so as to be distributed over substantially the entire ejection preventing wall 37. The plurality of through holes 37h are formed, for example, so as to include a plurality of groups of a plurality of through holes arranged in an annular shape at the same height. Further, the sum of the opening areas of the plurality of through holes 37h is larger than the cross-sectional area of the flow path formed by the connecting portion 34a. The refrigerant flow that has returned to the evaporation mechanism 2 through the connecting portion 34a collides with the ejection preventing wall 37 and decelerates. As a result, the refrigerant flow returned to the evaporation mechanism 2 from the evaporation side circulation circuit 30 is prevented from being ejected from the liquid surface of the refrigerant liquid stored in the evaporation mechanism 2. Further, since the refrigerant flows so as to pass through the plurality of through holes 37h, the flow of the refrigerant can be diverted radially as shown in FIG. 5C.

(第3変形例)
図6に示すように、冷凍サイクル装置1は、流出口33と戻し口36との間で、蒸発機構2の内部に設けられた分離壁39をさらに備えていてもよい。例えば、分離壁39は、流出口33と戻し口36とを最短距離で結ぶ線分上に位置している。分離壁39は、戻し口36を通って蒸発機構2に戻った冷媒に含まれる冷媒蒸気が流出口33から流出することを防止する。冷媒蒸気が流出口33から流出することを分離壁39によって防止することは、流出口33と戻し口36とが十分に離れていない場合などに特に有利である。このため、蒸発機構2を小型化できる。
(Third Modification)
As shown in FIG. 6, the refrigeration cycle apparatus 1 may further include a separation wall 39 provided inside the evaporation mechanism 2 between the outlet 33 and the return port 36. For example, the separation wall 39 is located on a line segment connecting the outflow port 33 and the return port 36 with the shortest distance. The separation wall 39 prevents the refrigerant vapor contained in the refrigerant that has returned to the evaporation mechanism 2 through the return port 36 from flowing out from the outflow port 33. Preventing the refrigerant vapor from flowing out from the outlet 33 by the separation wall 39 is particularly advantageous when the outlet 33 and the return port 36 are not sufficiently separated. For this reason, the evaporation mechanism 2 can be reduced in size.

分離壁39は、例えば、蒸発機構2の液面に対して90°の角度で、蒸発機構2の底面部に設けられている。しかし、分離壁39を設ける姿勢及び位置は、蒸発機構2に戻った冷媒に含まれる冷媒蒸気が流出口33から流出することを防止する限り、特に制限されない。分離壁39は、平面又は曲面を有する形状で形成されていてもよい。また、複数の分離壁39が設けられていてもよい。すなわち、戻し口36を通って蒸発機構2に戻った冷媒に含まれる冷媒蒸気が流出口33から流出することを防止する限り、分離壁39の形状及び数は特に制限されない。また、分離壁39は、網状構造を有していてもよい。この場合、冷媒液の液滴を網状構造で捕えることもできる。   For example, the separation wall 39 is provided on the bottom surface of the evaporation mechanism 2 at an angle of 90 ° with respect to the liquid surface of the evaporation mechanism 2. However, the posture and position where the separation wall 39 is provided are not particularly limited as long as the refrigerant vapor contained in the refrigerant returned to the evaporation mechanism 2 is prevented from flowing out from the outlet 33. The separation wall 39 may be formed in a shape having a flat surface or a curved surface. A plurality of separation walls 39 may be provided. That is, the shape and number of the separation walls 39 are not particularly limited as long as the refrigerant vapor contained in the refrigerant returned to the evaporation mechanism 2 through the return port 36 is prevented from flowing out from the outlet port 33. Further, the separation wall 39 may have a network structure. In this case, the liquid droplets of the refrigerant liquid can be captured by a network structure.

(第4変形例)
図7に示すように、接続部34aは、蒸発機構2の壁を貫通して蒸発機構2の内部空間における蒸発機構2に貯留された冷媒液の液面を超えないように延びていてもよい。この場合に、接続部34aは、蒸発側循環回路30から蒸発機構2に戻された冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することを防止するための噴出防止構造38を備える。接続部34aが噴出防止構造38を備えることによって、接続部34aを通過して蒸発機構2に戻された冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することが防止される。これにより、蒸発機構2に貯留された冷媒液の液面が乱れて冷媒液の液滴が圧縮機に導かれることが防止される。接続部34aは、例えば、発機構2の壁を貫通して蒸発機構2の内部空間における蒸発機構2に貯留された冷媒液の液面よりも下方の位置まで延びている。なお、接続部34aは、鉛直上向きに延びている。
(Fourth modification)
As shown in FIG. 7, the connecting portion 34 a may extend through the wall of the evaporation mechanism 2 so as not to exceed the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 in the internal space of the evaporation mechanism 2. . In this case, the connection part 34 a is an ejection prevention structure for preventing the refrigerant flow returned from the evaporation side circulation circuit 30 to the evaporation mechanism 2 from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. 38. By providing the connection part 34a with the ejection prevention structure 38, the flow of the refrigerant that has passed through the connection part 34a and returned to the evaporation mechanism 2 is prevented from being ejected from the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The Thereby, the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 is disturbed, and the refrigerant liquid droplets are prevented from being guided to the compressor. For example, the connecting portion 34 a extends through the wall of the generating mechanism 2 to a position below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 in the internal space of the evaporation mechanism 2. The connecting portion 34a extends vertically upward.

噴出防止構造38は、例えば、拡大部34gを備える。拡大部34gは、蒸発機構2の底部より上方に位置し、接続部34aを流れる冷媒の流れ方向に沿って断面積が拡大する流路を形成している。拡大部34gが形成する流路において接続部34aを流れる冷媒が減速するので、接続部34aから蒸発機構2に戻される冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することが防止される。これにより、蒸発機構2に貯留された冷媒液の液面が乱れて冷媒液の液滴が圧縮機に導かれることが防止される。   The ejection preventing structure 38 includes, for example, an enlarged portion 34g. The enlarged part 34g is located above the bottom part of the evaporation mechanism 2 and forms a flow path whose cross-sectional area is enlarged along the flow direction of the refrigerant flowing through the connection part 34a. Since the refrigerant flowing through the connecting portion 34a is decelerated in the flow path formed by the enlarged portion 34g, the refrigerant flow returned from the connecting portion 34a to the evaporation mechanism 2 is ejected from the liquid surface of the refrigerant liquid stored in the evaporation mechanism 2. Is prevented. Thereby, the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 is disturbed, and the refrigerant liquid droplets are prevented from being guided to the compressor.

図8に示すように、拡大部34gは、接続部34aの中心軸に沿った拡大部34gの断面形状が段差を有する形状であるように形成されていてもよい。このような形状の拡大部34gは、例えば、日本工業規格(JIS)に準拠した管内径の異なる複数の配管を溶接することによって製造できる。また、拡大部34gは、拡大部34gによって形成される流路の下流端における断面積が拡大部34gによって形成される流路の上流端における断面積よりも大きいように形成されていればよい。拡大部34gは、例えば、拡大部34gの壁の一部が括れるように形成されていてもよい。また、流路30aを形成する配管32は、図9に示すように、蒸発機構2に貯留された冷媒液の液面より下方で蒸発機構2の側壁に接続されていてもよい。   As shown in FIG. 8, the enlarged portion 34g may be formed such that the cross-sectional shape of the enlarged portion 34g along the central axis of the connecting portion 34a has a step. The enlarged portion 34g having such a shape can be manufactured, for example, by welding a plurality of pipes having different pipe inner diameters in accordance with Japanese Industrial Standards (JIS). The enlarged portion 34g may be formed so that the cross-sectional area at the downstream end of the flow path formed by the enlarged portion 34g is larger than the cross-sectional area at the upstream end of the flow path formed by the enlarged portion 34g. The enlarged part 34g may be formed so that, for example, a part of the wall of the enlarged part 34g is confined. Moreover, the piping 32 which forms the flow path 30a may be connected to the side wall of the evaporation mechanism 2 below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2, as shown in FIG.

図10に示すように、接続部34aは、延長部34hをさらに備えてもよい。延長部34hは、拡大部34gから上方に延び、接続部34aを流れる冷媒の流れ方向に沿って断面積が一定である流路を形成している。この流路において、接続部34aに流れる冷媒に含まれる冷媒蒸気が形成する気泡の大きさが調整される。これにより、この気泡が蒸発機構2に戻った後に蒸発側循環回路30に供給されることが防止される。このため、冷媒蒸気がポンプ8に流入することを防止でき、ポンプ8が冷媒液を供給する能力が確実に発揮される。この場合に、冷凍サイクル装置1は、図11に示すように構成されていてもよい。   As shown in FIG. 10, the connection part 34 a may further include an extension part 34 h. The extension part 34h extends upward from the enlarged part 34g and forms a flow path having a constant cross-sectional area along the flow direction of the refrigerant flowing through the connection part 34a. In this flow path, the size of bubbles formed by the refrigerant vapor contained in the refrigerant flowing through the connecting portion 34a is adjusted. This prevents the bubbles from being supplied to the evaporation side circulation circuit 30 after returning to the evaporation mechanism 2. For this reason, it can prevent that a refrigerant | coolant vapor | steam flows in into the pump 8, and the capability in which the pump 8 supplies a refrigerant | coolant liquid is exhibited reliably. In this case, the refrigeration cycle apparatus 1 may be configured as shown in FIG.

図11に示す冷凍サイクル装置1は、吸熱側温度センサ16、冷媒蒸気温度センサ17、液位センサ18、及び制御部15をさらに備え、接続部34aが図10に示すように構成されている点以外は、本実施形態に係る冷凍サイクル装置1と同様に構成されている。なお、減圧機構12は、バルブである。減圧機構12は、例えば開度が調整可能な電動弁である。吸熱側温度センサ16は、吸熱用熱交換器9で吸熱した蒸発機構2に戻る冷媒の温度を検出するためのセンサである。吸熱側温度センサ16は、例えば、冷媒の流れ方向において吸熱用熱交換器9よりも下流側で蒸発循環回路30を形成する配管に取り付けられている。冷媒蒸気温度センサ17は、蒸発機構2における冷媒蒸気の温度を検出するためのセンサである。冷媒蒸気温度センサ17は、例えば、蒸発機構2に貯留された冷媒液の液面よりも上方で蒸発機構2の壁面に取り付けられている。液位センサ18は、蒸発機構2に貯留された冷媒液の液位を検出するためのセンサである。液位センサ18は、例えば、フロート式の液位センサ、光学式の液位センサ、超音波式の液位センサ、又は静電容量式の液位センサである。制御部15は、吸熱側温度センサ16の検出値、冷媒蒸気温度センサ17の検出値、及び液位センサ18の検出値に基づいて、減圧機構12であるバルブの開度を調整することによって蒸発機構2に貯留された冷媒液の液位を制御する。このため、図11に示すように、制御部15は、吸熱側温度センサ16、冷媒蒸気温度センサ17、及び液位センサ18の検出値を受信できるように、吸熱側温度センサ16、冷媒蒸気温度センサ17、及び液位センサ18に接続されている。また、制御部15は、減圧機構12であるバルブの開度を調整するための信号を減圧機構12に送信できるように、減圧機構12に接続されている。なお、制御部15と、吸熱側温度センサ16、冷媒蒸気温度センサ17、液位センサ18、及び減圧機構12との接続は、有線による接続及び無線による接続のいずれでもよい。   The refrigeration cycle apparatus 1 shown in FIG. 11 further includes a heat absorption side temperature sensor 16, a refrigerant vapor temperature sensor 17, a liquid level sensor 18, and a control unit 15, and the connection part 34a is configured as shown in FIG. Other than that, the configuration is the same as that of the refrigeration cycle apparatus 1 according to the present embodiment. The decompression mechanism 12 is a valve. The decompression mechanism 12 is an electric valve whose opening degree can be adjusted, for example. The heat absorption side temperature sensor 16 is a sensor for detecting the temperature of the refrigerant returning to the evaporation mechanism 2 that has absorbed heat by the heat absorption heat exchanger 9. The heat absorption side temperature sensor 16 is attached to, for example, a pipe that forms the evaporation circuit 30 on the downstream side of the heat absorption heat exchanger 9 in the refrigerant flow direction. The refrigerant vapor temperature sensor 17 is a sensor for detecting the temperature of the refrigerant vapor in the evaporation mechanism 2. For example, the refrigerant vapor temperature sensor 17 is attached to the wall surface of the evaporation mechanism 2 above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The liquid level sensor 18 is a sensor for detecting the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The liquid level sensor 18 is, for example, a float type liquid level sensor, an optical type liquid level sensor, an ultrasonic type liquid level sensor, or a capacitance type liquid level sensor. The control unit 15 evaporates by adjusting the opening of the valve that is the decompression mechanism 12 based on the detection value of the heat absorption side temperature sensor 16, the detection value of the refrigerant vapor temperature sensor 17, and the detection value of the liquid level sensor 18. The liquid level of the refrigerant liquid stored in the mechanism 2 is controlled. Therefore, as shown in FIG. 11, the control unit 15 receives the detection values of the heat absorption side temperature sensor 16, the refrigerant vapor temperature sensor 17, and the liquid level sensor 18, so that the heat absorption side temperature sensor 16 and the refrigerant vapor temperature are received. The sensor 17 and the liquid level sensor 18 are connected. Further, the control unit 15 is connected to the pressure reducing mechanism 12 so that a signal for adjusting the opening degree of the valve that is the pressure reducing mechanism 12 can be transmitted to the pressure reducing mechanism 12. Note that the connection between the control unit 15 and the heat absorption side temperature sensor 16, the refrigerant vapor temperature sensor 17, the liquid level sensor 18, and the decompression mechanism 12 may be either wired connection or wireless connection.

制御部15は、例えば、接続部34aを流れる冷媒が拡大部34gの上端までは単相流(液相流)として流れるように、蒸発機構2に貯留された冷媒液の液位を制御する。すなわち、制御部15は、拡大部34gの上端よりも上方で冷媒蒸気による気泡が発生するように蒸発機構2に貯留された冷媒液の液位を制御する。制御部15は、吸熱側温度センサ16の検出値、冷媒蒸気温度センサ17の検出値、及び液位センサ18の検出値を取得する。制御部15は、吸熱側温度センサ16の検出値から吸熱側温度センサ16によって検出された温度における冷媒の飽和蒸気圧Ph[Pa]を求める。制御部15は、冷媒蒸気温度センサ17の検出値から冷媒蒸気温度センサ17によって検出された温度における冷媒の飽和蒸気圧Ps[Pa]を求める。ここで、蒸発機構に貯留された冷媒液の密度をρ[kg/m3]、重力加速度をg[m/s2]、拡大部34gの上端から蒸発機構2に貯留された冷媒液の液面までの高さをh[m]と定義する。接続部34aを流れる冷媒が拡大部34gの上端までは単相流(液相流)として流れるためには、Ph−Ps≦ρghの関係が満たされる必要がある。制御部15は、この関係が満たされるように減圧機構12であるバルブの開度を調整して蒸発機構2に貯留された冷媒液の液位を制御する。 For example, the control unit 15 controls the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 so that the refrigerant flowing through the connection unit 34a flows as a single-phase flow (liquid phase flow) up to the upper end of the expansion unit 34g. That is, the control unit 15 controls the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 so that bubbles due to the refrigerant vapor are generated above the upper end of the enlarged part 34g. The control unit 15 acquires the detection value of the heat absorption side temperature sensor 16, the detection value of the refrigerant vapor temperature sensor 17, and the detection value of the liquid level sensor 18. The control unit 15 obtains the saturated vapor pressure Ph [Pa] of the refrigerant at the temperature detected by the heat absorption side temperature sensor 16 from the detection value of the heat absorption side temperature sensor 16. The control unit 15 obtains the saturated vapor pressure Ps [Pa] of the refrigerant at the temperature detected by the refrigerant vapor temperature sensor 17 from the detection value of the refrigerant vapor temperature sensor 17. Here, the density of the refrigerant liquid stored in the evaporation mechanism is ρ [kg / m 3 ], the acceleration of gravity is g [m / s 2 ], and the liquid of the refrigerant liquid stored in the evaporation mechanism 2 from the upper end of the enlarged portion 34g. The height to the surface is defined as h [m]. In order for the refrigerant flowing through the connecting portion 34a to flow as a single-phase flow (liquid phase flow) up to the upper end of the enlarged portion 34g, the relationship of Ph-Ps ≦ ρgh needs to be satisfied. The controller 15 controls the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 by adjusting the opening of the valve that is the decompression mechanism 12 so that this relationship is satisfied.

図12に示すように、噴出防止構造38は、拡大部34gに加え、分流板34iをさらに備えていてもよい。分流板34iは、接続部34aの中心軸に重なるように設けられており、複数の貫通孔34jを有する。接続部34aを通って蒸発機構2に戻る冷媒の流速が空間的にばらつくことを分流板34iによって抑制できる。分流板34iは、分流板34iの外周端が拡大部34gの内周面に接続されるように形成されている。複数の貫通孔34jは、接続部34aを流れる冷媒の流れ方向に拡大部34gよりも上流側で接続部34aによって形成された流路の断面積よりも大きい開口面積を有する。すなわち、複数の流路34jの開口面積の総和が、拡大部34gよりも上流側の接続部34aによって形成された流路の断面積よりも大きい。このため、複数の貫通孔34jを通過する冷媒の流れが速まりすぎることを防止できる。なお、接続部34aの流れ方向に沿って、1枚の分流板34iが設けられていてもよいし、2枚以上の分流板34iが設けられていてもよい。   As shown in FIG. 12, the ejection preventing structure 38 may further include a flow dividing plate 34i in addition to the enlarged portion 34g. The flow dividing plate 34i is provided so as to overlap the central axis of the connecting portion 34a, and has a plurality of through holes 34j. It is possible to suppress the flow rate of the refrigerant returning to the evaporation mechanism 2 through the connection portion 34a from being spatially varied by the flow dividing plate 34i. The flow dividing plate 34i is formed so that the outer peripheral end of the flow dividing plate 34i is connected to the inner peripheral surface of the enlarged portion 34g. The plurality of through holes 34j have an opening area larger than the cross-sectional area of the flow path formed by the connecting portion 34a on the upstream side of the enlarged portion 34g in the flow direction of the refrigerant flowing through the connecting portion 34a. That is, the sum total of the opening areas of the plurality of flow paths 34j is larger than the cross-sectional area of the flow path formed by the connection part 34a on the upstream side of the enlarged part 34g. For this reason, it can prevent that the flow of the refrigerant | coolant which passes the some through-hole 34j becomes too quick. Note that one flow dividing plate 34i may be provided along the flow direction of the connecting portion 34a, or two or more flow dividing plates 34i may be provided.

図13に示すように、噴出防止構造38は、拡大部34gに加え、多孔質部材34kをさらに備えていてもよい。多孔質部材34kは、接続部34aの中心軸に重なるように設けられている。これにより、拡大部34g及び多孔質部材34kによって、接続部34aから蒸発機構2に戻る冷媒の流れを減速させつつ、その流速が空間的にばらつくことを抑制できるとともに、冷媒に含まれる気泡が液面において破裂することにより蒸発機構2の内部で圧力変動が生じることを防止できる。すなわち、図12に示す噴出防止構造38では、冷媒に含まれる気泡が分流板34iにトラップされ、大きなサイズの気泡が形成される。この気泡が液面に向かって上昇して液面で破裂することにより蒸発機構2の内部の圧力が変動する可能性がある。これに対し、図13に示す噴出防止構造38では、多孔質部材34kの外周端が拡大部34gの内周面に接続されている。このため、冷媒に含まれる気泡のサイズは、多孔質部材34kを通過することで小さくなる。これにより、大きなサイズの気泡が形成されること及び蒸発機構2の内部の圧力が変動することを抑制できる。多孔質部材34kは、例えば、ウレタンフォーム、金属系多孔性材料、メラミン樹脂製のスポンジでできている。また、多孔質部材34kは、例えば、パンチングメタルなどの複数の孔を有する板状の部材であってもよい。   As shown in FIG. 13, the ejection preventing structure 38 may further include a porous member 34k in addition to the enlarged portion 34g. The porous member 34k is provided so as to overlap the central axis of the connecting portion 34a. Thereby, while the expansion part 34g and the porous member 34k can decelerate the flow of the refrigerant returning to the evaporation mechanism 2 from the connection part 34a, it is possible to suppress the spatial variation in the flow velocity, and the bubbles contained in the refrigerant are liquid. It is possible to prevent pressure fluctuation from occurring inside the evaporation mechanism 2 by rupturing on the surface. That is, in the ejection preventing structure 38 shown in FIG. 12, the bubbles included in the refrigerant are trapped in the flow dividing plate 34i, and a large-sized bubble is formed. There is a possibility that the pressure inside the evaporation mechanism 2 fluctuates due to the bubbles rising toward the liquid level and bursting at the liquid level. On the other hand, in the ejection preventing structure 38 shown in FIG. 13, the outer peripheral end of the porous member 34k is connected to the inner peripheral surface of the enlarged portion 34g. For this reason, the size of the bubbles contained in the refrigerant is reduced by passing through the porous member 34k. Thereby, it can suppress that the bubble of a large size is formed and the pressure inside the evaporation mechanism 2 fluctuates. The porous member 34k is made of, for example, a urethane foam, a metal-based porous material, or a sponge made of melamine resin. The porous member 34k may be a plate-like member having a plurality of holes such as punching metal, for example.

図14に示すように、噴出防止構造38は、拡大部34gに加え、窄み部34mをさらに備えていてもよい。窄み部34mは、接続部34aを流れる冷媒の流れ方向と反対方向に向かって窄むように突出している。また、窄み部34mは、接続部34aの中心軸に重なる先端を有する。これにより、冷媒の流れを窄み部34mによって均一に分流できる。また、冷媒の流れにおいて、冷媒の剥離(渦の発生)が抑制されるので、冷媒の流れの圧力損失が小さい。   As shown in FIG. 14, the ejection preventing structure 38 may further include a constricted portion 34m in addition to the enlarged portion 34g. The constricted portion 34m projects so as to constrict in the direction opposite to the flow direction of the refrigerant flowing through the connecting portion 34a. The narrowed portion 34m has a tip that overlaps the central axis of the connecting portion 34a. Thereby, the flow of the refrigerant can be evenly divided by the constricted portion 34m. Further, since the separation (reduction of vortex) of the refrigerant is suppressed in the refrigerant flow, the pressure loss of the refrigerant flow is small.

(第5変形例)
図15に示すように、蒸発機構2は、蒸発機構2の底部に向かって窄んでいる内部空間を有していてもよい。この場合、接続部34aは、蒸発機構2の底部に接続されている。接続部34aは、鉛直上向きに延びている。接続部34aを通って蒸発機構2に戻された冷媒の流れが蒸発機構2の内部空間において減速するので、接続部34aを通って蒸発機構2に戻された冷媒の流れが蒸発機構2に貯留された冷媒液の液面から噴出することが防止される。
(5th modification)
As shown in FIG. 15, the evaporation mechanism 2 may have an internal space that is constricted toward the bottom of the evaporation mechanism 2. In this case, the connecting portion 34 a is connected to the bottom of the evaporation mechanism 2. The connecting portion 34a extends vertically upward. Since the refrigerant flow returned to the evaporation mechanism 2 through the connection portion 34a decelerates in the internal space of the evaporation mechanism 2, the refrigerant flow returned to the evaporation mechanism 2 through the connection portion 34a is stored in the evaporation mechanism 2. It is prevented that the refrigerant liquid is ejected from the liquid surface.

この場合に、冷凍サイクル装置1は、図16に示すように、分流板31gをさらに備えていてもよい。分流板31gは、接続部34aの中心軸に重なるように内部空間に設けられている。また、分流板31gは、複数の貫通孔31hを有する。複数の貫通孔31hは、接続部34aによって形成された流路の断面積よりも大きい開口面積を有する。これにより、蒸発機構2の内部空間において、接続部34aから蒸発機構2に戻った冷媒の流れの流速が空間的にばらつくことを分流板31gによって抑制できる。また、複数の貫通孔31hの開口面積が接続部34aによって形成された流路の断面積よりも大きいので、複数の貫通孔31hを通過する冷媒の流れが速まりすぎることを防止できる。なお、接続部34aの流れ方向に沿って、1枚の分流板31gが設けられていてもよいし、2枚以上の分流板31gが設けられていてもよい。   In this case, the refrigeration cycle apparatus 1 may further include a flow dividing plate 31g as shown in FIG. The flow dividing plate 31g is provided in the internal space so as to overlap the central axis of the connecting portion 34a. Further, the flow dividing plate 31g has a plurality of through holes 31h. The plurality of through holes 31h have an opening area larger than the cross-sectional area of the flow path formed by the connection portion 34a. Thereby, in the internal space of the evaporation mechanism 2, it can suppress by the flow dividing plate 31g that the flow velocity of the flow of the refrigerant | coolant which returned to the evaporation mechanism 2 from the connection part 34a spatially varies. Moreover, since the opening area of the some through-hole 31h is larger than the cross-sectional area of the flow path formed of the connection part 34a, it can prevent that the flow of the refrigerant | coolant which passes the several through-hole 31h becomes too fast. Note that one flow dividing plate 31g may be provided along the flow direction of the connecting portion 34a, or two or more flow dividing plates 31g may be provided.

さらに、冷凍サイクル装置1は、図17に示すように、窄み部31iをさらに備えていてもよい。窄み部31iは、蒸発機構2の内部空間において蒸発機構2の底部に向かって窄むように突出し、接続部34aの中心軸に重なる先端を有する。これにより、蒸発機構2の内部空間において、接続部34aから蒸発機構2に戻った冷媒の流れを窄み部31iによって均一に分流できる。また、この冷媒の流れにおいて、冷媒の剥離(渦の発生)が抑制されるので、冷媒の流れの圧力損失が小さい。   Furthermore, the refrigeration cycle apparatus 1 may further include a constricted portion 31i as shown in FIG. The constricted portion 31i protrudes toward the bottom of the evaporation mechanism 2 in the internal space of the evaporation mechanism 2, and has a tip that overlaps the central axis of the connection portion 34a. Thereby, in the internal space of the evaporation mechanism 2, the flow of the refrigerant returned to the evaporation mechanism 2 from the connection portion 34a can be evenly divided by the constricted portion 31i. Further, in this refrigerant flow, since the separation of the refrigerant (generation of vortex) is suppressed, the pressure loss of the refrigerant flow is small.

(第6変形例)
図18に示すように、妨害構造35は、蒸発機構2に貯留された冷媒液の液面より上方で冷媒を蒸発機構2に戻すように蒸発機構2に接続された蒸発側循環回路30の接続部34cであってもよい。接続部34cは、蒸発機構2に戻された直後の冷媒の流れが鉛直方向の速度成分を含むように蒸発機構2に接続されている。具体的に、接続部34cは、鉛直方向に沿って延びて蒸発機構2の上面部に接続されている。このため、蒸発機構2に戻された直後の冷媒の流れの速度成分は鉛直方向の速度成分が支配的である。これにより、蒸発機構2に戻った冷媒の流れは、蒸発機構2に貯留された冷媒液の液面に向かって進む。これにより、蒸発機構2に戻った冷媒に含まれる冷媒液の液滴は、蒸発機構2に貯留された冷媒液の液面に到達しやすい。その結果、冷媒液の液滴が圧縮機3に導かれることが妨げられる。
(Sixth Modification)
As shown in FIG. 18, the obstruction structure 35 is connected to the evaporation side circulation circuit 30 connected to the evaporation mechanism 2 so as to return the refrigerant to the evaporation mechanism 2 above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. It may be part 34c. The connecting portion 34c is connected to the evaporation mechanism 2 so that the refrigerant flow immediately after being returned to the evaporation mechanism 2 includes a velocity component in the vertical direction. Specifically, the connection portion 34 c extends along the vertical direction and is connected to the upper surface portion of the evaporation mechanism 2. For this reason, the velocity component of the refrigerant flow immediately after being returned to the evaporation mechanism 2 is predominantly the velocity component in the vertical direction. Thereby, the flow of the refrigerant returned to the evaporation mechanism 2 proceeds toward the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. Thereby, the droplets of the refrigerant liquid contained in the refrigerant returned to the evaporation mechanism 2 easily reach the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. As a result, the refrigerant liquid droplets are prevented from being guided to the compressor 3.

接続部34cは、蒸発機構2に戻された直後の冷媒の流れが鉛直方向の速度成分を含む限り、図19に示すように、斜め下向きに蒸発機構2に接続されていてもよい。この場合も、蒸発機構2に戻った冷媒の流れは、蒸発機構2に貯留された冷媒液の液面に向かって進む。冷媒液の液滴は、蒸発機構2に貯留された冷媒液の液面に到達しやすい。これにより、冷媒液の液滴が圧縮機3に導かれることが妨げられる。   As long as the flow of the refrigerant immediately after returning to the evaporation mechanism 2 includes a velocity component in the vertical direction, the connection portion 34c may be connected to the evaporation mechanism 2 obliquely downward as shown in FIG. Also in this case, the flow of the refrigerant returned to the evaporation mechanism 2 proceeds toward the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The droplets of the refrigerant liquid easily reach the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. This prevents the refrigerant liquid droplets from being guided to the compressor 3.

(第7変形例)
図20に示すように、妨害構造35は、蒸発側循環回路30の接続部34dと、邪魔板40とを含んでいてもよい。接続部34dは、蒸発機構2に貯留された冷媒液の液面より上方で冷媒を蒸発機構2に戻すように蒸発機構2に接続されている。接続部34dは、蒸発機構2の側面部に接続されている。接続部34dは、蒸発機構2の上面部に設けられていてもよい。邪魔板40は、接続部34dを経由して蒸発機構2に戻された冷媒の流れを妨げるための部材である。邪魔板40は、例えば、蒸発機構2の内部空間において、蒸発機構2の上面部に設けられている。接続部34dを経由して蒸発機構2に戻された冷媒の流れが邪魔板40と接触すると、冷媒液の液滴は邪魔板40に付着する。又は、冷媒液の液滴を含む冷媒の流れが蒸発機構2に貯留された冷媒液の液面に向かうように、邪魔板40が冷媒液の液滴を含む冷媒の流れの向きを変更する。これにより、冷媒液の液滴が圧縮機3に導かれることが妨げられる。
(Seventh Modification)
As shown in FIG. 20, the blocking structure 35 may include a connection portion 34 d of the evaporation side circulation circuit 30 and a baffle plate 40. The connection portion 34 d is connected to the evaporation mechanism 2 so as to return the refrigerant to the evaporation mechanism 2 above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The connection portion 34d is connected to the side surface portion of the evaporation mechanism 2. The connecting portion 34d may be provided on the upper surface portion of the evaporation mechanism 2. The baffle plate 40 is a member for obstructing the flow of the refrigerant returned to the evaporation mechanism 2 via the connection portion 34d. The baffle plate 40 is provided on the upper surface portion of the evaporation mechanism 2 in the internal space of the evaporation mechanism 2, for example. When the flow of the refrigerant returned to the evaporation mechanism 2 via the connection portion 34 d comes into contact with the baffle plate 40, the refrigerant liquid droplets adhere to the baffle plate 40. Alternatively, the baffle plate 40 changes the direction of the flow of the refrigerant containing the liquid droplets of the refrigerant so that the flow of the refrigerant containing the liquid droplets of the refrigerant goes to the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. This prevents the refrigerant liquid droplets from being guided to the compressor 3.

図21に示すように、邪魔板40は、戻し口36よりも上方、かつ、蒸発機構2の内部空間で、蒸発機構2の側面部に設けられていてもよい。この他、邪魔板40は、蒸発機構2の内部空間において、戻し口36と流路5aの蒸発機構2の開口との間に設けられていればよい。具体的に、邪魔板40は、戻し口36と流路5aの蒸発機構2側の開口とを最短距離で結ぶ線分上に位置しているとよい。邪魔板40は、例えば、平面又は曲面を含む板、屈曲部を含む板、又は網状構造を有する板として構成することができる。また、複数の邪魔板40が蒸発機構2の内部空間に設けられていてもよい。邪魔板40は、蒸発機構2の内部空間において下方に向かって延びていることが望ましい。図22に示すように、邪魔板40は、蒸発機構2に貯留された冷媒液に浸っていてもよい。   As shown in FIG. 21, the baffle plate 40 may be provided on the side surface of the evaporation mechanism 2 above the return port 36 and in the internal space of the evaporation mechanism 2. In addition, the baffle plate 40 may be provided between the return port 36 and the opening of the evaporation mechanism 2 in the flow path 5 a in the internal space of the evaporation mechanism 2. Specifically, the baffle plate 40 is preferably located on a line segment connecting the return port 36 and the opening of the flow path 5a on the evaporation mechanism 2 side at the shortest distance. The baffle plate 40 can be configured, for example, as a plate including a flat surface or a curved surface, a plate including a bent portion, or a plate having a network structure. A plurality of baffle plates 40 may be provided in the internal space of the evaporation mechanism 2. The baffle plate 40 desirably extends downward in the internal space of the evaporation mechanism 2. As shown in FIG. 22, the baffle plate 40 may be immersed in a refrigerant liquid stored in the evaporation mechanism 2.

図23に示すように、接続部34dは、蒸発機構2の壁を貫通して、蒸発機構2に貯留された冷媒液の液面より上方の位置まで上方に延びていてもよい。戻し口36は、蒸発機構2に貯留された冷媒液の液面より上方に位置している。また、邪魔板40は、戻し口36の上方に位置している。邪魔板40側から、邪魔板40及び戻し口36を平面視したとき、戻し口36の全体が邪魔板40と重なっている。戻し口36から上方に向かって噴き出した冷媒が邪魔板40に接触すると、冷媒液の液滴は邪魔板40に付着する。又は、冷媒液の液滴を含む冷媒の流れが蒸発機構2に貯留された冷媒液の液面に向かうように、邪魔板40が冷媒液の液滴を含む冷媒の流れの向きを変更する。これにより、冷媒液の液滴が圧縮機3に導かれることが妨げられる。   As shown in FIG. 23, the connecting portion 34 d may extend through the wall of the evaporation mechanism 2 to a position above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. The return port 36 is located above the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. Further, the baffle plate 40 is located above the return port 36. When the baffle plate 40 and the return port 36 are viewed in plan from the baffle plate 40 side, the entire return port 36 overlaps the baffle plate 40. When the refrigerant spouted upward from the return port 36 contacts the baffle plate 40, the liquid droplets of the refrigerant liquid adhere to the baffle plate 40. Alternatively, the baffle plate 40 changes the direction of the flow of the refrigerant containing the liquid droplets of the refrigerant so that the flow of the refrigerant containing the liquid droplets of the refrigerant goes to the liquid level of the refrigerant liquid stored in the evaporation mechanism 2. This prevents the refrigerant liquid droplets from being guided to the compressor 3.

(その他の変形例)
本実施形態において、冷凍サイクル装置1は、蒸発機構2と凝縮機構4との間に、複数の圧縮機が設けられていてもよい。この場合、上流側の圧縮機をターボ型圧縮機とし、下流側の圧縮機を容積型圧縮機としてもよい。また、冷凍サイクル装置は、上流側の圧縮機と下流側の圧縮機とを接続する経路の途中に、上流側の圧縮機で圧縮された冷媒蒸気を冷却するための冷却器を備えていてもよい。
(Other variations)
In the present embodiment, the refrigeration cycle apparatus 1 may be provided with a plurality of compressors between the evaporation mechanism 2 and the condensation mechanism 4. In this case, the upstream compressor may be a turbo compressor, and the downstream compressor may be a positive displacement compressor. Further, the refrigeration cycle apparatus may include a cooler for cooling the refrigerant vapor compressed by the upstream compressor in the middle of the path connecting the upstream compressor and the downstream compressor. Good.

冷凍サイクル装置1は、流路5cに減圧弁等の減圧機構を備えていてもよい。   The refrigeration cycle apparatus 1 may include a pressure reducing mechanism such as a pressure reducing valve in the flow path 5c.

凝縮機構4として、図1に示す中空の容器に代えて、図24に示すようなエジェクタ60を用いてもよい。エジェクタ60は、圧縮機で圧縮された冷媒蒸気と冷媒液とを混合して冷媒蒸気を凝縮させる。エジェクタ60は、第1ノズル61、第2ノズル62、混合部63、ディフューザ部64、ニードルバルブ65、及びアクチュエータ66を有する。配管67を通じて放熱用熱交換器7から流出した冷媒液が駆動流として第1ノズル61に供給される。流路5bを通じて圧縮機構3で圧縮された冷媒蒸気が第2ノズル62に供給される。第1ノズル61から冷媒液が噴射されることにより、混合部63の圧力が流路5bの圧力より低くなる。その結果、流路5bを通じて冷媒蒸気が第2ノズル62に連続的に吸い込まれる。第1ノズル61から加速しながら噴射された冷媒液と第2ノズル62から膨張及び加速しながら噴射された冷媒蒸気は、混合部63で混合される。そして、冷媒液
と冷媒蒸気との間の温度差と、冷媒液と冷媒蒸気との間のエネルギーの輸送及び冷媒液と冷媒蒸気との間の運動量の輸送に基づく昇圧効果とに起因して、冷媒蒸気が凝縮する。ディフューザ部64は、冷媒の流れを減速させることによって静圧を回復させる。
As the condensation mechanism 4, an ejector 60 as shown in FIG. 24 may be used instead of the hollow container shown in FIG. The ejector 60 mixes the refrigerant vapor and refrigerant liquid compressed by the compressor to condense the refrigerant vapor. The ejector 60 includes a first nozzle 61, a second nozzle 62, a mixing unit 63, a diffuser unit 64, a needle valve 65, and an actuator 66. The refrigerant liquid that has flowed out of the heat dissipation heat exchanger 7 through the pipe 67 is supplied to the first nozzle 61 as a driving flow. The refrigerant vapor compressed by the compression mechanism 3 is supplied to the second nozzle 62 through the flow path 5b. By injecting the refrigerant liquid from the first nozzle 61, the pressure of the mixing unit 63 becomes lower than the pressure of the flow path 5b. As a result, the refrigerant vapor is continuously sucked into the second nozzle 62 through the flow path 5b. The refrigerant liquid injected while accelerating from the first nozzle 61 and the refrigerant vapor injected while expanding and accelerating from the second nozzle 62 are mixed in the mixing unit 63. And due to the temperature difference between the refrigerant liquid and the refrigerant vapor, the pressure increase effect based on the transport of energy between the refrigerant liquid and the refrigerant vapor and the momentum transport between the refrigerant liquid and the refrigerant vapor, Refrigerant vapor condenses. The diffuser unit 64 recovers the static pressure by decelerating the flow of the refrigerant.

ニードルバルブ65及びアクチュエータ66によって駆動流としての冷媒液の流量を調整できる。ニードルバルブ65によって第1ノズル61先端のオリフィスの断面積を変更できる。アクチュエータ66によってニードルバルブ65の位置が調整される。これにより、第1ノズル61を流れる冷媒液の流量を調整できる。   The flow rate of the refrigerant liquid as the driving flow can be adjusted by the needle valve 65 and the actuator 66. The sectional area of the orifice at the tip of the first nozzle 61 can be changed by the needle valve 65. The position of the needle valve 65 is adjusted by the actuator 66. Thereby, the flow volume of the refrigerant liquid flowing through the first nozzle 61 can be adjusted.

冷凍サイクル装置1は、戻し口36が蒸発機構2に貯留された冷媒液の液面より下方で蒸発機構2の内部空間に開口する形態において、戻し口36を通って蒸発機構2に戻った冷媒に含まれる冷媒蒸気が流出口33から流出することを防ぐための構造物をさらに備えていてもよい。このような構造物は、例えば、流出口33の周囲に設けられた網状の構造物である。このような構造物は、例えば、流出口33の周囲に設けられ、複数の貫通孔を有する構造物であってもよい。   The refrigeration cycle apparatus 1 is configured such that the return port 36 opens to the internal space of the evaporation mechanism 2 below the liquid level of the refrigerant liquid stored in the evaporation mechanism 2 and returns to the evaporation mechanism 2 through the return port 36. There may be further provided a structure for preventing the refrigerant vapor contained in the gas from flowing out from the outlet 33. Such a structure is, for example, a net-like structure provided around the outflow port 33. Such a structure may be, for example, a structure provided around the outflow port 33 and having a plurality of through holes.

本発明に係る冷凍サイクル装置は、例えば、家庭用空気調和装置又は業務用空気調和装置として特に有利である。また、本発明に係る冷凍サイクル装置は、例えば、チラー又はヒートポンプとして利用できる。   The refrigeration cycle apparatus according to the present invention is particularly advantageous, for example, as a home air conditioner or a commercial air conditioner. Moreover, the refrigerating cycle apparatus which concerns on this invention can be utilized as a chiller or a heat pump, for example.

1 冷凍サイクル装置
2 蒸発機構
3 圧縮機
4 凝縮機構
9 吸熱用熱交換器
10 主回路
12 減圧機構
15 制御部
16 吸熱側温度センサ
17 冷媒蒸気温度センサ
18 液位センサ
30 蒸発側循環回路
31g 分流板
31h 貫通孔
31i 窄み部
33 流出口
34a〜34d 接続部
34g 拡大部
34h 延長部
34i 分流板
34j 貫通孔
34k 多孔質部材
34m 窄み部
35 妨害構造
36 戻し口
37 噴出防止壁
38 噴出防止構造
39 分離壁
40 邪魔板
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus 2 Evaporation mechanism 3 Compressor 4 Condensing mechanism 9 Heat absorption heat exchanger 10 Main circuit 12 Decompression mechanism 15 Control part 16 Endothermic temperature sensor 17 Refrigerant vapor temperature sensor 18 Liquid level sensor 30 Evaporation side circulation circuit 31g Dividing plate 31h Through-hole 31i Constriction part 33 Outflow port 34a-34d Connection part 34g Expansion part 34h Extension part 34i Split plate 34j Through-hole 34k Porous member 34m Constriction part 35 Blocking structure 36 Return port 37 Ejection prevention wall 38 Ejection prevention structure 39 Separation wall 40 baffle plate

Claims (2)

常温における飽和蒸気圧が負圧である冷媒を循環させる主回路であって、冷媒蒸気を圧縮する圧縮機、冷媒蒸気を凝縮させる凝縮機構、及び冷媒液を貯留するとともに冷媒液を蒸発させる蒸発機構を有し、前記圧縮機、前記凝縮機構、及び前記蒸発機構がこの順に接続された主回路と、
ポンプ及びノズルを有し、前記蒸発機構に貯留された冷媒液が前記ポンプで昇圧されたのち前記ノズルによって減圧されて前記蒸発機構に貯留された前記冷媒液の液面より上方に戻るように構成された蒸発側循環回路と、
前記蒸発側循環回路から前記蒸発機構に戻った冷媒中の液滴が前記圧縮機に導かれることを妨げる邪魔板と、を備え、
前記邪魔板は、前記蒸発機構に戻された冷媒の流れと接触するように配置されており、
前記邪魔板は、前記蒸発機構の内部空間において下方に向かって延びている、
冷凍サイクル装置。
A main circuit for circulating a refrigerant whose saturation vapor pressure is negative at normal temperature, a compressor that compresses the refrigerant vapor, a condensation mechanism that condenses the refrigerant vapor, and an evaporation mechanism that stores the refrigerant liquid and evaporates the refrigerant liquid A main circuit in which the compressor, the condensing mechanism, and the evaporation mechanism are connected in this order;
A pump and a nozzle are provided, and the refrigerant liquid stored in the evaporation mechanism is pressurized by the pump, and then depressurized by the nozzle to return above the liquid level of the refrigerant liquid stored in the evaporation mechanism. An evaporation side circulation circuit,
E Bei and a baffle plate that prevents the droplets in the refrigerant returned from the evaporator-side circulation circuit to the vaporization mechanism is led to the compressor,
The baffle plate is disposed so as to come into contact with the refrigerant flow returned to the evaporation mechanism,
The baffle plate extends downward in the internal space of the evaporation mechanism,
Refrigeration cycle equipment.
常温における飽和蒸気圧が負圧である冷媒を循環させる主回路であって、冷媒蒸気を圧縮する圧縮機、冷媒蒸気を凝縮させる凝縮機構、及び冷媒液を貯留するとともに冷媒液を蒸発させる蒸発機構を有し、前記圧縮機、前記凝縮機構、及び前記蒸発機構がこの順に接続された主回路と、A main circuit that circulates a refrigerant having a negative saturated vapor pressure at room temperature, a compressor that compresses the refrigerant vapor, a condensation mechanism that condenses the refrigerant vapor, and an evaporation mechanism that stores the refrigerant liquid and evaporates the refrigerant liquid A main circuit in which the compressor, the condensing mechanism, and the evaporation mechanism are connected in this order;
ポンプ及びノズルを有し、前記蒸発機構に貯留された冷媒液が前記ポンプで昇圧されたのち前記ノズルによって減圧されて前記蒸発機構に貯留された前記冷媒液の液面より上方に戻るように構成された蒸発側循環回路と、A pump and a nozzle are provided, and the refrigerant liquid stored in the evaporation mechanism is pressurized by the pump, and then depressurized by the nozzle to return above the liquid level of the refrigerant liquid stored in the evaporation mechanism. An evaporation side circulation circuit,
前記蒸発側循環回路から前記蒸発機構に戻った冷媒中の液滴が前記圧縮機に導かれることを妨げる邪魔板と、を備え、A baffle plate that prevents liquid droplets in the refrigerant returned to the evaporation mechanism from the evaporation side circulation circuit from being guided to the compressor,
前記邪魔板は、前記蒸発機構に戻された冷媒の流れと接触するように配置されており、The baffle plate is disposed so as to come into contact with the refrigerant flow returned to the evaporation mechanism,
前記蒸発機構を平面視したとき、前記蒸発機構と前記圧縮機とを接続する流路の前記蒸発機構側の開口は、前記蒸発機構の内部空間の中心軸を挟んで、前記蒸発側循環回路の冷媒が戻される位置と反対側に位置している、When the evaporation mechanism is viewed in plan, the opening on the evaporation mechanism side of the flow path connecting the evaporation mechanism and the compressor is located on the evaporation side circulation circuit with the central axis of the internal space of the evaporation mechanism interposed therebetween. Located on the opposite side to where the refrigerant is returned,
冷凍サイクル装置。Refrigeration cycle equipment.
JP2014109512A 2013-10-24 2014-05-27 Refrigeration cycle equipment Expired - Fee Related JP6464502B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014109512A JP6464502B2 (en) 2013-10-24 2014-05-27 Refrigeration cycle equipment
EP20140189923 EP2865969A1 (en) 2013-10-24 2014-10-22 Refrigeration-cycle equipment
US14/522,190 US20150114017A1 (en) 2013-10-24 2014-10-23 Refrigeration-cycle equipment
CN201410571914.3A CN104567053A (en) 2013-10-24 2014-10-23 Refrigeration-cycle equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013221097 2013-10-24
JP2013221097 2013-10-24
JP2014109512A JP6464502B2 (en) 2013-10-24 2014-05-27 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2015108498A JP2015108498A (en) 2015-06-11
JP6464502B2 true JP6464502B2 (en) 2019-02-06

Family

ID=51753115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109512A Expired - Fee Related JP6464502B2 (en) 2013-10-24 2014-05-27 Refrigeration cycle equipment

Country Status (4)

Country Link
US (1) US20150114017A1 (en)
EP (1) EP2865969A1 (en)
JP (1) JP6464502B2 (en)
CN (1) CN104567053A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906150B2 (en) 2018-04-11 2021-02-02 Rolls-Royce North American Technologies Inc Mechanically pumped system for direct control of two-phase isothermal evaporation
US10921042B2 (en) 2019-04-10 2021-02-16 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system
US11022360B2 (en) 2019-04-10 2021-06-01 Rolls-Royce North American Technologies Inc. Method for reducing condenser size and power on a heat rejection system
US11719449B2 (en) 2019-09-17 2023-08-08 Mina Sagar Systems for refrigerating an enclosure
CN111238072B (en) * 2020-01-14 2021-03-26 西安交通大学 Energy-saving refrigeration system capable of realizing refrigerant switching and working method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348752B1 (en) * 1992-04-06 2002-02-19 General Electric Company Integral motor and control
JP3368326B2 (en) * 1994-04-04 2003-01-20 日揮株式会社 Heat exchange device and multi-stage heat exchange device
US5778696A (en) * 1997-09-05 1998-07-14 Conner; Leo B. Method and apparatus for cooling air and water
JP3785143B2 (en) * 2000-11-24 2006-06-14 三菱重工業株式会社 Refrigerator evaporator and refrigeration equipment
JP2003074994A (en) * 2001-08-28 2003-03-12 Calsonic Kansei Corp Radiator
JP2003156265A (en) * 2001-09-06 2003-05-30 Sekisui Chem Co Ltd Heat pump system
JP2003214698A (en) * 2002-01-25 2003-07-30 Sekisui Chem Co Ltd Gas-liquid contacting device and heat pump having device
JP2008531965A (en) * 2005-02-23 2008-08-14 アイ・ディ・イー・テクノロジーズ・リミテッド Small heat pump using water as refrigerant
MX2007012322A (en) * 2005-04-06 2007-12-05 Maekawa Seisakusho Kk Flooded evaporator.
JP4859225B2 (en) 2006-11-14 2012-01-25 株式会社ササクラ Liquid evaporative cooling system
JP2008224055A (en) * 2007-03-08 2008-09-25 Ihi Corp Refrigerant liquid level detecting device, flooded evaporator, ice heat storage device and heat pump system
JP4958591B2 (en) * 2007-03-19 2012-06-20 株式会社ササクラ Liquid evaporative cooling system
WO2009089503A2 (en) * 2008-01-11 2009-07-16 Johnson Controls Technology Company Vapor compression system
WO2011011421A2 (en) * 2009-07-22 2011-01-27 Johnson Controls Technology Company Compact evaporator for chillers
CN202709575U (en) * 2012-06-25 2013-01-30 河南科隆集团有限公司 Evaporator liquid storage tank

Also Published As

Publication number Publication date
EP2865969A1 (en) 2015-04-29
JP2015108498A (en) 2015-06-11
US20150114017A1 (en) 2015-04-30
CN104567053A (en) 2015-04-29

Similar Documents

Publication Publication Date Title
JP6464502B2 (en) Refrigeration cycle equipment
JP5999050B2 (en) Ejector refrigeration cycle and ejector
JP6008206B2 (en) Refrigeration cycle equipment
JP6031684B2 (en) Ejector and heat pump device using the same
JP6052156B2 (en) Ejector
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
JP6716227B2 (en) Evaporator, turbo refrigerator equipped with the same
JP2008196721A (en) Gas-liquid separator
JP6811379B2 (en) Refrigeration cycle equipment
JP2008151374A (en) Vapor compression type refrigerating cycle
CN109642760B (en) Refrigerant distributor for falling film evaporator
JP6481679B2 (en) Ejector
WO2018088127A1 (en) Accumulator
JP6399009B2 (en) Ejector and ejector refrigeration cycle
JP2016166549A (en) Ejector and ejector-type refrigeration cycle
JP7214015B2 (en) Silencer for air conditioner and air conditioner
WO2023002781A1 (en) Cooling device and cooling method
JP2017031975A (en) Ejector
JP5393623B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the same
JP2017044374A (en) Ejector
JP2020190335A (en) Refrigeration cycle device
JP6398883B2 (en) Ejector
CN114270117A (en) Refrigeration system
JP2005265388A (en) Gas-liquid separator
JP2016211827A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181220

R151 Written notification of patent or utility model registration

Ref document number: 6464502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees